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Group Consensus in Multilayer Networks

Francesco Sorrentino ™, Member, IEEE, Louis Pecora, and Ljiljana Trajkovi¢™, Fellow, IEEE

Abstract—While there has been considerable work addressing
consensus and group consensus in single-layer networks, not much
attention has been devoted to consensus in multilayer networks. In
this paper, we fill this gap by considering multilayer networks
consisting of agents of different types while agents of the same type
are arranged in separate layers. The patterns of emerging group
consensus are determined by the symmetries of the multilayer
network. An analysis of these symmetries reveals a partition of the
nodes in each layer into clusters where the nodes in each cluster may
achieve group consensus. We show that it is possible for group
consensus to arise independently of the particular dynamics of the
agents, which may be stable, marginally stable, or unstable. The
concept of isolated group consensus where certain clusters of nodes
in the multilayer network achieve group consensus while others do
not is also introduced.

Index Terms—Consensus multilayer networks.

1. INTRODUCTION AND BACKGROUND

ECENT research results considered the ability of a net-

work to achieve group consensus where only groups of
agents may reach consensus. In this context, studies have
focused on either group consensus [1]-[6], cluster consensus
[7]-[9], or multiconsensus [10]-[14]. In this paper, we consider
group consensus. Results dealing with group (cluster) synchroni-
zations of networks have been also reported [15]-[18]. Several
papers [19]-[22] considered a specific structure of the network
connectivity (both the inter-connectivity between groups and the
intra-connectivity within each group) that enables group consen-
sus, In this paper, the final group consensus is achieved as an
emergent property of the network topology in terms of the net-
work symmetries. The role of the networks symmetries in deter-
mining group consensus has been investigated in the context of
single-layer networks [23].

Multilayer networks have recently received considerable
attention in the research community [24], [25]. Epidemic dynam-
ics [26]-[29] and collective behavior [30] in multilayer networks
have been addressed as well as the spread of failures through
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interdependent networks [31]-[33]. Centrality measures that
appropriately describe nodes of multilayer networks [34] and
synchronization in multilayer networks have been investigated
[35]-[41]. However, the emergence of consensus in multilayer
networks has received little attention with few exceptions [42],
[43] and a recent work focusing on opinion dynamics [44].

In this paper, we consider a network consisting of distinct
layers where each layer is home to agents of a various types
described by different uncoupled dynamics. Within the same
layer, agents are connected through intra-layer connections
while agents in different layers communicate through inter-
layer connections. We are interested in the emergence of
group consensus where the agents within the same layer
achieve consensus in clusters. For simplicity, we assume lin-
ear dynamics and study the pattern of consensus that emerges
as a result of the specific intra-layer and inter-layer connectiv-
ity patterns. Our main result is the ability to predict agents
within the same layer that will or will not achieve consensus
based on the symmetries of the multilayer network.

II. PRELIMINARIES

We first introduce notation that will be used throughout this
paper. We denote with I the identity matrix of dimension D
and with 1p the column vector of length D whose entries are
all ones. A group S is set .S of elements with a defined binary
operation that satisfies the following conditions: (i) closure:
for each a,b € S, ab € S; (ii) associativity: a(bc) = (ab)c for
all a, b, c € S, (iii) existence of an identity element: S contains
an element e such that ea = ae = a for every a € S; and (iv)
existence of inverse elements: for every element a € S, there
exists an inverse element a~! in S such thataa ™' = a'a = e.
A nonempty subset of a group G is a subgroup H of G if it is
itself a group with respect to the binary operation defined on G.

Definition 1: A coset of a subgroup H of a group S is defined
as follows: Let H = hy, ho, . .., h,;, be a subgroup of a group S.
Then, for any a in S the product aH = ahy,ahs,...,ah,,
is called a left coset of H in S while the product
Ha = hia, haa, .. ., hyais called aright coset of H in S.

We next provide a definition for the symmetries of networks
formed of a single layer where all nodes are of the same
type [17], [45]. We define the symmetries of a multilayer network
formed of several layers and agents of different types in each layer.

Definition 2: Each individual network layer « is described
by a graph G*(V(G%), £(G%)), where the set of nodes V(G%) =
{1,...,N*}, |[V| = N* and a set of edges £(G%) CV xV
where (i, j) € € if node j is connected to node i and (¢, j) ¢ £
otherwise. A permutation of the graph 7(G*) =G* is an
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operation that: (i) permutes the nodes of the graph, 7 (i) = j,
i € V(G%); (i) leaves the set of nodes unaltered V(G*) =
V(g“ ); and (iii) associates to each edge (i, j) € £(G%) an edge
((i),7(5)) € g(g“) If G* = G, then the permutation 7 is
an automorphism (“symmetry”) of the graph. If 7 is an auto-
morphism and if (4, 7) € £(G”), then (7(z),7(5)) € £(G”). If
(1,7) ¢ £(G%), then (7(i),7(j)) ¢ E(G*). The set of automor-
phisms with the composition operation forms the automor-
phism group S&* of layer G*.

