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CMB targets after the latest Planck data release

Renata Kallosh!'* and Andrei Lindel: T

We show that a combination of the simplest a-attractors and KKLTI models related to Dp-brane
inflation covers most of the area in the (ns, r) space favored by Planck 2018. For a-attractor models,
there are discrete targets 3o = 1,2, ..., 7, predicting 7 different values of r = 1204/N2 in the range
1072 > r > 1073, In the small r limit, a-attractors and Dp-brane inflation models describe vertical
B-stripes in the (ns, ) space, with ns =1—3/N, 8 =2, g, %, %, %. A phenomenological description
of these models and their generalizations can be achieved in the context of pole inflation. Most of
the 1o area in the (ns, 7) space favored by Planck 2018 can be covered models with 8 = 2 and
B = 5/3. Future precision data on ns may help to discriminate between these models even if the
precision of the measurement of r is insufficient for the discovery of gravitational waves produced

during inflation.
I. INTRODUCTION

Current and future CMB missions, such as BI-
CEP2/Keck [1, 2], CMB-S4 [3-5], SO [6], LiteBIRD [7]
and PICO [8], may potentially detect the tensor to scalar
ratio at a level r = 5 - 1074(50) and improve constraints
on ns by a factor of three relative to Planck, to achieve
o(ns) = 0.0015 [8]. A thorough investigation of all phe-
nomenologically viable inflationary models that can ex-
plain the future CMB data is necessary for a correct in-
terpretation of the meaning of a detection/non-detection
of the primordial gravitational waves. It is therefore im-
portant to perform a careful investigation of the moti-
vation, phenomenological consistency, and predictions of
such models.
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FIG. 1. The figure from the latest CMB-S4 Science Case paper
[5]. The gray area shows predictions of the simplest a-attractor
model V ~ tanh? +5 for 47 < N < 57. The green area is for the

hilltop model with V' ~ 1 — (¢/M)%. This model is theoretically
inconsistent for M > 1, which is the only range of M where it
could match observational data [9].

Of course, one may argue that it is premature to plan
for the long journey when the goal is nearby, and the
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B-mode detection at > 1072 is possible. For example,
power-law axion monodromy potentials during inflation
have potentials proportional to ¢? with p < 2 [10-12].
These potentials were derived in string theory, future
data may validate them if B-modes are detected rela-
tively soon. Some of them, like V ~ ¢ and V ~ ¢?/3 are
shown in Fig. 1. The multi-field version of axion mon-
odromy models [13] may have smaller values of ng, which
would improve the agreement with the data. If these or
other models are validated by the B-mode searches that
are presently underway, such as BICEP2/Keck [2], this
early detection of the primordial gravitational waves will
be a tremendous success.

At present the error bars for the B-mode detection
are too large to come to any conclusion in this respect,
o(r) ~ 0.02 [2]. But during the next 5 - 10 years it will
become o (r) ~ 0.005, or even o (r) ~ 0.003, depending on
the level of delensing that can be achieved in the future
[1, 2]. Therefore the future missions will be needed to
clarify any results of the current B-mode experiments.

Another set of simple models which are inside the
Planck 2018 20 bounds on n, are a-attractor models,
see for example the gray stripe in Fig. 1, which shows
the prediction of the simplest T-model with potential
V ~ tanh? \/% for 47 < N < 57, and also Fig. 2 where
the red lines show predictions of the simplest E-model
with V' ~ (1 — e~ %“")2, and the yellow lines corre-
spond to the T-model V ~ tanh? \/%, for N = 50 and

N = 60.1 According to Planck 2018 [14], the a-attractor
models with a < 10 provide a good fit to the Planck
data. We show these models in Fig. 2 and Fig. 3.

However, one should be prepared to any outcome of
B-mode experiments, especially if we have legitimate tar-
gets at » < 1072, This is the main subject of our inves-
tigation. A short summary of some of our results can be
found in [15].

1 In this paper we use the Planck mass units Mp = 1.
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Planck 2018 and BK15. Red ellipses show the results taking into
account all available CMB-related data. This subset of the data
was used in Planck 2018 for evaluation of inflationary models. Blue
ellipses additionally take into account the data related to baryon
acoustic oscillations.

