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Abstract—While there has been considerable work addressing
consensus and group consensus in single-layer networks, not much
attention has been devoted to consensus in multilayer networks. In
this paper, we fill this gap by considering multilayer networks
consisting of agents of different types while agents of the same type
are arranged in separate layers. The patterns of emerging group
consensus are determined by the symmetries of the multilayer
network. An analysis of these symmetries reveals a partition of the
nodes in each layer into clusters where the nodes in each clustermay
achieve group consensus. We show that it is possible for group
consensus to arise independently of the particular dynamics of the
agents, which may be stable, marginally stable, or unstable. The
concept of isolated group consensus where certain clusters of nodes
in the multilayer network achieve group consensus while others do
not is also introduced.

Index Terms—Consensus multilayer networks.

I. INTRODUCTION AND BACKGROUND

RECENT research results considered the ability of a net-

work to achieve group consensus where only groups of

agents may reach consensus. In this context, studies have

focused on either group consensus [1]–[6], cluster consensus

[7]–[9], or multiconsensus [10]–[14]. In this paper, we consider

group consensus. Results dealing with group (cluster) synchroni-

zations of networks have been also reported [15]–[18]. Several

papers [19]–[22] considered a specific structure of the network

connectivity (both the inter-connectivity between groups and the

intra-connectivity within each group) that enables group consen-

sus, In this paper, the final group consensus is achieved as an

emergent property of the network topology in terms of the net-

work symmetries. The role of the networks symmetries in deter-

mining group consensus has been investigated in the context of

single-layer networks [23].

Multilayer networks have recently received considerable

attention in the research community [24], [25]. Epidemic dynam-

ics [26]–[29] and collective behavior [30] in multilayer networks

have been addressed as well as the spread of failures through

interdependent networks [31]–[33]. Centrality measures that

appropriately describe nodes of multilayer networks [34] and

synchronization in multilayer networks have been investigated

[35]–[41]. However, the emergence of consensus in multilayer

networks has received little attention with few exceptions [42],

[43] and a recent work focusing on opinion dynamics [44].

In this paper, we consider a network consisting of distinct

layers where each layer is home to agents of a various types

described by different uncoupled dynamics. Within the same

layer, agents are connected through intra-layer connections

while agents in different layers communicate through inter-

layer connections. We are interested in the emergence of

group consensus where the agents within the same layer

achieve consensus in clusters. For simplicity, we assume lin-

ear dynamics and study the pattern of consensus that emerges

as a result of the specific intra-layer and inter-layer connectiv-

ity patterns. Our main result is the ability to predict agents

within the same layer that will or will not achieve consensus

based on the symmetries of the multilayer network.

II. PRELIMINARIES

We first introduce notation that will be used throughout this

paper. We denote with ID the identity matrix of dimension D
and with 1D the column vector of length D whose entries are

all ones. A group S is set S of elements with a defined binary

operation that satisfies the following conditions: (i) closure:

for each a; b 2 S, ab 2 S; (ii) associativity: aðbcÞ ¼ ðabÞc for
all a; b; c 2 S; (iii) existence of an identity element: S contains

an element e such that ea = ae = a for every a 2 S; and (iv)

existence of inverse elements: for every element a 2 S, there
exists an inverse element a�1 in S such that aa�1 ¼ a�1a ¼ e.
A nonempty subset of a group G is a subgroup H of G if it is

itself a group with respect to the binary operation defined on G.
Definition 1: A coset of a subgroupH of a group S is defined

as follows: LetH ¼ h1; h2; . . .; hm be a subgroup of a group S.
Then, for any a in S the product aH ¼ ah1; ah2; . . .; ahm

is called a left coset of H in S while the product

Ha ¼ h1a; h2a; . . .; hma is called a right coset ofH inS.
We next provide a definition for the symmetries of networks

formed of a single layer where all nodes are of the same

type [17], [45]. We define the symmetries of a multilayer network

formed of several layers and agents of different types in each layer.

Definition 2: Each individual network layer a is described

by a graph GaðVðGaÞ; EðGaÞÞ, where the set of nodes VðGaÞ ¼
f1; . . . ; Nag, jVj ¼ Na and a set of edges EðGaÞ � V � V
where ði; jÞ 2 E if node j is connected to node i and ði; jÞ =2 E
otherwise. A permutation of the graph pðGaÞ ¼ Ga0 is an
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operation that: (i) permutes the nodes of the graph, pðiÞ ¼ j;
i 2 VðGaÞ; (ii) leaves the set of nodes unaltered VðGaÞ ¼
VðGa0 Þ; and (iii) associates to each edge ði; jÞ 2 EðGaÞ an edge
ðpðiÞ;pðjÞÞ 2 EðGa0 Þ. If Ga ¼ Ga0 , then the permutation p is

an automorphism (“symmetry”) of the graph. If p is an auto-

morphism and if ði; jÞ 2 EðGaÞ, then ðpðiÞ;pðjÞÞ 2 EðGaÞ. If
ði; jÞ =2 EðGaÞ, then ðpðiÞ;pðjÞÞ =2 EðGaÞ. The set of automor-

phisms with the composition operation forms the automor-

phism group Sa of layer Ga.

