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Abstract: According to the KKLT scenario, metastable dS vacua are formed as a result of
uplifting of supersymmetric AdS vacua by D3 branes. I describe an extended version of this
scenario where supersymmetric AdS vacua do not exist, and metastable dS vacua appear
after an uplift from a state where the potential of the volume modulus in the absence of D3

branes would be unbounded below. This mechanism may considerably strengthen vacuum
stabilization in the early universe.
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1 Introduction

According to the standard version of the KKLT scenario scenario of vacuum stabilization
in string theory, metastable dS vacua are formed due to uplifting of supersymmetric AdS
vacua by D3 branes [1]; see [2, 3] for a general discussion of related issues, and [4, 5] for
some recent progress.

The 4d supergravity formulation of the KKLT scenario [6–8] is described by the
superpotential

W = W0 −Ae−aT + µ2X . (1.1)

Here field T is the volume modulus, and X is the nilpotent field X representing the D3

brane contribution. The nonperturbative term −Ae−aT in the superpotential1 may appear,
for example, in the presence of a stack of D7 branes wrapping a 4-cycle. If there are N
branes in the stack, one has a = 2π/N . Alternatively, this term may emerge due to instanton
effects. The parameter A depends on the values at which the complex structure moduli are
stabilized [9–11].

If the D3 brane is in the bulk, which is the main case to be considered in this paper,
one can describe uplifting by using the Kähler potential

K = −3 ln(T + T̄ ) +XX̄, (1.2)

and then taking X = 0 after calculating the potential V (T ). Alternatively, if the anti-D3-
brane is in a strongly warped region, its effect can be described by considering the Kähler
potential K = −3 ln(T + T̄ −XX̄) [12].

In section 2 we will show that supersymmetric AdS vacua do exist in the KKLT scenario
[1], but only under the condition 0 < W0/A < 1. In section 3 we will find metastable dS
vacua obtained by uplifting for W0/A > 1. In this case supersymmetric AdS vacua do not
exist prior to the uplifting, and the value of the volume modulus T in the dS vacuum is
somewhat smaller than in the standard regime 0 < W0/A < 1. However, we will show that
the stabilized volume modulus T in this model always remains greater than a−1 = N

2π , even
for very large W0. In section 4 we will discuss possible implications of our results in the
cosmological context, and show that an increase of W0 may significantly strengthen vacuum
stabilization in the early universe.

2 Uplifting from AdS

We consider the potential V (T ) of the field T , represent the field T as T = t + iθ, and
search for a minimum of the potential at θ = 0. One can show that in this theory
Vθ(θ = 0) = Vt,θ(θ = 0) = 0, and

Vθ,θ(θ = 0) =
a3Ae−atW0

2t2
. (2.1)

1Traditionally, the nonperturbative term is written as Ae−aT , but we equivalently represent it as −Ae−aT ,
to simplify the description of our main results.
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For definiteness, we consider A > 0. In this case, the state θ = 0 is stable with respect to
growth of perturbations of the field θ for W0 > 0.

The potential at T = t prior to the uplifting, i.e. for µ = 0, is given by

V =
aAe−2at

6t2
(
A(3 + at)− 3eatW0

)
. (2.2)

Its derivative with respect to t is

Vt = −aAe
−at

6t3
(2 + at)

(
A(3 + 2at)− 3eatW0

)
. (2.3)

Comparing it with the expression for DW ,

DW (t) =
e−at

2t

(
A(3 + 2at)− 3eatW0

)
, (2.4)

one finds that any minimum of the potential prior to the uplifting automatically satisfies
the condition DW = 0, i.e. it is supersymmetric. The potential at the minimum is negative,

VAdS = −a
2A2

6t
e−2at , (2.5)

so it is a stable supersymmetric AdS minimum, which is the standard part of the KKLT
construction.

Thus in the KKLT scenario all minima that we can uplift are supersymmetric AdS. But
do we really need to have a stable minimum prior to the uplifting? Naively, the answer is
yes, we must have it, because otherwise what exactly are we going to uplift? However, let
us see whether one can relax this requirement.

