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We study M-theory compactification on T7 / Z3 in the presence of a seven-flux, metric fluxes and
KK monopoles. The effective four-dimensional supergravity has seven chiral multiplets whose cou-
plings are specified by the Ga-structure of the internal manifold. We supplement the corresponding
superpotential by a KKLT type non-perturbative exponential contribution for all, or for some of the
seven moduli, and find a discrete set of supersymmetric Minkowski minima. We also study type ITA
and type IIB string theory compactified on T® /Z% In type ITA, we use a six-flux, geometric fluxes
and non-perturbative exponents. In type IIB theory, we use F and H fluxes, and non-geometric
Q and P fluxes, corresponding to consistently gauged supergravity with certain embedding ten-
sor components, without non-perturbative exponents. Also in these situations, we produce discrete
Minkowski minima. Finally, to construct dS vacua starting from these Minkowski progenitors, we
follow the procedure of mass production of dS vacua.

I. INTRODUCTION

In [1, 2], we introduced a method to construct de Sitter
minima, starting from Minkowski minima in type ITA and
type IIB string theory. Here, we apply this method in the
context of M-theory and string theory. All of our models
here have seven complex scalars, which are coordinates

7
of the coset space {SSLO(Q(’QH?}

We begin with moduli stabilization in M-theory on
a seven-manifold with Gs-structure, namely the twisted
seven-torus. The starting point is the compact manifold
with Zo X Zg X Zs C G2 holonomy that is obtained as
the toroidal orbifold of the form X; = T7/Zo x Zo X Zo,
[3-6]. We make the quotient non-singular by a choice
of a free orbifold action'. The Betti numbers of X7 are
(bo, b1,b2,b3) = (1,0,0,7). This theory is identified with
the maximal rank reduction on the seven-torus and leads
directly to 4d N = 1 supergravity with seven moduli.
Then, the twisting is introduced and can be interpreted
as a Scherk—Schwarz reduction on the original torus. To
derive the twisted seven-torus model from M-theory, it
was proposed in [3] how to generalize the action of 11d
supergravity to its ‘democratic form’, namely a pseudo-
action where the potentials and the dual curvatures ap-
pear at the same time. In 10d, this type of supergravity
pseudo-action was proposed in [7]. The pseudo-action
allows to identify the superpotentials in 4d supergravity,
originating from M-theory on twisted seven-tori. Follow-
ing [3, 5], below we discuss such superpotentials and use
them to construct dS minima with all moduli stabilized.
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1 We are grateful to A. Braun for explaining this and related issues
of Ga-structures to us.

Another derivation of an effective 4d supergravity the-
ory could also be done using the duality-symmetric 11d
supergravity action coupled to M-branes [8].

M-theory on a generalized twisted seven-torus was pro-
posed and studied in [5, 9], following the corresponding
beyond twisted tori constructions in 10d, given in [10]. In
particular, the idea in [10] was to introduce Kaluza-Klein
monopoles KK5 and KKO5-planes, which allow to con-
sistently relax some restrictions, known as tadpole con-
ditions. Then, in [5, 9], an analogous construction was
introduced and studied in M-theory. A ‘beyond twisted
tori’ construction was presented, by allowing the presence
of KK6 monopoles and KKOG6-planes.

The purpose of this note is to use M-theory on the
generalized twisted seven-torus, to identify some rela-
tively simple discrete supersymmetric Minkowski vacua,
in which all of the 14 real scalars are stabilized. In turn,
these vacua can be used to stabilize all of the 14 moduli in
dS minima, following the mechanism of mass production
of dS vacua [1, 2]. This mechanism is applicable to any
M-theory /string theory motivated superpotential satis-
fying certain conditions. However, all examples given in
[1, 2] were based on the KL-type racetrack superpoten-
tials containing at least two nonperturbative exponential
terms for each of the moduli [11].

In this paper we will show that, by taking into account
polynomial flux terms in superpotentials originating from
M-theory /string theory, one can achieve dS vacuum sta-
bilization in models with a single exponent for each field.
Alternatively, by including additional flux contributions,
we can stabilize dS vacua in models where only some of
the moduli have exponential terms in the superpoten-
tials. Some of these M-theory models have also an in-
terpretation as type ITA models compactified on T /Z3
with fluxes.