Definition 3: The set of nodes V* from layer « is parti-
tioned into disjoint subsets of nodes that are mapped into each
other by applying all the symmetries in S%. We refer to such
subsets of nodes as “orbits” of the automorphism group S* or

“clusters” of the layer a: Cf, % Cr A0, ceney =0,
k#1, and U w1 Cr =V Orblts (clusters) consist of of only
one node are called trivial orbits (clusters).

Definition 4: A representation of the symmetry group S*
associates a matrix to each element of the group. For each
symmetry 7(¢) = j, ¢ € V, a natural choice is a permutation
matrix that has all zero entries except for ones placed in row ¢
and column 7(4), ¢ € V. The representation group is a group
whose elements are the matrices and whose binary operation
is matrix multiplication.

Definition 5: An irreducible representation of a group S
is a group representation that has no nontrivial invariant
subspaces [46].

III. DYNAMICAL MODEL

We now provide a general model for the time evolution of
the agents in a multilayer network. The underlying assumption
is that each node of the multilayer network is home to a
dynamical agent. Therefore, the terms node and agent will be
used interchangeably. The term node is used when describing
the network while the term agent is used when describing the
node dynamics. A multilayer network is composed of:

e Sets of nodes/agents { X% « = 1,..., M}, where each set
forms a different layer of the multi-layer network. All N¢
agents in the same layer X share the same type of
uncoupled dynamics that we assume to be linear:

=F*x%i=1,...,N*, x* € R"™. The total number
of nodes/agents in the multilayer networkis N = >~ N

o A set of different interactions or couplings between
nodes/agents. We differentiate between intra-layer and
inter-layer interactions. (1) The intra-layer interactions
connect nodes within the same layer X“. They are rep-
resented by an adjacency matrix A“*. The interaction is
modeled in terms of a square n“-dimensional matrix
H** while the strength of the interaction is tuned using
parameter 0**. (2) The inter-layer interactions connect
nodes in two different layers o and B, where o # B.
They are represented by an N* x N adjacency matrix
AP The associated coupling is determined by the
n® x nf matrix H*?, where o*f is the associated cou-
pling strength. We assume that the couplings are undi-
rected and, therefore, A% = A%T o= 1,...,M and
A = AbeT o g1, . M.
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Fig. 1. A multilayer network with M = 2 layers, N! = 6 agents in layer 1
(top) and N? = 4 agents in layer 2 (bottom). The agents in the top layer are of
a different type than the agents in the bottom layer. Solid (dashed) lines are
intra-layer (inter-layer) connections. Inside each layer, nodes in the same orbit
(cluster) are of the same color.

An example of multilayer network consisting of M = 2
layers, N! = 6 nodes in layer 1, and N? = 4 nodes in layer 2,
is shown in Fig. 1.

For this network, the coupling matrices are:

[0 1 0 0 0 17
1 0 0 01 0
Al 00 01 10
00100 1|
01 1 0 00
L1 0 0 1 0 0]
(1 0 0 07
01 00
A12:A21T: 0010 7
00 0 1
00 0 0
L0 0 0 0]
o 1 1 17
422 1 0 1 0 (1)
1 1 0 1
L1 0 1 0]

The symmetry analysis shows that there are 3 clusters in
layer 1: CY = (1,3),C5 = (2,4),C5 = (5,6) and 2 clusters in
layer 2: C1 =(1,3), C = (2,4). Nodes in each layer that
belong to the same OI'blt (cluster) have the same color.

We devise a model for the time evolution of each agent
based on its individual dynamics and its connections to other
agents through the connectivity of the multilayer network.
Under the assumption that the overall effect of different inter-
actions is equal to the sum of the individual interactions, the
state x;(t) of agent i in layer @ of the multilayer network
evolves based on linear equations:

X;X(t) — Fct Ot +O_ota ZAotaHaa oz )

intra—layercouplings

+Y o Z AP PR (1), (2)

pra =1

inter—layercouplings
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i=1,...,N%a=1,...,M. Weassume that F* # ¥ aslong
as a # B, where the superscript identifies nodes of different
types. Furthermore, H*? # H”® as long as « # y and f # 6,
where the superscripts identify interactions of different types.

Equation (5) allows for an arbitrary number of layers M, an
arbitrary number of nodes in each layer N o =1,..., M,
and arbitrary dimensions for the nodes in each layer n%,
a=1,...,M. We are interested in conditions for achieving
group consensus where the nodes in each layer are divided
into clusters and the nodes within the same cluster achieve
group consensus but nodes between different clusters do not.