3 Uplift from a bottomless well

Equation DW = 0 describing the position of the AdS minimum can be represented as
follows:

W0

A
= e−x

(
1 +

2

3
x
)
, (3.1)

where x = at. The r.h.s. of this equation increases with the decrease of x, and approaches 1

at x = 0. This means that the potential does not have any minimum for W0/A > 1. For
W0/A > 1 the potential prior to the uplifting is unbounded below, and in the small t limit
it falls to −∞ as

V = −W0 −A
2t2

+ ... (3.2)

However, this does not mean that this singular potential cannot be stabilized and
uplifted. The full expression for the potential, taking into account uplifting, is

V =
µ4

8t3
+
aAe−2at

6t2
(
A(3 + at)− 3eatW0

)
. (3.3)
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The first term is a positive D3 contribution to V in the theory (1.1), (1.2),

∆V =
µ4

8t3
. (3.4)

This contribution immediately makes the potential bounded below. At small t the total
potential

V =
µ4

8t3
− W0 −A

2t2
+ ... (3.5)

is dominated by its first, positive term, which stabilizes the potential, and uplifts its
minimum.2

To study this effect in a more detailed way, one should find the values of W0 and µ
required for the existence of a metastable dS minimum with a negligibly small positive
value (cosmological constant) VdS = Λ ≈ 0 at a given point x = a t for given a, A. These
conditions yield:

W0

A
=
e−x(2x2 + 4x− 3)

3(x− 1)
, (3.6)

µ4

A2
=

4x2e−2x(2 + x)

3(x− 1)
. (3.7)

These results imply that for each set of parameters a and A one can find a set of parameters
W0 and µ such that the potential V has a metastable dS minimum with a very small positive
V , at any desirable value of x = at > 1, i.e. at T = t > 1/a.

Equations (3.6) and (3.7) are equally valid for W0/A > 1 and for W0/A < 1. From this
perspective, there is nothing special about the dS states uplifted from the supersymmetric
AdS minima with W0/A < 1, as compared to the dS states which appear after adding the
positive D3 contribution (3.4) to the potential (2.2), which is unbounded below at small t
for W0/A > 1.

For W0 < A one has at > 1.569, and the potential prior to the uplifting has a
supersymmetric AdS minimum, which is then uplifted to dS. On the other hand, all dS vacua
with a minimum at 1 < at < 1.569 are obtained by adding the uplifting D3 contribution
(3.4) to the potential (2.2), which is unbounded below for W0 > A in the absence of the
positive D3 contribution (3.4). Note that the position of the minimum always remains at
t > 1/a, and it gradually approaches 1/a only in the limit W0 →∞.

In the limit at− 1� 1 one has

at− 1 =
e−1A

W0
=

4e−2A2

µ4
. (3.8)

Therefore uplifting to a dS state with a tiny positive cosmological constant and W0 � A

requires uplift with

µ4 =
4

e
AW0 . (3.9)

2This resembles the explanation of stability of the hydrogen atom in quantum mechanics. The energy of
interaction of a proton and an electron is − e2

r
, which is a bottomless well. But electron does not fall to

r = 0 because the energy required for compression of its wave function to ∆x ∼ r is proportional to 1
r2
.
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The moduli mass squared of the field t after the uplift with W0 � A is

m2
t =

a3

3e
AW0 , (3.10)

and the gravitino mass is

m3/2 =
(a

2

)3/2
W0 . (3.11)

Fig. 1 shows the potential V (T ) with a dS minimum with a tiny cosmological constant
for a particular case A = 1, W0 = 100, a = 2π/100. The minimum is very close to the
limiting value of T = t = 1/a ≈ 15.9.

Figure 1. KKLT potential (3.3) with a metastable dS vacuum at t ≈ 16, θ = 0. It was obtained by
adding the D3 contribution (3.4) with µ = 3.4786 to the potential (2.2) in the KKLT model (1.1), (1.2)
with a = 2π/100, A = 1, W0 = 100.

4 Discussion

In this paper we have shown that the existence of a supersymmetric AdS (or Minkowski)
vacuum is not a necessary precondition for the existence of stable dS vacua in the KKLT
scenario. In particular, when finding dS vacua using equations (3.6), (3.7) we did not
make any assumptions about the behavior of the potential in the absence of the uplifting
contribution of the D3 brane. Instead of that, we simply analyzed the behavior of the
system for all possible relations between the model parameters, taking into account uplifting.
If, instead, we would divide the procedure into two parts, first finding a supersymmetric
AdS vacuum, and then uplifting it, then we would find dS vacua only for W0 < A and miss
all strongly stabilized dS states with W0 > A.

Thus the more general approach described above significantly increases the phase space
of the possible KKLT parameters.3 We found metastable dS vacua not only in the previously

3Note that in this paper we investigate the original KKLT model [1], with the uplift interpreted in terms
of the nilpotent fields [6–8]. Other possibilities to have vacuum stabilization with large W0 emerge, for
example, if one qualitatively changes the structure of the scalar potential in the KKLT scenario by adding
α′ corrections to the Kähler potential, as well as non-perturbative contributions to the superpotential, as in
the theory of Large Volume Stabilization (LVS) [13, 14].

