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Experimental observations of synchronization between two bidirectionally
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Ke Huang ,1,* Francesco Sorrentino,2 and Mani Hossein-Zadeh 1

1Center for High Technology Materials, The University of New Mexico, 1313 Goddard Street SE, Albuquerque, New Mexico 87106, USA
2Department of Mechanical Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, USA

(Received 14 April 2020; revised 20 August 2020; accepted 10 September 2020; published 20 October 2020)

We experimentally study the complex dynamics of two mutually coupled physically dissimilar oscillators with
two different kinds of coupling mechanisms. Specifically, an optoelectronic oscillator is coupled to a Colpitts
oscillator via optical power and the Colpitts oscillator is coupled back to the optoelectronic oscillator via electric
voltage. We investigate and characterize phase synchronization and generalized chaos synchronization in this
coupled system. Phase synchronization is observed when both oscillators are preset to oscillate periodically prior
to coupling while generalized chaos synchronization is observed when both oscillators are preset to oscillate
chaotically prior to coupling. In the periodical oscillation regime, we observe a linear relationship between the
strengths of the two unidirectional coupling factors at which the system transitions to a synchronized state. In
the chaotic regime, we observe a transition from hyperchaos to chaos associated with the onset of generalized
synchronization.

DOI: 10.1103/PhysRevE.102.042215

I. INTRODUCTION

The dynamics of coupled oscillators remains a subject
of active investigation. Many theoretical papers reported
important findings in the context of coupled homogeneous os-
cillators [1–7] and heterogeneous oscillators [8–10]. However,
experimental work is needed to verify theoretical predictions
against noise mechanisms, parasitic effects, and unexpected
coupling mechanisms. Experimental research has considered
coupled homogeneous oscillators in various domains, such as
biological oscillators [11], optical oscillators [12,13], elec-
trical oscillators [14–16], optomechanical oscillators [17],
chemical oscillators [18], mechanical oscillators [19], op-
toelectronic oscillators [20,21], and so on. While several
experimental works have dealt with coupled homogeneous
oscillators, a relatively unexplored area is the study of inter-
actions between physically dissimilar oscillators [22–24].

Instances of coupled heterogeneous oscillators may be
found in many biological systems. An example is provided
by the cardiorespiratory interactions between the lungs and
the heart, with each having different temporal variations;
the respiratory oscillation is near sinusoidal [25], while the
heartbeat has a more complex behavior that may vary due
to a disease or other factors. The lungs may be considered
as a single oscillator [26] while the heart is composed of
numerous oscillating cells [27,28]. There is scientific evidence
that arrhythmia and other cardiac disorders are associated with
changes in other oscillations in the body, such as neuronal and
circadian [29,30].

It is therefore important to understand how physically
dissimilar oscillators interact with each other and what are
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the possible causes for dramatic changes in their dynam-
ics. Unfortunately, experimentation with biological systems
is not easy due to the weak and irregular nature of their
interactions [22] and most importantly due to the inherent
difficulty of isolating the oscillating entities and quantifying
their coupling. As such, experimental platforms based on
nonbiological systems may provide a proxy for much more
complex biologically systems and pave the way toward a
better understanding of their behavior. For example, Prasad
et al. observed a phase-flip bifurcation, or a transition from
in-phase synchrony to out-of-phase synchrony as the coupling
delay between two oscillators is increased in an electrical
circuit [31]; later, Adhikari et al. observed similar transitions
in neuron models involving a large number of interacting
neurons [32].

Notwithstanding the prevalence of dissimilar interactions
in biological and other systems, experimental work on cou-
pled heterogeneous oscillators has been sporadic. Here, we
experimentally study the complex dynamics of two physi-
cally dissimilar oscillators bidirectionally coupled using two
different types of coupling mechanisms. Specifically, an opto-
electronic oscillator (OEO) is coupled to a Colpitts oscillator
via optical power and the Colpitts oscillator is coupled back
to the OEO via electrical voltage. The OEO is a delayed-
feedback nonlinear hybrid oscillator in which both optical and
electrical signals flow in a single feedback loop; as such the
OEO can be coupled to another oscillator both optically and
electrically. Like other delayed feedback oscillators, the OEO
can be configured to generate a wide variety of wave forms
with differing degrees of complexity. In particular, at large
optical pump power, an OEO can exhibit high dimensional
chaotic behavior [33–36]. The Colpitts oscillator, which has
been extensively used for investigation of various dynamical
phenomena, is an electronic oscillator based on an LC tank.