Each layer o may be described by an intra-layer graph
G* = (V*, &) consisting of two sets:

e setofnodes V* = {ili = 1,..., N*} so that |V*| = N¢,
e set of edges & = C V¥ x V¥ where (i, j) € £¥ if node j
is connected to node ¢ and (7, j) ¢ £ otherwise.
The adjacency matrix of the intra-layer graph G* is a binary
matrix A* = {A%} € RV such that element A% =
if (4,7) € € and Af = 01if (4, ) ¢ £(G). If G* is undirected
(directed), then A** is symmetric (non-symmetric).

Each pair of layers «, 8 may be described by a bipartite
inter-layer graph G*¥ = (V*, VF, £%F), where £ = C V* x V#
where (i,7) € £ if node i € V* is connected to node j € V#
and (i, ) ¢ £ otherwise. The adjacency matrix G*/ of the
inter-layer graph is a binary matrix A% = {A?‘f } e RV xN?
such that element A =1 if (i,j) € &% and AY =0 if
(i,7) ¢ £, In the case of undirected inter-layer connectivity,
Abe — AT

Definition 6: The supra-adjacency matrix A is the
> N¥-dimensional matrix:

Ao« Aotﬂ 3
A= Aﬁa Aﬁﬁ - (3)

Since we have assumed that A% = A%T and APx = A% T,
it follows that A = AT

IV. GROUP OF SYMMETRIES OF THE MULTILAYER NETWORK

We introduce here the group of symmetries of a multi-layer
network. To analytically compute it, we first present a general
form for the permutation matrices that represent the symme-
tries. Each network layer contains a different type of nodes
and, hence, no permutation moves nodes between layers. This
implies that the group of permutation symmetries S for the
entire network is block diagonal. For each permutation g € S:

g 0 O
0 9p 0
g=10 0 ¢ ...| 4)

where g, is the permutation that moves only nodes in layer «,

gp 1s the permutation that moves only nodes in layer 8, etc.
Given the form (7), not every choice of g, € S, gg € SP ..

results in a symmetry for the multilayer network. For a
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permutation matrix g € S, the symmetry group of the multi-
layer network should satisfy the following conditions:

ga €8, gpe S’ (5a)
guA? = A%gs and  gpAP = APg,, (Sb)
a,p=1,... M, o+#8B.

The conjugacy relations (5b) is the requirement that permu-
tations from different layers be compatible with the inter-layer
coupling of the multi-layer network. We say that a permuta-
tion is compatible if it can be performed without changing the
structure of the multilayer network. Hence, symmetries of the
multilayer network will have the structure (4), where g, € S%,
gg € SP. ..., (5a). They also must satisfy the compatibility con-
dition (5b) imposed by the inter-layer connectivity.

Consider an example of a multi-layer network with two
layers « and B. Equation (2) may be written as:

Xa _ INot ® FozXa 4 aaaAota ® Hotaxa + aaﬁAaﬂ ® Hot,BXﬂ
Xﬂ = INﬂ ® FﬂX’B + O—ﬂﬂAﬂﬁ ® Hﬂﬂxﬂ + O_ﬁOKAﬂ(X ® I{ﬂotxoz7

where the N*n-dimensional vector x* = [x¢",x§", ... x4
. . T g7 T
the N#nf-dimensional vector x# = [xf ,xg S xf\,ﬂ ]T and
the symbol & indicates the Kronecker product of matrices.
Consider two permutations g, € S* and g € SP. From (7),
a general element of the symmetry group for this two-layer

network should be of the form:

g O
(% o)

In order to determine compatible g, and gg, we apply the two
permutations to the full system dynamics,

T]T’

GuX? = Inu @ F¥gux® + 0% A% @ Hg,x"
+ 0P g, AP @ HPxP

gﬁxﬁ =1L ® Fﬁgﬂxﬁ + 0P APP Hﬂﬂglgxﬂ
+oPrga AP @ HPxe

where we have used the property that permutations commute
with the intra-layer coupling matrices.

From (7), flow invariance requires that the conjugacy rela-
tions be satisfied: g, A% = A*fgg and ggAP* = AP*g,. This
implies that g, and gg are not arbitrarily chosen and must be
properly paired to satisfy (5b). Because there may not be a
matching gg for each g, and vice versa, the conjugacy rela-
tions will generally restrict the permitted permutations to sub-
groups of 8% and S”. It is the structure of these subgroups that
will determine the final group S of the entire network.

To find the permutations that satisfy the conjugacy relations
(8b), we define the following sets:

HY = {gy € S¥|gu A% = A“ﬂgﬁ and gﬂAﬂ“ = APq, (1)
for some g € SP and
HP = {gp € Sﬁ|gﬁAﬁ°‘ = Aﬁ“go, and gaA“’S = A“’Sgﬂ )
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for some g, € S. A proof that H* is a subgroup of S* and H”
is a subgroup of S” can be found in [47], [48].

Note that A% ¢ RV >N \while an element g, € H* may
be represented with a N® x N* matrix and an element
gp € HP may be represented with a N# x N# matrix. It fol-
lows from this observation that A*# has generally nontrivial
left and right null spaces (with no particular structure) and,
hence, there may be more than one g, that satisfies
o AP = A%P gy for a given gg and vice versa.