Definition 3: The set of nodes Va from layer a is parti-

tioned into disjoint subsets of nodes that are mapped into each

other by applying all the symmetries in Sa. We refer to such

subsets of nodes as “orbits” of the automorphism group Sa or

“clusters” of the layer a: Ca1 ; Ca2 ; . . .; CaK , Cak 6¼ ;, Cak \ Cal ¼ ;,
k 6¼ l, and

S K
k¼1Cak ¼ Va. Orbits (clusters) consist of of only

one node are called trivial orbits (clusters).

Definition 4: A representation of the symmetry group Sa

associates a matrix to each element of the group. For each

symmetry pðiÞ ¼ j, i 2 V, a natural choice is a permutation

matrix that has all zero entries except for ones placed in row i
and column pðiÞ, i 2 V. The representation group is a group

whose elements are the matrices and whose binary operation

is matrix multiplication.

Definition 5: An irreducible representation of a group S
is a group representation that has no nontrivial invariant

subspaces [46].

III. DYNAMICAL MODEL

We now provide a general model for the time evolution of

the agents in a multilayer network. The underlying assumption

is that each node of the multilayer network is home to a

dynamical agent. Therefore, the terms node and agent will be

used interchangeably. The term node is used when describing

the network while the term agent is used when describing the

node dynamics. A multilayer network is composed of:

� Sets of nodes/agents fXa;a ¼ 1; . . . ;Mg, where each set
forms a different layer of the multi-layer network. AllNa

agents in the same layer Xa share the same type of

uncoupled dynamics that we assume to be linear:

_xa
i ¼ F axa

i , i ¼ 1; . . . ;Na, xa 2 Rna . The total number

of nodes/agents in the multilayer network isN ¼ P
a N

a.

� A set of different interactions or couplings between

nodes/agents. We differentiate between intra-layer and

inter-layer interactions. (1) The intra-layer interactions

connect nodes within the same layer Xa. They are rep-

resented by an adjacency matrix Aaa. The interaction is

modeled in terms of a square na-dimensional matrix

Haa while the strength of the interaction is tuned using

parameter saa. (2) The inter-layer interactions connect

nodes in two different layers a and b, where a 6¼ b.

They are represented by an Na �Nb adjacency matrix

Aab. The associated coupling is determined by the

na � nb matrix Hab, where sab is the associated cou-

pling strength. We assume that the couplings are undi-

rected and, therefore, Aaa ¼ AaaT , a ¼ 1; . . .;M and

Aab ¼ AbaT , a;b ¼ 1; . . .;M.

An example of multilayer network consisting of M ¼ 2
layers, N1 ¼ 6 nodes in layer 1, and N2 ¼ 4 nodes in layer 2,

is shown in Fig. 1.

For this network, the coupling matrices are:

A11 ¼

0 1 0 0 0 1

1 0 0 0 1 0

0 0 0 1 1 0

0 0 1 0 0 1

0 1 1 0 0 0

1 0 0 1 0 0

2
666666664

3
777777775
;

A12 ¼ A21T ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

2
666666664

3
777777775
;

A22 ¼

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

2
6664

3
7775: ð1Þ

The symmetry analysis shows that there are 3 clusters in

layer 1: Ca1 ¼ ð1; 3Þ; Ca2 ¼ ð2; 4Þ; Ca3 ¼ ð5; 6Þ and 2 clusters in

layer 2: Cb1 ¼ ð1; 3Þ; Cb2 ¼ ð2; 4Þ. Nodes in each layer that

belong to the same orbit (cluster) have the same color.

We devise a model for the time evolution of each agent

based on its individual dynamics and its connections to other

agents through the connectivity of the multilayer network.

Under the assumption that the overall effect of different inter-

actions is equal to the sum of the individual interactions, the

state xiðtÞ of agent i in layer a of the multilayer network

evolves based on linear equations:

_xa
i ðtÞ ¼ F axa

i ðtÞ þ saa
XNa

j¼1

Aaa
ij H

aaxa
j ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

intra�layercouplings

þ
X
b6¼a

sab
XNb

j¼1

Aab
ij H

abxb
j ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inter�layercouplings

; ð2Þ

Fig. 1. A multilayer network with M ¼ 2 layers, N1 ¼ 6 agents in layer 1
(top) and N2 ¼ 4 agents in layer 2 (bottom). The agents in the top layer are of
a different type than the agents in the bottom layer. Solid (dashed) lines are
intra-layer (inter-layer) connections. Inside each layer, nodes in the same orbit
(cluster) are of the same color.
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i ¼ 1; . . .; Na, a ¼ 1; . . .;M. We assume thatF a 6¼ F b as long

as a 6¼ b, where the superscript identifies nodes of different

types. Furthermore, Hab 6¼ Hgd as long as a 6¼ g and b 6¼ d,

where the superscripts identify interactions of different types.

Equation (5) allows for an arbitrary number of layers M, an

arbitrary number of nodes in each layer Na, a ¼ 1; . . .;M,

and arbitrary dimensions for the nodes in each layer na,

a ¼ 1; . . .;M. We are interested in conditions for achieving

group consensus where the nodes in each layer are divided

into clusters and the nodes within the same cluster achieve

group consensus but nodes between different clusters do not.

Each layer a may be described by an intra-layer graph

Ga ¼ ðVa; EaÞ consisting of two sets:
� set of nodes Va ¼ fiji ¼ 1; . . . ; Nag so that jVaj ¼ Na,

� set of edges Ea ¼� Va � Va where ði; jÞ 2 Ea if node j
is connected to node i and ði; jÞ =2 Ea otherwise.