2470-0045/2020/102(4)/042215(10) 042215-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4291-5191
https://orcid.org/0000-0002-8547-3282
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.102.042215&domain=pdf&date_stamp=2020-10-20
https://doi.org/10.1103/PhysRevE.102.042215


HUANG, SORRENTINO, AND HOSSEIN-ZADEH PHYSICAL REVIEW E 102, 042215 (2020)

This oscillator can also exhibit a rich dynamical behavior
including periodic oscillation, period doubling, and chaotic
oscillations [37–40]. We investigate and characterize phase
synchronization and generalized chaos synchronization in the
coupled OEO-Colpitts system.

II. EXPERIMENTAL ARRANGEMENT

Figure 1(a) shows the configuration of the mutually cou-
pled OEO and Colpitts circuits, where the red line connecting
the “MZM” to “Optical Atten” indicates optical coupling and
the black line connecting “rf Atten” to “RF combiner” indi-
cates electrical coupling. The parameters κ12 and κ21 represent
the strength of the optical and electrical coupling, respectively.
Figure 1(b) shows the implementation of the coupled OEO-
Colpitts system used in our experiment. The OEO (oscillator
system in the top shaded region) is fabricated using a simple
single loop architecture with an optical delay line consisting of
1 km single mode optical fiber. The optical pump power is
generated by a narrow linewidth (∼0.5 MHz) fiber coupled
semiconductor laser at a wavelength of 1.55 μm. After pass-
ing through a polarization controller, the pump power is fed
into a Mach-Zehnder modulator (MZM) where the transmit-
ted optical power through the MZM is a nonlinear function of
the applied voltage on the rf port of the MZM. Light exiting
the modulator passes through a 1-km-long single mode optical
fiber and then is converted to voltage by a photodiode (PD1).
The resulting voltage signal passes through an rf combiner
and then amplified by an rf amplifier, the amplified signal is
filtered by an rf filter and the loop is closed by feeding back
the filtered signal to the rf port of the MZM. A small portion
(−19 dB) of the rf power circulating in the OEO loop is
coupled out by an rf coupler and fed to one of the four chan-
nels (channel no. 1) of an oscilloscope (OSC) (TDS2024B,
Tektronix, 4 channels, 200 MHz bandwidth, 2GS/s sample
rate) and an electrical spectrum analyzer (ESA) (N9320B,
Keysight, 9 kHz–3 GHz range, 10 Hz–1 MHz Resolution
Bandwidth) for monitoring the temporal and spectral charac-
teristics of the OEO.

The Colpitts oscillator circuit comprises an LC tank and
an NPN bipolar transistor configured as a common emitter
amplifier. The LC tank consists of one inductor (L) and two
capacitors (C1 and C2). A photodiode (PD2) is connected
between the collector port and base port of the transistor to
enable optical coupling to the Colpitts. The same oscilloscope
(through channel no. 2) and electrical spectrum analyzer are
used to monitor the wave form and frequency spectrum of the
Colpitts from the collector port of the transistor.

In order to couple the OEO to the Colpitts oscillator, half
of the circulating optical power in the OEO loop is directed
to PD2 using a 1 × 2 50/50 fiber optical directional coupler.
The coupled optical power is converted to photocurrent by
PD2 and injected to the base port of the transistor because
of the bias network constructed using resistors R3 and R4.
The photocurrent that entered the base port gets amplified
in the transistor together with the Colpitts intrinsic current
and then circulate inside the LC tank. The magnitude of the
coupled optical power and so the resulting photocurrent can
be adjusted by a tunable fiber optical attenuator. To couple the
Colpitts oscillator to the OEO, a portion of the rf voltage from

the collector port of the transistor is unidirectionally directed
to the rf power combiner placed in the OEO loop using an
electronic buffer and an rf power attenuator. This coupled
rf voltage is combined with the OEO intrinsic rf voltage in
the rf combiner and then circulates inside the OEO loop.
The magnitude of the coupled rf voltage is controlled by the
tunable rf attenuator. As such OEO and Colpitts are mutually
coupled via two different types of coupling mechanisms (i.e.,
electronic and optoelectronic), where both couplings are uni-
directional and adjustable.

