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ABSTRACT: A simple, KKLT-like construction of de Sitter vacua in type IIA string theory is
presented in an STU model with guidance from string theory U-duality and with an uplifting
anti-D6-brane. In four dimensions the model is reduced to N’ = 1 supergravity with three
chiral multiplets, namely S, T and U, as well as one nilpotent multiplet representing the
anti-D6-brane. We briefly discuss also a generalization with seven moduli.
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1 Introduction

Cosmological observations during the last two decades suggest that de Sitter and near de
Sitter four-dimensional spacetimes are consistent with the data indicating a current and early
universe acceleration. It is, however, notoriously difficult to derive de Sitter vacua from string
theory compactified to four dimensions, as well as directly in a standard linearly realized
four-dimensional supergravity.

It has been realized in [1] that, within type IIB string theory, de Sitter vacua can be
obtained in a two-step procedure. First, using stringy perturbative and non-perturbative
contributions to an effective superpotential, one can stabilize the volume of the extra dimensions
in a supersymmetric anti-de Sitter vacuum. Secondly, with the help of an anti-D3-brane, one
has to uplift this anti-de Sitter vacuum with a negative cosmological constant to a de Sitter



vacuum with a positive cosmological constant. In four-dimensional N = 1 supergravity, this
second step of the KKLT construction associated with the uplifting anti-D3-brane can be
conveniently described by a non-linearly realized supersymmetry and a nilpotent multiplet
[2-16].1 A detailed derivation of the KKLT construction of de Sitter vacua from ten dimensions
was presented recently in [17-21].

Moduli stabilization in type IIA string theory was developed in [22-25], but consequently
many no-go theorems for de Sitter minima were derived in [26-36]. A possibility of obtaining
metastable de Sitter vacua in type ITA supergravity was proposed in [37]. It was explained
there that, by adding pseudo-calibrated anti-Dp-branes wrapped on supersymmetric cycles,
one can generalize the effective four-dimensional supergravity derived from string theory in
a way that it includes a nilpotent multiplet. However, an explicit and simple KKLT-like
two-step construction in type IIA string theory has not been presented so far.

In fact, in [37] an example with an anti-D6-brane is presented which had the following
features. The starting point, before the introduction of the anti-D6-brane, is a de Sitter saddle
point in linearly realized supergravity. When the action of the anti-D6-brane was added to
the system, this saddle point became a de Sitter minimum in which all masses were positive.
However, such a de Sitter minimum lied in fact below the de Sitter saddle point, as one can
see in Fig. 1 of [37]. Therefore, this example presenting a stable local de Sitter vacuum in
type ITA string theory was of a different nature with respect to the KKLT construction. In
particular, the construction in [37] used only classical ingredients, making an exponentially
small cosmological constant unnatural.

Nevertheless, one can take the results of [37] as a clear indication of the universality of
the uplifting nature of pseudo-calibrated anti-Dp-branes wrapped on supersymmetric cycles.
The purpose of this paper is therefore to explore constructions involving non-perturbative
corrections, that give rise to anti-de Sitter vacua that can in turn be uplifted using anti-D6-
branes. Related constructions that reproduce de Sitter vacua in the Large Volume Scenario [38]
in type ITA have already appeared in [39]. Here we study constructions similar to the original
KKLT model that use only a six-flux and non-perturbative corrections to the superpotential
W and an anti-D6-brane uplift.

2 The STU model

We will employ a simple STU model in order to exemplify how an uplift produced by an
anti-D6-brane can be studied in a supergravity setup coming from type IIA string theory. The
purpose of this section is therefore to outline such a model and to describe its ingredients.

2.1 The setup

In our notation which follows [40, 41], S is the axio-dilaton, T is a complex structure modulus
and U is the volume (K&hler) modulus. We propose to use ten-dimensional supergravity com-

! Actually, in [13] an anti-D3-brane uplift is obtained by means of a vector multiplet and a new Fayet—Iliopoulos
D-term. Its relation to the nilpotent superfield formulation is discussed, too.



pactified on a calibrated manifold, like a Calabi-Yau manifold or a more general SU(3)-structure
manifold, such that the standard, linearly realized four-dimensional ' = 1 supergravity follows.
This construction will be supplemented by pseudo-calibrated D6-branes in order to facilitate
a KKLT-like uplift.

To make our example concrete, we follow [41] and consider a T%/(Zs x Zs) orbifold
compactification of type IIA string theory with the ten-dimensional metric

dsty = 772ds] + p(0 3 Goupdydy® + o3Gijdy'dy’) . (2.1)
Here the universal moduli p, 7 and o are identified as

p=Im(U) = (UOlG)é,
T= Im(S)iIm(T)% = €—¢M7 (2.2)
o = Im(S) ¢ Im(T)s,

while G5 and G;; correspond to the two independent three-cycles. To this construction we add
N1HT6 and N;);(), anti-D6-branes wrapping three-cycles. The first set of branes extends completely
along only one cycle, while the second set corresponds to branes wrapping directions along
both cycles, in all the possible combinations.?

After compactifying to four dimensions, the total scalar potential is given by the sum of
two pieces

Viot = V=1 + V5, (2.3)

where

Vo1 = e (¢"DiWD,W —3WW) ,  i={S,T,U}, (2.4)

is the standard N' = 1 supergravity scalar potential and

T 115
V56 = T (1 T T (7)20m (5) (25)

is the contribution of the anti-D6-branes. The quantities ] = 26A1N]‘:|T6 and pj = 2e42 Nﬁ
correspond to anti-D6-branes wrapped on two types of three cycles that are placed in potentially
warped regions with warp factors el and e*2, respectively.?

The Kahler and superpotential for our model are

K = —log (—i(S = S)) — 3log (—i(T = T)) — 3log (—-i(U - 1)) ,

(2.6)
W = f6 + Wnpa

2See section 2 of [41] for more detailed information on this setup.

3For strong warping, the warp factors could in principle depend on the moduli as was the case for the KKLT
scenario [42]. This could modify our models quantitatively but not qualitatively. To investigate this, it would
be interesting to extend the analysis of the anti-D3-brane in the KKLT scenario [16] to our type IIA setup with
anti-D6-branes.



where fg is the flux parameter for a six-flux and the non-perturbative part Wy, of the
superpotential is
Wip = A%, o, = {S,T,U}. (2.7)
i

We furthermore assume that all of the parameters fg, Ag, Ar, Ay, ag, ar and ay are real and
constant. Indeed, the parameters A; can, in principle, depend on the corresponding moduli
®; like A;(e®) ~ A;(0) + AL(0)e ™% 4 ... However, for e ™% < 1 only the constant
contribution will be significant. We will thus restrict our analysis to this case.

The non-perturbative part of the superpotential (2.7), involving S and 7', may arise from
gaugino-condensation. Indeed, this effect can be parameterized by introducing terms of the
form e~%/9% into the superpotential, where a = QW” and gy s is the coupling constant of the
Yang-Mills theory living on D6l or D6L. Tt is possible to identify the coupling constants with

the moduli S and T in the following way [41]:
1 1

S A

Alternatively, Euclidean D2-branes wrapping internal 3-cycles will likewise give rise to such

~ Im(T). (2.8)

terms with ag = ar = 27. The origin of the non-perturbative term depending on the modulus
U will be motivated in the following subsection.
Note that, in principle, the superpotential can have the more generic form

W = fo+ fuU + U + foU? + (hy + rrU) T + (hs +75U) S + Wy, (2.9)

with f, (p =0,2,4,6) arising from RR-fluxes, hg/7 from integrating the NSNS-flux over the
corresponding 3-cycles and rg/p from the curvature of the internal manifold. However, in
complete analogy with the KKLT setup, which has the superpotential Wi k17 = Wo+ A,e'*?,
we keep only fg and the non-perturbative exponents. Indeed, as we will discuss in appendix
A for some examples, the inclusion of flux contributions, with the exception of fg, seems to
prohibit our uplift procedure from working.