Our goal here is to discuss the simplest but physically
motivated models, where a single parameter, or a combi-
nation of two parameters, is sufficient to fit all presently
available data, and to identify some ‘future-safe’ models,
which have a fighting chance to describe and parametrize
all data to be obtained in the next one or two decades.
Note that a comprehensive analysis of many inflation-
ary models was performed in Encyclopedia Inflationaris
[16] and in the context of a CORE mission in [17], based
on Planck 2013 and 2015, respectively, and an update of
Encyclopedia Inflationaris based on Planck 2018 [14] is
in preparation. A more recent analysis of single-field in-
flationary models in [18] has emphasized the importance
of the decrease in the measurement uncertainty of the
scalar spectral index.

To explain our motivation in a more detailed way we
should note that it is possible to describe any set of
the 3 main parameters of inflationary perturbations, Ag,
ns and r, by tuning 3 parameters of a simple model

The starting point of our investigation are the results of
Planck 2018 [14]. In Table 5 in [14] there is a selection of
models which show the implications of data for the most
popular single-field slow-roll inflationary models, with a
small number of free parameters. Many of these models,
such as the monomial models with V' ~ ¢? or ¢?, are
already ruled out, but there are three classes of models
which provide a very good fit to the Planck data.

The first class of models includes the Starobinsky
model, the Higgs inflation model, the GL model, and
the large class of a-attractors substantially generalizing
all of these models [40-42]. We will describe these modes
in detail in Sections II, III. Predictions of a-attractors,
in the small « limit, are given by
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include T-models with potentials V ~
and E-models with potentials V' ~ (1 —

Examples

2n @
tanh Jea

e~ %“’)2”. The parameter « in these models has a nice
geometric interpretation in terms of the underlying hy-
perbolic geometry.

In general, o may take arbitrary values. However, in
section III we will discuss 7 especially interesting discrete



values 3a = 7,6,5,4,3,2,1, which are U-duality bench-
marks associated with M-theory, string theory, maximal
N = 8 supergravity. They correspond to 7 different val-
ues of 7 in the range 1072 < 7 < 1072, which can be
viewed as B-mode targets for the next round of CMB
experiments.
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FIG. 4. U-duality benchmarks in a-attractor inflationary models
originating from theories with maximal supersymmetry: M-theory,
string theory, maximal supergravity. Simplest T-model is shown on
the upper figure, simplest E-models are shown on the lower figure.
The 7-disk model [43, 44] allows 7 discrete values: 3ac = 7 shown by
ared line, 3a = 6 (orange), 3o = 5 (yellow), 3ac = 4 (green), 3aa = 3
(blue), 3 = 2 (purple) and 3a = 1 (black). All other values of
« originate from minimal supergravity models. Red ellipses show
the Planck 2018 results taking into account the CMB-related data
including BK14. This subset of the data was used in Planck 2018
for evaluation of inflationary models.

Some of these targets have other reasons to be exam-
ined. At 3a = 6 we would probe string theory fibre infla-
tion [45, 46], at 3a = 3 we would probe the Starobinsky
model [35], the Higgs inflationary model [36, 37], as well
as the conformal inflation model [47]. Finally, at 3o =1
we would probe the case of the maximal superconformal
symmetry, as explained in Appendix A. There is yet an-
other target, at o = 1/9, 7 ~ 5x10~%, which corresponds
to the GL model [38, 39] shown by a purple dot in in fig-
ure 2.2 from PICO [8]. This is a supergravity inflationary

model involving just a single superfield, which provided
the first example of chaotic inflation with a plateau po-
tential.

The second class of models favored by Planck 2018 in-
cludes the hilltop inflation models with potentials V' ~

1 — 25 4 .. [48, 49].

mk
V~1l-— % have the potential unbounded from below,
and describe the universe collapsing immediately after
inflation [9]. For m < 1, one can improve these mod-
els without modifying their inflationary predictions, but
such models predict too low ng for £k = 2 and 4, so they
are already ruled out. Meanwhile in the large m limit all

However, the simplest models

models V ~ 1— %, for any k, have universal predictions
for ng and r coinciding with the predictions of the sim-
ple model with a linear potential V' ~ ¢, as shown by the
dark blue line at the right upper part of the green area in
Fig. 1. According to [9], this universality, which could be
an attractive feature of hilltop inflation, is directly linked
to the fundamental inconsistency of these models.