We next show how the group of symmetries of the multilayer
network S can be obtained from H* and H”. To properly pair
the permutations, we introduce an equivalence relation on each
subgroup H* and H?. We define a relation ~ between the ele-
ments of H* as g ~ ¢ if gA*? = ¢ A*F. Similarly, h ~ b’ if
hAP® = ' AP* Because relation ~ is defined using equalities,
it is an equivalence relation (reflexive, symmetric, and transi-
tive) on H* and HP. Moreover, if g ~ ¢, g,and h are conjugate,
then so are ¢ and h. This implies that the relation defines a dis-
joint partitioning of each subgroup into subsets, C and /Cf ,
i=1,..., K for H* and H”, respectively. Each subset K¢ con-
tains all permutations ¢ such that gA%? is equal to a certain
matrix M;. Correspondingly, each subset IC,’? contains all per-
mutations & such that hAP® = M;. This leads to the construc-
tion of the group of symmetries of the multilayer network S as:

0 o B -
gﬁ)|9a € K and gg € K}, fori = 1,...,2}.

(%
s={(%
©))

Note that the sets K¢ and K may contain different number of
elements.

Remark 1: For each layer «, the sets IC}' form cosets for the
layer’s subgroup H® [47]. It suffices to notice that one of the
KCY subsets that contains the identity symmetry is a subgroup
of H*. If K{ is the subgroup, it follows that all ' are left and
right cosets of Y.

It is now possible to define the orbits of the symmetry group
S. Each orbit is formed of the nodes of the multilayer network
that are mapped into each other when all the symmetry opera-
tions of the group S are applied. Because there are no symme-
try operations that swap nodes between different layers, all the
orbits are formed by nodes in the same layer.

Definition 7: The symmetry group S partitions the nodes of
the multilayer network into orbits. As a result, the nodes in
each layer « are partitioned into clusters CZ, k=1,...,L%
each consisting of the nodes in orbit £ and |J AL;C% =),
a=1,.,M,C;#0andC{NCy =0,k #1.

Let N} = |C}| denote the number of nodes of layer « in orbit
kand Y"1 _, N = N For simplicity and without loss of gen-
erality, we assume that nodes in each layer o are numbered cor-
responding to their orbits. For example, nodes in orbit 1 are
labeled 1,..., Ny while nodes in orbit 2 are labeled Ny +
1,..., N¢ + N¢. Then, each matrix A*# may be rewritten as:

aff off
AM Alk

A = | A A : (10)
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where the N x N f block A?kﬂ denotes the coupling between
cluster ¢ in layer « k and cluster ¢ in layer «.

V. GROUP CONSENSUS IN MULTI-LAYER NETWORKS WITH
LINEAR DYNAMICS

The time evolution of each layer of the multilayer network
is described as:

M
XU(t) = Iye @ Fx*(t) + > AP @ H*XP(t)  a=1,..., M,
p=1

an

in the N%m®-dimensional vector x* = [x%(t)",x%(t)", ...,
% ()] @ =1,..., M, where [*f = o*/ H*/.

A global system of equations describing the time evolution of

the entire multilayer network can be written by introducing the

P =Y, N*n¢-dimensional vector x(t) = [x'(¢)",x2(t)" ...,
O

[ Ine @ F* 0

x(t) = 0 Iys @ FP

_Aaot ® ]f[uta Aot,B ® I;[ozﬁ
| At B AP g [P

12)

where the P-dimensional square matrix = has eigenvalues &,
{=1,..,P.

Definition 8: The set of states x{ = x7 if ¢ and j lie in the
same orbit C¥, o« = 1,..., M, k= 1,..., L* define an invariant
manifold called the group consensus manifold.

The dynamics on the group consensus manifold is governed
by the quotient network dynamics [23]:

Q) = Foqi(t) + > > Qi qu(t), k=1,... L
B 1
(13)
where qf(t) is now the state of orbit k= 1,..., L* in layer «
and the L% x Lf matrix Q% has entries Q%7 = > A;”jﬁ for

i € C*and j € CP. Equivalently:

Ine @ F* 0
q(t) = 0 Ip @ FP

Qatx ® Htxa Qaﬁ ® Hotﬁ

+ | @ el QMo A a(t) = Yq(),

(14)
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in the R=) ,L*n%dimensional vector q(t) = [ql(t)T,
)", ,q”(t)"]" and each vector q(t)=[qi(t)",

i T i n\INT
We now introduce the square L =) L%-dimensional
matrix () defined as:

Qaa Qaﬁ
Q=|Q" Q¥ (15)
It is related to the matrix A by the following relation:
Q= (E"E)'ETAE = E'AE, (16)

where F is the N x L indicator matrix F;; equal to 1 if node ¢
is in orbit j and is 0 otherwise [49].
Remark 2: The matrix F = @é”

_ @ﬁil 1 N, where the
symbol  indicates the direct sum operation.