Finally, we will present a particular class of models in
type IIB string theory, describing the seven moduli com-
pactified on T®/Z3 with fluxes. The origin of one of the
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non-geometric fluxes in this model is subtle: it was con-
jectured in [12] to be present, based on S-duality of the
theory, once the geometric flux is introduced. We show
that in this model one can construct stable dS vacua
without using any non-perturbative exponential contri-
bution in the superpotential.

II. GENERALIZED TWISTED SEVEN-TORUS

Following the discussion in [3, 5], where the seven-
moduli model was derived from M-theory, we take the
Kahler potential for the seven chiral superfields ®* to
be?

K=- ilog (—i(qﬂ' - Ei)) . (1)
i=1

The superpotential derived in [3, 5] has the generic form
Wpert = g7 + G ®' + %Mijfbifbj. In the present work, we
will use this superpotential, with two additional modifi-
cations. First, we set G; = 0, in order to have only con-
stant and quadratic terms in the moduli. Second, we add
to this superpotential a KKLT-type non-perturbative ex-
ponential term. Therefore, the resulting W is

7
1 T ] ia; d°
W = g7+ 5 M;;0'07 + Z;Aie i@ (2)

Here, g7 is a seven-flux contribution, whereas terms
quadratic in the moduli originate from geometric fluxes.?
Here, all parameters in W are real. The matrix M;; is
symmetric and all of its diagonal elements vanish. There-
fore, it has 21 parameters. One could generalize this set-
ting and use racetrack superpotentials, following [1, 2].
In that case, dS vacuum stabilization is possible even in
absence of the term g7 + %Mij ®'®7. The goal of this pa-
per is to explore alternative possibilities, using no more
than a single nonperturbative exponential term for each
of the moduli.

2 In [13] the seven moduli model was derived from 11d supergrav-
ity compactified on S7. It has the same Kahler potential as in
(1) however, the superpotential is different, defined by the regu-
lar embedding of [SU(1,1)]” into Er(7) and underlying octonian
structure. The AdS critical points in these models were derived
using Machine Learning software. We are grateful to N. Bobev,
T. Fischbacher and K. Pilch for attracting our attention to these
constructions.

3 The seven-moduli case in [2] is now equivalent to M-theory on
a seven-torus ']I‘7/Zg7 in the presence of a seven-flux. The terms
quadratic in moduli, coming from twisting of the seven-torus in
M-theory (or, from geometric fluxes in IIA), were not used in
[2], but KL-type double exponents were added to a seven-flux
instead. D6/06 and anti-D6 are a reduction from M-theory to
string theory of KK6(KKOG6). The relation between D6 and KK
monopole in 11d is known as oxidation, see [14].

The nonperturbative exponential terms might arise
from wrapped M2-branes. It was shown in [15] that in M-
theory compactified on manifolds of G5 holonomy, mem-
branes wrapped on 3-cycles induce nonzero corrections to
the superpotential. In the T7/Z3 model there are seven
3-cycles. Therefore, one expects exponents in W for each
of the seven moduli, where Im ®; are the volumes of these
seven 3-cycles.

To find supersymmetric Minkowski vacua, one has to
solve the equations ;W = 0 and W = 0. The first of
these equations gives

— iaiAieiaiq)i’ = Mij(I)j . (3)

which can be solved for the coefficients A; of the non-
perturbative terms, resulting in

Ai = ia;le_iai’q)iMij(I)j . (4)

We split ® = 6 4+ i ¢’ and note that the solution is con-
sistent at #* = 0. Then, we substitute the parameters A;
evaluated at the extremum, ¢' = ¢, 6° = 6} = 0, back
into the superpotential. After that, we subtract from the
expression of W the constant term thus obtained. This
allows us to fix the parameter g7 and to satisfy also the
equation W = 0. This solves the problem of finding a
supersymmetric Minkowski vacuum in the seven-moduli
& model.