There are many no-go theorems forbidding de Sitter vacua when only certain sets of
classical ingredients are employed, see for example [26-36]. Recently it has been proposed that
the inclusion of anti-D6-branes [37, 43] or KK monopoles [44] can evade all no-go theorems
and lead to classical, metastable dS vacua. In this work we evade the no-go theorems by
including non-perturbative corrections that indeed turn out to be essential. Interestingly, our
approach in this paper does not require a non-vanishing Romans mass parameter fy 4 and
therefore, contrary to the other constructions, it does allow for a direct lift to M-theory.

It is known that the KKLT construction provides a well working mechanism of stabilizing
one complex modulus in an anti-de Sitter vacuum, assuming that the other moduli were
already stabilized by perturbative terms in the superpotential. We will show that the same

“In fact, one of the no-go theorems [28, 29] explicitly requires fo # 0 for the possibility of de Sitter vacua at
tree level.



mechanism is also working well in each of the three complex moduli directions in our type IIA
model. Indeed, we will follow a two-step procedure:

1. We stabilize all moduli using the six-flux and non-perturbative corrections. In this way
we obtain a stable and supersymmetric anti-de Sitter vacuum, in which all of the fields

have positive masses.

2. We then uplift the vacuum to de Sitter by adding anti-D6-branes, namely we introduce
the corresponding terms with coefficients 1 and po in the scalar potential, as seen in
equation (2.5).

We notice that, even if the first point is met, in general it is not guaranteed that the anti-de
Sitter vacuum can consistently be uplifted to de Sitter. Indeed, examples in which the uplift
fails are presented in the appendix A.2.

2.2 Satisfying stringy requirements

?

For a consistent embedding of our setup in type IIA string theory, we have to satisfy Gauss
law in the compact space. This amounts to satisfying the Bianchi identities for the RR fields
F,. In our case for a compactification without 1- and 5-forms, the only non-trivial Bianchi
identity is the tadpole condition for the D6-brane charges. It takes the form

/dF2 — FoH = —2Npg + Npg — ND76 (210)

and needs to be satisfied for each three-cycle independently. Since we are interested in very
simple models with only non-vanishing Fg flux, we have to satisfy the tadpole condition
by adding D6-branes. These will cancel the negative contributions from the O6-planes and
potential anti-D6-branes. In order to avoid instabilities due to the presence of D6-branes and
anti-D6-branes, one has to find an appropriate geometry, which might be non-trivial (see for
example [45]). Alternatively, together with non-perturbative effects from Euclidean D2-branes,
one could try to also include more exotic O6-planes, like anti-O6-planes [46] or O6T-planes.
In particular, anti-O6-planes have negative tension but opposite RR-charge and this means
that they would contribute to the tadpole condition in equation (2.10) with the same sign
as D6-branes. Since they are non-dynamical, one would not have to worry about related
instabilities. We leave a detailed study of this aspect to the future.

The RR- and NSNS-fluxes also have to be appropriately quantized. For us this means
in particular that the parameters f, in the superpotential in equation (2.9) can assume only
discrete values. We can easily set the fg parameter in equation (2.6) to any particular value
by rescaling the superpotential. Indeed, this will change fs and the A; in (2.7) but neither
the location nor the existence of the vacua.

Lastly, we would also like to ensure that higher order non-perturbative corrections, as well
as o/ and string loop corrections, are suppressed. The general form of the non-perturbative



corrections of the kind we are considering is a sum over all the instanton contributions
o
D Apelnai®s (2.11)
n=1

for all the fields i = {S,T,U}. However, in the non-perturbative superpotential in equation
(2.7), for each of the moduli we are keeping only the very first term in the sum (2.11). To
consistently neglect all the n > 1 terms it is necessary to require that a;Im(®;) > 1, Vi.
Additionally, in order to suppress o’ corrections and trust the supergravity approximation
we need to require the volume of the internal manifold to be large, i.e. vol(6) > 1. Since in

our setup vol(6) = (Im(U))?, we will demand Im(U) > 1. Finally, string loop corrections are
1

1672°

requirements can be satisfied by using scaling symmetries of the STU model.

expected to be suppressed if Im(S) > As we discuss in the next subsection, all of these

2.3 Scaling properties of the STU Model

From the previous discussion it seems that stringy requirements restrict the allowed positions
of the critical points of the scalar potential. However, it is known since the racetrack inflation
model [47] that one can obtain models with rescaled values of the critical points for different
choices of parameters, with respect to the original ones.

e In our STU model we notice that the kinetic terms are invariant under the rescaling
S — Mg, T — \T, U — \yU. (2.12)

Indeed the Kéhler potential changes only by an additive constant, namely — log(AsA3A3,),
which can be compensated with a Kéahler transformation. The resulting modification of
the superpotential, then, can then be taken into account by rescaling of the parameters
a;

a5—>a5/)\5, aT—>aT/)\T, aU—>aU/)\U, (2.13)
and by sending also {fg, A;} — (As)\?:’p)\?])%{fg,Ai}. Altogether, this implies that we
can in fact rescale the positions of the anti-de Sitter minima from one set of fields S, T

and U, associated to a given choice of a;, to another set with rescaled a; parameters. In
the case in which the uplifting term is present, we also need to rescale

pi—= iAo = 3N As (2.14)

and send the nilpotent chiral multiplet X — (/\SA%A?])%X . This last ingredient will be
introduced in section 6, in order to describe the anti-D6-brane contribution within an
effective supergravity theory.

e We also notice that an overall rescaling of the scalar potential, namely V' — ¢V, can be
achieved via

fo—cfe,  Ai—cAi, it ui, py— Pus. (2.15)



As a consequence of these transformations, we can change the parameters in the scalar potential
as well as the critical points at which the moduli are stabilized. The presence of the (anti-)de
Sitter minimum for the new parameters and critical points of the moduli is guaranteed by the
rescaling properties of the theory.

3 The U-exponent issue

Two possible explanations of the non-perturbative terms in the S and T directions were given
in [39], where it is argued that they can arise either from gaugino condensation on stacks of
D6-branes or from Euclidean D2-branes. We also commented on this fact previously, near
equation (2.8). On the other hand, the origin of the non-perturbative term in the volume
modulus U is less clear. We will discuss this issue in the present section.

We propose two arguments to justify the presence of exponential terms in U in the
non-perturbative superpotential.

1. The first reason is the concept/conjecture about string theory U-duality, which follows
from M-theory. String theory tends to have S-duality and T-duality, which at the level
of M-theory are expected to be combined into U-duality [48, 49]. This is known as a
discrete U-duality symmetry, E7(Z), which contains the S-duality and T-duality groups
as subgroup:

E7(Z) D SL(2,7Z) x O(6,6;7Z) (3.1)

To this observation, one can add that the supersymmetric STU black holes, which have
a symmetry known as string triality, have played a significant role in studies of the
non-perturbative states of string theory, see for example [50]. From this perspective it
appears natural to expect that the non-perturbative exponential terms in W are possible
not only in the S and T directions, but also in the U directions, since at the level of
M-theory these moduli appear on equal footing, see for example [51].

The problem, however, is to identify a specific mechanism in type IIA string theory
which is capable of producing the terms €V in W, in addition to €% and €977 as
we define in equation (2.7) above. We may suggest that such term may originate from
instantons, analogous to an Euclidean D3-brane wrapping a four-cycle in type IIB string
theory, [1, 52]. The problem here is that in the early studies of string theory instantons
very often string theory moduli were viewed as constants, without the need to stabilize
them as a function of the four-dimensional spacetime.