Remark 3: The quotient network vector q(t) = (E'"E')™"
E'"x(t), where the R x P-dimensional indicator matrix F’
maps each state of the P-dimensional vector x(t) to one and
only one state of the quotient network IR-dimensional vector
a(t): B = &)L, off, (I, @ Lye).

The quotient network describes the evolution of the
agents on the group consensus manifold. In case when all
the agents in the same cluster are given the same initial
condition, the quotient network dynamics provides the
exact time evolution of all network agents. The quotient
network dynamics is stable in the group consensus mani-
fold if the largest real part of the eigenvalues of the matrix
WV defined in (14).

Under appropriate conditions, the set of equations (11) and
(12) will admit group consensus. A set of agents may converge
on group consensus on either a stable, unstable, or marginally
stable trajectory. It is important to note that we are not con-
cerned with whether or not the entire system is asymptotically
stable. Instead, we address the stability of each agent with
respect to the group consensus state where all nodes in its
orbits have reached consensus.

Definition 9: Nodes in orbit C; have achieved group con-
sensus if lim;o [[x¥(t) —x§(¢)|| = 0 for all 7 and j in Cj.
Hence, group consensus is possible for either stable, margin-
ally stable, or unstable dynamics as long as the trajectories
converge to each other.

Remark 4: In general, a study of the eigenvalues &,
¢=1,..., P is not sufficient to predict group consensus: (i)
Only if all eigenvalues have a negative real part Re(&) < 0,
{=1,..., P, the set of equations converge on the group con-
sensus manifold with all lim;_., 2%(¢) = 0. If for one or more
eigenvalues Re(&;) > 0, it is difficult to predict whether or
not group consensus is achieved unless one is able to deter-
mine whether those eigenvalues with positive real part corre-
spond to motion parallel to the group consensus manifold or
are transverse to it. In particular, if for one or more eigenval-
ues Re(&y) > 0, one of the following two cases may arise: (ii)
group consensus is achieved on a diverging trajectory; or (iii)
group consensus is not achieved.
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The remainder of the paper is devoted to determining condi-
tions when eigenvalues &, are associated with motion parallel
or orthogonal to the group consensus manifold. We use a
transformation of the system dynamics provided by group the-
ory in order to fully characterize stability of group consensus.

Based on the group of symmetries of the multilayer net-
work, we may compute the irreducible representations (IRRs)
of the symmetry group of the multilayer network. We define a
transformation 7 for each layer « to the so called IRR coordi-
nate system [17]. The global transformation of the multilayer
network to the IRR coordinate system may be written as a
block diagonal matrix with the direct sum of the transforma-
tions of each layer (the orthonormal matrix 7T'),

T=eT" (17)

o

By construction, each row of the matrix 7 is associated with a
specific cluster Cj: all the 7 entries of that row of the matrix T
are zero for ¢ ¢ Cj. N{ rows of the matrix 7 are associated with
cluster 1, N§ rows are associated to cluster 2, .... For each matrix
T, the first L* rows satisfy 7% = 1//N¢" if node i € C} and
Ty = 0 otherwise. These rows describe motion that is parallel to
the consensus manifold. The remaining rows describe motion
that is orthogonal to the consensus manifold and, thus, determine
its transverse stability. If one of these rows k = L% 4+ 1,..., N*
is associated with cluster Cy, Ziec‘,’: T = 0.

We now construct the P-dimensional orthonormal matrix 7’
that will be used to block-diagonalize (12):

T=0T"®I,, (18)

Application of the transformation 7 to (12) yields:

Ine @ F 0

a(t) = 0 Iyg ® FP

B I_j[ozoz BB ® f{aﬂ

L | B @ A B [

z(t), (19)

where vector #(t) = (T'® I,,)z(t) and each block B* =
TAfTF" Tt is important to note that application of the
matrix 7' leaves the leftmost matrix on the right-hand side
of (12) unaltered. (Compare with the leftmost matrix on the
right hand side of (19).)

We also define the /N-dimensional square matrix:

Bx  pep

B= | B B 7 (20)

that be computed as B = TAT”. Moreover, after permutations
of its rows and columns, the matrix B has a block-diagonal
structure that is determined by the irreducible representation
of the symmetry group of the multilayer network. Namely:
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s’ = e 1, ® B, Q1
where II is an appropriate permutation matrix, B, is a (com-
plex) ps X ps matrix, with ps the multiplicity of the sth IRR
representation of the group, S is the number of IRRs, and d; is
the dimension of the sth IRR so that ZSS:I dsps = N [17].
The trivial representation (s = 1) which describes the motion
in the consensus manifold has p; = L and is associated with
all the L clusters of the multilayer network. Each remaining
representation s = 2,..., S is associated with either: (i) an
individual cluster (p; = 1) or (ii) a set of intertwined clusters
(ps > D I[17].