Therefore, given a free choice of parameters, following
this path one can obtain a supersymmetric Minkowski
state. We will often find that the number of free parame-
ters is much greater than the number of equations, which
may allow us to omit some of the terms in the super-
potential and still obtain a supersymmetric Minkowski
vacuum. However, if we want to implement the proce-
dure proposed in [1] for producing dS minima, we have
to require additionally that the potential does not have
flat directions, or, equivalently, that it has a positive def-
inite mass matrix in the vacuum, corresponding to its
second derivatives. The mass matrix in a supersymmet-
ric Minkowski vacuum is

Vi;\hnk _ mikgkkm;;j _ €KWikgkkW1;j- (5)
Therefore, in the seven-moduli model we are considering,
flat directions are given by the zero modes of

Wij = 0;0;W = M;; — 6;; Aial ™ ®, (6)

evaluated in the vacuum. Notice that, if we have ex-
ponents in all directions, as in (2), the matrix W;; is a
generic symmetric matrix, including non-vanishing diag-
onal terms. Since g;; is positive definite, one or more
zero modes are in fact present in the mass matrix when
det W;; = 0. However, as we will show in several exam-
ples, this is actually a quite restrictive condition, which
does not hold in generic models, unless peculiar cancel-
lations occur. Therefore, in general one expects that

det Wij 75 0 (7)



and no flat directions are present in the mass matrix.

In our previous papers [1, 2], where only constant terms
in W were present, a KL-type double exponent was nec-
essary for each direction in the moduli space, in order to
obtain stable solutions. All such models do not have flat
directions, by construction. Meanwhile in the new set of
models discussed in this paper one may encounter flat di-
rections, but one can eliminate them by adding fluxes. In
each of the models to be studied in this paper we found
that the flat directions are absent in Minkowski vacua
for a broad range of parameters, i.e. no fine tuning is
necessary.

Furthermore, by adding more flux contributions, one
can eliminate some of the single exponents, and by adding
extra contributions from S-dual fluxes, as in (15), one can
eliminate all of the exponents, still without flat directions.
This is one of the central, most unexpected results of this
paper.

In the presentation of our examples, we split the seven-
moduli in a type ITA language, as

o' ={S, T,U;}, I,J=1,2,3. (8)
For convenience, we keep the same notation also for type
IIB examples in Section V. Following also [5], the 21
non-vanishing terms contained in M;;, in the case of ef-
fective supergravities coming from twisted reductions of
M-theory on a X7 = T7/Z3 orbifold with fluxes, can be
represented as:

1 o
ﬂ@@@:%ﬁm+w0ﬁy
9)
U, UsU: T T T: (
4ol L2228 122 3+S’dKTK.
Ur Ty

The 21 entries of M;; are now given in terms of the
parameters a’, b%, ¢!, d¥ and C!’/. However, for our
purpose of finding discrete supersymmetric Minkowski
vacua, it is sufficient to use only some of these terms.

Model 1, with S, T and U exponents

In this first class of models, we engage only 12 terms in
M;; and keep one exponent for each of the seven direc-
tions. The resulting superpotential is then

Wi =97+ bKSUK + OIJU]TJ

—I—Ageiass + Z Ar, elar Tt Z Ay, elav Ur (10)
I I

In the vacuum, we have a total of 19 free parameters: 7
a;, 3 b’ and 9 parameters C'7. Instead of fixing all of
them and looking for the minimum of the potential, one
can use 8 equations 9;WW = 0 and W = 0 to find 8 param-
eters gy and A; such that these equations are satisfied at
a chosen point ®’ in moduli space, which therefore de-
scribes a supersymmetric Minkowski vacuum. This still
leaves plenty of free parameters to control the values of

masses of all moduli in the vacuum and to ensure that
there are no flat directions. As we will show in numer-
ical examples, many options are available, even if one
does not engage some of the exponents. We show one
explicit example with unconstrained parameters, and an-
other one where the tadpole conditions are satisfied with-
out sources.

Model 2, without S exponent

A second class of models we consider is a subclass of
the previous one, in which we set Ag = ag = 0 from
the very beginning. In other words, we again use the 12
terms from the M;; matrix and add the exponents in all
of the directions but S. The superpotential in this case
takes the form:

Wy =g7 + b5 SUK + CT U T,

+ Z Aq, Tt 4 Z A eltvit o (11)
1 I

Solving W = 0 and 0; W = 0, in order to find a supersym-
metric Minkowski solution, will now fix the parameters
g7, Ar,, Ay, , together with one of the parameters among
bE or C17, in (11). As it turns out, this does not pro-
hibit a solution. Indeed, explicit examples of this class
of models are possible. We present one such solution in
Section IV.