Using the coupled system shown in Fig. 1(b) we have
investigated the synchronization of the mutually coupled OEO
and Colpitts oscillators in the two distinctive regimes which
are (1) OEO and Colpitts both oscillate periodically before
coupling, (2) OEO and Colpitts both oscillate chaotically
before coupling. The values of the system parameters are
adjusted (as listed in Tables I and II) to ensure that the OEO
and Colpitts operate in these two distinct regimes prior to
coupling.

We define κ12, the coupling strength from the OEO to Col-
pitts, as the ratio between the average photocurrent induced
by the optical power incident on the PD2 and the average
base current of the Colpitts oscillator before coupling. We
define κ21, the coupling strength from Colpitts to OEO, as the
ratio between the injected average voltage from the Colpitts
oscillator and the intrinsic average voltage of the OEO before
coupling.

III. PHASE SYNCHRONIZATION

In this section, the value of the various parameters that
control the behavior of the OEO and the Colpitts oscillator are
chosen such that, before coupling, both oscillators oscillate
periodically. These values are listed in Table I.

Figure 2 shows the wave forms and the spectrum generated
by the OEO and Colpitts under test, when the two oscillators
are decoupled (κ12 = κ21 = 0) and both oscillate periodically.
The intrinsic oscillation frequencies of the OEO ( fOEO−i ) and
the Colpitts oscillator ( fCol−i ) are 296.87 and 304.15 kHz,
respectively. The difference between these frequencies are
selected such that synchronization can be achieved with ac-
cessible coupling strengths. As evident from the plots, OEO’s
output carries more noise and the output of Colpitts has a DC
voltage shift of +2 V.

The behavior of the coupled oscillatory system is char-
acterized by monitoring the oscillation frequency of each
oscillator as the unidirectional coupling coefficients (κ12 and
κ21) are changed. Figure 3(a) shows the oscillation frequency
of OEO ( fOEO) and Colpitts ( fCol) plotted against κ21 for
different values of κ12. The solid dots are the measured values
of fOEO while hollow squares are the measured values of fCol.
κ21 is varied between 0 and 0.014 while κ12 is varied between
0 and 0.172. These ranges are selected such that the transitions
between asynchronous and synchronous oscillations can be
captured. For each value of κ12, as κ21 increases, fOEO and
fCol are pulled toward each other until at a certain value of
κ21 they collapse into one single value that gradually grows
by further increasing κ21.

In Fig. 3(a) the trace of the black dots and black squares
show that when κ12 = 0, fOEO (black dots) is unidirectionally
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FIG. 1. (a) Schematic of the bidirectionally coupled OEO and Colpitts oscillator, the OEO is coupled to the Colpitts oscillator
through optical power while the Colpitts oscillator is coupled to the OEO through voltage. κ12 and κ21 are the coupling strengths.
(b) Circuit diagram for the bidirectionally coupled OEO and Colpitts oscillator used in the experiment. The circuits in green are the
multichannel oscilloscope (OSC) and the electrical spectrum analyzer (ESA) for the wave and frequency spectrum monitoring. Here, Pin

is optical pump power of the OEO, Vb is the DC bias voltage of the Mach-Zehnder modulator (MZM), G1 is the coupling loss of the fiber
coupler, G2 is the voltage gain of the photodiode (PD1), G3 is the voltage loss of the rf combiner, G4 is the voltage gain of the rf amplifier, G5

is the voltage loss of the rf coupler, Vcol is the drive voltage of the Colpitts oscillator, L is the inductor, R1, R2, R3, and R4 are the resistors, C1,
C2 are the capacitors, the transistor is P2N222A NPN transistor, and a photodiode (PD2) is biased between the voltage supply and the base port
of the transistor with the responsivity as β. (c) The experimental setup that includes A: ESA; B: OSC; C: rf coupler; D: AMP; E: rf combiner;
F: PD1; G: fiber delay; H: the PCB board contains Colpitts oscillator, buffer, and PD2; I: rf attenuator; J: optical attenuator; K: MZM; and M:
laser.
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TABLE I. Parameters for the OEO and Colpitts for them to
oscillate periodically when they are uncoupled.