By taking advantage of the block diagonal structure of (21),
the vector z(t) in (19) may be decomposed into S indepen-
dently evolving vectors z’ = [z],zl, ... ZL], each corre-
sponding to an irreducible representation s =1,...,5. For
each s =1,..., S, an independent system z, = B Z. ( ) may
be written. We ﬁrst consider the case when p, = 1. The corre-
sponding system s satisfies:

z, = (F*+ B,H")z, (22)
where a is the layer of the cluster associated with the IRR s. In
case ps = 2, there are two clusters a and b associated with the
IRR. Hence, the corresponding system s satisfies,

FIL + B ® H(Ml
B ® Hba

B:b ® I_:[ab

z,(t) = . R
Fb 4 Bbb ® be

zs(t). (23)

Similarly, one may write the systems s for p; > 2. A special
case is the trivial irreducible representation (s = 1), which is
associated with all L network clusters (p; = L).

An immediate consequence of the particular block-diagonal
structure of the matrix B (24) is that the transformed state vec-
tor is partitioned into two independent vectors: z(t) =
(2 o (), 77 ()], where Zpg.(t) = 2, (t) € RT describes
the motion along the group consensus manifold and
Zon(t) = [22(t)",. . .., 25(t)"]" € RP~F describes the motion
orthogonal to the group consensus manifold:

{zm@} _
zorth (t)
We define \pqrq and Ay to be the maximum real part of the
eigenvalues of the matrices Bpam and Bmh, respectively. An
analogous derivation of (27) may be found in [49].

Theorem 1: Stability of the motion along (orthogonal to)
the group consensus manifold is determined by the sign of

Apara (o). Namely, the motion in the group consensus man-
ifold decays to zero if and only if A\, < 0 (Bpam is Hur-
witz). Group consensus is achieved if and only if Ay, < 0
(B, is Hurwitz). In this case, the group consensus manifold
is stable and any perturbation orthogonal to the group consen-
sus manifold will decay to zero independent of the dynamics
along the manifold.

Proof: The block diagonal structure of the matrix (27)
shows that (17) decouples into two independent equations.

BP‘”” O(I‘EXP*R) |:Zpam (t)
O(P—RXR) Borth, ZOTﬁL(t)

} . (24)
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One needs to prove that these two equations correspond to
motion parallel to the consensus manifold and motion parallel
to it. This follows from the particular structure of the matrices
T « =1,.., M. The vector x(t) in (17) may be written as a
linear combination of the components of the vectors Zy,,(t)
and Z,,;, (t). In particular for every two nodes i and j from the
same cluster Cy, the difference (x7(¢) —x§(¢)) is a linear
combination only of the components of the vector Zy.,(t).
Thus, the motion orthogonal to the group consensus manifold
iS Z 4, (t) and the motion parallel to the group consensus man-
ifold is Zpgra (1). u

Theorem 1 implies that it is possible for the original system
to be either marginally stable or unstable and yet achieve
group consensus.

Remark 5: 1If the group consensus manifold is stable
(Apara < 0), for large ¢, x¥(t) converges to qf(t), ¢ € Cj and
the full multilayer network dynamics is completely described
by the quotient network dynamics. Then, the final group con-
sensus state is equal to q(oo) = limy_ exp(Wt)q(0) =
limy .o exp(Wt)(E'"E')"" E'"x(0). This expression explains
how the choice of the initial conditions determines the final
group consensus state.

Theorem 2: The two matrices ¥ and BPGM are similar.

Proof: Recall the definitions of the matrices 7' (20) and T
(18). For each matrix 7, the first L* rows satisfy 7} = \/W
if node ¢ is in cluster k of layer @ and T}; = O otherwise. For
each layer @, we may construct the L% x N* matrix 7" by
stacking together the first L* rows of the matrix 7% We
may then construct the R x P-dimensional matrix 7T’ =
@1 @ I,,,. From (27), Zpam(t) = Bpamipm(t), where
Zpara(t) =T'2z(t). By construction, 7' = (E’E’T)f%E’.
From (17), q(t) = Wq(t), where q(t) = (E’E’T)flE’x(t) =
(B'ETY 2T (t). at) = (E'E™) 3%yea(t)  and
Bpam = (E,E/T)%\P(E/E/T)_Z u

Remark 6: From Theorem 2, q(t) = (E’E’T)_Hpam(t)
Hence, the quotient network dynamics (14) decays to zero if
and only if A\yqre < 0.

Based on the block-diagonal structure of matrix:

Hence,

-

Born = &5, Bt (25)

the vector z1,, = [z2,...,2L] is composed of S — 1 vectors
evolving independently of each other. (Each vector corre-
sponds to a non-trivial irreducible representation of the graph
automorphism group.) The stability of each block Bom,
depends on the largest real part of the elgenvalues of the block
AS .. Where the previously defined A4, = max?_, A% ;. This
implies that for a given graph, certain clusters may achieve
isolated group consensus while others may not, as shown in
Example 2.