Model 3, without U exponents

In the third class of models, we consider 15 terms from
the matrix M;; and add the exponents only in four direc-
tions, namely S and 7. In particular, it turns out that
we do not need to add exponents in the Uk directions.
This is interesting, since in [2, 16] such terms were em-
ployed in order to facilitate stable dS vacua in type I1TA
supergravity constructions, in which the only perturba-
tive term in W was a constant flux. Here we find that, by
including in W geometric fluxes polynomial in the moduli
and looking first for a supersymmetric Minkowski min-
imum, some of the non-perturbative exponential terms
are not required. Therefore, we consider the superpoten-
tial

1 UU2U3
Ur
+Agel®sS 4 Ag elomi T (12)

W5 =g7 +a + o8 SUx + CT U T,

which has 24 parameters. Again, we have to solve the
equations 9;W = 0 and W = 0, which will fix 8 pa-
rameters in . We are then free to choose the remain-
ing parameters in order to obtain appropriate masses in
Minkowski. We present an explicit numerical example of
this class of models in section IV.

Model 4, without T and U exponents

In this fourth class of models, we engage 18 terms from
the matrix M;; and add the exponential contribution
only in one direction, namely S. In particular, in this



case we find that there is no need to add exponents in
the Tt and Uy directions. Therefore, the superpotential
is
U,U,U.
1S VN SUR + UL T,
I
o TVI5T3
17

Wy = grt+a

+A56iaSS s (13)

which has 21 parameters. We solve the 8 equations
O;W = 0 and W = 0 once more and fix the remain-
ing free parameters to produce Minkowski vacua without
flat directions. We show a numerical realisation of this
model in section IV.

IIT. GENERALIZED TWISTED SIX-TORUS

Following [5, 9, 10], in type ITA string theory compact-
ified on ZfTGZz one finds that only 15 terms are available,
out of the total 21 terms present in M-theory and given
in (9). In particular, the last two terms in (9), namely

c! TI?T* +8d¥ Ty, with 6 parameters, ¢! and d¥, are ab-
sent in standard type IIA orientifold constructlons Fur-
thermore, the six-flux fg in type IIA replaces the seven-
flux g7 of the M-theory models. In the notation of [9],
with @ = 1,2,3 and m = 4,5,6, the 3 terms aIU1U2
correspond to two-fluxes Fam The 3 terms of the form
b!SU; correspond to non-geometric fluxes, with b! de-
fined by wy,,©. Finally, the 9 terms of the form C'/U;T);
correspond to non-geometric fluxes, where C'7 is defined
by wyp™, wpe”. Thus, our Models 1, 2, 3 are also models
in type ITA. Instead, our M-theory Model 4 is not related
to standard type ITA orientifold constructions, due to the
presence of the term c! %?T?’

The tadpole conditions require spacetime filling
sources, such as O6 planes, D6 branes and KK
monopoles, as explained in detail in [9, 10]. In these
cases, the combinations of fluxes Y, a’b’ and Y~ ; a’C7!
(see Table 2 in [9]) do not have to vanish, but can be
canceled by specific O6/D6 sources. Similarly, the ex-
pressions b!CT7 + b/ C! and CT/C/K + CTECY7 do not
need to be set to zero, but can be cancelled by contri-
butions from (KK5/KKO5) and from (KK5/KKO5)’ re-
spectively, where these sources are wrapped on specific
internal cycles.

In Models 3 and 4, we need to consider all of these
conditions, while in Models 1 and 2 the first two are sat-
isfied automatically, since a’ = 0. The fact that the tad-
pole conditions can be satisfied in the presence of sources
means, as it was already suggested in [9, 10], that there is
no need to enforce the Jacobi constraints on flux parame-
ters, which would be required in absence of sources. Our
examples will include one case where the tadpole iden-
tities are satisfied even without sources, as well as more
general cases with sources and relaxed Jacobi constraints.

IV. M-THEORY EXAMPLES

In this section, we investigate the models described
above, in the context of an effective 4d N = 1 super-
gravity description and present numerical examples. The
Kiéhler potential, in our conventions, takes the form (1)
and the complete superpotential is given in egs. (2) and
(9). After solving for the supersymmetric Minkowski vac-
uum and choosing the free parameters such that there are
no flat directions, we follow the mass production mecha-
nism [1, 2] in order to find a dS solution. We refrain from
giving the details of this construction here and choose
to present only the independent set of parameters and
masses in Minkowski as well as in dS.