The adjacency matrix of the intra-layer graph Ga is a binary
matrix Aaa ¼ fAaa

ij g 2 RNa�Na
such that element Aaa

ij ¼ 1

if ði; jÞ 2 E and Aaa
ij ¼ 0 if ði; jÞ =2 EðGÞ. If Ga is undirected

(directed), then Aaa is symmetric (non-symmetric).

Each pair of layers a;b may be described by a bipartite

inter-layer graph Gab ¼ ðVa;Vb; EabÞ, where Eab ¼� Va � Vb

where ði; jÞ 2 Eab if node i 2 Vb is connected to node j 2 Vb

and ði; jÞ =2 Eab otherwise. The adjacency matrix Gab of the

inter-layer graph is a binary matrix Aab ¼ fAab
ij g 2 RNa�Nb

such that element Aab
ij ¼ 1 if ði; jÞ 2 Eab and Aab

ij ¼ 0 if

ði; jÞ =2 Eab. In the case of undirected inter-layer connectivity,

Aba ¼ AabT :
Definition 6: The supra-adjacency matrix A is theP
a N

a-dimensional matrix:

A ¼
Aaa Aab � � �
Aba Abb � � �
..
. ..

. . .
.

2
64

3
75: (3)

Since we have assumed that Aaa ¼ AaaT and Aba ¼ AabT ,

it follows that A ¼ AT :

IV. GROUP OF SYMMETRIES OF THE MULTILAYER NETWORK

We introduce here the group of symmetries of a multi-layer

network. To analytically compute it, we first present a general

form for the permutation matrices that represent the symme-

tries. Each network layer contains a different type of nodes

and, hence, no permutation moves nodes between layers. This

implies that the group of permutation symmetries S for the

entire network is block diagonal. For each permutation g 2 S:

g ¼
ga 0 0 . . .
0 gb 0 . . .
0 0 gg . . .

..

. ..
. ..

. . .
.

0
BBB@

1
CCCA; (4)

where ga is the permutation that moves only nodes in layer a,

gb is the permutation that moves only nodes in layer b, etc.
Given the form (7), not every choice of ga 2 Sa, gb 2 Sb, ...

results in a symmetry for the multilayer network. For a

permutation matrix g 2 S, the symmetry group of the multi-

layer network should satisfy the following conditions:

ga 2 Sa; gb 2 Sb; (5a)

gaA
ab ¼ Aabgb and gbA

ba ¼ Abaga; (5b)

a;b ¼ 1; . . .;M; a 6¼ b.

The conjugacy relations (5b) is the requirement that permu-

tations from different layers be compatible with the inter-layer

coupling of the multi-layer network. We say that a permuta-

tion is compatible if it can be performed without changing the

structure of the multilayer network. Hence, symmetries of the

multilayer network will have the structure (4), where ga 2 Sa,

gb 2 Sb, ..., (5a). They also must satisfy the compatibility con-

dition (5b) imposed by the inter-layer connectivity.

Consider an example of a multi-layer network with two

layers a and b. Equation (2) may be written as:

_xa ¼ INa � F axa þ saaAaa �Haaxa þ sabAab �Habxb

_xb ¼ INb � F bxb þ sbbAbb �Hbbxb þ sbaAba �Hbaxa;

where the Nana-dimensional vector xa ¼ ½xa
1
T ;xa

2
T ; . . .;xa

Na

T �T ,
the Nbnb-dimensional vector xb ¼ ½xb

1

T
;xb

2

T
; . . .;xb

Nb

T �T and

the symbol � indicates the Kronecker product of matrices.

Consider two permutations ga 2 Sa and gb 2 Sb. From (7),

a general element of the symmetry group for this two-layer

network should be of the form:

ga 0
0 gb

� �
: (6)

In order to determine compatible ga and gb, we apply the two

permutations to the full system dynamics,

ga _x
a ¼ INa � F agax

a þ saaAaa �Haagax
a

þ sabgaA
ab �Habxb

gb _x
b ¼ INb � F bgbx

b þ sbbAbb �Hbbgbx
b

þ sbagbA
ba �Hbaxa;

where we have used the property that permutations commute

with the intra-layer coupling matrices.

From (7), flow invariance requires that the conjugacy rela-

tions be satisfied: gaA
ab ¼ Aabgb and gbA

ba ¼ Abaga. This
implies that ga and gb are not arbitrarily chosen and must be

properly paired to satisfy (5b). Because there may not be a

matching gb for each ga and vice versa, the conjugacy rela-

tions will generally restrict the permitted permutations to sub-

groups of Sa and Sb. It is the structure of these subgroups that

will determine the final group S of the entire network.

To find the permutations that satisfy the conjugacy relations

(8b), we define the following sets:

Ha ¼ fga 2 SajgaAab ¼ Aabgb and gbA
ba ¼ Abaga (7)

for some gb 2 Sb and

Hb ¼ fgb 2 SbjgbAba ¼ Abaga and gaA
ab ¼ Aabgb (8)
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for some ga 2 Sa. A proof thatHa is a subgroup of Sa andHb

is a subgroup of Sb can be found in [47], [48].

Note that Aab 2 RNa�Nb
, while an element ga 2 Ha may

be represented with a Na �Na matrix and an element

gb 2 Hb may be represented with a Nb �Nb matrix. It fol-

lows from this observation that Aab has generally nontrivial

left and right null spaces (with no particular structure) and,

hence, there may be more than one ga that satisfies

gaA
ab ¼ Aabgb for a given gb and vice versa.