In type ITA string theory we may think about instantons from an Euclidean NS5-brane
wrapping a six-cycle. However, such instantons in the context of volume stabilization
were already studied in [53]. It was conjectured there that these can only lead to
corrections to the Kéhler potential, since the volume itself cannot be expressed as a
holomorphic function of the A/ = 1 chiral superfields. It would mean that NS5-brane



instantons are not useful for our purpose. However, the argument/conjecture in [53] is
not fully clear and might need to be revisited.

If we look at earlier treatment of Fivebrane Instantons in Sec. 4 of [54], we may notice
that the volume of the six-dimensional manifold is not present in their equations (4.1)
and (4.2). The instanton action of the Fivebrane is given by
_S, — L —ia
e =e 95 (3.2)
where a is the axion field. There is no six-dimensional volume in this expression and it is
not clear how to apply this to our situation. However, this form of the instanton action

shows clearly that one of the U-duality symmetries, namely the axion shift symmetry of
the theory which is part of the SL(2,R) symmetry,

a—a+ec, (3.3)

is broken unless ¢ = 27n, where n is an integer. This identification breaks the continuous
SL(2,R) symmetry down to its discrete SL(2,Z) subgroup.

Notice that the other parts of the Er(Z) U-duality symmetry mix our three moduli, S,
T and U, with some discrete parameters. To start with supergravity where we have
a continuous U-duality and to end up with a discrete one, we need exponential terms
involving axions, as we explained above, but we need them in all directions, including U.

In the past, it was not always easy to find evidences of stringy U-duality, but many
useful examples were found. Here, we will suggest to consider string wormholes [55]
as a possible evidence towards U-duality and a possible source of the non-perturbative
exponential for the modulus U. Indeed, consider the case in which the ten-dimensional
theory is reduced to four dimensions by compactification on a six-dimensional Calabi-Yau
(or other) manifold and assume that the ten-dimensional metric has a breathing mode,
related to the volume modulus of the six-dimensional space. In this setup, the wormhole
solution of [55] involves the radial axion and the breathing mode, which form a natural
complex variable Z = iU. In particular, the real part of Z(z) is related to a breathing
mode field and the imaginary part is an axion field. The kinetic term for the complex
field Z was identified in [55] in equation (15). In this equation, we take a more recent
standard normalization of the scalar curvature term in supergravity into account, with
1/2R as the Einstein term rather than R. Then the kinetic term of a modulus associated
with the stringy wormhole becomes

3 0207 (3.4)

(Z + Z)?

This supports the identification of Z with our volume modulus U. Thus, we find that
the stringy wormholes presented in [55] suggest evidence for the existence of a non-
perturbative exponential term in string theory associated with the modulus U, which



in type ITA string theory describes the volume modulus or, using the earlier name, the
breathing mode field of the ten-dimensional metric defined in equation (3) of [55].

This fact by itself does not tell us that such non-perturbative exponential terms in string
theory, associated with the modulus U, have to appear in the superpotential W. The
reasoning here which we suggest is the fact that in type IIA such exponential terms
in the S and in T directions do appear. Thus, if U-duality is indeed a property of
non-perturbative string theory, we can conclude that we do have a reasonable expectation
that non-perturbative exponential terms for the modulus U are possible in W. It would
be very nice to understand these issues much better.

In addition to this, open string worldsheet instantons in N = 1 orientifold compactifica-
tions of type IIA string theory are generically giving rise to the required exponential
terms in W that depend on the Kéhler moduli [56, 57].°

2. Our second reason to add an exponential in U to the superpotential is the following.
In type IIA string theory it was always difficult to find de Sitter vacua and even more
difficult to find de Sitter minima. We will show below that with the new ingredients:
non-perturbative exponents in W in all directions and uplifting anti-D6-branes, building
de Sitter vacua is not complicated anymore. In fact, our new cosmological model with
all three exponents, respecting the U-duality symmetry of string theory, works extremely
well for the purpose of getting anti-de Sitter minima, which in turn admit an uplifting
via anti-D6-branes, producing de Sitter minima.

We can start now with the analysis of the model presented in section 2. Indeed, in the
following two sections we will show how to construct de Sitter vacua in type ITA string theory.

4 Supersymmetric anti-de Sitter minimum

The first step in constructing a KKLT-like de Sitter vacuum is finding a stable anti-de Sitter
vacuum of the N' = 1 supergravity scalar potential (2.4). For stability in an anti-de Sitter
spacetime it is sufficient to satisfy the well-known Breitenlohner-Freedman bound, which
allows for negative mass values. However, in the present work we prefer to make a stronger
request and ask that all the masses are positive. Indeed, we believe that such a situation is
preferable in order to avoid instabilities at the step in which the anti-de Sitter vacuum will be
uplifted to de Sitter.

To find a supersymmetric anti-de Sitter vacuum it is sufficient to solve the F-term equations

D;W =0, i={ST,U}, (4.1)

using the Kéahler potential and the superpotential given in (2.6) and (2.7). It is a known
fact that these equations imply 0;V = 0 but, importantly, not the other way around. For

SWe are grateful to Ralph Blumenhagen for pointing this out to us.



simplicity, at the supersymmetric anti-de Sitter minimum we set the axions to zero, namely
those fields which receive a mass only through W,,,:

Re(S)=Re(T)=Re(U) =0. (4.2)

Such an assumption can be safely made as long as the masses in the vacuum are positive.
Denoting the positions of the remaining fields at the minimum with

Im (S) = S() N Im (T) = T() y Im (U) = U() y (43)

we solve the equations (4.1) for the pre-exponential factors A; and find an expression for them
in terms of the seven parameters of our choice:

AZ' = Ai(f(;,ag, ar,agy, S(),T(), U()) s 1= {S, T, U} (4.4)

Notice that we are keeping fg as a free parameter. This choice will make the flux quantization
straightforward to implement. Once the solution (4.4) is known, it is possible to check its
stability by calculating the canonically normalized mass matrix

at the minimum.% Notice that, upon substituting (4.4), the mass matrix becomes a function
of the aforementioned seven parameters: m;; = m;;(fs, as, ar, av, So, To, Up).

As discussed in subsection 2.2, there are some restrictions that we need to impose on the
general solution (4.4). A first requirement is related to the non-perturbative corrections. In
order to consistently neglect higher order instanton contributions in the superpotential, we will
choose the parameters a; such that e~%™(®) is smaller than O(10~1) for each i individually,
i.e. along each field direction. Second, in order to trust the supergravity approximation of
string theory, we have to require the volume of the internal manifold to be large. This will be
implemented by choosing a sufficiently large value for the parameter Uy, e.g. : Uy ~ O(10).
Finally, we will set the parameter Sy to be O(1), such that string loop corrections are
suppressed.

In the following we show that the class of stable and supersymmetric anti-de Sitter
solutions (4.4) with the aforementioned restrictions is not empty. In particular, we will give
two concrete examples of such solutions, corresponding to two different choices of the free
parameters, and we will check that the masses in the vacuum are all positive. Since we find
that the required properties hold, even for small variations of the parameters, we believe that
solutions of the type (4.4) have a sufficiently large parameter space and are not isolated points.

4.1 Two specific anti-de Sitter solutions

As we will show in this subsection, by giving two explicit examples, it is not hard to find some
set of parameters giving a solution of the type (4.4), with the desired properties. In both

SHere gij is obtained by rewriting the Kahler metric in real coordinates.

,10,



cases we set Sg = Tp = 1 for simplicity and we choose Uy = 10 in order to implement the large
volume approximation. We then are left with four parameters, namely fg and the triplet a;.
Two possible choices for them are given in the following table.

fe | as | ar | ay
Set 1| 1 3 3 0.5
Set2 | 2 [ 3.1 3.3 0.32

Table 1: The two sets of parameters that we investigated in detail. For both of them we find
a stable anti-de Sitter vacuum with positive masses.