One important comment concerns the uplifting proce-
dure, which is well understood in both type IIB as well as
type IIA string theory. It is based on pseudo-calibrated
Dp-branes [17] and results in an equivalent procedure of
supplementing 4d, N' = 1 supergravity by a nilpotent
multiplet*. In M-theory, the analogous procedure has
not been worked out in detail yet and it will be a matter
of future investigations.

Model 1, with S, T and U exponents

The superpotential of this model is given in (10). For our
first example, we choose to solve the Minkowski condi-
tions W = 0 and 9;W = 0 in terms of the parameters Ag,
Arp,, Ay, (I = 1,2,3) and the seven-flux g7. All of the
other parameters, as well as the position of the minimum
in moduli space, remain free. Then, we choose values for
these free parameters in a way that avoids flat directions,
which might happen in case of accidental cancellations,
for very specific values of the parameters. One possible
choice for the free parameters is given in Table I. These
parameters lead to a stable, supersymmetric Minkowski
vacuum with canonical masses given in Table II.

So [1.0]] as | 1.0 [[CTT 011 ]]C** ] 0.32
Tio|Ll||ar, | 1.1 |[C™]0.12]]C%3] 033
Too|l.2]||ar, | 1.1 |[CP]0.13] ' | 055
Ts0| 1.3 ar, | 1.1 [[C?T]021]] ¥ | 0.60
Uio|51|[av, | 0.51]|[C*Z 0221 & | 0.65
Uso| 5.2 aw, | 0.52]|C*[0.23 ]| Agr[5-1077
Us,o|5.3 | av, | 053 || C3*T[0.31]] p* |9-1077

TABLE I. Our set of chosen parameters for Model 1. Note
that Sop corresponds to the imaginary part of the modulus,
similarly for all of the other moduli. The values of the moduli
Ur are chosen in this way because, in our conventions, Im(Ur)
corresponds to the volume of the internal manifold, which
should be large in ITA. Included are the downshift Ag; and
uplift parameter pu* for the mass production procedure.

4 Examples of dS vacua without an uplifting anti-Dp-brane (with-
out a nilpotent multiplet) based on perturbative and non-
perturbative contributions are given in [18] and based on higher
derivative R* correction in M-theory models in [19)].



mi me ms3 ma ms me mr
Mk| 0.6421 | 0.4700 | 0.3216 | 0.1757 | 0.1406 | 0.1129 | 0.08219
dS | 0.6427 | 0.4705 | 0.3218 | 0.1758 | 0.1407 | 0.1130 | 0.08227

TABLE II. The canonical normalized masses for Model 1. We
choose to give only the masses of the moduli, omitting the
axions. The behavior follows exactly as described in [2].

Model 1, with tadpole condition satisfied without sources

Another interesting variation of the model with b and
CT7 terms is connected to the tadpole conditions, as
taken from Table 2 of [9]. Usually the tadpole condi-
tions are satisfied by inclusion of sources. However, we
find that, if we include exponents in all directions, we
are able to satisfy all of the tadpole conditions without
sources in this model. The relevant tadpole conditions,
without sources, are:

v'Ct +u7C! =0
’ 14
ctelk 4 otkc!’ =0, (no summation). 1

We choose to solve these conditions in terms of the C7/
with I # J, keeping the other parameters as in Table I.
This leads to a stable solution with masses given in Table
I11.

mi mo ms ma ms me mr
Mk | 0.3006 | 0.1641 | 0.1179 | 0.07467 | 0.06229 | 0.03988 | 0.02517
dS [ 0.2997 | 0.1637 | 0.1176 | 0.07449 | 0.06227 | 0.03976 | 0.02513

TABLE III. The canonical normalized masses for Model 1
with all tadpole conditions solved.

Model 2, without S exponent

It is possible to set Ag = 0 from the very beginning, as
given in (11), in order to eliminate the non-perturbative
contributions for the S-direction. Then, solving the 8
supersymmetric Minkowski equations for such a reduced
model, gives a restriction on one of the flux parameters,
for example b', besides the 7 parameters g7, A7, and
Ay, . Keeping all of the other parameters the same as in
Table I, leads to a stable solution, with masses given in
Table IV.

mi mo ms maq ms me mz
Mk| 0.6360 | 0.4629 | 0.3295 | 0.1491 | 0.1225 | 0.09989 | 0.03602
dS | 0.6365 | 0.4633 | 0.3297 | 0.1492 | 0.1226 | 0.09993 | 0.03607

TABLE IV. The canonical normalized masses of the moduli
for the Model 2 without non-perturbative contributions for
the S direction.