Parameter Pin (μW) Vb (V) G1 G2 (V/W) G3 G4

Value 53.3 3.2 0.5 22670 0.5 57

Parameter G5 Vamp (V) Vcol (V) L (μH) R1 (�) R2 (�)

Value 0.92 9 3 22 60.56 88.93

Parameter R3 (�) R4 (�) C1 (μH) C2 (μH) β (A/W)

Value 75.90 300.6 29 39 0.96

pulled up toward fCol−i as κ21 increases, and at κ21 = 0.006 12
collapses to fCol−i. Here the sudden rise of fOEO from κ21 =
0.005 46 to κ21 = 0.006 12 is artificially induced by the reso-
lution of the κ21 variable while performing the measurement
(due to the 1-dB attenuation step of the rf power attenuator
used here). Similarly, the trace of the hollow squares with
different colors on the y axis, where κ21 = 0, shows fCol is
unidirectionally pulled down toward fOEO−i as κ12 increases,
and collapses to fOEO−i at κ12 = 0.172. When both κ12 and
κ21 are larger than zero, fOEO and fCol are pulled toward each
other and collapse to a single oscillation frequency fs between
the fOEO−i and fCol−i (i.e., the intrinsic oscillation frequencies
of OEO and Colpitts) at a particular value of κ12 for a given
value of κ21. The synchronization process can be visualized
by plotting the frequency difference between the OEO and
Colpitts (� f = fCol − fOEO). Figure 3(b) shows � f plotted
versus κ21 for different values of κ12. We see that � f is a
monotonically decreasing function of both coupling strengths
and becomes zero at particular values of κ12 and κ21 referred
to as critical values (κ12,C and κ21,C). The black dashed line in
Fig. 3(a) shows a near linear relation between fs and κ21,C.

Since each κ21,C is associated with a unique κ12,C, a func-
tional relation can be found between these critical values in
the form κ21,C = F (κ12,C) or κ12,C = F−1(κ21,C). Figure 3(c)
shows the measured values of κ12,C plotted against κ21,C. A
match between measured data points and a linear fit reveals
an approximately linear relationship between κ21,C and κ12,C

in the form κ12,C + 26.837κ21,C = 0.1675. This means that
the κ21 is 26.837 times more effective than κ12 in pulling
the oscillation frequencies toward each other. In other words,
one may define an equivalent coupling strength κeq = κ12,C +
26.837κ21,C for this coupled oscillatory system where κeq �
0.1675 is the required condition for � f = fOEO − fCol to be
zero. As shown in Fig. 2(b), the phase noise of OEO is larger

TABLE II. Parameters for the OEO and Colpitts corresponding
to chaotic oscillations when they are uncoupled.

Parameter Pin (μW) Vb (V) G1 G2 (V/W) G3 G4

Value 224.2 3.2 0.5 22670 0.5 57

Parameter G5 Vamp (V) Vcol (V) L (μH) R1 (�) R2 (�)

Value 0.92 9 5 95 20.67 387

Parameter R3 (�) R4 (�) C1 (μH) C2 (μH) β (A/W)

Value 65.30 183.57 50.8 50.8 0.96

FIG. 2. (a) Wave forms generated by isolated OEO (black) and
Colpitts oscillator (red). (b) Measured rf spectrum of isolated OEO
(black) and Colpitts oscillator (red). Here κ12 = κ21 = 0.

than the phase noise of Colpitts; the quality factor of the
OEO (Q1) is smaller than the quality factor of Colpitts (Q2)
[41,42]. Generally for mutually coupled oscillators according
to Adler model (or Kuramoto model), the pulling strength of
the target oscillator is proportional to the ratio between the
coupling strength (κij ) and the quality factor of the resonator
(energy storage tank) of target oscillator [43–45]; this means
the oscillator with higher quality factor is more resistive to be
pulled, so in our system Colpitts (Osc 2) is more difficult to be
pulled compared to the OEO (Osc 1) because Q2 > Q1—this
may explain the lower efficiency of κ12 compared to κ21 in
pulling the oscillation frequencies. Here we use the phase
model (Adler model or Kuramoto model) derived based on
coupled homogeneous oscillators to explain the efficiency of
κ12 and κ21 for our coupled heterogeneous oscillators. While
deriving a clear relation between the two coupling coefficients
needs extensive study of two mutually coupled heterogeneous
oscillators, derivation of a phase model for the coupled hetero-
geneous oscillator is much easier and yet helpful for studying
the relation between the coupling coefficients.