We next show how the group of symmetries of the multilayer

network S can be obtained from Ha and Hb. To properly pair

the permutations, we introduce an equivalence relation on each

subgroup Ha and Hb. We define a relation 	 between the ele-

ments of Ha as g 	 g0 if gAab ¼ g0Aab. Similarly, h 	 h0 if
hAba ¼ h0Aba. Because relation 	 is defined using equalities,

it is an equivalence relation (reflexive, symmetric, and transi-

tive) onHa andHb. Moreover, if g 	 g0, g, and h are conjugate,

then so are g0 and h. This implies that the relation defines a dis-

joint partitioning of each subgroup into subsets, Ka
i and Kb

i ,

i ¼ 1; . . .; K forHa andHb, respectively. Each subsetKa
i con-

tains all permutations g such that gAab is equal to a certain

matrix Mi. Correspondingly, each subset Kb
i contains all per-

mutations h such that hAba ¼ Mi. This leads to the construc-

tion of the group of symmetries of the multilayer network S as:

S ¼ ga 0
0 gb

� �
jga 2 Ka

i and gb 2 Kb
i ; for i ¼ 1; . . .; Z

� �
:

(9)

Note that the sets Ka
i and Kb

i may contain different number of

elements.

Remark 1: For each layer a, the sets Ka
i form cosets for the

layer’s subgroup Ha [47]. It suffices to notice that one of the

Ka
i subsets that contains the identity symmetry is a subgroup

of Ha. If Ka
1 is the subgroup, it follows that all Ka

i are left and

right cosets of Ka
1 .

It is now possible to define the orbits of the symmetry group

S. Each orbit is formed of the nodes of the multilayer network

that are mapped into each other when all the symmetry opera-

tions of the group S are applied. Because there are no symme-

try operations that swap nodes between different layers, all the

orbits are formed by nodes in the same layer.

Definition 7: The symmetry group S partitions the nodes of

the multilayer network into orbits. As a result, the nodes in

each layer a are partitioned into clusters Cak , k ¼ 1; . . . ; La,

each consisting of the nodes in orbit k and
S La

k¼1Cak ¼ Va,

a ¼ 1; ::;M, Cak 6¼ ; and Cak \ Cal ¼ ;, k 6¼ l.
LetNa

k ¼ jCak j denote the number of nodes of layer a in orbit

k and
Pq

k¼1 N
a
k ¼ Na. For simplicity and without loss of gen-

erality, we assume that nodes in each layer a are numbered cor-

responding to their orbits. For example, nodes in orbit 1 are

labeled 1; . . . ; Na
1 while nodes in orbit 2 are labeled Na

1 þ
1; . . . ; Na

1 þNa
2 . Then, each matrixAab may be rewritten as:

Aab ¼
Aab

‘‘ Aab
‘k � � �

Aab
k‘ Aab

kk � � �
..
. ..

. . .
.

2
64

3
75; (10)

where the Na
‘ �Nb

k block Aab
‘k denotes the coupling between

cluster ‘ in layer a k and cluster ‘ in layer a.

V. GROUP CONSENSUS IN MULTI-LAYER NETWORKS WITH

LINEAR DYNAMICS

The time evolution of each layer of the multilayer network

is described as:

_xaðtÞ ¼ INa � F axaðtÞ þ
XM
b¼1

Aab � ĤabxbðtÞ a ¼ 1; . . .;M;

(11)

in the Nama-dimensional vector xa ¼ ½xa
1ðtÞT ;xa

2ðtÞT ; . . .;
xa
NaðtÞT �T , a ¼ 1; . . .;M, where Ĥab ¼ sabHab.

A global system of equations describing the time evolution of

the entire multilayer network can be written by introducing the

P ¼ P
a N

ana-dimensional vector xðtÞ ¼ ½x1ðtÞT ;x2ðtÞT ; . . .;
xMðtÞT �T ,

_xðtÞ ¼
INa � F a 0 � � �

0 INb � F b � � �
..
. ..

. . .
.

2
664

3
775

0
BB@

þ
Aaa � Ĥaa Aab � Ĥab � � �
Aba � Ĥba Abb � Ĥbb � � �

..

. ..
. . .

.

2
664

3
775
1
CCAxðtÞ ¼ XxðtÞ;

(12)

where the P -dimensional square matrix X has eigenvalues �‘,
‘ ¼ 1; . . .; P .

Definition 8: The set of states xai ¼ xaj if i and j lie in the

same orbit Cak , a ¼ 1; . . .;M, k ¼ 1; . . .; La define an invariant

manifold called the group consensus manifold.

The dynamics on the group consensus manifold is governed

by the quotient network dynamics [23]:

_qa
kðtÞ ¼ F aqa

kðtÞ þ
X
b

X
l

Qab
kl Ĥ

abqlðtÞ; k ¼ 1; . . . ; La;

(13)

where qa
kðtÞ is now the state of orbit k ¼ 1; . . .; La in layer a

and the La � Lb matrix Qab has entries Qab
kl ¼ P

j A
ab
ij for

i 2 Ca and j 2 Cb. Equivalently:

_qðtÞ ¼
ILa � F a 0 � � �

0 ILb � F b � � �
..
. ..

. . .
.

2
664

3
775

0
BB@

þ
Qaa � Ĥaa Qab � Ĥab � � �
Qba � Ĥba Qbb � Ĥbb � � �

..

. ..
. . .