Model 3, without U exponents

The superpotential of this model is given in (12). Com-
pared to Model 1 and Model 2, it contains an additional
term a’ %, which allows to build dS vacua without
the U-exponent. When evaluating the conditions for su-
persymmetric Minkowski vacua, we can now solve for the
three parameters a! (these a! parameters should not be

confused with the parameters in the exponents, ag,). We
find a stable dS solution with the same parameters as in
Table I and give the masses in Table V.

mi ma ms3 ma ms me mr
Mk | 0.2569 | 0.2342 | 0.1706 | 0.1424 | 0.1260 | 0.1030 | 0.02566
dS | 0.2572 | 0.2344 | 0.1707 | 0.1425 | 0.1261 | 0.1030 | 0.02565

TABLE V. The canonical normalized masses for Model 3,
without non-perturbative exponential corrections in the U-
directions.

Model 4, without T and U exponents

The superpotential of Model 4 is defined in (13). Includ-
ing the terms cl%’;‘n, from (13), we find that it is in
fact possible to find a Minkowski solution without any ex-
ponents other than Agel® ie. we set Ay, = Ay, =0
for all I. Instead of solving for the pre-factors of the ex-
ponents in the T and U directions, we now obtain the
solutions in terms of the parameters a! and ¢! of the
terms quadratic in U- and T-moduli. Once again, we use
the parameters of Table I and obtain the Minkowski and
dS masses for the moduli given in Table VI. Once more,
we found a stable dS solution after the mass production
procedure.

mi mao ms3 ma ms me mr7
Mk| 0.2639 | 0.2520 | 0.1469 | 0.06163 | 0.04579 | 0.03365 | 0.02874
dS | 0.2636 | 0.2513 | 0.1467 | 0.06163 | 0.04565 | 0.03363 | 0.02871

TABLE VI. The canonical normalized masses for the model
with only one exponent, in the S-direction.

To summarize the results obtained so far, in Model 2,
Model 3 and Model 4 we find that quadratic tree-level
contributions to the superpotential can take the place of
some of the the non-perturbative exponential terms that
are usually required.

V. IIB THEORY, GAUGED SUPERGRAVITY
AND DS VACUA

In this section, we continue the investigation of the
seven-moduli model with the Kéahler potential given
in (1). The superpotential W of the type IIB theory
[12, 20, 21] has the following 3 structures: contributions
coming from the F-flux, from the H-flux and from the
Q-flux, which are all known fluxes in type IIB string the-
ory. In addition, it was conjectured in [12] that certain
P-fluxes should be present due to S-duality of string the-
ory. In [20], it was recognized that terms in W of the form
coming from the conjectured P-fluxes appear naturally
as components of gauged supergravity in 4d, when the
embedding tensor procedure is performed consistently.

For our purpose we will keep only terms even in the



moduli in the superpotential, namely we will use

1 U1U2U3
Ur
+ S (b Ur + b3 Uy Uy Us)
+ Tk (CIK Ur — K U, Uy U3)

UL U U,
— STy <dK - DIK%> . (15)

Ws =ag+a

The first, second, third and fourth line represent the even
parts of F'- H- - and P- flux, respectively. We find that
the terms with coefficients b3 and DX are not necessary
for full stabilization of moduli, in this model. One can use
(15), with or without terms proportional to b3 and D
as a new model which does not have non-perturbative ex-
ponents in W. As a numerical example, we will describe
below a model with D'X = 0 but b3 # 0 and find that
there is a Minkowski minimum without flat directions.
This means that we were able to employ this model in
order to get a dS minimum, using the technology devel-
oped in [1, 2].

Model 5, without any exponents

In order to find an explicit example of a dS vacuum from
the above model, we again have to solve the Minkowski
conditions, W = 0 and ;W = 0 where i = S, Ty, Uy
with I = 1,2,3. This will fix 8 of the parameters in
(15). We choose, in this case, to solve for the following
set: ag, a’, bs and c®. For the position in moduli space,
the downshift to AdS, Aay = Agr, and uplift to dS, we
choose the same values as in Table I. These values are
supplemented by the ones in Table VII.

brlos5|[Ct—011[[C?t] o0.21]]C3] 031]d'] 5.1
b2 0.60 || C™?| 0.12]| C??|-0.22]| C**] 0.32]|d?|-5.2
3 0.65 || CB| 013 C??| 0.23]]C*3[-0.33]||4*] 5.3

TABLE VII. The independent parameters for our Model 5.
These produce the values for the masses in Table VIII. No
particular fine-tuning is necessary.