VI. EXAMPLES

A. Example 1

We consider as an example the multilayer network with
M = 2 layers shown in Fig. 1. The state of the systems in the
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x2()

0 5 10 15 20 25 30 35 40 45 50
t

Fig. 2. Example of group consensus for a = 2.4 and b = 4.5. The upper plot
shows the time traces from layer 1 and the lower plot shows the time traces
from layer 2. Color of the time traces corresponds to the color of nodes shown
in Fig. 1.

first layer is a scalar n! = 1 while the state of the systems in
the second layer is a two-dimensional vector n? = 2:

F'=-3, H"=1,

(
F2:<0 1> ﬁm:(O) Em:(O.l 0>.
b -1)’ —a)’ 0 0

The quotient network is described by (17), where:

0 1 1 . 1 0 1 92
1 12 _ 217 22 _
0 1 1 0 0

27

An example of group consensus corresponding to the case
a = 3.5 and b = 4.5 is shown in Fig. 2. Shown are the time
traces from layer 1 (top) and layer 2 (bottom). Colors of the
time traces correspond to the colors of nodes shown in Fig. 1.
The time traces corresponding to nodes in the same clusters
from layer 1 and layer 2 converge to each other. However,
nodes in different clusters converge following different time
evolutions. The variety of dynamical behaviors that are
observed by varying parameters a and b is shown in Fig. 2,
where three cases are evidenced:
e [: stable dynamics and
(Apara < 0, Aorth < 0)
e [I: unstable dynamics and stable group consensus
()\para > 0, )\orth < 0)
e [II: unstable dynamics and unstable group consensus
(>\pam > O» /\orth > 0)
The fourth possible case, stable dynamics and unstable
group consensus, has not been observed when varying the
parameters a and b in the range shown in Fig. 3.

stable group consensus
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4.5

3.5

© 25

15

0.5

b

Fig. 3. Group consensus in the plane (a,b). I: stable dynamics and stable
group consensus; II: unstable dynamics and stable group consensus; III: unsta-
ble dynamics and unstable group consensus.

The matrix 7" is equal to:

% (1) % (1) 0 0 0 0 0 0
0 & 0 5 0 0 0 0 0 0
0 0 0 0 % % 0 0 0 0
0 0 0 0 0 0 715 (1) % (1)
S .
B 1 2 1
0 45 0 - (1) o1 0 0 0 0
0 0 0 0 K - (1) 0 0l 0
0 0 0 0 0 0o (1) -7 01
0 0 0 0 0 0 0 5 0 -
(28)

Each row of the matrix 7" is colored to indicate a cluster
of the multilayer network shown in Fig. 1: different shades
of pink are clusters of layer 1; dark gray and light gray
are clusters of layer 2. Hence, each row of the matrix T’
(and of the transformed matrix B) is associated with a spe-
cific cluster.

The matrix B = TAT" is equal to:

00l 0 0 0 0 0]
10101/ 0 00 0 0
11000/ 0 00 0 0
10012 0 00 0 0
01020 0 00 0 0
B=1%9"0 00 oo 1T =i 10| *
000001 0 1 0 1
00000 11 0 0 0
0000O0 1 0 0 =10
(00000 1 0 0 0]

In this case, there are only S = 2 irreducible representations of
the symmetry group: the matrix B has two diagonal blocks.
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Fig. 4. Top: p! (thick solid line), o} (thin solid line), and o? (thin dashed
line), versus the parameter b for fixed @ = 2.4. Bottom: A (thick solid line)
and A, (thin solid line), versus the parameter b.

1 4 .
\[‘\f' S
! N
.
! N
!
1
1
T} e
K"J\j ~ N
N N \;\
A T S
Ry

Fig. 5. A multilayer network with M = 2 layers, N! = 4 agents in layer
1 (top) and N? = 4 agents in layer 2 (bottom). The agents in the top layer
are of a different type than the agents in the bottom layer. Inside each
layer, nodes in the same orbit (cluster) have the same color.

The upper-left diagonal block corresponds to motion parallel
to the consensus manifold while the lower-right diagonal
block corresponds to motion orthogonal to the consensus
manifold.

We define the average state for all the agents in cluster C} in

layer o
2%

5 o
]ECk

1
x* @), = Ne (30)

and compute the error £ () of node j € Cj, with respect to the
average trajectory:

EZ(t) = (x5 (t) — [x* ()] lla, (31)

where j € C;. We then compute the rates of exponential
growth/decay:

o _ og ([[x* (t2)]4]l) = log ([[x* (#0)]4l)

. 32
P th— 1, (32)
and
log (E%(ty)) — log (E%(t
o EEE) @)
to — t1

Plot of p} (thick solid line), o} (thin solid line), and o?
(dashed line) versus the parameter b is shown in Fig. 4 (top).
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Plot of the eigenvalues M, (solid line) and A, (dashed
line), versus the parameter b is shown in Fig. 4 (bottom). Note
that p! (0], 07) is negative when the eigenvalue \porq (Aorin) iS
negative.

