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ABSTRACT: We describe several applications of the mass production procedure proposed
in [1] to stabilize multiple moduli in a dS vacuum, in supergravity models inspired by
string theory. The construction involves a small downshift of an initial supersymmetric
Minkowski minimum to a supersymmetric AdS minimum, and a consequent small uplift
to a dS minimum. Our type ITA examples include dS stabilization in a 7-moduli model
with [SL(2,R)]7 tree level symmetry, and its simplified version, a 3-moduli STU model.
In these models, we use uplifting anti-D6 branes. In type IIB models, we present 2- and
3-moduli examples of stable dS vacua in CY three-folds, with an uplifting anti-D3 brane.
These include K3 fibration models, a CICY model and a multi-hole Swiss cheese model.
We also address the issue whether this procedure is limited to a very small parameter range
or if large deviations from the progenitor Minkowski vacuum are possible.
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In this paper, we continue the investigation of the mechanism of mass production of stable

dS vacua in type ITA string theory, originally proposed in [1], and we generalize it to dS

stabilization in type IIB string theory.

The main results of [1] can be summarized as follows. At the level of d = 4, N' =1

supergravity it was established that there is a simple, systematic procedure to construct



stable de Sitter minima in theories with many moduli and many different Kahler potentials
and superpotentials. The necessary conditions for this are the following;:

1. The model requires a progenitor: a supersymmetric Minkowski minimum without
flat directions. This happens if ;W = 0 and W = 0 at a finite point (or a series of
disconnected points) in the moduli space, W being the superpotential of the model.

2. The progenitor model needs a deformation: a downshift to a supersymmetric AdS
minimum, via a parametrically small deformation of W. This can be achieved by
adding to W a small constant (or a small function) AW.

3. For the next stage of uplifting to a dS minimum, a nilpotent chiral multiplet has to
be added to the original model. If the supersymmetry breaking scale after the uplift
is parametrically small (we will be more precise about this during our presentation),
then the resulting potential inherits the shape of the original potential in the vicinity
of the Minkowski minimum, i.e. the final dS state is also a minimum.

Note that, if our only goal was to construct stable dS vacua, we could directly uplift a
supersymmetric Minkowski vacuum to a stable dS vacuum. However, if one produces a dS
vacuum with an extremely small cosmological constant, such as Vyg ~ 10720, in this way,
one would arrive at an almost exactly supersymmetric state, which is very different from
the one we observe. The role of the downshift stage is thus to disentangle the strength of
the supersymmetry breaking and the smallness of the cosmological constant.

A technically separate but very important issue is the relation of this new d = 4, N =1
supergravity multi-moduli construction of dS minima to string theory. In particular, the
relation of the new construction to d = 10 supergravity including local sources, branes,
orientifolds, anti-branes as well as non-perturbative corrections via gaugino condensates
and/or instanton corrections needs a better understanding. In general, string theory inspired
d = 4, N' = 1 supergravity multi-moduli models have to satisfy a number of additional
conditions, besides the ones specified above, which are necessary and sufficient for the
existence of dS minima in supergravity.

In the present work, our examples of mass production of dS vacua will be based on a
choice of Kéhler potential K and superpotential W motivated by string theory. Moreover,
the introduction of a nilpotent chiral superfield, an ingredient that we add to the standard
supergravity description at the third step, will be motivated by the presence of uplifting
anti-D3 [2, 3] and anti-D6 branes [4, 5] in type IIB and type ITA models, respectively. In [1],
the general procedure of a mass production of dS vacua in d = 4 supergravity was designed
in a way that can be applied both to type IIA as well as to type IIB string theory inspired
models, since d = 4, N = 1 supergravity does not differentiate between them. However,
examples presented in [1] involved only the choices of K, W and uplifting related to the
type ITA case, which explains why the title of [1] had ‘type ITA’ in it. Here, we will show
explicitly that the general results which can be found in section 5 of [1] remain valid also in
application to type IIB examples.



If we were interested in stable dS minima in supergravity, without relation to string
theory, we could begin with a simple superpotential of the type W (®) = (& — ®)2,
which produces a potential with a supersymmetric Minkowski minimum at ® = ®(, where
the superpotential and its derivative vanish. More generally, one could consider any
superpotential W (®?) depending on n different moduli. Independently of the Kihler
potential, the universal conditions for the existence of a supersymmetric Minkowski state
at &' = &} are

W =0, D;W =0, (1.1)

which imply ;W = gg‘f Bi=a]
extremum (a minimum, a maximum, or a saddle point, but not a flat direction) at some
point ®}, namely ;W = 0, will satisfy both conditions (1.1), if one subtracts from W (®*)

its value at ®). The important remaining issue is then to find string theory motivated

= 0. In essence, any superpotential which has a local

superpotentials of this type.
The simplest non-perturbative superpotential
Wikkrr = Wo + AeT, (1.2)

used in the KKLT string theory construction [6], does not satisfy the required condition
OrW = 0 at any finite value of T. Nevertheless, one can successfully construct stable dS
vacua in type IIB models using such a superpotential, together with an uplift contribution,
from a supersymmetric AdS state [6]. Recently, it was shown that one can use this class
of superpotentials to stabilize type IIA theory as well [5]. However, in order to use the
three-stage mass production mechanism, which starts from a supersymmetric Minkowski
vacuum, one should first generalize this class of superpotentials, along the lines of [7-9].

The characteristic feature of non-perturbative superpotentials used in [7-9] and in [1],
which we will also use in this paper, is that they are of the racetrack type. The general
feature of racetrack superpotentials is that they can be used for all directions in the moduli
space, based on U-duality, as suggested in [5]. Starting with a superpotential with two such
exponents for each modulus,

W =W, + Z(Al €iai¢i — B; eibﬂﬂ) , (1.3)

one can find a progenitor model with a supersymmetric Minkowski minimum with the
superpotentials satisfying (1.1), as shown in [1, 7]. If the the remaining conditions 1-3 are
satisfied, the existence of a metastable dS minimum is guaranteed.

An advantage of the three-stage mechanism based on racetrack superpotentials is that
one can strongly stabilize supersymmetric Minkowski states, making the stabilizing barriers
in the moduli potentials extremely high, even in the absence of supersymmetry breaking
[7, 9]. In this case, the subsequent small deformations of the potential during the downshift
and uplift do not affect the stability of the slightly downshifted and uplifted supersymmetric
Minkowski minimum. The corresponding stability criterion is that the gravitino mass
related to the downshift and uplift should remain parametrically smaller than the masses



of the string theory moduli in the Minkowski vacuum [1, 7-9]. See section 5 of [1] for a
detailed discussion.

It is interesting that the original racetrack superpotentials were studied in the context
of moduli stabilization in string theory a decade before the discovery of dark energy, see for
example [10-14]. During that time, the focus was on Minkowski vacua with a vanishing
cosmological constant and broken supersymmetry, such that V=0, DW % 0 and W # 0.
We would like to stress here that the authors of [10-14] made the following key observation:
in the context of moduli stabilization in string theory the racetrack superpotentials, in
general, are expected to have many exponents. This was explained in [14] as follows.

A semi-realistic compactified string theory model is expected to have four spacetime
dimensions, N = 1 supersymmetry and a large gauge symmetry G = [[, G4, including the
SU(3) x SU(2) x U(1) of the Standard Model, as well as additional ‘hidden’ factors. In
particular, the non-perturbative string theory or F-theory description should allow for a
large number of such hidden sectors. Each of these sectors might produce an exponential in
the superpotential, depending on some moduli related to gauge-group couplings. Specific
examples of superpotentials with several gaugino condensates in string theory were studied
in [11-13], for the product of non-abelian gauge groups like G ® G2 ® - - - ® G, in general,
and for SU(M) ® SU(N) ® --- ® SU(Q), in particular. For example, the gauge group
SU(N)® SU(M) leads to a sum of exponentials, where both pre-exponentials A and B are

nonzero, while a = QW” and b = QM”

Note also that the five types of superstring theories: Type I, Type IIA, Type 11B,
Heterotic SO(32) and Heterotic Eg x Eg are believed to be all linked by non-perturbative
dualities, in this way representing a unifying M-theory. See e.g. Fig. 26 in [15] showing the
parameter space of M-theory. In the context of the non-perturbative string theory, very
large gauge groups are possible, like Eg X Fg in the heterotic case. In [14], in the context
of non-perturbative superpotentials, it is found that F-theory compactifications have 251
simple gauge group factors of total non-abelian rank of 302896. Therefore, many gaugino
condensates and many exponents for each of the moduli in the superpotential are expected

at the non-perturbative level in string theory.

The reason why we would like to stress this key feature of racetrack potentials, namely
the fact that they are expected to have many exponents, is that we can easily find stable
dS minima starting with the Minkowski progenitor model with at least two exponents for
each of the moduli, and it is even easier to find it with many exponents.

In addition to many possible gaugino condensates, the existence of many world-sheet
instantons and Euclidean brane instantons suggest significantly more possibilities for the
racetrack potentials. Another reason to point out that many exponential contributions to
W are possible, is to stress that there are many possible choices of parameters, in these
models, allowing stable dS states. This, in turn, gives yet another motivation why we call
the construction a ‘mass production of dS vacua’.



The original, two-exponents KL scenario [7] was initiated due to cosmological consid-
erations. Indeed, in the simplest versions of the KKLT scenario the height of the barrier
stabilizing the dS vacuum is proportional to the square of the gravitino mass. This could
lead to vacuum destabilization during the cosmological evolution in the early universe with
a large Hubble constant H 2 ms/, [7]. A similar problem appears in the large volume

stabilization (LVS) models for H 2> mgg [16]. This problem was addressed in the KL model,
where the vacuum can be strongly stabilized even for very small gravitino mass [7-9]. It is
therefore interesting that generalized versions of the KL scenario lead to mass production

of stable dS vacua in type ITA theory [1].

This paper is organized as follows: In section 2, we review the original KL, model
and we present its generalization to the multi-moduli and multi-exponentials cases. In
section 3, we present some details on the properties of the mass matrix in our scenario,
which will be consequently confirmed in numerical examples. We will further develop
this scenario in section 4 of this paper by describing stabilization in a seven-moduli ®! =
{S, T, Ty, T3,Uy,Us, U3} model and in its simplified version, a three-moduli ®¢ = {S,T,U}
model, with an uplifting anti-D6 brane. Then, in section 5, we will show that this mechanism
can be applied to the stabilization of moduli in type IIB theory with more complex K&hler
potentials. In section 6, we describe models with dS minimum which are valid even for
strong deviation from the progenitor models. In section 7, we summarize our results. More
technical details can be found in the appendix A.