.

2
664

3
775
1
CCAqðtÞ ¼ CqðtÞ;

(14)
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in the R ¼ P
a L

ana-dimensional vector qðtÞ ¼ ½q1ðtÞT ;
q2ðtÞT ; . . .;qMðtÞT �T and each vector qiðtÞ ¼ ½qi

1ðtÞT ;
qi
2ðtÞT ; . . .;qi

LiðtÞT �T .
We now introduce the square L ¼ P

a L
a-dimensional

matrix Q defined as:

Q ¼
Qaa Qab � � �
Qba Qbb � � �
..
. ..

. . .
.

2
64

3
75: (15)

It is related to the matrix A by the following relation:

Q ¼ ðETEÞ�1ETAE ¼ EyAE; (16)

where E is the N � L indicator matrix Eij equal to 1 if node i
is in orbit j and is 0 otherwise [49].
Remark 2: The matrix E ¼ 
M

a¼1 
La

k¼1 1Na
k
, where the

symbol 
 indicates the direct sum operation.

Remark 3: The quotient network vector qðtÞ ¼ ðE0TE0Þ�1

E0TxðtÞ, where the R� P -dimensional indicator matrix E0

maps each state of the P -dimensional vector xðtÞ to one and

only one state of the quotient network R-dimensional vector

qðtÞ: E0 ¼ 
M
a¼1 
La

k¼1 ðIna � 1Na
k
Þ:

The quotient network describes the evolution of the

agents on the group consensus manifold. In case when all

the agents in the same cluster are given the same initial

condition, the quotient network dynamics provides the

exact time evolution of all network agents. The quotient

network dynamics is stable in the group consensus mani-

fold if the largest real part of the eigenvalues of the matrix

C defined in (14).

Under appropriate conditions, the set of equations (11) and

(12) will admit group consensus. A set of agents may converge

on group consensus on either a stable, unstable, or marginally

stable trajectory. It is important to note that we are not con-

cerned with whether or not the entire system is asymptotically

stable. Instead, we address the stability of each agent with

respect to the group consensus state where all nodes in its

orbits have reached consensus.

Definition 9: Nodes in orbit Cak have achieved group con-

sensus if limt!1 kxai ðtÞ � xaj ðtÞk ¼ 0 for all i and j in Cak .
Hence, group consensus is possible for either stable, margin-

ally stable, or unstable dynamics as long as the trajectories

converge to each other.

Remark 4: In general, a study of the eigenvalues �‘,
‘ ¼ 1; . . .; P is not sufficient to predict group consensus: (i)

Only if all eigenvalues have a negative real part Reð�‘Þ < 0,
‘ ¼ 1; . . .; P , the set of equations converge on the group con-

sensus manifold with all limt!1 xa
i ðtÞ ¼ 0. If for one or more

eigenvalues Reð�‘Þ > 0, it is difficult to predict whether or

not group consensus is achieved unless one is able to deter-

mine whether those eigenvalues with positive real part corre-

spond to motion parallel to the group consensus manifold or

are transverse to it. In particular, if for one or more eigenval-

ues Reð�‘Þ > 0, one of the following two cases may arise: (ii)

group consensus is achieved on a diverging trajectory; or (iii)

group consensus is not achieved.

The remainder of the paper is devoted to determining condi-

tions when eigenvalues �‘ are associated with motion parallel

or orthogonal to the group consensus manifold. We use a

transformation of the system dynamics provided by group the-

ory in order to fully characterize stability of group consensus.

Based on the group of symmetries of the multilayer net-

work, we may compute the irreducible representations (IRRs)

of the symmetry group of the multilayer network. We define a

transformation T a for each layer a to the so called IRR coordi-

nate system [17]. The global transformation of the multilayer

network to the IRR coordinate system may be written as a

block diagonal matrix with the direct sum of the transforma-

tions of each layer (the orthonormal matrix T ),

T ¼ 

a
T a: (17)

By construction, each row of the matrix T a is associated with a

specific cluster Cak : all the i entries of that row of the matrix T a

are zero for i =2 Cak .Na
1 rows of the matrix T a are associated with

cluster 1,Na
2 rows are associated to cluster 2, .... For each matrix

T a, the first La rows satisfy T a
ki ¼ 1=

ffiffiffiffiffiffiffi
Na

k

p
if node i 2 Cak and

Tki ¼ 0 otherwise. These rows describe motion that is parallel to

the consensus manifold. The remaining rows describe motion

that is orthogonal to the consensus manifold and, thus, determine

its transverse stability. If one of these rows k ¼ La þ 1; . . .;Na

is associatedwith cluster Cak ,
P

i2Ca
k
T a
ki ¼ 0.

We now construct the P -dimensional orthonormal matrix ~T
that will be used to block-diagonalize (12):

~T ¼ 

a
T a � Ina : (18)

Application of the transformation ~T to (12) yields:

_~zðtÞ ¼
INa � F a 0 � � �

0 INb � F b � � �
..
. ..

. . .
.

2
664

3
775

0
BB@

þ
Baa � Ĥaa Bab � Ĥab � � �
Bba � Ĥba Bbb � Ĥbb � � �

..

. ..
. . .

.

2
664

3
775
1
CCA~zðtÞ; ð19Þ

where vector ~zðtÞ ¼ ð ~T � ImÞzðtÞ and each block Bab ¼
T aAabT bT : It is important to note that application of the

matrix ~T leaves the leftmost matrix on the right-hand side

of (12) unaltered. (Compare with the leftmost matrix on the

right hand side of (19).)