– 5 –



considered models with W0 < A and uplift from AdS, but also in the models with W0 > A,
where no supersymmetric AdS vacua are available. One can show that the value of the volume
modulus T at the minimum of the potential does not change if one simultaneously rescales
W0 → cW0, A→ cA and µ2 → cµ2. Thus this scenario allows considerable freedom in the
choice of the parameters. However, one should check whether there are some constraints
following from string theory and/or phenomenology, which would require W0 < A.

Historically, there were several opposite arguments concerning the value of W0 in the
KKLT scenario. One of the arguments was that in order to have low-scale supersymmetry
breaking one would need to have an extremely small value of |W0|. However, a subsequent
investigation has shown that the universe in the KKLT scenario tends to decompactify
for the Hubble constant greater than the gravitino mass, which resulted in the stability
constraint H . m3/2 < W0 [15, 16]. A similar constraint in the LVS models is even stronger,
H . m

3/2
3/2 [17]. Thus the requirement of vacuum stability in the very early universe, where

the Hubble constant H was extremely large, tends to disfavor small values of W0 in the
KKLT construction.

The simplest way to avoid vacuum destabilization in the early universe compatible with
a low-scale supersymmetry is to consider the KL generalization of the KKLT construction
[15, 18–20], disentangling the strength of the vacuum stabilization and the magnitude of
supersymmetry breaking. This approach turned out very helpful for dS vacua stabilization in
a broad class of type IIB and type IIA string theory inspired models, and in M-theory [21–23].
In such models, the smallness of W0 is not required for the smallness of supersymmetry
breaking.

The second argument in favor of models with W0 < A is that large values of the
volume modulus T are required for suppression of α′ corrections and validity of the effective
supergravity approach. However, as we already mentioned, the value of the volume modulus
at the minimum of the KKLT potential in the model (1.1), (1.2) is always greater than
1/a = N/2π. Thus the requiredment T � 1 is automatically satisfied, for any W0, if N

2π � 1.

Admittedly, the requirement N
2π � 1 is a significant constraint on the model. The

idea of the more traditional approach with W0 < A was to make T much greater than
1/a = N/2π by considering extremely small W0. But the volume modulus depends on W0

only logarithmically. Using equation (3.6) one can show that if we want to increase the
volume modulus 10 times, making it 10/a instead of 1/a, or reduce the required number N
ten times while keeping T unchanged, we would need to take W0/A < 4× 10−4, and if we
want to increase the volume modulus 20 times, we would need to take W0/A < 3× 10−8.

The models with W0 � 1 do exist, but constructing such models turned out to be quite
difficult. An example of the model with W0 ∼ 10−8 was only recently found in [24]. Until
we have a much better grasp of the theory, it is hard to tell whether it is easier to construct
models with large N , or with extremely small W0. Meanwhile, as we already mentioned,
small values of W0/A in combination with large values of the volume modulus make dS
vacua vulnerable with respect to decompactification in the early universe [15, 16]. Therefore
the model with W0 > A may have a substantial advantage in describing the early stages of
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the evolution of the universe.

To illustrate this point, we show the KKLT potential V (t) for θ = 0, A = 1 and
a = 2π/100, for two very different values of W0: W0 = 10−2 (left panel of Fig. 2) and
W0 = 102 (right panel of Fig. 2).
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Figure 2. A comparison of KKLT uplifting for A = 1, a = 2π/100, for W0 = 10−2 (left panel) and
W0 = 102 (right panel). The green lines show the potential before the uplifting, the red lines show the
potential with a dS minimum with a tiny positive cosmological constant. The blue lines illustrate the
disappearance of the minimum if the uplifting is too large, which may result in decompactification of 6 extra
dimensions in the early universe.

In the first case, for W0 = 10−2, uplifting occurs from a supersymmetric AdS vacuum
(the green line). The dS minimum of the uplifted potential shown by the red line is at
t ∼ 103. The barrier stabilizing the vacuum state with a small cosmological constant has
the height ∼ 10−11 in the Planck density units. If one considers a more significant uplifting,
which is similar to what may happen in the early universe at large energy density [15, 16],
the dS minimum disappears and the universe decompactifies. This happens for energy
density greater than 2× 10−11, which is an order of magnitude below the energy density
during inflation in many popular inflationary models, such as the Starobinsky model, the
Higgs inflation, and the simplest versions of α-attractors.

The right panel (see also Fig. 1) shows the model with A = 1, W0 = 100, which is
unbounded below prior to the uplifting. In this case the uplifted potential shown by the red
line has a minimum at t ≈ 16, which is close to the limiting value of t = 1/a = 100/2π ≈ 15.9.
The stabilizing barrier is 9 orders of magnitude higher than in the case W0 = 10−2, and the
dS vacuum is stable in the early universe at energy density up to 2× 10−4.