Notice that the parameter ay is roughly one order of magnitude smaller than ag and
ar, but the restriction e~ < 107! is still satisfied since Uy is one order of magnitude
bigger than Sy and Ty. We can now check the stability of these two anti-de Sitter vacua by
calculating the masses for the various fields. The results are reported in table 2.

mi ms mg mj mg mé
Set1]4.36-107%]3.79-107% | 1.01-107% | 7.37-107° | 5.66-107° | 3.64-10~°

Set 21 1.19-1073 | 1.01-1073 | 2.43-107% | 220-107% | 1.64-10"% | 1.45-10~%

Table 2: The canonically normalized masses squared for both sets of parameters are all
positive.

With the parameters given in table 1, we get the values for the A; and e~%™™M®i  listed
below in table 3. To check whether or not these make sense, we need to evaluate A;e~%m®:,
which should be smaller than the tree level contribution of fg, as discussed in section 2.2. This

is the case for our values, which were indeed chosen to comply with these requirements.

AS AT AU efasImS efaTImT efaUImU
Set 1 | —1.70 | —5.11 | —22.6 || 0.0498 0.0498 0.00674
Set 2 | —3.43 | —11.8 | —11.0 || 0.0450 0.0369 0.0408

Table 3: The resulting values for the parameters in front of the exponentials.

We did not encounter any particular difficulties in finding an appropriate choice for the
parameters that yields an anti-de Sitter vacuum with the desired properties. For this reason,
it seems plausible that a considerably large parameter space of working models exists. We
notice that, when increasing the values of the parameters a;, the masses approach zero. This
is expected, since in the regime of large a; the non-perturbative corrections become small.

— 11 —



5 Uplifting anti-D6-branes and de Sitter minimum

In this section we show how the previously found anti-de Sitter vacua can be uplifted to de
Sitter. For this purpose, we add a new ingredient, namely a certain number of anti-D6-branes,
to the setup. We stress that, even if an anti-de Sitter vacuum with the desired properties is
found, it is not guaranteed that it can be always uplifted to de Sitter. On the contrary, in
many situations we looked at the uplift did not work, eventually giving one or more runaway
directions. The very fact that we can uplift the two anti-de Sitter vacua presented in the
previous section is a non-trivial result. Therefore, let us add two sets of anti-D6-branes

10°V 10°

5c .

051

Figure 1: 2D plots of the total scalar potential V., the anti-de Sitter potential V=1 and
the D6 potential Vig. The left column of plots corresponds to Set 1 while the right is Set 2.
Starting from the top we have the Im(.S) direction, followed by Im(7") and Im(U). In all plots
we see clearly the anti-de Sitter and de Sitter vacua as well as the uplift term.

wrapping two 3-cycles in the internal manifold to the setup, as described in section 2 with the
potential presented in equation (2.5). In section 6 we will explain how such an uplift term can
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be reproduced from a purely four-dimensional perspective by using a nilpotent chiral goldstino
multiplet.

By appropriately tuning the parameters p; and psa, it is possible to obtain de Sitter vacua
in which the cosmological constant can be arbitrary small and we could even match it with
the measured value at present. However, for convenience of the presentation, we choose the
following values:

Set1  pf=201-10"%  ui=521-1075,

5.1
Set 2 ui=p3=1.34-107°. (5.1)

After introducing the uplift, we need to check the stability of the resulting de Sitter vacua by
calculating the masses of the various fields. The results are reported in table 4.

mi ms mg mj mg mg
Set 1 |3.43-107%]3.38-107%|6.46-10"° | 540-107° | 4.15-1075 | 3.47-107°

Set 2 | 800-107%* | 740-107* | 1.76-107* | 1.63-107% | 1.61-10"% | 1.50-10~%

Table 4: The canonically normalized masses squared after the uplift remain positive. This
shows that the de Sitter vacua under investigation are metastable.

In figure 1, two-dimensional slices of the scalar potential are shown. The presence of
the anti-de Sitter and de Sitter vacua described so far is clearly visible. We notice that the
position of the minimum shifts after the uplift. This is expected since the addition of the
anti-D6-branes modifies the form of the scalar potential. However, the actual shift is only
up to a maximum of about 10%, which tells us that the masses are large enough to keep
the minimum almost in place. In figure 2, three-dimensional plots of the scalar potential are
shown for our Set 2 of parameters. Again, a metastable de Sitter minimum can clearly be
seen.
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Figure 2: 3D plots of the de Sitter potential for the Set 2 of parameters. We have the
following slices. Top: Im(S) and Im(7'), Middle: Im(S) and Im(U), Bottom: Im(U) and
Im(T"). In all three different plots the de Sitter minimum is clearly visible and it is metastable.

We also checked that the total scalar potential is extremized at the position of the de
Sitter vacuum, namely 0;Viot|min = 0. We indeed find that this is the case within the limits of
our numerical precision.
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Finally, we noticed that one can also get metastable de Sitter vacua by including an
anti-D6-brane uplift on either one of the two 3-cycles, i.e. by setting g3 = 0 or pus = 0. It
is also possible to use Euclidean D2-instantons instead of gaugino condensation on a stack
of D6-branes by setting ag = 27 and/or ap = 2w. Therefore, we see once more that this
construction is rather robust and does not depend on any particular choice of parameters.

5.1 Simplifying or generalizing the setup

So far, we have described an STU model with three independent moduli. Such a model can
be understood as a subcase of a more generic setup, with seven moduli, namely S, T1, 15,
T3, Uy, Uy and Us, in which we identified two sets of three moduli: T} = T, = T3 = T and
Uy, = Uy = Us = U. This corresponds to, for example, identifying three different tori of the
compactification manifold. Along this logic, we can also set T'= S and arrive at the following
simplified Kéhler potential and superpotential:

K = —4log (=i(S — §)) — 3log (—i(U — 0)) |

. . 5.2
W = fo + Agei®sS + AyeiavV (5:2)

It is now interesting to ask whether or not this also leads to a viable model for a de Sitter
uplift with anti-D6-branes. Indeed, it turns out that the construction of the model works out
exactly in the same way as described in the previous sections. Even more interestingly, the
same statement seems to be true for the generalization to the seven moduli case.

6 Four-dimensional action with S, T, U and a nilpotent multiplet

As it was first studied in [37] and as we already mentioned before in the present work, it is
possible to include the contribution from the anti-D6-branes to the scalar potential directly in
the four-dimensional Kéahler potential and superpotential. This is an example of the general
fact that a nilpotent chiral goldstino superfield X, that satisfies X2 = 0, can be used to include
the contributions from anti-Dp-branes into the potentials.

A chiral multiplet satisfying X? = 0 has only one physical degree of freedom: the scalar is
in fact given as a fermion bilinear. In superspace notation this means that the chiral superfield
X = ¢+ v/2x0 + F6?, with the superspace coordinates 6 and auxiliary field F', reduces to
X =x2/(2F) + v/2x0 + F6? upon enforcing the nilpotent constraint. An important feature
of this method is that, after the inclusion of a nilpotent multiplet, supersymmetry will be
realized non-linearly.

The general form of the Kahler potential and superpotential of four-dimensional N = 1
supergravity including a nilpotent chiral multiplet and coming from type ITA string theory is
given in equation (35) of [37] (the nilpotent multiplet is called S there). When specialized to
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our model, we find:

K =—log (-i(S - S)) — 3log (—i(T'—T))
XX

. —13
“log [ [<i(U — 0P - _ |, (61
o8 <[ i ) e Npg, (—1(S — 8)) + eA2 Ny (—i(T — T))) oy
W =fs + Agel®® + Apel®t?  Apel vV 42X .