2 The KL model and its generalizations

In this section we first review the KL model in its original formulation [7], together with the
addition of a nilpotent chiral multiplet [2]. Then, we provide some generalizations, which

can be directly employed in the mass production mechanism.

2.1 The basic KL model

The simplest string theory related realization of the general three-stage mechanism described
in the introduction is given by a Kahler potential of the type

K = -3In(—i(® — ®)) + XX, (2.1)

where X is a nilpotent chiral multiplet, which does not contain scalars [17], and a racetrack
superpotential with two exponents

W(®,X) = Wkp(®,X) + AW + 12X | (2.2)
with
WkL(®, X) = Wy + Ael®® — Bel?®. (2.3)

We have also already introduced the down shift as Wy — Wy + AW and the uplift via the
term Wypnig = ,u2X . To find a supersymmetric Minkowski minimum in this model, with



AW =0 and p? = 0, one should find a point ®g = ¢g + iy in moduli space such that (we
also set X = 0 as long as p? = 0)

W(®Py) =0, DeW|p=a, =0 . (2.4)
Considered together, these conditions imply
oW |p=p, = iaAel®® — ibBelb® = ( (2.5)
and are satisfied, in particular, for 8y = 0 and

a b
i aA aA\rb-e aA\b-e

The supersymmetric vacuum (2.6) exists for any value of a, A, b, B satisfying the conditions
a>band aA > bB (or a <band aA < bB).

Py = ¢o =

The mass squared of both real and imaginary components of the field & at the
supersymmetric Minkowski minimum is given by
atb
aA\ b aA

200 (1 (4g))? = gaAbB(a _b) (bB>_ mi 2.7)

9

mg

Adding a small correction AW to Wy makes this minimum a supersymmetric AdS. In
particular, in order to preserve supersymmetry, the position of the minimum has to shift at

leading order by an amount of

Ke AW
AP = — , 2.8
RW (23)
and the value of the potential at its minimum is downshifted, from V = 0, to
3(AW)? 3(a-b\
Vads = ———a—=—= | ——~ | (AW)2. 2.9
843 8 (m(gg)) (AW) (2.9)

Eventually, one finds that the uplift of the AdS state with scalar potential (2.9) with small
AW, to a dS state with a nearly vanishing cosmological constant, Vg ~ 107120, can be
obtained with an uplifting parameter

pt =3 (AW)? . (2.10)
In particular, the gravitino mass after uplift is given by

o _ (AW)?  [Vaas| _ p
83 3 2403

m3 s, = e (AW) (2.11)



2.2 A single-field generalization with many exponents

In the spirit of the earlier work in [12, 14], we consider now a more general multi-exponent
racetrack superpotential:

W(D,X)=Wo+ Y AFe™® + AW + 12X . (2.12)
k=1

The condition (2.5) for a supersymmetric Minkowski vacuum becomes then

n
DaW |o—a, =1y aPARe " P =0 (2.13)
k=1

One may solve this equation, together with W (®y) = 0, to find the position of the
supersymmetric Minkowski minimum ® = ®( as a function of the parameters. Alternatively,
it is possible to find a set of parameters which ensure that a given fixed point ®( corresponds
to a supersymmetric Minkowski vacuum state. This second method is often much simpler,
and it clearly demonstrates the existence of supersymmetric Minkowski vacua.

Indeed, one can, for example, take arbitrary values for n coefficients a* and for the first
n — 1 coefficients A*. The condition (2.13) is then satisfied, if one does not take the n-th
coefficient A™ to be independent, but rather given by
n—1
Z akAkeiakCI)o

k=1

n .
This fixes all parameters in the sum ) Akeld"® - Ag the remaining step, one chooses
k=1

Wo=—Y Akl ® (2.15)
k=1

which ensures that W(®q) = 0 for AW = u? = 0, i.e. before the downshift and uplift.
Thus, for any set of 2n free parameters, namely ®y = ¢g, n coefficients a* and the first
n — 1 coefficients A*, one can always find two remaining parameters A™ and Wy such that
the theory has a supersymmetric vacuum state at ® = ®y.

There are also other ways to reach a similar goal. For example, instead of calculating
Wp, one can fix it from the very beginning (e.g. take Wy = 0), and calculate the value of
a”, or A", required for satisfying the conditions W (®g) = 0o W |¢—s, = 0.

2.3 A generalization with many moduli and many exponents

The previous model with a multi-exponent racetrack superpotential for one field & can
be directly generalized to the multi-field case. Indeed, consider the set of models with m



moduli ®, and assume, as suggested in [12, 14], that each of them gives many exponential
contributions to the superpotential. Concretely, let us suppose that the superpotential is
given by

W=Wo+ > Y AFel®® 4 AW + 12X . (2.16)
=1 k=1

Then, the equation O;W = gg/; = 0 is satisfied for each modulus ®°, for any given value of

the parameters ®;, a¥, and for the first (n — 1) coefficients A¥, if one takes

n-l ki
> afateet o)
Ar =ikt (2.17)

(3 APt
a?emi &4

To satisfy W (®g;) = 0, we also need

Wy = — izn:Af iaf @y (2.18)

i=1 k=1

Thus, for any set of 2mn free parameters (for each ¢ = 1,...,m one can take various
k

., and the first n — 1 coefficients Af), one can always

values of ®) = ¢, n coefficients a
find m + 1 remaining parameters A} and Wy such that the theory has a supersymmetric
vacuum state at ®' = ®}. Alternatively, instead of calculating Wy, one can fix it from the
n

very beginning (e.g. take Wy = 0 or any other desired value), and calculate the value of a’,

or A?_l, required for satisfying the conditions W = 0, ;W = 0 at some point ;.

The general conclusion is that in a theory with any number m of fields ®; with racetrack
potentials containing n exponents, with n > 2 for each of the fields, one can always find
a large number of supersymmetric Minkowski vacua depending on 2mn free parameters.
Since the values of the parameters Af depend on the properties of compactification, one
may expect that the total number of different supersymmetric Minkowski vacua can be
extremely large.

Each of these vacua can be downshifted to a supersymmetric AdS and uplifted to a
stable dS vacuum in many different ways. In particular, in most of the examples to be
considered in this paper we will make a downshift by adding a small constant AW to the
superpotential, but the main results will not be qualitatively affected if instead of that we
add any sufficiently small function AW (®%).

3 Properties of the mass matrix at the dS minimum

In this section, we review some general properties of the mass matrix that are important in
order to study the stability of vacua configurations. We refer the reader to Sec. 5 of [1] for
a more detailed discussion. Then, we focus our analysis to specific examples of dS vacua in
type ITA and type IIB theory. We inspect the corresponding mass matrices and we compare
their properties.



3.1 General properties of the mass matrix at the dS minimum

In the class of models we are going to consider, the moduli space is made up of complex
scalar fields {®¢, ®}, living inside chiral and antichiral multiplets respectively. To this set
up, we add then a nilpotent chiral multiplet X, which can be conveniently used to describe
the uplifting contribution to the scalar potential given by an anti-Dp-brane in string theory.
Indeed, thanks to the nilpotent constraint on X, the total scalar potential, including the
uplift, can be given by the standard supergravity formula

VS = K (DS - 3w s)?) (3.1)
where the index I runs over all the chiral multiplets ®/ = {®?, X} and where we define
K% = K(®,0) + Ky x(2,9) XX, W% =W(®)+ X, (3.2)
with X2 = 0.

At an extremum, 0;V = 0, the scalar mass matrix in supergravity takes the following

Vg Vij
M= | VP 3.3
(VU sz) (33)

form

In particular, the upper left corner gives the holomorphic-anti-holomorphic part of the
second derivative of the potential at the minimum, V;; = 0;0;V, the upper right corner has
the holomorphic-holomorphic part of the second derivative of the potential at the minimum,
Vij = 0;0;V, and so on. The exact expressions for each entry as a function of K and W
were derived in [18].

To analyse the vacua in supergravity, we find it convenient to use the notation introduced
in [19] and used in [1]. We define the covariantly holomorphic gravitino mass m(®, ®) =
e W, together with its Kahler covariant derivative m; = D;m = aim—ké(aiK)m = egDiW.
In a supersymmetric Minkowski vacuum, which is one of the cases of interest in our discussion,
the explicit expression for the mass matrix can be considerably simplified. At a Minkowski
minimum, the conditions W = 0 and D;W = 0 imply respectively m = 0 and m; = 0 and
the quantities in (3.3) reduce to

Vié-\/””k = mpg"* Mis , (3.4)
m;=m=0

Vyrink =0, (3.5)

m=0

where we define the chiral fermion mass matrix m;; = D;Djm. This, in turn, can be read
directly from the fermionic bilinear term in the action,

1 , .
f%D—T%f&M+h@ (3.6)

see for example [20].

~10 -



An important consequence of having unbroken supersymmetry in a Minkowski vacuum
is that, within each chiral multiplet, there is a mass degeneracy between scalars and
pseudoscalars. Indeed, by switching to the real basis, ®' = ¢* + i6?, it follows from (3.5)
that !

, , 1,0 0 0 0 ;
Mink __ a1y Mink _ — v I Mink __
Re VM = Re 90,V _4(a¢ia¢a‘ a7 )V =0 (3.8)
This means that, at the supersymmetric Minkowski minimum, the masses of the scalars ¢
are equal to the masses of the pseudoscalars 6°.

Another configuration of interest in the present work is a supersymmetric AdS vacuum.
It corresponds to the second step of the procedure outlined in the Introduction and is
obtained by shifting W, as explained in the previous section. It is given by m; = 0 but
m # 0 and therefore we now have:

Vi?ds = —mym (3.9)

m;=0

The expression for V;‘Jf‘ds is also different from the previous case and can be found in [1].
The fact that (3.9) is now non-vanishing, due to a non-vanishing W in the vacuum, results
in a difference between the masses of scalars ¢’ and masses of the pseudoscalars 6

The third configuration we look at is a dS minimum, obtained by uplifting the super-
symmetric AdS vacuum discussed previously. As discussed at the beginning of this section,
at the third step of the procedure we enlarge the set of chiral multiplets ®’ by adding a
nilpotent chiral multiplet X. Since generically mr # 0 in a dS vacuum?, the mass matrix is
now given by

VS = —miym + myjm’, (3.11)

where we defined m;;; = D;D;Dpm and we raised the indices with the Kéahler metric,

namely m!