We also define the N-dimensional square matrix:

B ¼
Baa Bab � � �
Bba Bbb � � �
..
. ..

. . .
.

2
64

3
75; (20)

that be computed as B ¼ TATT . Moreover, after permutations

of its rows and columns, the matrix B has a block-diagonal

structure that is determined by the irreducible representation

of the symmetry group of the multilayer network. Namely:
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PBPT ¼ 
S
s¼1Ids � ~Bs; (21)

where P is an appropriate permutation matrix, ~Bs is a (com-

plex) ps � ps matrix, with ps the multiplicity of the sth IRR

representation of the group, S is the number of IRRs, and ds is
the dimension of the sth IRR so that

PS
s¼1 dsps ¼ N [17].

The trivial representation (s ¼ 1) which describes the motion

in the consensus manifold has p1 ¼ L and is associated with

all the L clusters of the multilayer network. Each remaining

representation s ¼ 2; . . .; S is associated with either: (i) an

individual cluster (ps ¼ 1) or (ii) a set of intertwined clusters

(ps > 1) [17].
By taking advantage of the block diagonal structure of (21),

the vector ~zðtÞ in (19) may be decomposed into S indepen-

dently evolving vectors ~zT ¼ ½~zT1 ; ~zT2 ; . . .; ~zTS �, each corre-

sponding to an irreducible representation s ¼ 1; . . .; S. For

each s ¼ 1; . . .; S, an independent system _~zs ¼ B̂s~zsðtÞ may

be written. We first consider the case when ps ¼ 1. The corre-
sponding system s satisfies:

_~zs ¼ ðFa þ ~BsĤ
aaÞ~zs; (22)

where a is the layer of the cluster associated with the IRR s. In
case ps ¼ 2, there are two clusters a and b associated with the

IRR. Hence, the corresponding system s satisfies,

_~zsðtÞ ¼ Fa þ ~B
aa

s � Ĥaa ~B
ab

s � Ĥab

~B
ba

s � Ĥba
s F b þ ~B

bb � Ĥbb

" #
~zsðtÞ: (23)

Similarly, one may write the systems s for ps > 2. A special

case is the trivial irreducible representation (s ¼ 1), which is

associated with all L network clusters (p1 ¼ L).
An immediate consequence of the particular block-diagonal

structure of the matrix B (24) is that the transformed state vec-

tor is partitioned into two independent vectors: ~zðtÞ ¼
½~zTparaðtÞ; ~zTorthðtÞ�T , where ~zparaðtÞ � ~z1ðtÞ 2 RR describes

the motion along the group consensus manifold and

~zorthðtÞ � ½~z2ðtÞT ; . . .:; ~zSðtÞT �T 2 RP�R describes the motion

orthogonal to the group consensus manifold:

_~zparaðtÞ
_~zorthðtÞ

� 	
¼ B̂para OðR�P�RÞ

OðP�R�RÞ B̂orth

" #
~zparaðtÞ
~zorthðtÞ

� 	
: (24)

We define �para and �orth to be the maximum real part of the

eigenvalues of the matrices B̂para and B̂orth, respectively. An

analogous derivation of (27) may be found in [49].

Theorem 1: Stability of the motion along (orthogonal to)

the group consensus manifold is determined by the sign of

�para (�orth). Namely, the motion in the group consensus man-

ifold decays to zero if and only if �para < 0 (B̂para is Hur-

witz). Group consensus is achieved if and only if �orth < 0
(B̂orth is Hurwitz). In this case, the group consensus manifold

is stable and any perturbation orthogonal to the group consen-

sus manifold will decay to zero independent of the dynamics

along the manifold.

Proof: The block diagonal structure of the matrix (27)

shows that (17) decouples into two independent equations.

One needs to prove that these two equations correspond to

motion parallel to the consensus manifold and motion parallel

to it. This follows from the particular structure of the matrices

T a, a ¼ 1; ::;M. The vector xðtÞ in (17) may be written as a

linear combination of the components of the vectors ~zparaðtÞ
and ~zorthðtÞ. In particular for every two nodes i and j from the

same cluster Cak , the difference ðxa
i ðtÞ � xa

j ðtÞÞ is a linear

combination only of the components of the vector ~zorthðtÞ.
Thus, the motion orthogonal to the group consensus manifold

is ~zorthðtÞ and the motion parallel to the group consensus man-

ifold is ~zparaðtÞ. &

Theorem 1 implies that it is possible for the original system

to be either marginally stable or unstable and yet achieve

group consensus.

Remark 5: If the group consensus manifold is stable

(�para < 0), for large t, xa
i ðtÞ converges to qa

kðtÞ, i 2 Cak and

the full multilayer network dynamics is completely described

by the quotient network dynamics. Then, the final group con-

sensus state is equal to qð1Þ ¼ limt!1 expðCtÞqð0Þ ¼
limt!1 expðCtÞðE0TE0Þ�1E0Txð0Þ. This expression explains

how the choice of the initial conditions determines the final

group consensus state.

Theorem 2: The two matricesC and B̂para are similar.