Now we can calculate the scalar potential using the same formulas as before and implementing
the nilpotency of X at the end. Then, we compare the resulting expression with the one we
obtained from the uplift in (2.5). They turn out to be exactly equal once we identify

1 1
4 A 4 A
= gn'e Npg,, Hy = gi'e™ Npg,. (6.2)
This procedure has the obvious advantage that everything can be included in the four-
dimensional supergravity description and shows once more the usefulness of non-linear super-

gravity.

7 Seven Moduli Model

The STU-model studied so far is actually a simplified version of a more general type ITA model
with seven moduli, in which one identifies T}y =15 =T3 =T and Uy = Uy = U3 = U. In this
section, we give some details of the analysis we performed on the seven-moduli model. In
particular, following the same strategy as in the STU-model and by using anti-D6-branes, we
have been able to find again stable de Sitter vacua even in the completely non-isotropy case.

The seven-moduli model, before the uplift, is described by the following Kéhler potential
and superpotential:

3
K = —log (-i(5 - 9)) Zlog -T;) — Zlog (—i(U; = Ty)) ,

W = f6+ASelasS+ZA 1aTl Z_i_ZAU elaUZU'
=1 =1

Once uplifting anti-D6-branes are introduced, they contribute to the scalar potential with the
additional term

— pi 13

D6 — +
Im(Ty)Im(T2)Im(T5)  Im(S)Im(T2)Im(T3) (7.2)
N pd pi '

Tm(S) Im(T0) Im(Ty) | Im(S)Im(T0) Im(Ty)

where p1, po, ps and pg are parameters. Even in this case, the anti-D6-brane can be
implemented into supergravity by means of a nilpotent chiral multiplet X. The resulting
effective theory is a straightforward generalization of (6.1).
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The analysis of the models (7.1) proceeds as usual. First, we find a stable and supersym-
metric AdS vacuum, by solving the F-term equations D;W = 0. Again, we will give here only
two different sets of parameters corresponding to two distinct solutions, but the choice we
made is by no means exceptional. The parameters we used are reported in table 6.

So | Tio | Top | T30 | Uip | U2 | Usp
Set 1 1 1 1 10 10 10
Set 2 1.4 | 1.5 1.6 11 12 13

as aTy ar, QTy ay, ay, ays
Set1 | 3 3 3 3 0.5 0.5 0.5
Set2 (36| 3.7 | 38|39 |033|0.34|0.36

Table 5: T'wo choices of the parameters for the seven-moduli model. In addition, we take

fo = 1 for Set 1, while fs = 3/v/2 for Set 2.

The values of the parameters A; and of the exponentials e~%!™®: for these two solutions

are reported in the following table.

Ag Ar Ar, Ar, Ay, Ay, Ay,
Set 1 | —1.70 —1.70 —1.70 —1.70 —7.55 —7.55 —7.55
Set 2 | —6.09 —20.6 —31.4 —49.2 —6.22 —8.69 —13.8
o—asimS | g—ar,Iml1 | j—an,ImTy | —aryimTs | ,—au, ImUs | ,—au,lmls | ,—au, mUs
Set 1| 0.0499 0.0499 0.0499 0.0499 0.00674 0.00674 0.00674
Set 2 | 0.0273 0.00563 0.00335 0.00195 0.0265 0.0169 0.00928

Table 6: The values of A; and of e~%I™®i for the two anti-de Sitter solutions.

Then, we can uplift these vacua by introducing anti-D6-branes. We chose the following

values for the uplifting parameters.

Set 1:
Set 2:

pi=1.23-107°,
pi =5.52-107°,
After the uplift, we find stable de Sitter vacua. The squared masses for the seven-moduli

are reported in table 7, for both the de Sitter solutions.

py =1.23-107°,
g =3.45-107°,

,17,

py =3.11-107°,
pg = 3.68-107°,

i =214
g =3.94-

1076.
1076,
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Set 1 Set 2

m? | 3.33-107% | 3.95.1074
mi | 3.32-107% | 3.62-10~*
m2 | 1.55-107% | 1.98- 1074
mjz | 1.55-10* | 1.73-10~*
m2 | 1.44-107* | 1.58 - 1074
mg | 1.44-107* | 1.45-107*
m? | 6.31-1075 | 1.32-10*
mg | 4.99-1075 | 1.23- 1074
mg | 4.13-1075 | 1.10- 1074
mi | 4.13-1075 | 1.00- 1074
m | 4.11-1075 | 8.56-107°
m?, | 3.52-107° | 7.35-107°
m | 3.08-107° | 6.25-107°
mi, | 2.85-1075 | 5.50-107°

Table 7: The canonically normalized masses in the de Sitter vacuum for the seven-moduli
case.

Once more, we stress that no particular fine tuning is necessary also for the uplift
parameters. To conclude, we have shown that even in this more complicated seven-moduli
scenario, the analysis proceeds exactly in the same way as in the STU-model that we discussed
in detail in the previous sections.

8 Discussion

In the past, type ITA string theory was always viewed as a theory which is difficult to make
compatible with cosmology [26-36]. A great effort in this direction was based on a complicated
polynomial in S, T and U in the superpotential, as shown in equation (2.9), with four types
of fluxes and also terms associated with the curvature of the compact manifold. Even with all
these different contributions, it was not possible to easily produce de Sitter minima in type
ITA string theory compactified to four dimensions.
The first, unexpected, result of this paper is that instead of a complicated polynomial in
S, T and U in the superpotential, as shown in equation (2.9), one can use just a six-flux and
non-perturbative exponential terms, given in equations (2.6) and (2.7) to stabilize all moduli
in a supersymmetric anti-de Sitter minimum with all six mass eigenvalues positive. Thus,
with the standard Kéahler potential for the STU model in equation (2.6) and with the simple
superpotential
W = fo + Agel®% + Ape'9rT 4 AyelavV | (8.1)

it is easy to find parameters which lead to anti-de Sitter minima.
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The second result about the uplifting role of the anti-D6-brane was predicted in [37], but
not explicitly realized in the examples there. Here, we have found that the stable anti-de
Sitter minima obtained in the STU model in equation (2.6) are upliftable to stable de Sitter
minima, i.e. again we find all six mass matrix eigenvalues to be positive.

This situation has to be contrasted with our earlier efforts, which are reported in the
appendix. In particular, we studied STU models where in addition to six-flux and non-
perturbative corrections we engaged also other fluxes and curvature terms, like the ones shown
in equation (2.9). In these setups, we have typically encountered tachyons in the anti-de Sitter
extremum, which made these models unsuitable for uplifting. Another class of models with
two moduli is presented in appendix A.2. It was obtained from the STU model after the
identification S = T'. It had the feature that the U-dependence in W was polynomial, but in
the S-direction we engaged two exponents, as in [58]. As a result, we were able to find anti-de
Sitter minima in these models, however, the anti-D6-brane uplift failed again: we were not
able to find a stable de Sitter minimum for the complex U and the complex S directions.

In view of these failed examples it might sound puzzling as to why the simple model in
(8.1) works well, whereas other models with a significant polynomial dependence on the moduli
do not work. One explanation is that our new STU model can be qualified as (KKLT)3: we
took a KKLT model, which is known to work in the case of one complex modulus, and we
did the same with the other directions. Indeed, we just have a constant term and exponents
in each direction in the superpotential. We have also learned that the no-scale structure of
the Kahler potential is not really important here. In fact, our STU model leads to de Sitter
minima for cases with different contribution to K: —log(—i(S — S)), —3log(—i(T — T)) and
—3log(—i(U = U)).

In section 7, we have also checked that the same principle works for the seven-moduli
case, namely (KKLT)7, with

7 7
K== log(=i(® —®;)), W=fo+) A", (8.2)
i=1 =1

As we explained before, our STU model in equation (2.6) corresponds to the seven-moduli
case where 177 = Ty = T3 and U; = Uy = Uz are identified. Such a seven-moduli setup is
particularly interesting with regard to the CMB B-mode targets [59, 60].