=g/ T 7- Again, the mass degeneracy between scalars and pseudoscalars
present in Minkowski is broken and moreover, with respect to the AdS case, there are also

additional contributions, due to supersymmetry breaking terms mj # 0,

(2o 00
4\0¢' 03 00 00I

)Vds = —Re (m] - miﬂmf). (3.12)

We now proceed to discuss the stability of the vacua in these three situations, by
analysing the positiveness of the associated mass matrix. In the Minkowski case, it can be

! We recall that, when passing from the complex basis {®?, &'} to the real basis {¢*, 0"}, the derivatives
change as
o0 i9
o¢t 200"

a _id
g | 2000

1 1
0; = 3 O = 3 (3.7)

2In particular, we have to require at least mx # 0 in order for the description in terms of the nilpotent
X to be consistent.

- 11 -



directly deduced from (3.4) and (3.5) that the vacuum is stable and without flat directions
(condition 1 in the Introduction), as long as all the fermions in the theory are massive [1].
The AdS case, in general, is more involved. However, if we assume that the AdS vacuum is
constructed by downshifting the previous Minkowski one, and if the perturbation AW of
the superpotential is parametrically small (condition 2 in the Introduction), then the AdS
configuration is again stable and there are no flat directions [1].

By uplifting the AdS vacuum to a dS vacuum with a parametrically small breaking
of supersymmetry, namely |m;|? ~ 0, (condition 3 in the Introduction), one finds that, up
to parametrically small terms, the upper left part of the mass matrix is positive definite,
being the square of the fermion mass matrix, which has no flat directions by assumption,

Vi~ mijg?t mg ;> 0. (3.13)
See also the appendix A for more details. Similarly, the holomorphic-holomorphic part of the

second derivative of the potential, namely the right upper corner of (3.3), is approximately
zero, if the conditions 1-3 in the Introduction are satisfied:

In other words, the mass degeneracy between scalars and pseudoscalars, if present at the
beginning, is then approximately preserved through the entire three-steps procedure.

Before concluding, one comment is in order. It was explained in [1] that the uplifting
stage preserves the stability of the AdS minimum, such that the dS minimum remains
stable, under the condition that the total supersymmetry breaking and the mass of the

gravitino are small

mi > |m?| mi > m§/2, |m?| > 3m§/2. (3.15)

2
X

the scalars. During the uplift from a supersymmetric AdS vacuum, the quantity D;W =0

Here the masses of the physical fermions m? are approximately of the same order of those of
can change only due to the shift of the position of the minimum. As shown in [1], this shift
is parametrically small and, as a consequence, one finds the hierarchy |mx|? > ]mZQ| We
stress that this hierarchy is predicted by the procedure and not assumed a priori.

To summarize, since the moduli space metric g;7 in (3.13) is positive definite, under
the conditions 1-3 of the introduction the dS mass matrix can be (symbolically) expressed
as

Viz Vij
M? = T ~meml > 0 3.16
where m; is the fermionic mass matrix. The stability of the dS vacuum is thus manifest.

We conclude the discussion by stressing that this outcome, namely the existence of
stable dS minima, is valid for a large class of superpotentials and with no restrictions on
the Kéahler potential. The only restriction on the superpotential is shown in (1.1): the
progenitor model must have a local extremum of the superpotential, without flat directions.
The rest follows, if the conditions 1-3 of the Introduction are satisfied.

- 12 —



3.2 Special choices in type ITA

The discussion so far was valid for a generic Kahler potential and under mild assumptions
on the superpotential. By imposing additional restrictions on K and W, we can derive
more specific properties for the mass matrix in (3.16). Therefore, we devote this subsection
to the study of models with type IIA motivated Ké&hler potential and superpotential, while
in the next subsection we will focus on type IIB.

A large class of type IIA inspired models was studied in [1]. They have a superpotential
with two exponents for each modulus ®° and a Kéhler potential of the form

W= WO+ZA6““ ZBeM’, K== NiIn(-i(®-), (317
=1

=1

where Wy, A;, a;, B;, b; and N; are real parameters. In [1], section 3.1, it was shown that
for this class of models the Minkowski mass matrix in the basis of real fields {¢%,6'} is

v 2
(de qu) _ <m¢i¢i S ) . (3.18)
Vv@%ﬁ V9i0j Mink 0 Myigs

In particular, along each direction in moduli space, we observe the mass degeneracy between

diagonal

scalars and pseudoscalars, as explained above
2 2
Megigi = Mpigi - (3.19)

For example, in the case with seven moduli

mZ 0 0 0 0 0 0
0ms 0 0 0 0 O
0 0m$ 0 0 0 0
Vil =Vt =10 0 0 mZ 0 0 0 (3.20)
0 0 0 0mZoO 0
0 0 0 0 0 mg o0
0 0 0 0 0 0 m?

When perturbing the Minkowski solution with a parametrically small AW, in order
to find a supersymmetric AdS vacuum, the mass matrix in the real basis remains block
diagonal, at least for the class of models given by (3.17). Therefore, we have

Visigr Voios _ (Vo + Ay 0 _ (3.21)
Vorsi Voios ) | 44

0 yMink | Agigi
We notice the possible appearance of non-diagonal terms in A i, and Agip; which, however,

0197

are parametrically smaller than the terms on the diagonal i = j.

Finally, when uplifting this supersymmetric AdS vacuum to dS, we introduce additional
terms in the potential of the form

Vuplift _ Vuplift (—1((132 o (i)z)) ) (322)
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In particular, these terms do not depend on ¢' and therefore cannot generate off-diagonal
blocks in the mass matrix. Eventually, the mass matrix takes the form

V¢i¢j V¢i9j _ V(%gfk + A¢,i¢j + A¢i¢j 0 (3.23)
Voigi Voioi ) | g ' '

0 Vv Mink + Agz‘gj + Aeiej
The new all diagonal and non-diagonal terms in in A¢i¢j and Agigj are parametrically

001

smaller than the terms on the diagonal ¢ = j. Therefore, the mass eigenvalues in the dS
vacuum are approximately equal to the original Minkowski masses of the progenitor model
and the masses of the scalars and pseudoscalars are approximately equal to each other.

3.3 Special choices in type I1IB

The type IIB models we are going to consider will have the same form of the superpotential as
in the ITA case, but they differ generically in the Kéhler potential. Indeed, in CY examples,
the Kihler potentials are more complicated: they are still functions of —i(®* — &%), but
not simple products of functions as in the type ITA case (3.17). When discussing type 11B
models in general, we will therefore denote K and W as

K= K(=i(® - &),  W=Wo+Y Ae® -3 Belti® . (3.24)
=1

i=1

These complications immediately lead to some changes in the Minkowski mass matrix. In
particular, one finds that for these models the matrix is block diagonal, but not diagonal

M2 = Vo 0“ . (3.25)
0 Voios ) |y rim

For example, in the 3-moduli case we have a matrix where all entries can be non-zero:

‘ . Vir Via Vg
Vq%ﬁlk = Vg = | Vo Vi Vas |- (3.26)
V31 Vaa V33

Nevertheless, it follows from (3.4) that all of the eigenvalues of Vd)i(bj = Vjig; must be
positive definite. In other words, the fact that in the models (3.17) the mass matrix in the
Minkowski minimum is diagonal, is a nice feature of our examples in the type IIA case.
Meanwhile, in type IIB we will find much more complicated mass matrices, already at the
Minkowski level. The mass matrices in dS will still be of the form shown in (3.23), however,

the matrices V;ij ~ Vo, inside (3.23) will be highly non-diagonal, as shown in (3.26).
To summarize, after the downshift and uplift, the relation (3.13) is still valid and
therefore we are constructing models with a stable dS minimum.
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4 Type ITA examples

We present now, in detail, several examples of string theory inspired models in which we
apply the mass production procedure. We devote the present section to the type ITA case
and the next one to type IIB.

First, we discuss a seven-moduli model, in which the kinetic term has a [SL(2,R)]”
symmetry that is broken only by non-perturbative corrections. One can understand this
model from a more fundamental perspective, either from M-theory/string theory or from
maximal supergravity in d = 4. However, given the fact that the moduli space has real
dimension 14, the numerical analysis and the resulting plots are generically complicated.
Therefore, for this specific model, we will only present a short summary of our results.
Instead, a simplified version of such a seven-moduli model with just three moduli, namely
where we identify S, T = To, =13 =T and Uy = Uy = Uz = U, will be presented in more
detail, including the relevant plots of the potentials.

4.1 Seven-moduli [SL(2,R)]” model

The interest in a seven-moduli model in M-theory and type IIA string theory and in d = 4,
N = 8 supergravity was renewed recently, in the context of the future B-mode detection
[21, 22]. Indeed, such a seven-moduli model revisited in these works, was described originally
a long time ago, in [23, 24]. There, the effective d = 4 supergravity for the seven main
moduli of type IIA D6/06 orientifolds was derived, starting with d = 10 supergravity
compactified on ZQTTG% in the presence of general fluxes. The seven moduli include one
axio-dilaton S, three complex-structure T-moduli, {77, T, T3} and three Kéhler U-moduli,
{U1,Us,Us}. For convenience, we collect all of them in

o' = {8, Ty, Ty, T3, Uy, Uz, Us}. (4.1)

The Kihler potential for this seven-moduli model is associated with a [SL(2,R)]”

7
symmetry, where the seven complex moduli are the coordinates of the (SLU((Ql’;R )) coset

space,
7
K=— Zlog (—i(®° — 37)) . (4.2)

As motivated in the Introduction, the superpotential which we will use in the present work
is of the racetrack type, where the constant part fg comes from the six-flux, similarly to [5],

7
W= fo+ > (Aiel® — Bie%?) (4.3)

The origin of these seven complex fields from the d = 10 geometry compactified on
ZQTT(SZQ can be found in [23, 24]. In [21], it is also shown how to get the same model from
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M-theory/d = 11 supergravity compactified on a particular Go manifold, as well as from
d = 4 maximal N/ = 8 supergravity with duality symmetry

E7en(R) D [SL(2,R)]". (4.4)

The kinetic term for the seven scalars has an [SL(2,R)]” symmetry

7 . -
0P 0"
Liin = EZ: m (4.5)
Note that the non-perturbative terms in the superpotential, namely the exponential terms
in (4.3), break this symmetry. The kinetic term for each of the seven scalars corresponds to
a unit size Poincaré disk, with squared radius 3a = 1, after a Cayley transform
0POD 0207

Jo——— = a(

@ — )2 a-z2e (4.6)

This is why the seven moduli set up is relevant for observational cosmology and a-attractor
models of inflation [21, 22]. Here, however, we are only interested is using this type ITA
string theory model for an example of the moduli stabilization, as predicted in [1].