While � f = 0 is usually an indication of synchronized
oscillation (in the context of injection locking), in order to
better characterize synchronization we have also measured
the phase difference between OEO and Colpitts. Figure 4
shows the variation of the measured phase difference between

042215-4



EXPERIMENTAL OBSERVATIONS OF SYNCHRONIZATION … PHYSICAL REVIEW E 102, 042215 (2020)

FIG. 3. Route to phase synchronization in the coupled OEO and
the Colpitts oscillator. (a) Frequency of the OEO and Colpitts os-
cillator vs coupling strengths (κ12, κ21), (b) the frequency difference
� f (= fCol − fOEO) vs coupling strengths, and (c) the relation be-
tween the two coupling strengths (κ12, κ21) when the coupled OEO
and Colpitts oscillator are just synchronized, the solid line is the
linear fit of the data points.

the synchronized OEO and Colpitts oscillator (ϕCol − ϕOEO)
as the coupling strengths are changed. The positive phase
difference indicates that the Colpitts oscillator is leading the
OEO. As shown in Fig. 4, the phase difference rises both by
increasing κ12 and increasing κ21.

FIG. 4. The measured phase difference (ϕCol − ϕOEO) between
the synchronized OEO and Colpitts oscillator plotted against κ21 at
different values of κ12.

IV. GENERALIZED CHAOS SYNCHRONIZATION

In this section, the control parameters of the OEO and the
Colpitts oscillator are chosen such that they both oscillate
chaotically before coupling. The values of these parameters
are listed in Table II.

Figure 5(a) shows the measured wave forms generated by
the chaotic OEO and the chaotic Colpitts oscillator when
they are isolated (κ12 = κ21 = 0) and Fig. 5(b) shows their
measured frequency spectra. The gray trace in Fig. 5(b) is
the measured background noise of the electrical spectrum
analyzer in the absence of an input. The black and red traces
are the measured spectra for the OEO and the Colpitts oscil-
lator, respectively. The measured spectrum for each oscillator
comprises a few sharp peaks superimposed on a broad back-
ground; such combination of features in the power spectrum
of an oscillator is typically considered as a signature of
chaotic oscillation [46–48]. Using the measured wave forms,
we have extracted the two largest Lyapunov exponents (LEs)
for the OEO and the Colpitts oscillator. The Lyapunov expo-
nents are LE1,OEO = 1.36 × 106 bit/sec, LE2,OEO = 2.90 ×
105 bit/sec for the OEO, and LE1,Col = 8.41 × 104 bit/sec,
LE2,Col = −1.39 × 105 bit/sec for the Colpitts oscillator [49].
The largest LE for the OEO is almost twenty times larger
than the largest LE for the Colpitts oscillator; this difference is
in agreement with the measured spectrum in Fig. 5(b) where
the OEO’s spectrum is extended to much larger frequencies
compared to that of the Colpitts oscillator. The fact that the
two largest LEs of the OEO are both positive indicates that
the OEO is hyperchaotic. The fact that the largest LE of the
Colpitts is positive while the second largest LE is negative
indicates that the Colpitts oscillator is chaotic but not hyper-
chaotic [50].

Next, in order to investigate the emergence of synchroniza-
tion as a function of the coupling strengths, the two oscillators
are mutually coupled and the coupling strengths (κ12 and κ21)
are increased. Generally, one can characterize synchronization
using two standard techniques, namely, correlation function
and the generalized return plots [51,52]. We introduce the cor-
relation function S(�t ) between two time-varying parameters
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FIG. 5. (a) Measured wave form of the OEO (black) and the
Colpitts oscillator (red), and (b) measured frequency spectrum of
the OEO (black) and the Colpitts oscillator (red) when they are
uncoupled (κ12 = κ21 = 0). The gray line in (b) is associated with
the background noise of the ESA used for these measurements (when
there is no input to the ESA).

x1(t ) and x2(t ) as

S(�t ) = 〈x1(t )x2(t − �t )〉√〈
x2

1 (t )
〉〈

x2
2 (t )

〉 , (1)

where 〈•〉 indicates a time average over an extended period
of time; here x1(t ) is the OEO output voltage subtracted by
its mean value [x1(t ) = VOEO(t ) − VOEO] and x2(t ) is the
Colpitts output voltage subtracted by its mean value [x2(t ) =
VCol(t )–VCol]. We search for the time shift �t at which the
correlation between the outputs of OEO and Colpitts is max-
imized. The maximum value of S is typically referred to as
correlation degree.