Proof: Recall the definitions of the matrices T (20) and ~T
(18). For eachmatrix T a, the firstLa rows satisfy T a

ki ¼
ffiffiffiffiffiffiffi
Na

k

p �1

if node i is in cluster k of layer a and Tki ¼ 0 otherwise. For

each layer a, we may construct the La �Na matrix T 0a by

stacking together the first La rows of the matrix T a. We

may then construct the R� P -dimensional matrix T 0 ¼

aT

0a � Ina . From (27), _~zparaðtÞ ¼ B̂para~zparaðtÞ, where

~zparaðtÞ ¼ T 0~zðtÞ. By construction, T 0 ¼ ðE0E0T Þ�1
2E0.

From (17), _qðtÞ ¼ CqðtÞ, where qðtÞ ¼ ðE0E0T Þ�1E0xðtÞ ¼
ðE0E0T Þ�1

2T 0xðtÞ. Hence, qðtÞ ¼ ðE0E0T Þ�1
2~zparaðtÞ and

B̂para ¼ ðE0E0T Þ12CðE0E0T Þ�1
2. &

Remark 6: From Theorem 2, qðtÞ ¼ ðE0E0T Þ�1
2~zparaðtÞ.

Hence, the quotient network dynamics (14) decays to zero if

and only if �para < 0.
Based on the block-diagonal structure of matrix:

B̂orth ¼ 
S
s¼2B̂orth

s
; (25)

the vector ~zTorth ¼ ½~zT2 ; . . .; ~zTS � is composed of S � 1 vectors

evolving independently of each other. (Each vector corre-

sponds to a non-trivial irreducible representation of the graph

automorphism group.) The stability of each block B̂orth
s

depends on the largest real part of the eigenvalues of the block

�s
orth, where the previously defined �orth � maxSs¼2�

s
orth. This

implies that for a given graph, certain clusters may achieve

isolated group consensus while others may not, as shown in

Example 2.

VI. EXAMPLES

A. Example 1

We consider as an example the multilayer network with

M ¼ 2 layers shown in Fig. 1. The state of the systems in the
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first layer is a scalar n1 ¼ 1 while the state of the systems in

the second layer is a two-dimensional vector n2 ¼ 2:

F 1 ¼� 3; Ĥ11 ¼ 1; Ĥ12 ¼ ð0 � 1Þ;

F 2 ¼ 0 1

�b �1

� �
; Ĥ21 ¼ 0

�a

� �
; Ĥ22 ¼ 0:1 0

0 0

� �
:

(26)

The quotient network is described by (17), where:

Q11 ¼
0 1 1
1 0 1
0 1 1

2
4

3
5; Q12 ¼ Q21T ¼

1 0
0 1
0 0

2
4

3
5; Q22 ¼ 1 2

2 0

� 	
:

(27)

An example of group consensus corresponding to the case

a ¼ 3:5 and b ¼ 4:5 is shown in Fig. 2. Shown are the time

traces from layer 1 (top) and layer 2 (bottom). Colors of the

time traces correspond to the colors of nodes shown in Fig. 1.

The time traces corresponding to nodes in the same clusters

from layer 1 and layer 2 converge to each other. However,

nodes in different clusters converge following different time

evolutions. The variety of dynamical behaviors that are

observed by varying parameters a and b is shown in Fig. 2,

where three cases are evidenced:

� I: stable dynamics and stable group consensus

(�para < 0, �orth < 0)
� II: unstable dynamics and stable group consensus

(�para > 0, �orth < 0)
� III: unstable dynamics and unstable group consensus

(�para > 0, �orth > 0).
The fourth possible case, stable dynamics and unstable

group consensus, has not been observed when varying the

parameters a and b in the range shown in Fig. 3.

The matrix T is equal to:

(28)

Each row of the matrix T is colored to indicate a cluster

of the multilayer network shown in Fig. 1: different shades

of pink are clusters of layer 1; dark gray and light gray

are clusters of layer 2. Hence, each row of the matrix T
(and of the transformed matrix B) is associated with a spe-

cific cluster.

The matrix B ¼ TATT is equal to:

(29)

In this case, there are only S ¼ 2 irreducible representations of
the symmetry group: the matrix B has two diagonal blocks.

Fig. 2. Example of group consensus for a ¼ 2:4 and b ¼ 4:5. The upper plot
shows the time traces from layer 1 and the lower plot shows the time traces
from layer 2. Color of the time traces corresponds to the color of nodes shown
in Fig. 1.

Fig. 3. Group consensus in the plane ða; bÞ. I: stable dynamics and stable
group consensus; II: unstable dynamics and stable group consensus; III: unsta-
ble dynamics and unstable group consensus.
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The upper-left diagonal block corresponds to motion parallel

to the consensus manifold while the lower-right diagonal

block corresponds to motion orthogonal to the consensus

manifold.

We define the average state for all the agents in cluster Cak in
layer a:

½xaðtÞ�k ¼
1

Na
k

X
j2Ca

k

xa
j ðtÞ (30)

and compute the error Ea
j ðtÞ of node j 2 Ck with respect to the

average trajectory:

Ea
j ðtÞ ¼ kxa

j ðtÞ � ½xaðtÞ�kk2; (31)

where j 2 Cak: We then compute the rates of exponential

growth/decay:

rak ¼ log ðk½xaðt2Þ�kkÞ � log ðk½xaðt1Þ�kkÞ
t2 � t1

(32)

and

sa
j ¼ log ðEa

j ðt2ÞÞ � log ðEa
j ðt1ÞÞ

t2 � t1
: (33)

Plot of r11 (thick solid line), s1
1 (thin solid line), and s2

1

(dashed line) versus the parameter b is shown in Fig. 4 (top).