It is worth mentioning that one of the recent studies of the minima of the [SL(2,R)]”

model was performed in [25]. The authors there used the same Kéahler potential as the one
n (4.2), however, they did not include non-perturbative exponents in the superpotential,
but only polynomial terms in the moduli, as suggested in [24]. Within this set up, they
stabilized all of the moduli at the origin of the moduli space, ®* = & = 1, and then used a
numerical optimization procedure. In particular, the superpotential contains 26 parameters
and the authors of [25] were able to find a de Sitter extremum which was fully metastable
up to one single flat direction. They also noted that the classical flat direction of their
solution could in principle receive corrections from quantum or non-pertubative effects.

As one can see from (4.3), in our example of the [SL(2,R)]” model we use only one
perturbative term, namely the six-flux fg, while the remaining terms in W include two
exponents for each modulus, resulting in 1+ 4 x 7 = 29 parameters: A;, a;,B;, b;. We will
choose them to be real. In particular, 21 of these parameters are free, while 8 are obtained
by solving 8 equations W = ;W = 0 to guarantee the desired properties in the progenitor
model. According to [1], performing the three-steps procedure with starting point (4.2) and
(4.3), leads to stable dS minima. While in some examples analized [5] it occurs that the
interplay between non-perturbative terms and fluxes does not seem to give simple solutions,
it might be possible that a combination of our approach with the one of [25], if applied for
example to this [SL(2,R)]” model, may yield interesting results.

4.2 Specific example of the 7-moduli ITA model

In this subsection, we present some details of the analysis we performed on the seven-
moduli [SL(2,R)]” model. The progenitor model is defined by the Kihler potential and
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superpotential given respectively in (4.2) and (4.3). Our choice for the parameters are listed

in Table 1.
As=1| Ap, =31 | Ap, =32 | Ay, =33 | Ay, =11 Ay, =12 | Ay, =13
as=2 | anp =21 | ap, =22 | ap, =23 | ay, =041 | ay, =042 | ay, = 0.43
bs=3 | by, =31 | b5, =32 | by, =33 | by, =1.1 by, = 1.2 by, = 1.3
SO =1 Tl,O =1.1 T270 =1.2 Tg}o =13 Ul,O =5.1 U270 =5.2 Ug’o =5.3

Table 1: The choice for the parameters in the seven-moduli model.

In particular, we are taking the values of the U moduli at the minimum to be close to

5, so that the volume of the compact manifold is not small, whereas the values of the S

and T moduli are close to the origin of the moduli space. Moreover, the values reported in

Table 1 refer to the imaginary parts of the moduli, since we set the real parts (axions) to

zero at the minimum. In other words, unless specified otherwise, in our examples the vacua
will be at

S = iSo, T= iTQ,

U = iUy, (4.7)

with Sy, Uy and Tj real parameters. When we impose the 8 equations D;W =0 and W = 0,
which yield a supersymmetric Minkowski vacuum, we solve for the parameters B; and the
flux parameter fg. This allows us to freely choose the A;, a; and b;, as well as the position
of the Minkowski vacuum, given by Sy, Tp and Uy. With this solution, we find that the
Minkowski mass matrix has the form predicted in (3.20).

Before proceeding with the discussion, we would like to remark that the choice of the
parameters is not fine-tuned. In fact, a wide range of values is possible. To confirm this, we
studied examples with different parameters where the deviation from Minkowski is small. In
all of these cases, a de Sitter minimum was produced. Furthermore, in section 6 we discuss
the complementary case in which the deviation from the progenitor Minkowski model is not

small.

Resuming our analysis, the next step, namely the downshift, is implemented by substi-
tuting fg — f6 + Afg, which gives a supersymmetric AdS minimum at a slightly shifted
position, with respect to the Minkowski one. In particular, the masses of the fields change
only minutely and the AdS mass matrix takes the form predicted in (3.21). In order to go
to de Sitter we introduce anti-D6-branes, which contribute to the scalar potential via a
term of the type:

V&lift _ /’L% + M%
D6 Im(77)Im(7%)Im(75)  Im(S)Im(7%)Im(73)
Im(S)Im(77)Im(75)  Im(S)Im(71)Im(T3) '

This can be generated in supergravity by using a nilpotent chiral superfield X and by
including appropriate terms in K and W, as explained in [4, 5]. For what concerns the
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parameters, in our example the downshift is
Afg=—107"° (4.9)
and the uplift was chosen to be
pi = py = py = pi = 5.49028 - 10717, (4.10)

The mass matrix is diagonal before the downshift and remains block diagonal afterwards,
with the diagonal entries changing only slightly.

As an example, we present below the upper left corner of the 7 x 7 mass matrix, Vyiy;
(3.23), in the dS case. It shows the masses of scalars after the dS uplift. The diagonal

values are very close to the ones in Minkowski and in AdS minima, with values of order
1073 — 107°. All of the off-diagonal terms are many orders smaller, ranging from 10~ to
10710

1.89809 - 1075 —6.19837 - 10710 —5.36624 - 1010 —4.56280- 1070 —1.30375-10"° —1.52470-10"9 —1.74268-10°
—6.19837 - 1010 1.30911-10"% —7.38721-10"1'0 —6.46383 1070 —1.24516-10"° —1.44398 102 —1.64104-10"°
—5.36624 - 10710 —7.38721-10710 9.41667-107° —5.68241-10710 —1.13520-107% —1.31758-10"9 —1.49834.10"°
—4.56280 - 10719 —6.46383 - 10710 —5.68241-10710 6.37888-10"° —1.04022-10"° —1.20871-10"° —1.37571-10"°
—1.30475-1079 —1.24516-10"° —1.13520-10"° —1.04022-10"Y 9.96472-10~* —5.36645-10" 10 —5.74900- 1010

—1.52470 - 1079 —1.44398 -10~° —1.31758-10"° —1.20871-10"Y —5.36646-10"'0 1.37262-10"% —6.10079 1010

—1.74268 - 102 —1.64104-109 —1.49834-10"° —1.37571-10"2 —5.74900 10" % —6.10079- 10~ 10 1.80465 103

The values of this matrix match exactly with what has been predicted from the mass
production procedure. The mass production mechanism explains in this example why all
eigenvalues of the mass matrix are positive in dS, as in the progenitor Minkowski stage:
the off-diagonal entries, which where absent at the Minkowski and appeared in AdS and dS
stages, and which we named A4 + A¢i¢j in (3.23), are too small to affect the positivity
of the original eigenvalues.

In table 2, we present the eigenvalues of Minkowski and dS mass squares (second
derivatives of the potential), both for the scalars and the pseudoscalars. As one can see,
the difference between Minkowski masses and dS masses is very small. In addition, in
the Minkowski case, as predicted, all scalar masses coincide with the pseudoscalar ones.
However, in dS, already at the order of the digits we kept in the table, some of the scalar
and pseudoscalar masses are slightly different, as expected.

At this point, we decided not to present the plots of the potential that we produced
for this seven-moduli example (mainly for convenience, since there are many of them).
Instead, we will show them in the next subsection, for a simpler version of the model. As
we mentioned before, this is an STU model constructed by identifying Ty =To =T5 =T
and U =Uy,=Us3=U.
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Mink dS

mZ | 1.80473-107% | 1.80465 1073
m3 | 1.80473-107% | 1.80465 1073
m$ | 1.37269-107% | 1.37262-1073
m2 | 1.37269-107% | 1.37262-1073
m2 | 9.96519-10~% | 9.96472-10~*
mé | 9.96519-10~* | 9.96471-10~*
m? | 1.30924-10* | 1.30911-10~*
mg | 1.30924-10~* | 1.30911-1074
mg | 9.41773-1075 | 9.41667 - 107°
m | 9.41773-107° | 9.41660 - 10~°
m? | 6.37973-107° | 6.37888-107°
m?, | 6.37973-107° | 6.37883-107°
mi | 1.89843-107° | 1.89809-107°
m, | 1.89843-107° | 1.89806-10~°

Table 2: The eigenvalues of the mass matrix for the seven-moduli type example. The
mass shift is small, but noticeable, when going from Minkowski to dS. One can also notice,
as predicted by the mass production procedure, that in dS the masses of scalars and
pseudoscalars are not exactly equal anymore, as was the case in Minkowski.

4.3 The STU model

As a more detailed test for the mass production procedure, we employ a simple STU model
that has also been used in [5] to illustrate the D6-brane uplift and in [1] to test some aspects
of the mass production mechanism. In particular, we extend here the analysis of [1].

The Kahler potential and superpotential of this model are

K =—log (—i(5 — 5)) — 3log (—i(T — T)) — 3log (—i(U —U)) ,

1774 :f6 + Z (A(I)eiaq)(b . B@Gibq)(b). (411)
D=5T.U

Again, fg is a tree-level constant contribution to the superpotential from six-form flux, while
the terms with exponents are non-perturbative corrections. The contributions in S and T’
directions can arise, for example, from either gaugino condensation of stacks of D6-branes
or from euclidean D2-branes [26]. One possible motivation for the contribution in the U
direction, which is discussed in [5], comes from string theory U-duality. In short, string
theory explicitly only exhibits S- and T-duality but in M-theory this is expected to combine
with U-duality, mixing all three types of moduli into each other. Another motivation comes
from instantons. In fact, it was shown in [27, 28] that there are string theory world sheet
instantons in A/ = 1 orientifold compactifications of type ITA string theory that can give
rise to such terms.
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We recall, once more, that the first step in the mass production procedure is to find
a stable supersymmetric Minkowski vacuum, where all masses are non-negative. In the
specific model we are considering, the solution will be given in terms of the three parameters
Bg, with ® = (S, T,U) and of the flux parameter fs. Moreover, we choose to set the axions
contained in (® + @) to zero. This assumption is justified as long as all masses are positive.
We have already shown the general solution for these equations for a KL-type superpotential
in section 2.

In the second step we introduce a shift in the superpotential which will change the value
of the scalar potential from zero to a negative value, meaning that we go from a Minkowski
solution to AdS. Since this shift is parametrically small by construction, the masses will
stay positive as outlined in [1] and as explained in the previous sections. Explicitly, the
shift is given by

fe — f6+Af6 = W—)W+Af6 (412)

Note that, for small A f6, the sign of the shift can slightly change the result but not the
general behaviour. Indeed, both a positive or negative value for A fg will lead to AdS.
Besides the change in the value of V| we also expect the position of the minimum to slightly
shift in moduli space, as given by (2.8). The shift is illustrated in figure 1, for one of the
three moduli.

105V
010 105V
1.x1078 .

0.08
8.x1079F

0.08 6.x1079F
0.04 4.x107%

2.x1079}

0.02

.