B. Example 2

We consider a multilayer network consisting of M = 2 layers,
N' = 4 nodes in layer 1, and N? = 4 nodes in layer 2, as shown

inFig. 5.
Matrices:
01 1 1 1 0 0 O
g VOt |01 00
1 1 0 1 00 0 O
1 1 1 0 0 0 0 O
(34)

The state of the systems in both layers is two-dimensional
-2 1

(n' =n?=2):
) gy — (1/3 0 ) Ji
-1/’ 0o 1/3)’

2 0 1) 02— et g2 —a 0 .
-2 —2) ' 0 0

(35)

The symmetry analysis shows that there are 2 clusters
in layer 1: C] = (1,2),Cy = (3,4) and 2 clusters in layer 2:
C?=(1,2),C3=(3,4). In Fig. 5, nodes in each layer
have the same color if they belong in the same orbit
(cluster).

The quotient network is described by (17), where:

10

Q11:Q22:|:; ﬂ? Q12:Q21T:[0 0} (36)

The matrix 7" is equal to:

%%000000
oo%%oooo
0000%%??
-3 25 o 0 0 % %

V2 2
00%—%0000
0000%—%?01
o 0 0 0 0 0 o -
(37)

Each row of the matrix 7" is colored to indicate a cluster of
the multilayer network: dark green and light green are clusters
of layer 1; dark blue and light blue are clusters of layer 2, see
also Fig. 5.
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Fig. 6. Top: pi (thick solid line), o}, (thick dashed line, a similar plot is
obtained for o7 ,), o}, (thin dashed line), 03, (thick dashed line) versus the
parameter a. Bottom: Apara (thick solid line), )\ﬁﬁh (thick dashed line), )\i,.t,l
(thin dashed line), and X2 ,, (thick dotted line) versus the parameter a.

The matrix B = TAT7T, after permutations of its rows/col-
umns, is:

SO OO

(38)

SO O OO ==
[eNeNoeNel ol S
SO OO = O =
OO O OoO=NO O

|

—
[e=NeNeNeNoNel
[eNeNoloNoNoeNe)

S O =
(e}

There are S = 4 irreducible representations: the matrix B
has four diagonal blocks. The upper-left diagonal block s = 1
corresponds to motion parallel to the consensus manifold
while the remaining three diagonal blocks s = 2,3,and 4
correspond to motion orthogonal to the consensus manifold.
Moreover, different from Example 1, these diagonal blocks
correspond to various ways in which the group consensus state
may be broken. The presence of multiple transverse blocks
indicates the possibility of isolated group consensus in this net-
work. The 2-dimensional s = 2 block corresponds to simulta-
neous breaking of the dark green and dark blue clusters in
Fig. 5. The largest real part of the eigenvalues of this block
A2, determines group consensus of the cluster (1, 2) in the top
layer and of the cluster (1, 2) in the bottom layer. The two sca-
lar blocks s = 3 and s = 4 correspond to independent break-
ings of the light green and light blue clusters, respectively. The
largest real part of A3 . the eigenvalues of the s = 3 block,
determines group consensus of the cluster (3,4) in the top layer
(light green cluster) while the largest real part of Al ;. the
eigenvalues of the s = 4 block, determines group consensus of
the cluster (3, 4) in the bottom layer (light blue cluster).

Plots of pi, 01 ,, 0% 4, and 03, versus the parameter a are
shown in Fig. 6 (top). As a increases, the first group consensus
of the cluster (1, 2) from the bottom layer (and, simultaneously,
cluster (1,2) from the top layer) is lost. Then, the motion
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parallel to the group consensus manifold becomes unstable.
Finally, group consensus of the cluster (3,4) in the bottom
layer is lost. Group consensus of the cluster (3, 4) in the bottom
layer is never lost. This is in agreement with the calculations of
Aparas Nopgns A2 s and AL shown in Fig. 6 (bottom). The pos-
sibility for some clusters to become unstable while other clus-

ters remain stable, is isolated group consensus.

VII. CONCLUSIONS

We considered group consensus in multilayer networks
based on their symmetries by transforming the network dynam-
ics into a component parallel and components orthogonal to the
group consensus manifold, which determine stability. Group
consensus was predicted independently of the specific motion
in the consensus manifold even when this motion is marginally
stable or diverges. We demonstrated the applicability of the
proposed method using two examples. For certain values of the
parameters, the network may display isolated group consensus:
some clusters are stable while others are not.

A case not considered in this paper is the group consensus
arising from an equitable partition of the network nodes: a par-
tition of the network nodes that is not predicted by the network
symmetries [50]. An important direction for future investiga-
tion is to remove the assumption of undirected links, both in the
inter-layer and in the intra-layer connections. We hope that our
work will bring additional attention to the general topic of con-
sensus and group consensus in multilayer networks.
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