Figure 6 shows the correlation degree [max{S(�t )}] calcu-
lated at different coupling strengths (κ12, κ21) that happened
at a certain time shift �t . Figure 6(a) plots the correlation
degree versus coupling strengths, while Fig. 6(b) plots the cor-
responding time shift for the correlation degrees in Fig. 6(a).
We can see, as the coupling strengths increase, the correla-
tion degree increases rapidly from 0.1 (when κ12 = κ21 = 0)
until it reaches a saturation value ∼0.8 (when κ12 > 0.53 and
κ21 > 0.04). Note that, while for two isolated oscillators, the
correlation degree should be zero, the experimentally mea-
sured signal has a correlation degree of max(S) = 0.1 when

FIG. 6. (a) Correlation degree [max{S(�t)] calculated for differ-
ent values of κ12 and κ21 that occur at (b) certain time shift �t .

κ12 = κ21 = 0. It is believed that this is due to unwanted cou-
pling through electromagnetic radiation and antenna effects
associated with wires, and other electrical components used
in the experimental setup.

The large correlation (∼0.8) between the outputs of the
OEO and the Colpitts oscillator at large coupling strengths
indicates the two oscillators are essentially synchronized [51].
To further investigate the onset of synchronization between
these originally chaotic oscillators, in Fig. 7 S(�t ) is plotted
versus �t (time shift) when κ12 = κ21 = 0 and when κ12 =
0.6008, κ21 = 0.0501. As mentioned before, the weak correla-
tion shown in Fig. 7(a) is due to the parasitic electromagnetic
coupling. Figure 7(b) shows the appearance of sharp peaks at
�t = n × τ (n = 1, 2, 3, . . .) where τ ∼ 0.0073 ms.

The largest peak of S(�t ) [marked by a red dot
in Fig. 7(b)] indicates synchronized chaotic oscillation.
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FIG. 7. Correlation function for coupled OEO and Colpitts oscil-
lator (both operating in chaotic regime) when (a) κ12 = κ21 = 0 and
(b) κ12 = 0.6008, κ21 = 0.0501.

This peak has a magnitude of 0.77 and it appears
at �t = 0.051 ms.

We also calculated the similarity function for x1(t ) and
x2(t − �t ) when κ12 = 0.6008, κ21 = 0.0501 defined as

Dist[x1(t ), x2(t − �t )] =
√∑

t

|x1(t ) − x2(t − �t )|2. (2)

Figure 8 shows the calculated similarity function based on
measured values of x1(t ) and x2(t ) at different time delays
(�t ). As expected from Fig. 7, the similarity function has
a local minimum at �t = 0.051 ms (where the correlation
function is maximum), at which the two chaotic oscillators
oscillate in synchrony.

The temporal variation of the corresponding output signals
(when κ12 = 0.6008, κ21 = 0.0501) is shown in Fig. 9(a).
Figure 9(b) shows x1(t ) and x2(t − 0.05 ms). The overlap and
coincidence of the maxima and minima of one wave form with
a time shifted version of the other wave form observed here
is known as achronal generalized synchronization [13,52].
Figure 9(c) shows a generalized return plot where x1(t ) is
plotted against x2(t − 0.05 ms). As evident from the plot the
oscillation amplitudes are confined within a narrow region
that is extended approximately along a 45◦ direction. The
dynamical properties of this achronal state originate from
the bidirectional coupling of the two physically dissimilar
subsystems. It is worth noting that the achronal state is not

FIG. 8. Similarity function calculated for coupled oscillatory
system comprising of mutually coupled OEO and Colpitts oscilla-
tors where both oscillators operate in chaotic regime. The similarity
function is calculated based on measured values of x1(t ) and x2(t ),
when κ12 = 0.6008, κ21 = 0.0501.

a perfectly synchronized state of the coupled system; such a
state may only exist for coupled periodic oscillators [51,52].
The spectrum of the coupled chaotic system under generalized
synchronization is shown in Fig. 9(d), which still consists of a
broad spectrum with many sharp peaks.