It would also be interesting to go beyond the simple STU model and study some other
compactifications. In particular, the original GKP solution in type IIB [61] has been T-dualized
to find type ITA no-scale Minkowski vacua, in which some of the moduli are stabilized by
fluxes [62—64]. These solutions have a build in tadpole cancellation condition and provide a
natural starting point for the construction of dS vacua following the original KKLT approach,
that we adapted and generalized here in the type IIA setting.
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A How fluxes prohibit stable solutions

So far, in the literature (see for example [65] and references therein), tree-level contributions
were usually employed in order to find de Sitter vacua, while in the present work we studied
the opposite situation, which made the task much easier. For completeness, in this appendix
we want to describe some models we investigated but that ultimately did not allow for a
consistent uplift to de Sitter.

Our starting point was the same Kéhler potential we used in the main part of this work,

namely

K = —log (—i(S - 8)) —3log (—i(T = T)) — 3log (-i(U - U)) , (A1)

and the more general superpotential W = We,y + W, including flux parameters not only for
6-form flux, but also 4-, 2- and 0-form flux, as well as non-perturbative corrections:

Weert = fo + faU + foU? + foU? + (hp + reU) T + (hs +7sU) S and

) . ) A2
Wnp: AS€1a55+AT€1aTT+AU61aUU. ( )

Again, we assume that all parameters, f;, i =0,2,4,6, Ag, Ar, Ay and ag, ar, ay, are real.

Starting from these K and W we have a large amount of potential models. Indeed, our
choices include identifying moduli, setting flux parameters and/or non-perturbative corrections
to zero. It is important to note that one would expect that the non-perturbative contributions
should not be significant when compared to the tree level in W,e,s. This means we should set
A; =0,1={S,T,U}, if the corresponding modulus appears at tree level.

A.1 STU models with fluxes

If one follows the logic concerning the coexistence of tree level and non-perturbative contribu-
tions lined out above, it seems that one generally arrives at an anti-de Sitter critical point that
includes at least one tachyon. Indeed, while tuning the parameters does allow to modify the
masses, we were not able to get rid of all tachyons: at least one mass remained negative. On
one hand we were aware of the well-known no-go theorems in [27-29], that tell us that at least
fo and rg or rr should be non-vanishing in order to get a de Sitter vacuum. On the other

— 20 —



hand, since we evaded the no-go’s by including non-perturbative corrections, it is reasonable
to consider models that do not obey these conditions.

Since we were not able to arrive at a stable anti-de Sitter vacuum with all masses positive,
there is little hope that the uplift will lead to a stable de Sitter vacuum and thus we consider
this class of models to be not viable.

A.2 A KL-type of model

In [58] a modification of the non-perturbative terms was proposed where one includes two
different exponentials for the same modulus. For a general modulus Y this looks like

Ay ewY _ ByeltvY (A.3)

—ayIm(Y) needs to be small is

and it often improves the situation when the requirement that e
in the way of, for example, positive masses.
In fact in a model where we identified T' = S and introduced two exponentials in the

S-direction, meaning we had

K = —4log (—i(S = §)) — 3log (-i(U - U)) ,

¢ i i A4
W= f6 +f4U+f2U2 —l—foU5 —i—ASelaSS _Bsela557 ( )

we were able to find a supersymmetric, stable anti-de Sitter minimum with all masses positive.
Interestingly, solving for D;W = 0 actually sets fo = 0 and no solution exists where this is not
satisfied.
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Figure 3: The 3D plot for the anti-de Sitter scalar potential does exhibit a stable minimum.
However, after the uplift using a anti-D6-brane this will lead to a runaway.

Unlike for what happens in our working models presented in the main text, finding all
masses positive is not an easy task in this setup. Instead, we needed to tune the parameters
ag and bg quite a bit. Indeed, this was our reason to include two exponentials: only then were
large values for agIm(S) and bgIm(S) possible, which is a necessary requirement in order such
that higher order non-perturbative corrections can be neglected.

After introducing the uplift, as outlined in section 5, one is unable to find a stable de
Sitter vacuum. In figure 3 we show the anti-de Sitter scalar potential before the uplift. After
the uplift, in all examples which we studied, this leads to a runaway and no stable de Sitter
solution.

References

[1] S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, De Sitter vacua in string theory, Phys. Rev.
D68 (2003) 046005 [hep-th/0301240].

— 922 —


https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://arxiv.org/abs/hep-th/0301240

2]

[16]

[17]

[18]

[19]

[20]

S. Ferrara, R. Kallosh and A. Linde, Cosmology with Nilpotent Superfields, JHEP 10 (2014) 143
[1408.4096].

R. Kallosh and T. Wrase, Emergence of Spontaneously Broken Supersymmetry on an
Anti-D3-Brane in KKLT dS Vacua, JHEP 12 (2014) 117 [1411.1121].

E. A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and T. Wrase, D3 and dS, JHEP 05
(2015) 058 [1502.07627].

R. Kallosh, F. Quevedo and A. M. Uranga, String Theory Realizations of the Nilpotent Goldstino,
JHEP 12 (2015) 039 [1507.07556].

I. Garcia-Etxebarria, F. Quevedo and R. Valandro, Global String Embeddings for the Nilpotent
Goldstino, JHEP 02 (2016) 148 [1512.06926].

K. Dasgupta, M. Emelin and E. McDonough, Fermions on the antibrane: Higher order
interactions and spontaneously broken supersymmetry, Phys. Rev. D95 (2017) 026003
[1601.03409].

B. Vercnocke and T. Wrase, Constrained superfields from an anti-D3-brane in KKLT, JHEP 08
(2016) 132 [1605.03961].

R. Kallosh, B. Vercnocke and T. Wrase, String Theory Origin of Constrained Multiplets, JHEP
09 (2016) 063 [1606.09245].

1. Bandos, M. Heller, S. M. Kuzenko, L. Martucci and D. Sorokin, The Goldstino brane, the
constrained superfields and matter in N'= 1 supergravity, JHEP 11 (2016) 109 [1608.05908].

L. Aalsma, J. P. van der Schaar and B. Vercnocke, Constrained superfields on metastable
anti-D3-branes, JHEP 05 (2017) 089 [1703.05771].

M. P. Garcia del Moral, S. Parameswaran, N. Quiroz and 1. Zavala, Anti-D& branes and moduli in
non-linear supergravity, JHEP 10 (2017) 185 [1707.07059].

N. Cribiori, F. Farakos, M. Tournoy and A. van Proeyen, Fayet-Iliopoulos terms in supergravity
without gauged R-symmetry, JHEP 04 (2018) 032 [1712.08601].

L. Aalsma, M. Tournoy, J. P. Van Der Schaar and B. Vercnocke, Supersymmetric embedding of
antibrane polarization, Phys. Rev. D98 (2018) 086019 [1807.03303].

N. Cribiori, F. Farakos and M. Tournoy, Supersymmetric Born-Infeld actions and new
Fayet-Iliopoulos terms, JHEP 03 (2019) 050 [1811.08424].

N. Cribiori, C. Roupec, T. Wrase and Y. Yamada, Supersymmetric anti-D3-brane action in the
Kachru-Kallosh-Linde-Trivedi setup, Phys. Rev. D100 (2019) 066001 [1906.07727].

Y. Hamada, A. Hebecker, G. Shiu and P. Soler, On brane gaugino condensates in 10d, JHEP 04
(2019) 008 [1812.06097].

Y. Hamada, A. Hebecker, G. Shiu and P. Soler, Understanding KKLT from a 10d perspective,
JHEP 06 (2019) 019 [1902.01410].

F. Carta, J. Moritz and A. Westphal, Gaugino condensation and small uplifts in KKLT, JHEP
08 (2019) 141 [1902.01412].

F. F. Gautason, V. Van Hemelryck, T. Van Riet and G. Venken, A 10d view on the KKLT AdS
vacuum and uplifting, 1902.01415.