To understand the general pattern revealed by these two figures, let us study the
standard regime with W0 � A and AdS minimum with the depth given by (2.5). Its
uplifting is achieved by adding to the potential a function rapidly decreasing at large t.
Therefore the height of the barrier stabilizing the dS minimum after the uplifting is always
smaller than the depth of the AdS minimum [15],

Vbarrier <
a2A2

6t
e−2at . (4.1)

If W0 is small and the minimum of the potential is at t � 1/a, then this expression in
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combination with (2.3) implies that

Vbarrier <
3W 2

0

8t3
. (4.2)

The maximal height of uplifting of a dS vacuum shown by the inflection point of the blue
lines in the left panel Fig. 2 is just a little bit higher than Vbarrier. Thus the traditional
approach results in the suppression of the height of the protective barrier by two factors: by
W 2

0 , which was supposed to be very small, and by t−3, where t was supposed to be very
large.

On the other hand, in the limit W0 � A, instead of the calculating the height of the
barrier one can obtain a direct analytical estimate of the maximal height of uplifting of a
dS vacuum, shown by the inflection point in the right panel of Fig. 2. The inflection point
appears at t ≈

√
2/a, and its height is

Vmax ≈
√

2− 1

12
e−
√
2a3AW0 ∼ 10−2a3AW0 . (4.3)

In the example shown in Fig. 2 we see that one can increase the range of stability
of compactification by 9 orders of magnitude while still having a reasonably large value
of the volume modulus. Equation (4.3) shows that one can further enhance stability of
compactification by increasing A and W0 while preserving the same value of the volume
modulus T , which does not depend on W0 in the regime when W0 � A.

These results have been obtained in the version of the KKLT scenario with the Kähler
potential K = −3 ln(T + T̄ ) + XX̄ describing uplift due to the D3 brane in the bulk. If
one considers uplift due to the D3 brane in the strongly warped region, using the Kähler
potential K = −3 ln(T + T̄ − XX̄), the results change. Stable dS vacua may still exist
for W0 > A remains possible, but only for a rather limited range of values of W0/A. This
suggests that it is easier to achieve strong vacuum stabilization in the models where the D3

brane is in the bulk.

Similar results can be obtained in a more general class of theories. In particular, one may
consider the KL version of the KKLT scenario, which allows to have small supersymmetry
breaking compatible with strong moduli stabilization [15, 18–20]. The basic idea was to
find a supersymmetric Minkowski vacuum without flat directions. Any small deformation
of such vacuum due to a change of model parameters transforms it into a supersymmetric
AdS vacuum, which can be subsequently uplifted. If the deformations of the original state
are sufficiently small, one obtains a strongly stabilized dS vacuum with a controllably small
supersymmetry breaking.

In a recent series of papers [21–23] this approach was generalized and used for finding
stable dS vacua in a broad class of type IIB and type IIA string theory models, and in
M-theory, with many moduli. In addition to many dS vacua obtained by small deformations
of the original supersymmetric Minkowski vacua, Ref. [21–23] also found stable dS vacua
produced by a very large increase of W0 accompanied by a large uplift. General theorems
describing small deformations of a supersymmetric Minkowski vacuum state [18, 21, 22] did
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not make any predictions about existence and stability of vacua after a very large increase of
W0, and yet such dS vacua were found. Moreover, they were stabilized by potential barriers
which could be many orders of magnitude higher than the barriers stabilizing the original
Minkowski vacua. In particular, one can show that the strongly stabilized dS vacuum in the
KL scenario with the racetrack superpotentials shown in Fig. 15 of [22] have been obtained
in the model, which, in the absence of the uplifting contribution, would have a potential
V (T ) unbounded from below, just as in the KKLT scenario with W0 > A.

To summarize, the results presented in this paper show that there are two different ways
to construct metastable dS vacua in the KKLT model (1.1) (1.2). The standard approach
based on the uplifting of supersymmetric AdS vacua is applicable only for W0 < A in the
KKLT superpotential (1.1). However, we found that metastable dS states can be constructed
for W0 > A as well, despite the absence of supersymmetric AdS vacua in that regime. The
most important property of the new dS stabilization regime with W0 > A is that it allows to
achieve a much stronger vacuum stabilization than in the standard version KKLT scenario
with W0 < A. This property may be helpful for constructing consistent cosmological models
based on string theory.
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N. Cribiori, S. Kachru, L. McAllister, C. Roupec and Y. Yamada for useful comments. I am
supported by SITP and by the US National Science Foundation Grant PHY-1720397, and
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