When the OEO and Colpitts oscillator are synchronized
(for κ12 = 0.6008, κ21 = 0.0501), we measured the two
largest LEs for the system with LE1 = 2.28 × 105 bit/sec and
LE2 = −1.55 × 105 bit/sec. Both the spectrum and the LEs
indicate that the system is chaotic.

We have calculated the two largest LEs for the coupled
system based on the signal measured through the rf coupler
in OEO loop [see Fig. 1(b)] at different values of κ12 and
κ21. We have found that as the coupling strengths increase,
the system transitions from hyperchaos to chaos. For example,
when κ12 = 0.1335 and κ21 = 0.0355, the two largest LEs of
the system are LE1 = 4.98 × 105 bit/sec and LE2 = 8.80 ×
104 bit/sec, indicating the system is in hyperchaotic regime.
When the κ12 = 0.6008 and κ21 = 0.0501 [with the attractor
shown in Fig. 9(c)], the system becomes chaotic with the
two largest LEs measured as LE1 = 2.28 × 105 bit/sec and
LE2 = −1.44 × 105 bit/sec.

Figures 10(a) and 10(b) show the largest and the second
largest LE of the coupled system as a function of κ12 and
κ21 respectively. As evident from the plots, the largest LE
[Fig. 10(a)] decreases from 1.36 × 106 bit/sec when κ12 =
κ21 = 0 to 2.28 × 105 bit/sec when κ12 = 0.6008 and κ21 =
0.0501, while the second largest LE [Fig. 10(b)] decreases
from 2.90 × 105 bit/sec when κ12 = κ21 = 0 to −1.55 ×
105 bit/sec when κ12 = 0.6008 and κ21 = 0.0501. Addition-
ally, Fig. 10(b) shows a gradual transition of the second largest
LE from positive to negative values in a certain region of
κ12 − κ21 plane indicating a gradual transition from hyper-
chaos to chaos.

V. CONCLUSION

We have experimentally studied the behavior of a cou-
pled oscillatory system comprising two physically dissimilar
oscillators coupled bidirectionally through two different cou-
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FIG. 9. Characterization of output signals generated by the syn-
chronized OEO and Colpitts oscillator when both oscillators are
operating in chaotic regime, here κ12 = 0.6008 and κ21 = 0.0501.
(a) The output wave form extracted from the OEO (black) and Col-
pitts oscillator (red). (b) The time trace of x1(t ) and x2(t − 0.05 ms).
(c) The generalized return plot for of x1(t ) and x2(t − 0.05 ms). (d)
The frequency spectrum of the OEO measured through the output
port of the rf coupler in the OEO loop shown in Fig. 1(b). The
gray line in (d) is the background noise spectrum of the ESA (in
the absence of input). Here x1(t ) is the output wave form of OEO
subtracted with its mean value and x2(t − 0.05 ms) is the output wave
form of the Colpitts oscillator subtracted with its mean value and then
shifted with a time of 0.05 ms.

FIG. 10. Variation of the two largest Lyapunov exponents (LEs)
of the measured OEO output as a function of coupling strengths (κ12

and κ21). (a) Contour plot of the largest LE. (b) Contour plot of the
second largest LE.

pling mechanisms. More specifically we have characterized
the behavior of a coupled system wherein an optoelectronic
oscillator (OEO) is coupled to a Colpitts oscillator (an elec-
tronic oscillator) via optical power, and the Colpitts is coupled
back to the OEO via rf voltage. The output signals from both
oscillators were measured and characterized for two different
parameter sets and at different coupling strengths. First the
parameters of both oscillators were adjusted such that, be-
fore coupling, they oscillate periodically at slightly different
frequencies. In the resulting coupled system, we observed
transition from independent oscillation to synchronized os-
cillation at critical values of the two coupling strengths.
Interestingly we found that these critical values are linearly
related. Next, the parameters of both oscillators were adjusted
such that, before coupling, they both oscillate chaotically. In
this case for certain values of coupling strength we observed
generalized chaos synchronization upon coupling the two os-
cillators. In this system we also observed a transition from
hyperchaos to chaos in a specific coupling regime.
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The experimental arrangement, selected coupling mech-
anisms, measurement strategy, and the results obtained in
this paper may pave the way toward designing new experi-
ments that enable characterizing coupled systems that involve
coupling between a larger variety and larger number of oscil-
lators. Understanding the complex dynamics of such highly
heterogeneous systems is critical for many disciplines of sci-
ence and engineering.

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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