N _ 1m(S)
0.99995 TQV000 140005 1.00010
Im(s) , N A

-2.x107°

0.9 1.0 11 1.2 1.3

Figure 1: The S-direction for one choice of parameters, before and after the downshift. From the graphic
on the left, it is evident that the general behaviour of the potential does not change significantly. The
zoomed in region on the right shows that the vacuum energy at the minimum becomes negative and that
the point of the minimum shifts by a small amount.

Finally, as a third step, we use an anti-D6-brane uplift [5] in order to go from AdS to
dS. The inclusion of anti-branes introduces a term of the form
p I

Ve =
D6 Im STm T2 +ImT3

(4.13)

in the scalar potential, which will lift the value of the vacuum energy above zero. Again,
this will also shift the position of the minimum slightly [1]. The result is shown in figure 2.
Note that we have chosen the value of the potential after the uplift for illustration purposes.
Likewise, by appropriate choice of the parameters p; (i = 1,2) it is possible to match the
observed cosmological constant.
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Figure 2: The S-direction for one choice of parameters, both for AdS and dS. Again, the overall shape
of the potential does not change visibly. In the zoomed region on the right, the AdS minimum before the
uplift is clearly visible and the constant contribution from the anti-D6-brane lifts the potential to dS. The

uplifting contribution appears constant due to the smallness of the parameters u; and the plot range. The
overall shape of the contribution follows from equation (4.13).

11

Im(T) 2

Figure 3: The overall form of the potential in the directions Im(S) and Im(T)

. This shape does not
change significantly along the 3 steps.
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Figure 4: A close-up picture of the minimum in the directions Im(S) and Im(T). In the left picture,

we see the situation in AdS. The visible hole is where the potential is below zero. On the right, we have
presented the dS potential within the same plot range. We see that the potential is now positive everywhere.
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Since the masses remain positive during all of the steps of this procedure, we expect
that the minima are stable. In general, however, by checking only 2D-plots, one might
miss a possible diagonal runaway direction. For this reason, it is instructive to also look at
3D-plots, in order to make sure that there are no inconsistencies. These are shown, for the
directions Im(S) and Im(7’), in figures 3 and 4.

An important feature of the mass production procedure is that, if the masses are block
diagonal in Minkowski, they remain block diagonal during all of the subsequent steps.
In this example, it is indeed easy to see that the change in the masses is small, when
the downshift is small. To illustrate the point, we can look at the mass matrix after the
downshift to AdS, which is

3.662-107° —1.979-107° —2.955.10"1° 0 0 0
—1.979-107° 9.916-107° —8.562 1071 0 0 0
—2.956-1071° —8.562-1071° 9.146-1077 0 0 0
Mg =
0 0 0 3.662-107° —1.979-107° —2.955.101°
0 0 0 —1.979-107% 9.916-10"° —8.562-10710
0 0 0 —2.956-1071° —8.562-1071° 9.146-1077

The diagonal entries are the same as in the Minkowski vacuum, up to the third relevant
digit, while the off-diagonal entries are around 3-4 orders of magnitude smaller. Likewise,
the numbers do not change much after the uplift to dS. This is expected from (3.21). A
comparison of the eigenvalues of the mass matrix for Minkowski and dS minima is given in

table 3.

Mink dS

mi | 9.91957-107° | 9.91570-107°
md | 9.91957-107° | 9.91551-107°
ms | 3.66313-107° | 3.66189-107°
m2 | 3.66313-107° | 3.66183-1075
m2 | 9.15565- 1077 | 9.14587- 1077
me | 9.15565- 1077 | 9.14550- 1077

Table 3: The eigenvalues of the mass matrix in the Minkowski and dS minima. It is
evident that they only change by a small amount both during the downshift and after the
anti-D6-brane uplift.

For what concerns the free parameters in the model, the above plots and masses were
achieved with the set of parameters reported in table 4.
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Ag=1| Ap=3 | Ay =11
ags=2 |ap=21] ap=1
bs=3 | br=3.11|by=1.2
Sp=1 To=1 Uy=5

Table 4: Our choice of parameters for the 3 moduli ITA example.

The downshift to AdS was chosen to be
Afg=—1077, (4.14)
and, subsequently, the uplift as
pit = pg = 1.93752 - 1071, (4.15)
for illustrative purposes.

As explained previously, no particular care is necessary when choosing these values.
This suggests that the examples are rather robust and they possess a considerably large
parameter space, which can potentially accommodate string theory restrictions as well. The
only conscious choice that was made is Uy = 5 in order to have a large volume for the
compact manifold. In some type ITA examples, in section 6, we will consider other values of
the parameters, including larger values of the volume modulus.

5 Type IIB models

In this section we present examples of string theory inspired models in the type IIB case.
In particular, the Kahler potentials associated with Calabi-Yau three-folds that we will
discuss, have been already used before, in [29-33], for cosmological applications. However,
in these works, stabilization of the volumes of the four-cycles was performed either using
the LVS, or some versions of KKLT stabilization. Instead, as motivated in the Introduction,
the choice of the superpotential in the present work will be different from the examples in
[29-33], since we will be using a double set of exponentials for each modulus.

Before entering the details of the analysis, we would like to recall some basic facts of
flux compactification in IIB string theory. Type IIB string theory flux compactifications
on Calabi-Yau three-folds, when dimensionally reduced to d = 4, N’ = 1 supergravity are
described by a Kéhler potential and a superpotential of the form [34]

K = —log (1/(2 A Q> ~log (—i(r — 7)) — 2log (V) (5.1)

W = /Gg A Q. (5.2)
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Here, € is a function of the CS moduli, 7 is the axion-dilaton and Gj is the complex
three-form flux. The six-dimensional volume is defined as a cubic polynomial

1
fdijktitjtk, (5.3)

1
V6:3!/J/\J/\J:3!

where d;j; are CY intersection numbers and t;’s are the volumes of the two-cycles. One can
switch to a complexified Kéhler moduli space, using holomorphic coordinates

where the 9V
6

i = 5.5

= o (5.5)

are the volumes of the four-cycles, which are quadratic in the volumes of the two-cycles.
This allows us to rewrite the six-dimensional volume as a function of the four-cycle volumes
7;. As a result of the procedure of replacing the regular expression that is cubic in two-cycles,
Ve = %dijktitjtk, via a function of the four-cycle volumes 7; satisfying (5.5), one typically
finds somewhat complicated expressions for the Kéahler potential as a functional of the
volumes of the four-cycles

1
= gdijktitjtk = V6(Ti) . (56)

For this reason, as explained in subsection 3.3, the analysis of the stability of the vacuum

Vs

configuration will be generally more complicated in our type IIB examples than the one we
performed in the type ITA case. In particular, we will study only stabilization of the Kahler
moduli 7;. The complex structure moduli in €2 and the axion-dilaton 7 in (5.1), (5.2) are
fixed at an earlier stage by fluxes, as it is usually the case in type IIB.

The Kahler potential for the Kahler moduli will depend on the four-cycle volumes
ReT; = 7; and, additionally, on the nilpotent chiral multiplet X. In particular, the uplift
in these IIB models will be realized with anti-D3-branes 2. We recall that two different
possibilities can occur [35]: one where stabilization is in the bulk, the other when it is
within a warped throat. In d = 4 language, one can associate to these different regimes the
following Kahler potentials:

Ky = —2log (Vs(1i)) + XX, (5.7)

1
Kihroat = —3log <v§/ 3(r) — 3XX> . (5.8)

We will stabilize the Kéhler moduli as suggested in the mass production method.
Namely, we will use the KL type double exponents and follow the three-steps procedure
to get dS minima. We recall once more the form of the superpotential in a three-moduli
problem, namely

W=Wo+ Y Age®®— Bye™® 4 12X, (5.9)
®=S,T,U

3For convenience we will label the different Kéhler moduli as S, T and U, when discussing explicit models
in the following sections. These should not be confused with the S, T'; U moduli in type ITA.
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which encompasses all of the examples we will analyze in the following. Given the Kahler
potential K and the superpotential W, one can use the standard rules of N' = 1 supergravity
to calculate the scalar potential, including also the contribution of the anti-D3-branes. When
moduli stabilization occurs in the bulk, the uplift potential is

1

Vmbu”{: — eKbulkDWXKXXDXWLX:O — W’

(5.10)
where Vg is the volume of the compactification. Alternatively, we can place the anti-D3-
brane at the bottom of a warped throat, where the uplifting term will scale differently with
the volume [35], giving

"

. Kinroat XX P17 —
\% (& DWXK DXW|X:0 = (V6)4/3.

D3 warped throat = (5 1 1)

Before proceeding with the examples, we would like to comment briefly on the difference
between the notation used in [29-33] and the one we adopt in the present work. Indeed,
notice that in (5.4) the fields appearing explicitly in the six-dimensional volume are the real
parts of the chiral multiplets, 7; = ReT;. This is in agreement with the notation used in
[29-33]. On the other hand, in the previous sections, we used a slightly different notation, in
which the volume Vg potential is a function of the imaginary parts of the chiral multiplets,
Vs = Vs(ImT;). However, it is easy to show that the difference is merely due to conventions
and does not change the physical results. First, we recall that Vg, appearing in (5.1), in
type IIB models is a homogeneous function of degree 3/2 in the 7;. As a consequence, a
constant rescaling of the 7; by a multiplicative factor —2i,

. =Rel; — 7 =2ImT;, (5.12)
will give
logVe(ri) — log(22Vs(m)). (5.13)

Then, the total Kahler potential (5.1) changes only by a constant factor
K — K —logs. (5.14)

This difference is not physical, since it can be absorbed in a Kahler transformation, by
rescaling also the superpotential as W — We™ ¢, with C' = %log 8. Alternatively, one can
think of such an additional constant term in the Kahler potential as being originated from
—log (i [Q A Q) —log (—i(r — 7)) in (5.1), due to a different stabilization of the CS moduli
and the axion-dilaton. Therefore, without loss of generality, in the following we will set

= —i(S - 5), T =—-1(T-T), 3= —1(U —U). (5.15)
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5.1 K3-fibration with two parameters

The first type IIB model we look at is a K3 fibration of Cpﬁ,1,2,276]’ discussed in [29]. As
shown in [29], it occurs that there is no moduli stabilization in this model in the context of
a large volume scenario (LVS) [36]. The volume is given in equation (3.14) of [29], in terms
of the volumes of 4-cycles. In particular, it is a function of 7, and 75 only

Ve(Ti) = %\/TT {72 - gn} , (5.16)

which, in our conventions

—

5.15), becomes

1 . = . - 2 _
Vs(9,T) = 54/ (=i(S = 9)) {(—I(T -T)) -3 (-5 - S))] (5.17)
The parameters we used in the analysis are given in table 5.