— 923 —


https://doi.org/10.1007/JHEP10(2014)143
https://arxiv.org/abs/1408.4096
https://doi.org/10.1007/JHEP12(2014)117
https://arxiv.org/abs/1411.1121
https://doi.org/10.1007/JHEP05(2015)058
https://doi.org/10.1007/JHEP05(2015)058
https://arxiv.org/abs/1502.07627
https://doi.org/10.1007/JHEP12(2015)039
https://arxiv.org/abs/1507.07556
https://doi.org/10.1007/JHEP02(2016)148
https://arxiv.org/abs/1512.06926
https://doi.org/10.1103/PhysRevD.95.026003
https://arxiv.org/abs/1601.03409
https://doi.org/10.1007/JHEP08(2016)132
https://doi.org/10.1007/JHEP08(2016)132
https://arxiv.org/abs/1605.03961
https://doi.org/10.1007/JHEP09(2016)063
https://doi.org/10.1007/JHEP09(2016)063
https://arxiv.org/abs/1606.09245
https://doi.org/10.1007/JHEP11(2016)109
https://arxiv.org/abs/1608.05908
https://doi.org/10.1007/JHEP05(2017)089
https://arxiv.org/abs/1703.05771
https://doi.org/10.1007/JHEP10(2017)185
https://arxiv.org/abs/1707.07059
https://doi.org/10.1007/JHEP04(2018)032
https://arxiv.org/abs/1712.08601
https://doi.org/10.1103/PhysRevD.98.086019
https://arxiv.org/abs/1807.03303
https://doi.org/10.1007/JHEP03(2019)050
https://arxiv.org/abs/1811.08424
https://doi.org/10.1103/PhysRevD.100.066001
https://arxiv.org/abs/1906.07727
https://doi.org/10.1007/JHEP04(2019)008
https://doi.org/10.1007/JHEP04(2019)008
https://arxiv.org/abs/1812.06097
https://doi.org/10.1007/JHEP06(2019)019
https://arxiv.org/abs/1902.01410
https://doi.org/10.1007/JHEP08(2019)141
https://doi.org/10.1007/JHEP08(2019)141
https://arxiv.org/abs/1902.01412
https://arxiv.org/abs/1902.01415

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

S. Kachru, M. Kim, L. McAllister and M. Zimet, de Sitter Vacua from Ten Dimensions,
1908.04788.

T. W. Grimm and J. Louis, The Effective action of type IIA Calabi- Yau orientifolds, Nucl. Phys.
B718 (2005) 153 [hep-th/0412277].

G. Villadoro and F. Zwirner, N=1 effective potential from dual type-IIA D6/06 orientifolds with
general fluzes, JHEP 06 (2005) 047 [hep-th/0503169].

O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type ITA moduli stabilization, JHEP 07
(2005) 066 [hep-th/0505160].

P. G. Camara, A. Font and L. E. Ibanez, Fluxes, moduli fizing and MSSM-like vacua in a simple
ITA orientifold, JHEP 09 (2005) 013 [hep-th/0506066].

R. Kallosh and M. Soroush, Issues in type ITA uplifting, JHEP 06 (2007) 041 [hep-th/0612057].

M. P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary Constraints on Type IIA
String Theory, JHEP 12 (2007) 095 [0711.2512].

S. S. Haque, G. Shiu, B. Underwood and T. Van Riet, Minimal simple de Sitter solutions, Phys.
Rev. D79 (2009) 086005 [0810.5328].

R. Flauger, S. Paban, D. Robbins and T. Wrase, Searching for slow-roll moduli inflation in
massive type ITA supergravity with metric fluzes, Phys. Rev. D79 (2009) 086011 [0812.3886].

U. H. Danielsson, S. S. Haque, G. Shiu and T. Van Riet, Towards Classical de Sitter Solutions in
String Theory, JHEP 09 (2009) 114 [0907.2041].

T. Wrase and M. Zagermann, On Classical de Sitter Vacua in String Theory, Fortsch. Phys. 58
(2010) 906 [1003.0029).

G. Shiu and Y. Sumitomo, Stability Constraints on Classical de Sitter Vacua, JHEP 09 (2011)
052 [1107.2925].

D. Junghans, Tachyons in Classical de Sitter Vacua, JHEP 06 (2016) 132 [1603.08939].

D. Andriot and J. Blaback, Refining the boundaries of the classical de Sitter landscape, JHEP 03
(2017) 102 [1609.00385].

D. Junghans and M. Zagermann, A Universal Tachyon in Nearly No-scale de Sitter
Compactifications, JHEP 07 (2018) 078 [1612.06847].

D. Andriot, On classical de Sitter and Minkowski solutions with intersecting branes, JHEP 03
(2018) 054 [1710.08886].

R. Kallosh and T. Wrase, dS Supergravity from 10d, Fortsch. Phys. 2018 (2018) 1800071
[1808.09427}

V. Balasubramanian, P. Berglund, J. P. Conlon and F. Quevedo, Systematics of moduli
stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058].

E. Palti, G. Tasinato and J. Ward, WEAKLY-coupled IIA Flux Compactifications, JHEP 06
(2008) 084 [0804.1248].

G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N=4 flux compactifications,
JHEP 03 (2011) 137 [1102.0239].

— 24 —


https://arxiv.org/abs/1908.04788
https://doi.org/10.1016/j.nuclphysb.2005.04.007
https://doi.org/10.1016/j.nuclphysb.2005.04.007
https://arxiv.org/abs/hep-th/0412277
https://doi.org/10.1088/1126-6708/2005/06/047
https://arxiv.org/abs/hep-th/0503169
https://doi.org/10.1088/1126-6708/2005/07/066
https://doi.org/10.1088/1126-6708/2005/07/066
https://arxiv.org/abs/hep-th/0505160
https://doi.org/10.1088/1126-6708/2005/09/013
https://arxiv.org/abs/hep-th/0506066
https://doi.org/10.1088/1126-6708/2007/06/041
https://arxiv.org/abs/hep-th/0612057
https://doi.org/10.1088/1126-6708/2007/12/095
https://arxiv.org/abs/0711.2512
https://doi.org/10.1103/PhysRevD.79.086005
https://doi.org/10.1103/PhysRevD.79.086005
https://arxiv.org/abs/0810.5328
https://doi.org/10.1103/PhysRevD.79.086011
https://arxiv.org/abs/0812.3886
https://doi.org/10.1088/1126-6708/2009/09/114
https://arxiv.org/abs/0907.2041
https://doi.org/10.1002/prop.201000053
https://doi.org/10.1002/prop.201000053
https://arxiv.org/abs/1003.0029
https://doi.org/10.1007/JHEP09(2011)052
https://doi.org/10.1007/JHEP09(2011)052
https://arxiv.org/abs/1107.2925
https://doi.org/10.1007/JHEP06(2016)132
https://arxiv.org/abs/1603.08939
https://doi.org/10.1007/JHEP03(2017)102, 10.1007/JHEP03(2018)083
https://doi.org/10.1007/JHEP03(2017)102, 10.1007/JHEP03(2018)083
https://arxiv.org/abs/1609.00385
https://doi.org/10.1007/JHEP07(2018)078
https://arxiv.org/abs/1612.06847
https://doi.org/10.1007/JHEP03(2018)054
https://doi.org/10.1007/JHEP03(2018)054
https://arxiv.org/abs/1710.08886
https://doi.org/10.1002/prop.201800071
https://arxiv.org/abs/1808.09427
https://doi.org/10.1088/1126-6708/2005/03/007
https://arxiv.org/abs/hep-th/0502058
https://doi.org/10.1088/1126-6708/2008/06/084
https://doi.org/10.1088/1126-6708/2008/06/084
https://arxiv.org/abs/0804.1248
https://doi.org/10.1007/JHEP03(2011)137
https://arxiv.org/abs/1102.0239

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[58]

U. Danielsson and G. Dibitetto, An alternative to anti-branes and O-planes?, JHEP 05 (2014)
013 [1312.5331].

S. Kachru, R. Kallosh, A. D. Linde, J. M. Maldacena, L. P. McAllister and S. P. Trivedi, Towards
inflation in string theory, JCAP 0310 (2003) 013 [hep-th/0308055].