Plot of the eigenvalues �para (solid line) and �orth (dashed

line), versus the parameter b is shown in Fig. 4 (bottom). Note

that r11 (s
1
1, s

2
1) is negative when the eigenvalue �para (�orth) is

negative.

B. Example 2

We consider a multilayer network consisting of M ¼ 2 layers,

N1 ¼ 4 nodes in layer 1, and N2 ¼ 4 nodes in layer 2, as shown

in Fig. 5.

Matrices:

A11 ¼ A22 ¼

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

2
6664

3
7775 and A12 ¼ A21T ¼

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775:

(34)

The state of the systems in both layers is two-dimensional

(n1 ¼ n2 ¼ 2):

F 1 ¼ �2 1

�1 �1

� �
; Ĥ11 ¼ 1=3 0

0 1=3

� �
; Ĥ12 ¼ 0 �1

0 0

� �
;

F 2 ¼ 0 1

�2 �2

� �
; Ĥ21 ¼ �Ĥ12T ; Ĥ22 ¼ �a 0

0 0

� �
:

(35)

The symmetry analysis shows that there are 2 clusters

in layer 1: C11 ¼ ð1; 2Þ; C12 ¼ ð3; 4Þ and 2 clusters in layer 2:

C21 ¼ ð1; 2Þ; C22 ¼ ð3; 4Þ. In Fig. 5, nodes in each layer

have the same color if they belong in the same orbit

(cluster).

The quotient network is described by (17), where:

Q11 ¼ Q22 ¼ 1 2
2 1

� 	
; Q12 ¼ Q21T ¼ 1 0

0 0

� 	
: (36)

The matrix T is equal to:

(37)

Each row of the matrix T is colored to indicate a cluster of

the multilayer network: dark green and light green are clusters

of layer 1; dark blue and light blue are clusters of layer 2, see

also Fig. 5.

Fig. 4. Top: r11 (thick solid line), s1
1 (thin solid line), and s2

1 (thin dashed
line), versus the parameter b for fixed a ¼ 2:4. Bottom: �para (thick solid line)
and �orth (thin solid line), versus the parameter b.

Fig. 5. A multilayer network with M ¼ 2 layers, N1 ¼ 4 agents in layer
1 (top) and N2 ¼ 4 agents in layer 2 (bottom). The agents in the top layer
are of a different type than the agents in the bottom layer. Inside each
layer, nodes in the same orbit (cluster) have the same color.
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The matrix B ¼ TATT , after permutations of its rows/col-

umns, is:

(38)

There are S ¼ 4 irreducible representations: the matrix B
has four diagonal blocks. The upper-left diagonal block s ¼ 1
corresponds to motion parallel to the consensus manifold

while the remaining three diagonal blocks s ¼ 2; 3; and 4
correspond to motion orthogonal to the consensus manifold.

Moreover, different from Example 1, these diagonal blocks

correspond to various ways in which the group consensus state

may be broken. The presence of multiple transverse blocks

indicates the possibility of isolated group consensus in this net-

work. The 2-dimensional s ¼ 2 block corresponds to simulta-

neous breaking of the dark green and dark blue clusters in

Fig. 5. The largest real part of the eigenvalues of this block

�2
orth determines group consensus of the cluster ð1; 2Þ in the top

layer and of the cluster ð1; 2Þ in the bottom layer. The two sca-

lar blocks s ¼ 3 and s ¼ 4 correspond to independent break-

ings of the light green and light blue clusters, respectively. The

largest real part of �3
orth, the eigenvalues of the s ¼ 3 block,

determines group consensus of the cluster ð3; 4Þ in the top layer
(light green cluster) while the largest real part of �4

orth, the

eigenvalues of the s ¼ 4 block, determines group consensus of

the cluster ð3; 4Þ in the bottom layer (light blue cluster).

Plots of r11, s
1
1;2, s

1
3;4, and s2

3;4 versus the parameter a are

shown in Fig. 6 (top). As a increases, the first group consensus

of the cluster ð1; 2Þ from the bottom layer (and, simultaneously,

cluster ð1; 2Þ from the top layer) is lost. Then, the motion

parallel to the group consensus manifold becomes unstable.

Finally, group consensus of the cluster ð3; 4Þ in the bottom

layer is lost. Group consensus of the cluster ð3; 4Þ in the bottom
layer is never lost. This is in agreement with the calculations of

�para, �
2
orth, �

3
orth, and �

4
orth shown in Fig. 6 (bottom). The pos-

sibility for some clusters to become unstable while other clus-

ters remain stable, is isolated group consensus.

VII. CONCLUSIONS

We considered group consensus in multilayer networks

based on their symmetries by transforming the network dynam-

ics into a component parallel and components orthogonal to the

group consensus manifold, which determine stability. Group

consensus was predicted independently of the specific motion

in the consensus manifold even when this motion is marginally

stable or diverges. We demonstrated the applicability of the

proposed method using two examples. For certain values of the

parameters, the network may display isolated group consensus:

some clusters are stable while others are not.

A case not considered in this paper is the group consensus

arising from an equitable partition of the network nodes: a par-

tition of the network nodes that is not predicted by the network

symmetries [50]. An important direction for future investiga-

tion is to remove the assumption of undirected links, both in the

inter-layer and in the intra-layer connections. We hope that our

work will bring additional attention to the general topic of con-

sensus and group consensus in multilayer networks.
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