As=11]| Ap=1.2

ag =21 | ar =2.2

bg =31 | bp =32

SO =1 TO =T
Table 5: Set of parameters for the K3 fibration of CP[ALI,Z?,G}‘
The downshift is achieved with the value

AWy = —1077, (5.18)

and the uplifts in the two different regions, namely bulk and throat, are realized with

parameters
i =3.61516 - 10710,

po o =1.56758 - 10719

For what concerns the masses and the plots, we will only give the results for the case in

(5.19)

which the anti-D3 brane is placed in the bulk. Indeed, at least for the choice of parameters
we made, the difference between the uplift with an anti-D3-brane in the bulk or at the
bottom of a throat cannot be really appreciated. Due to the simplicity of the model, we
display also both 2D and 3D plots in figures 5 and 6 respectively.
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Figure 5: All 2D plots for the K3 fibration of CP[%,LZ?,G]' Notice that the Im(7")-direction is considerably
flatter than the Im(.S)-direction.

AdS

Im(T). 3.150

Figure 6: A complete set of 3D plots of the scalar potential for the K3 fibration of (CP[%,I,Z,Q,G]' On the
top we show the overall shape of the potential, and below a close-up of the minimum in AdS and dS case.
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The eigenvalues of the masses in Minkowski and dS are given in table 6. Since the
model has only two moduli, we give also the complete mass matrices for Minkowski and dS.

5.22544 - 1072 3.23902 - 10~* 0 0
Mics i vtins — 3.23902 - 10~ 1.58428 - 102 0 0
’ 0 0 5.22544 - 1072 3.23902- 1074 |’
0 0 3.23902 - 10~ 1.58428 - 1072
(5.20)
5.21864 - 1072 3.20421 - 104 0 0
Micasin a5 — 3.20421 -10~* 1.5569 - 102 0 0
’ 0 0 5.2155- 1072 3.20421 - 10~
0 0 3.20421 - 10~ 1.55606 - 102
Mink ds

m? | 5.22564-1072 | 5.21884-102
mg | 5.22564-1072 | 5.21875-1072
m3 | 1.38346-1075 | 1.36014-107°
mi | 1.38346-107° | 1.35926-107°

Table 6: Eigenvalues of the mass matrices in Minkowski and dS. In this model and for this
choice of the parameters, the mass splitting between the fields and their axionic partners is
clearly visible, after moving away from Minkowski space.

5.2 K3-fibration with three parameters

This model is a generalization of the previous one, with the inclusion of a blow-up mode 3.
The six-dimensional volume is given in equation (3.28) of [29]

Ve(Ti) = « <ﬁ(72 — pm) — 77'5’/2> : (5.21)
and, in our conventions, is

Ve(S,T,U) = a ( (<i(S — 8)) [(~i(T = T)) = B (~i(S = §))] — 7 (~i(U — U))3/2>
(5.22)
The parameters «, § and v are positive and model dependent. Im(U) is the blow up mode,

that turns the model we investigate here into CP[%71’27276].

The parameters we use in the analysis are given in table 7.

Ag=11 | Ar=12| Ay =1.3
ag =21 |ar=22 | ay =23
bs =31 1| br=32| by =33
a=1 B =3
So=11 | Tp=12 | Uy=1.3

ENE

Table 7: The parameters used in the three-parameters K3 fibration.
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Moreover, we take
AWy =—5-10"" (5.23)
for the downshift, while for the uplift parameters we have

U = 11698210712 or  fify,00 = 3.80480 - 10712, (5.24)

In figure 7 we show a 3D slice of the scalar potential. We give the eigenvalues of the mass
matrix in table 8.

<
110 75

<
145 5%
-
Im(S) 1.20<\*<\

Figure 7: A 3D slice in the Im(U) and Im(S) direction of the three-parameters K3 fibration model.

Mink dS
m? 2.76956 2.76898
ms 2.76956 2.76898

m3 | 1.38664-1071 | 1.38648- 1071
mji | 1.38664-1071 | 1.38647-1071
m2 | 7.64496-107% | 7.64471-1073
mé | 7.64496-107% | 7.64391-1073

Table 8: Masses in three-parameters K3 fibration. The mass splitting between the real
scalar and the pseudoscalar is very small and does not appear within the digits we are
showing explicitly. The dS case represents the anti-D3 brane in the bulk.

5.3 K3 fibered CY model used for fibre inflation

An interesting subcase of the previous model is obtained by taking 5 = 0 in (5.22). This
results in

Ve(Ti) = [\/?17'2 — 775)/2] , (5.25)

or

Ve(S,T,U) = a [ (=i(S = 8)) (—i(T = T)) =~ (=i(U - 0))*?], (5.26)
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in our own notation. In particular, Im(S) corresponds to the volume of the K3-fibre, Im(7")
controls the overall volume and Im(U) is related to the blow-up mode. Again, v and « are
positive constants. This explicit example of type IIB Kahler potential was used for fibre
inflation [30-32]. Fibre inflation is based on the LVS scenario [36], which can be used to
produce a potential with a flat plateau, suitable for inflation. While constructing a model
for inflation is not the goal of this work, it is still interesting to study such a setup in the
context of mass production of dS vacua.

For our analysis, we take the parameters reported in table 9.

As=11 | Apr=12 | Ay =1.3

ag =21 |ar=22 | ay =2.3

bs =31 | bpr=32 | by =33
So=1 To=1 Ug=1
a=1 'y:%

Table 9: One possible set of parameters for the fibre inflation model.

As predicted in (3.25) and (3.26), the mass matrices have a block diagonal form. We
recall that, in contrast to our type IIA examples, the Minkowski masses are no longer
diagonal, due to the more intricate form of the Ké&hler potential given by Vg in (5.26). The
downshift we used in this case was

AWy = —-107° (5.27)
while the value for the uplift parameter was chosen, again for illustrative purposes, to be
g = 3.10079 - 10710 (5.28)

in the bulk or, for an anti-D3-brane at the bottom of a warped throat
Hinroat = 2:46069 - 10710, (5.29)

Below, we will show the plots and the results related to the case with the anti-D3 brane in
the bulk. Indeed, the placement of the anti-D3 brane at the bottom of a throat gives very
similar results in all investigated examples, with the uplift parameters we give here.
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Figure 8: From top to bottom, we have the overall form of the potential on the left, for AdS and dS as

well as a close-up of the minimum on the right for the directions Im(.S), Im(7") and Im(U). The shift of the
minimum from the initial point, with the imaginary part of the moduli set at one, is also visible.

0.95 1.00 1.05

Figure 9: A 3D slice of the scalar potential in the Im(7") and Im(U) directions.

In order to illustrate this model better, in figures 8 and 9 we include 2D plots for all
directions as well as 3D plots for the Im(7") and Im(U) slice. For the set of parameters in
table 9, we get the following entries for the upper left corner of the mass matrix in the
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Minkowski vacuum as given in (3.26) and in dS situation as given in (3.23):

0.3201 0.1655 0.3392 0.3198 0.1653 0.3391
vMink — | 0.1655 0.2567 0.3508 | , viSeh = 1 0.1653 0.2564 0.3506 | (5.30)
0.3392 0.3508 0.5991 0.3391 0.3506 0.5992

The eigenvalues of the mass matrix in Minkowski and dS are given in table 10.

Mink ds
mi 1.01997 1.01957
m3 1.01997 1.01957

mi | 1.31424-1071 | 1.31344-107!
mj | 1.31424-107' | 1.31338-1071
m2 | 2.44807-1072 | 2.44724-1072
mg | 2.44807-1072 | 2.44665 - 1072

Table 10: The eigenvalues of the mass matrix for the fibre inflation model, for Minkowski
and dS.

5.4 A complete intersection Calabi-Yau (CICY) model

Another interesting example is associated with a Complete Intersection Calabi-Yau (CICY)
manifold, presented in [33]. There, the authors consider a Calabi-Yau three-fold with
't = h12 = 19 and focus on a three moduli part of it, arguing that, under certain
conditions, the 16 remaining moduli can be ignored. Here, we will simply use the three
moduli part of their Kahler potential and show how the stabilization of moduli in the dS

minimum can be realized. The overall volume is given by

(Ve(7:))? = %7’1 (672 — 71] [273 — 1] (5.31)
and in our choice of basis we have
Vi = 1oz (-8 = 8)) [6 (T~ T) — (~i(5 — 8)] [2 (iU ~ 1)) ~ (~i(5 - )]

(5.32)
Following our procedure and using the solution for the KL-model that we described above,
we arrive at a meta-stable dS vacuum in exactly the same manner as in our previous

examples.

The parameters we chose are listed in table 11.

As=11 | Ar=12 | Ay =13

ag =21 | ar=22 | ay =2.3
bs=311|br=32| by=33
So =1 TO =1 UO =1

Table 11: Parameters for the Calabi-Yau model with A1 = p1:2 = 19,
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A downshift with
AWy = —-5-10"° (5.33)

yields the following upper left corner of the AdS mass matrix

1.7284  0.2979 0.9157
Mcicy, ags = | 0.2979 1.3347 0.1578 | . (5.34)
0.9157 0.1578 0.9703

The uplift in the bulk was performed with a parameter
g = 7.68537 - 1071 (5.35)

and a similar result can be achieved by placing the anti-D3-brane at the bottom of a warped
throat with

ioa: = 1.07015 - 10710, (5.36)

The eigenvalues of the mass matrix in all scenarios can be found in table 12.

Mink dS
m? 2.44220 2.44196
mé 2.44220 2.44195
m3 1.23452 1.23438
mj 1.23452 1.23436
m2 | 3.57064-10"% | 3.57041-107!
mg | 3.57064-1071 | 3.57026- 107!

Table 12: Mass eigenvalues for the CY-model with h'! = A2 = 19. Due to the smallness
of the downshift and subsequent uplift, the values remain almost the same through the
entire process.

We illustrate the model in figure 10, where we plot the situation for the uplift in the bulk
for AdS and dS. Both the downshift as well as the uplift are visible and one can see how
the minimum of the potential moves away slightly from the chosen original values we give
in table 11. In figure 11, we present a 3D slice of the potential in the dS case.
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Figure 10: The 2D plots for the Calabi-Yau model with A'' = k"2 = 19. For all 3 moduli we have the
overall form of the potential on the left and a close up of the minimum in AdS and dS (bulk) on the right.

Figure 11: 3D plot of the Im(S) and Im(T) slice of the Calabi-Yau model with h'' = h'? = 19.