A. Banlaki, A. Chowdhury, C. Roupec and T. Wrase, Scaling limits of dS vacua and the
swampland, JHEP 03 (2019) 065 [1811.07880].

J. Blaback, U. Danielsson and G. Dibitetto, A new light on the darkest corner of the landscape,
1810.11365.

A. Retolaza, A. M. Uranga and A. Westphal, Bifid Throats for Azion Monodromy Inflation,
JHEP 07 (2015) 099 [1504.02103|.

S. Kachru, J. Kumar and E. Silverstein, Orientifolds, RG flows, and closed string tachyons, Class.
Quant. Grav. 17 (2000) 1139 [hep-th/9907038].

J. J. Blanco-Pillado, C. P. Burgess, J. M. Cline, C. Escoda, M. Gomez-Reino, R. Kallosh et al.,
Racetrack inflation, JHEP 11 (2004) 063 [hep-th/0406230].

C. M. Hull and P. K. Townsend, Unity of superstring dualities, Nucl. Phys. B438 (1995) 109
[hep-th/9410167).

J. H. Schwarz, Lectures on superstring and M theory dualities: Given at ICTP Spring School and
at TASI Summer School, Nucl. Phys. Proc. Suppl. 55B (1997) 1 [hep-th/9607201].

K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova and W. K. Wong, STU black holes and string
triality, Phys. Rev. D54 (1996) 6293 [hep-th/9608059].

B. S. Acharya, K. Bobkov, G. L. Kane, P. Kumar and J. Shao, Fxplaining the Electroweak Scale
and Stabilizing Moduli in M Theory, Phys. Rev. D76 (2007) 126010 [hep-th/0701034].

E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B474 (1996) 343
[hep-th/9604030].

H. Looyestijn and S. Vandoren, On NS5-brane instantons and volume stabilization, JHEP 04
(2008) 024 [0801.3949].

K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string
theory, Nucl. Phys. B456 (1995) 130 [hep-th/9507158].

S. B. Giddings and A. Strominger, STRING WORMHOLES, Phys. Lett. B230 (1989) 46.

S. Kachru, S. H. Katz, A. E. Lawrence and J. McGreevy, Open string instantons and
superpotentials, Phys. Rev. D62 (2000) 026001 [hep-th/9912151].

R. Blumenhagen, M. Cvetic, S. Kachru and T. Weigand, D-Brane Instantons in Type II
Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [0902.3251].

R. Kallosh and A. D. Linde, Landscape, the scale of SUSY breaking, and inflation, JHEP 12
(2004) 004 [hep-th/0411011].

S. Ferrara and R. Kallosh, Seven-disk manifold, a-attractors, and B modes, Phys. Rev. D94
(2016) 126015 [1610.04163].

R. Kallosh, A. Linde, T. Wrase and Y. Yamada, Mazimal Supersymmetry and B-Mode Targets,
JHEP 04 (2017) 144 [1704.04829).

,25,


https://doi.org/10.1007/JHEP05(2014)013
https://doi.org/10.1007/JHEP05(2014)013
https://arxiv.org/abs/1312.5331
https://doi.org/10.1088/1475-7516/2003/10/013
https://arxiv.org/abs/hep-th/0308055
https://doi.org/10.1007/JHEP03(2019)065
https://arxiv.org/abs/1811.07880
https://arxiv.org/abs/1810.11365
https://doi.org/10.1007/JHEP07(2015)099
https://arxiv.org/abs/1504.02103
https://doi.org/10.1088/0264-9381/17/5/323
https://doi.org/10.1088/0264-9381/17/5/323
https://arxiv.org/abs/hep-th/9907038
https://doi.org/10.1088/1126-6708/2004/11/063
https://arxiv.org/abs/hep-th/0406230
https://doi.org/10.1016/0550-3213(94)00559-W
https://arxiv.org/abs/hep-th/9410167
https://doi.org/10.1016/S0920-5632(97)00070-4
https://arxiv.org/abs/hep-th/9607201
https://doi.org/10.1103/PhysRevD.54.6293
https://arxiv.org/abs/hep-th/9608059
https://doi.org/10.1103/PhysRevD.76.126010
https://arxiv.org/abs/hep-th/0701034
https://doi.org/10.1016/0550-3213(96)00283-0
https://arxiv.org/abs/hep-th/9604030
https://doi.org/10.1088/1126-6708/2008/04/024
https://doi.org/10.1088/1126-6708/2008/04/024
https://arxiv.org/abs/0801.3949
https://doi.org/10.1016/0550-3213(95)00487-1
https://arxiv.org/abs/hep-th/9507158
https://doi.org/10.1016/0370-2693(89)91651-1
https://doi.org/10.1103/PhysRevD.62.026001
https://arxiv.org/abs/hep-th/9912151
https://doi.org/10.1146/annurev.nucl.010909.083113
https://arxiv.org/abs/0902.3251
https://doi.org/10.1088/1126-6708/2004/12/004
https://doi.org/10.1088/1126-6708/2004/12/004
https://arxiv.org/abs/hep-th/0411011
https://doi.org/10.1103/PhysRevD.94.126015
https://doi.org/10.1103/PhysRevD.94.126015
https://arxiv.org/abs/1610.04163
https://doi.org/10.1007/JHEP04(2017)144
https://arxiv.org/abs/1704.04829

[61] S. B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluzes in string compactifications,
Phys. Rev. D66 (2002) 106006 [hep-th/0105097].

[62] S. Kachru, M. B. Schulz, P. K. Tripathy and S. P. Trivedi, New supersymmetric string
compactifications, JHEP 03 (2003) 061 [hep-th/0211182].

[63] M. Grana, R. Minasian, M. Petrini and A. Tomasiello, A Scan for new N=1 vacua on twisted
tori, JHEP 05 (2007) 031 [hep-th/0609124].

[64] S. Andriolo, G. Shiu, H. Triendl, T. Van Riet, G. Venken and G. Zoccarato, Compact G2
holonomy spaces from SU(3) structures, JHEP 03 (2019) 059 [1811.00063].

[65] F. Marchesano and J. Quirant, A Landscape of AdS Flux Vacua, 1908.11386.

— 26 —


https://doi.org/10.1103/PhysRevD.66.106006
https://arxiv.org/abs/hep-th/0105097
https://doi.org/10.1088/1126-6708/2003/03/061
https://arxiv.org/abs/hep-th/0211182
https://doi.org/10.1088/1126-6708/2007/05/031
https://arxiv.org/abs/hep-th/0609124
https://doi.org/10.1007/JHEP03(2019)059
https://arxiv.org/abs/1811.00063
https://arxiv.org/abs/1908.11386

	1 Introduction
	2  The STU model 
	2.1 The setup
	2.2 Satisfying stringy requirements
	2.3 Scaling properties of the STU Model

	3 The U-exponent issue
	4 Supersymmetric anti-de Sitter minimum
	4.1 Two specific anti-de Sitter solutions

	5  Uplifting anti-D6-branes and de Sitter minimum
	5.1 Simplifying or generalizing the setup

	6 Four-dimensional action with S, T, U and a nilpotent multiplet
	7  Seven Moduli Model
	8 Discussion
	A How fluxes prohibit stable solutions
	A.1 STU models with fluxes
	A.2 A KL-type of model