We found a stable Minkowski solution and then were able
to follow the mass production procedure to obtain a dS
vacuum with masses given in Table VIII. We also found
that it is easy to change the parameters and still have
dS minima, without particular fine-tuning. This model
is very interesting since it has only polynomial terms in
the superpotential.

mi mo ms may ms me mr
Mk| 0.5392 | 0.4551 | 0.1037 | 0.06185 | 0.05355 | 0.02389 | 0.01263
dS | 0.5391 | 0.4552 | 0.1036 | 0.06183 | 0.05357 | 0.02381 | 0.01260

TABLE VIII. For the IIB model without exponents, where
all contributions come from tree-level fluxes, we find these
canonical masses for the moduli.

VI. DISCUSSION

M-theory is supposed to unify all of the consistent ver-
sions of superstring theory. At low energies it should
be approximated by 11d supergravity. Furthermore, it
should also describe various extended objects, like M2
and M5 branes, KK6 monopoles and KKO6-planes, such
that extended objects of string theory, like Dp-branes and
Op-planes are included. The existence of such a theory
was first conjectured by Witten in 1995. Some early pa-
pers on M-theory include [22-24] and more information
can be found in the books [14, 25]. A particularly rele-
vant description of M-theory and 4d gauged supergravity
is given in [3, 5, 10, 20]. We are using these models in our
construction of 4d dS vacua. The main issue in studies of
specific models of dS minima in 4d gauged supergravity
is their motivation from string theory or M-theory.

Here we focused on a model where seven com-
plex scalars ars coordinates of the coset space
[SL(2,R/SO(2)} . This model is available in M-theory
and in type IIA and type IIB string theory. As a techni-
cal tool for constructing dS minima, we use the method
of mass production of dS vacua proposed in [1, 2], based
on the the possibility to make parametrically small de-
formations (downshift and uplift) of a supersymmetric
Minkowski vacuum state, without flat directions. In all of
the cases, the uplift is due to the existence of the pseudo-
calibrated anti-Dp-branes in string theory, which in 4d
supergravity is equivalent to the presence of a nilpotent
chiral multiplet [17]. In M-theory, the details of the up-
lifting procedure need to be investigated. We presented
several classes of models with stable dS vacua, with nu-
merical examples in Models 1-5. In these models a better
understanding of the role of the geometric fluxes and tad-
pole conditions will be required, based on earlier studies
of these issues in [26-28].

In all of the models which we studied in M-theory,
namely Models 1, 2, 3, 4, we used a superpotential W
with polynomial terms in the moduli, of degree 0 and 2,
and a single non-perturbative KKLT-type exponent for
some of the moduli, as shown in (9). This is different from
the case without terms quadratic in the moduli, where
supersymmetric Minkowski vacua without flat directions
are possible with KL-type double set of exponents in ev-
ery moduli direction [1, 2]. After adding quadratic terms,
we found supersymmetric Minkowski vacua without flat
directions by engaging a single non-perturbative expo-
nent for each of the 7 moduli, or only for 4 of them, or
only for the S field. In all of the models of this kind,
namely Models 1, 2, 3, 4, we found locally stable dS
minima.

Perhaps the most surprising result is the model in sec-
tion V, in type IIB string theory, which we call Model 5.
Only terms which are even polynomials in moduli, of de-

gree 0, 2, 4, are present in (15), and no non-perturbative
exponents are required. In a model of 4d supergravity as-



sociated with TIB string theory presented in section V, all
of the terms in the Kéahler and superpotential are identi-
fied with type IIB string theory. The only somewhat un-

usual term in (15) is STKd((JK). It was conjectured to be
present in type IIB theory in [12], to support S-duality.
It is interesting that this same term is also present in
M-theory in (9), as well as in a consistent gauged su-
pergravity in [20]. We have constructed supersymmetric
Minkowski minima without flat directions, and the cor-
responding dS minima in this seven-moduli model.
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