5.5 Multi-hole Swiss cheese model

One more model, given in equation (3.8) in [29], is called a multi-hole swiss cheese model.
It is based on the Fano three-fold Fj; which is explained in detail in [37]. This three-fold
is topologically equivalent to a Calabi-Yau three-fold with "' = 3 and h?! = 111. The
volume Vg is given as

Vo(rs) = 1 o4 212 = [y 2mg? - 7)/?) (5.37)

s 1
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and in our parametrisation, it reads

Vs = 3;5 (2 [(~i(S = 9)) + (=T = 7)) +2 (~i(U -~ 0))]

= [( = D) + 2 (-3 = 0))] " = (=ix = 1))

The set of parameters that we chose is listed in table 13.

As=11 | Ar=12 | Ay =13
ag =21 |ar=22 | ay =2.3
bs=311|br=32| by=3.3
So=1 To=1 Ug=1

3/2

Table 13: Our choice of parameters for the model based on the Fano three-fold.

For the downshift we chose

AWy = —5-1079, (5.39)

while the uplift parameters for the placement of the anti-D3-brane in the bulk and at the
bottom of a warped throat are

e = 9.62862 - 10711

firoms = 2.75437 - 1071

The eigenvalues of the mass matrix are given in table 14 and we illustrate the model in the
figures 12 and 13.

(5.40)

Mink dS
m? | 1.85578-107! | 1.85557 101
mg | 1.85578-1071 | 1.85557 1071
mZ | 1.00760 - 10~ | 1.00753- 107!
mj | 1.00760-10~% | 1.00753-10~!
m2 | 1.30646 - 1072 | 1.30627 - 1072
me | 1.30646 - 1072 | 1.30626 - 1072

Table 14: The masses for the Fano three-fold model. The shift from Minkowski to dS is
small but visible with this precision. The discrepancy of field-axion pairs is tiny and only
appears in the last pair.
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Figure 12: 2D plots for the Fano model. Again, the overall behaviour does not change much during
the process and indeed the lines for AdS and dS are indistinguishable, on the left. On the right, a zoomed
region is present in which not only the shift of the minima is visible, but also the constant contribution of

the anti-D3-brane.

0.0010

Figure 13: One 3D slice of the Fano model scalar potential. Depicted are the Im(7") and Im(U) directions.

6 Stable dS states obtained by a large downshift and uplift

In this work, we have made the general prediction, confirmed by all of the examples studied
thus far, that sufficiently small deformations (such as downshift and uplift) of the original
supersymmetric Minkowski vacuum, without flat directions, preserve its stability and they
do result in a stable dS vacuum. An approximate criterion of the range of deformations
which lead to a stable dS vacuum is that the gravitino mass in the uplifted vacuum should
be much smaller than the mass of the lightest moduli field in the original Minkowski
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vacuum. More precisely formulated conditions can be deduced from section 5 of [1] and
from Appendix A of this paper.

Interestingly, in our investigation of some particular models, we encountered certain
situations where the dS vacua obtained by downshift and uplift remain stable even after
very large deviations from the original supersymmetric Minkowski state. As instructive
examples, we will consider here the simplest single field KI. model described in section 2.1,
as well as a particular version of the STU model.

6.1 KL model with large downshift and uplift

According to (2.9), a small addition AW to the superpotential of the KL. model with a
supersymmetric Minkowski vacuum leads to the formation of an AdS vacuum with negative
vacuum energy proportional to (AW)2. In other words, for small AW the magnitude of
the downshift does not depend on the sign of AW.

However, if one wants to investigate actual limits of dS stability with respect to very
large downshift controlled by AW and very large uplift controlled by pu, one can no longer
consider AW small, and the sign of AW becomes important. As we will see, the downshift
with AW > 0 and subsequent uplift can still give strongly stabilized dS vacua. In this
section, we will investigate this issue in the simplest KL model, with ® = T and the
parameters used in [9], translated to our notations. In particular, the Kéhler potential is

K=-3Wn(-i(T-1))+ XX, (6.1)

where X is a nilpotent chiral multiplet, which should be set to zero after the calculations,
and the superpotential is

W(T,X) =5 — e +Wy+ AW + X . (6.2)

The potential of the field T has a supersymmetric Minkowski minimum with Wy =
—3(2)*® ~ —0.32573, AW = p = 0, V = 0, Re(T) = 0 and Im () ~ 5, as shown
in Fig. 14. The mass of the field Im (7) at the minimum is mz = 0.013.

v
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Figure 14: The potential of the KL model (6.2) in Planck units.
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The left panel of Fig. 15 shows the potential after a very large downshift, with AW =7,
and uplift with p = 1.40199. It has a stable dS minimum, with a tiny positive vacuum
energy and a gravitino mass mg/;; = 1. It is remarkable that, by increasing AW from
AW = 0 to AW = 7, and compensating it by the corresponding increase of u, one can
continuously interpolate between the supersymmetric Minkowski vacuum with mg/ = 0
and a stable dS state with strongly broken supersymmetry and with a Planckian value of
the gravitino mass, mgz/, = 1.

The height of the barrier stabilizing the dS minimum at AW =7, . = 1.40199 shown
in Fig. 15 is three orders of magnitude higher than in the original model with AW = 0,
p = 0, shown in Fig. 14. The mass of the field Im(7) in this minimum is 0.27, which is
approximately 20 times greater than in the original Minkowski vacuum. Thus, instead of
destabilizing the dS state, an increase of AW and p increases the level of its stability.

\ \Y

0.010 0.010 ‘
0.008 1‘ 0.008
0.006 | 0.006 |
0.0047 0.0047
OA002: 0.002:
2 4 6 8 10 Im (T) 2 4 6 8 10 Im (T)

Figure 15: The potential of the KL model (6.2) after the downshift obtained by adding AW = 7 to
the superpotential. The left panel shows the potential uplifted by pu = 1.40199. The right panel shows the
potential uplifted by p = 1.42.

One can raise the vacuum energy at the dS minimum by further increasing the value

of p. This is illustrated by the right panel of figure 15, which shows the same potential
with AW =7, but with p = 1.42, which results in the uplift of the dS state to the level of
Vis ~ 3.5 x 1073, The minima of these potentials are stable with respect to fluctuations of
Im (7") and Re (T'), as shown in figure 16.

Re (T)2

Im (T)

Figure 16: The same potential as in Fig. 15 at AW =7, u = 1.40199, and at AW =7, u = 1.42, shown
as a function of Im (7") and Re (7).

Thus, we see that, with a proper choice of parameters of the KL model, one can obtain
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stable dS vacua in type IIB string theory with any desirable degree of supersymmetry
breaking and any height of the dS minimum. As we will show later, similar results are valid
in other models, including the STU model in type ITA string theory.

For completeness, we should mention also that, in addition to the dS vacua produced
by the downshift and uplift of a Minkowski vacuum, a large increase of AW and p may
produce many other dS vacua, some of which appear at Re (T") # 0. For example, in the
model considered above, at AW = 0 and p = 0.61243 one has a deep dS minimum with a
tiny Vgg at Im (7') = 20.7, Re (T') = 100n, where n is any integer. Meanwhile, at AW =0
and p = 0.6202, one has a deep dS minimum at Im (") = 20.6, Re (T") = 50 + 100n.

Increasing AW produces other stable dS minima. For example, at AW =7, y = 1.643609,
one has a stable dS minimum at Im (7") = 2.95, Re (T') = 38.817. At AW =7, pu = 1.93426,
the potential has a stable dS minimum at Im (7") = 4.905, Re (T') = 20.848. Some of these
additional dS minima may be interpreted as a result of uplifting of pre-existing AdS vacua,
whereas some of them do not have any AdS progenitors at all. An investigation of such dS
vacua could be a subject of a separate future work.

6.2 Other examples related to the KL construction, and general comments

Before turning to the discussion of the STU model with large downshift and uplift, we
would like to make some general comments, which apply to many models studied in this
paper, but can be especially easily illustrated using the basic KL. model as an instructive

example.

The models that we study here are formulated in string theory inspired supergravity
models. String theory may bring certain additional requirements on such models and their
interpretation. For example, one can increase the downshift only for as long as this does
not conflict with a large volume requirement from string theory. One may wonder whether
this requirement can be satisfied in the model discussed above, where we started with
Im (T) = 5, and then gradually shifted towards Im (T") &~ 2, while increasing AW and pu.
Yet another question is whether the results can be sensitive to the interpretation of the
uplift. For example, as we discussed in section 5, in the context of type IIB models, the
Kéhler potential (6.1) would correspond to placing the anti-D3 brane in the bulk.

To address some of these issues, we will briefly discuss here the results of the investigation
of the KL model with a much greater value of Im (7") and with the Kéahler potential
corresponding to the anti-D3 brane in the throat:

K =—3In (—i(T —T)— ;XX> . (6.3)

As an example, we will consider the superpotential (2.2), (2.3) with the parameters A = 1,
B =2,a=7/50,b=m/40. For Wy ~ —0.00512, AW = 0, u = 0, this theory has a
supersymmetric Minkowski minimum of the potential at Im (7") ~ 58. The height of the
barrier stabilizing this minimum is about 3 x 107!,
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With the downshift by AW = 0.1, which is 20 times greater than W{, and the uplift
by u = 0.127, the dS minimum with a tiny cosmological constant shifts to Im (7") ~ 36, and
the height of the stabilizing barrier becomes 2 x 1078, i.e. 3 orders of magnitude higher
than the original one.

After the downshift by AW = 1, which is 200 times greater than W, and after the
uplift by p = 0.44, the dS minimum shifts to Im (7') ~ 9, and the height of the stabilizing
barrier becomes 107, i.e. 6 orders of magnitude higher than the original one.

The conclusion is that the effect of strengthening of stabilization during the significant
deviation from the supersymmetric Minkowski minimum occurs with either of the two
Kéhler potentials (6.1) or (6.3), although we found that in the first case it may be easier to
achieve strong dS stabilization. By a proper choice of the parameters, one can make the
volume modulus arbitrarily large. One can continuously increase the strength of stabilization
by increasing AW and pu, while continuously decreasing the values of Im (7') in the dS
minimum.

6.3 STU model with large downshift and uplift

In the previous subsection it was shown that the dS minimum in the single field KL model
may remain stable not only after small deformations of the theory, but even after an
extremely large downshift and uplift, if the downshift is due to the addition of a positive
term AW. As we will see, the STU models share this property.

As an example, we will consider the STU model (4.11) with parameters shown in
Table 15.

aszl aT:3/4 (LU:1/2
by = 3/2 br =5/3 by =2/3
Ag = —17.8577 Ar =3 Ay =20
Bg = —19.6283 | By = 3.37627 | By = 34.5146
So=1 To =1 Uy=5

Table 15: Our choice of parameters for the 3 moduli IIA STU example used to study large
downshifts and uplifts.

With these parameters, the potential has a supersymmetric Minkowski minimum at
Im(S) =1, Im(T) =1, and Im(U) = 5. The masses of the real and imaginary components
of the S, T and U fields at the minimum are 0.104, 0.104, 0.036, 0.036, 0.010, 0.010, see
also table 16.

Then, we introduced a large downshift term, A fg = 1. In addition, we introduced the
uplifting term (4.13) with g1 = pe = 0.000081479, which uplifts the minimum to make it
just barely above zero. Note that the absolute value of the parameter A fg = 1 which we
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use here is much greater than A fg = —107° used in the section 4.3, where we discussed the
STU model with a small downshift and uplift.

Mink ds

my | 0.104 | 0.363
mg | 0.104 | 0.350
mg | 0.036 | 0.310
my | 0.036 | 0.300
ms | 0.010 | 0.046
mg | 0.010 | 0.043

Table 16: Masses in the STU model with the parameters given in (15).

After the uplift, the mass matrix in the dS vacuum is positive definite, and the masses,
corresponding to the square roots of the eigenstates of the canonically normalized mass
matrix, are given as 0.363, 0.350, 0.310, 0.300, 0.046, 0.043, see table 16. All of these
masses are significantly greater than the masses in the original supersymmetric Minkowski
minimum prior to the downshift and uplift. The gravitino mass in the dS minimum is
mg/o = 0.02. The barrier stabilizing the dS minimum has height ~ 2 x 1074,

To illustrate the properties of the potential, we show the plot of the potential after the
downshift and uplift with respect to Im(S) and Im(7") in Fig. 17. The left panel shows it
for Afg =1, pup = po = 0.000081479, the right panel shows it for a slightly greater uplift
with 1 = po = 0.000009.

36
20 =

151

E

104 Vg 10}

0.5
[

00k .
05 1.0
20

25

Figure 17: The overall form of the STU potential in the directions Im(.S) and Im(7T’) after a very large
downshift and uplift.

This potential looks strikingly similar to the potential of the simplest KL model after a
large downshift and uplift shown in figure 16. Of course, the STU potential is a function of
3 complex variables, and therefore figure 17 shows only a part of the story, but investigation
of the potential in other directions, as well as the positivity of the mass matrix which we
evaluated, confirms stability of the dS minima shown in figure 17.
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7 Summary and Discussion

In this last section we would like to summarize our main results and relate them to the
existing literature.

In sections 1, 2 and 3 we gave a brief review of our approach and described some
general predictions, which we confirmed in the main body of the paper. In section 4 we
analyzed several type IIA motivated d = 4 supergravity models. We gave examples of the
mass production of dS minima [1] in the case of the seven- and three-moduli model of type
ITA orientifolds with D6 branes, compactified on 757, X Z . In particular, the Kahler potential
for this seven-moduli model is associated with a [SL(2,R)]” symmetry. It takes the form:

7
- Z log (—i(®' — 7)) . (7.1)

Such a model was studied before in [25], in the presence of perturbatively induced superpoten-
tials, polynomial in the moduli, of the form W = af +Zw ( )<I)Z+a( )Q“I)J—Fa( )<I>’<I>3<I)k>
There, it was possible to find a metastable de Sitter extremum, but 1t had a flat direction.
This single solution was found with the help of a numerical technique, known as differential
evolution.

The seven-moduli model with the same Kéhler potential (7.1) was also studied in [5],
but with a non-perturbative KKLT-type superpotential

7
W= fo+ ) A, (7.2)

In addition, the model used uplifting anti-D6 branes, introduced in [4]. The model (7.1), (7.2)
was shown in [5] to produce many dS minima, without significant tuning of its parameters.
There, this result came as an outcome of the numerical calculations.

In this paper we studied the seven-moduli model with the same Kéhler potential (7.1)
and with uplifting anti-D6 branes as in [5], but with a superpotential of the racetrack
type [7], where the constant part fg comes from the six-flux, similarly like in [5]. The
superpotential has the form:

W= fo+ Z (A;es®" — B (7.3)

The case of a two exponent KL type superpotential, where both exponents stem from non
perturbative contributions, allows us to find a supersymmetric Minkowski vacuum without
flat directions. This, in turn, makes it possible to satisfy the conditions 1-3 specified in the
Introduction of this paper. According to [1], it is now predicted that we will be able to
construct a stable dS minimum, granted that the downshift and uplift are parametrically
small. Stability translates to all of the 14 mass eigenvalues being positive and, indeed, this
is what we find in our numerical investigation, as depicted in table 2
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We also studied the isotropic version of this model, in which the fields were identified
as Ty =Ty =13 =T and U; = Uy = U3 = U. This is in fact a STU model for which, in
addition to masses in table 3, we have also presented various 2D and 3D plots. We also
produced plots describing the seven-moduli model, but we do not present them here as
they do no contain any substantial novelty with respect to their simpler version in the STU
model. Indeed, we believe that the latter represents the situation in the ITA case quite well.

In our investigation of dS vacua in type IIB theory in section 5 we noticed that, in
models associated with typical Calabi-Yau compactifications, some features of the mass
matrix, and hence the analysis of the stability, become more complicated than in type
ITA examples. For example, the mass matrix (3.25) is still block diagonal, but the matrix
Viigi in (3.26) has the off diagonal entries which are not small even in the supersymmetric
Minkowski vacuum, see for example eq. (5.30). Nevertheless, the prediction made in
[1] concerning the existence of dS minima, under the conditions 1-3 specified here in the
Introduction, remains valid.

We have studied models with Kéhler potentials of the form K = —2log (Vs(7;)) where
for the internal volume Vg(7;) we had the following 4 examples in section 5:

Ve(7i) = %\/TT <7'2 - §T1> ;
Vo(m) = a (v (2= Br) =973 %)

1 1/2
Ve(Ti) = (m’ﬁ (670 — T1][273 — 7'1]> ,
1
VG(Ti) = ﬁ (2[7’1 =+ 7o + 27‘3]3/2 _ [7‘2 + 27'3]3/2 _ T§/2> . (74)

Details on dS vacua in these models with the corresponding superpotentials and with an
uplifting anti-D3 brane, in accordance with the procedure outlined in the conditions 1-3 in
the Introduction, are presented in section 5. We have found a complete agreement of our
numerical examples with the predictions in [1] and in sections 2 and 3 of this paper.

We would like to stress the following features of all of the examples studied numerically
in sections 4 and 5:

1) The properties of the dS vacua are in a complete agreement with the predictions
outlined in [1] and in sections 2 and 3 in this paper, including the detailed properties of the
mass matrix both in type the ITA and type IIB models.

2) In this work, we have presented just one set of parameters for each example. However,
we have in fact performed additional investigations of the models with alternative parameters.
In particular, it was easy to change the parameters within the required constraints and get
additional dS minima. Thus, while not irrelevant, the choice of the parameters does not
require fine-tuning in our constructions.

3) All of our examples are based on two exponents in the superpotential for each of the
moduli. Indeed, this is the simplest case where Minkowski progenitor models are available.
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However, as explained in section 2.3, one can easily generalize these models to the theories
with any number of exponents in the superpotential for each of the moduli.

An important advantage of the models constructed from a supersymmetric Minkowski
vacuum by its downshift and uplift is related to the requirement of vacuum stability in the
early universe. In these models, the values of the moduli masses, as well as the height of the
potential barrier protecting the supersymmetric Minkowski vacuum and the dS minimum,
can be made very large and independent on the scale of supersymmetry breaking [1, 7-9].

General theorems presented in [8], in section 5 of [1] and in the Appendix A of this
paper, describe the conditions which guarantee the stability of dS states originating from
a small downshift and uplift of a supersymmetric Minkowski vacuum. In section 6, we
have shown that in some cases even very large downshift and uplift of the supersymmetric
Minkowski vacuum do not lead to dS instability, and may in fact significantly strengthen
the dS vacuum stabilization.

To conclude, our d = 4 supergravity models, inspired by string theory, represent a
new way of constructing models with dS minima where the non-perturbative string theory
contributions play an important role. The actual embedding of these models into a full
string theory is a subject of a separate investigation. One of the principal observations here
is that de Sitter minima are relatively easy to find if the non-perturbative exponents in
superpotential are present for all of the moduli. Related ideas based on U-duality of string
theory are believed to underline the unification of string theory into M-theory.
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A More on dS stability

The purpose of this Appendix is to bring up some details about the scalar mass matrix
in a dS vacuum and in particular to present the important steps in the derivation of our
equation (3.13).

As explained in [1], the scalar mass matrix in a dS vacuum derived in [18] is given in
the concise notations with covariantly holomorphic objects like m = e2 W, m; = Drm,
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myy; = DrDjym etc., as follows:

as 1J - = =1 =1 J =
VE® =mirg " my; — 2ggmm + gigmpm’ — Ryppm m?” — mimy, (A.1)

VZ-?S = —m;;m + miﬂml. (AQ)

In order to show that the dS vacuum is stable, it was assumed in [1] that in the progenitor
Minkowski model the mass matrix has no flat directions, and that there is a hierarchy

mi > |my)? ~ 0, mi > m§/2 =mm = 0. (A.3)

In particular, this assumption means that the masses of the matter fermions m, which are
approximately equal to the scalar masses of stabilized moduli, are much heavier than the
mass of the gravitino and the scale of the total supersymmetry breaking. In this regime,
(A.1) is dominated by the first term, which is positive definite, while (A.2) is negligible

VZ.;!-S ~ mugl‘]ﬁlj;, VZ?S ~ 0. (A.4)
Furthermore, recalling that
1 1
m;x = Oimx + iaszX — PiXm[ (A5)

and assuming the dependence on X in W as in (3.2), as a consequence of m ~ 0 ~ m; we
have that

which implies that the sum in (A.4) is actually dominated by the first I # X directions
and thus )
Moz > 0. (A7)

This is the result (implicitly) stated in (3.13).

The prediction of the mass production of dS vacua for a general class of models can be
explained by the properties of the matrix elements (A.1) and (A.2). In general, specific
models have different values of the three geometric quantities appearing in these formulas,
namely the metric g7, the curvature R;;;; and the third derivative of the covariantly
holomorphic superpotential m;;;. However, the smallness of mm and |m|* is a property
which is expected to cover all of the cases in which these three geometric terms are not

extremely large.

On the other hand, in some models it is possible that these three geometric factors are
actually small, or some cancellation of negative contributions might take place, such that
the requirement that mi > |my]? and mi > mm may be relaxed, while dS minima are
preserved.
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