This does not mean that the full class of hilltop mod-
els is ruled out. However, consistent generalizations of

the models V ~ 1 — % for m 2 10 typically have very
different predictions. One such model discussed in [9] is
relatively well motivated (the Coleman-Weinberg model),
but it does not seem to match the4P£anck data too well.
Another model, with V' ~ (1 — %) , provides a better
fit to the data, but it is not well motivated. Both of these
models in the large m limit predict much greater values
of r than the model V ~ 1 — %. Neither of them makes
predictions reproducing the green area, which was sup-
posed to describe hilltop inflation in the Planck, CMB-S4
and PICO figures. We will not discuss these models here,
and refer the readers to [9] for a detailed investigation of
hilltop inflation after Planck 2018.

The third class of models favored by Planck 2018 in-
cludes Dp-brane inflation models with V' ~ 1 — %: +...
[16, 50, 51], where k = 7—p, see section IV. Their simplest
versions with V ~ 1— ™ which were called BI (brane in-
flation) in [16], are inconsistent for the same reason as the
simplest hilltop models [9]. Consistent generalizations of

these models with potentials V' ~ (1 4+ %:)*1 = wﬁikmk
were proposed in [52] in the context of D3 brane infla-
tion. These models were generalized and called KKLTI

(KKLT inflation) in [16], and further developed in [51].

Predictions of a-attractors and four D-brane models
with p = 3, 4, 5, 6 (i.e. with k = 4, 3, 2, 1) can be
represented by five vertical attractor stripes with r < 1
and
B8 5 8 4 3
= 202, 2,2 2
N’ 3"5 3" 2 2)
As one can see from Fig. 5, they cover most of the 20
area in the (ng, r) space favored by Planck 2018. More-
over, to cover most of the 1o area favored by Planck 2018

B =2,

1—ng=



1F |
26 4
~
S
o0 3T 1
o
2
-4
_5 -

0.955 0.960 0.965 0.970 0.975 0.980
nS

51

logyo 7

1 1 1 1
0.955 0.960 0.965 0970 0.975  0.980
Ng

FIG. 5. A combined plot of the predictions of the simplest a-
attractor models and Dp-brane inflation for N = 50 and 60. From
left to right, we show predictions of T-models, E-models, Dp — Dp
brane inflation with p = 3,4,5,6. They are shown by yellow, red,
purple, green, orange and blue lines correspondingly. Red area
shown in the upper figure represents the Planck 2018 results taking
into account CMB-related data. Blue area shown in the lower figure
additionally takes into account the data related to BAO.

it is sufficient to consider a-attractors and two D-brane
models with p = 3 and 5 [9, 51].

Attractor S-stripes (2) shown in Fig. 5 appear not only
for a-attractors and D-brane models, but also in a gen-
eral pole inflation context introduced in [53], see also [54]
and sections II, V of this paper. Pole inflation describes
the cosmological attractors with the pole order ¢ in the
kinetic term of the inflaton field, see (3). In particular,
a-attractors are the pole inflaton models with ¢ = 2,
whereas D-brane inflation potentials (both KKLTT and
BI) with k£ = 4, 3, 2, 1 belong to the class of the pole
inflation potentials with ¢ = %, %, %, % respectively.
These models describe cosmological attractors which in
the small r limit predict 1 — n; = %, where 8 = ﬁ.

These results can be compared with the phenomeno-
logical parametrization of inflationary models based on

an assumption that in “natural” models of inflation one
may expect 1 —ng = %, where p is some phenomenolog-
ical parameter [3, 55, 56]. In our paper, we use [ instead
of p+1 to avoid confusion with p = 3,4,5,6 in Dp-brane
inflation, where the use of the letter p in Dp is a long

accepted standard.

As we will see, pole inflation provides a conve-
nient theoretical framework for the phenomenological
parametrization used in [3, 55, 56]. In particular, we will
show that the characteristic scale of inflation introduced
in [3] is directly related to the residue a, at the pole of the
inflaton kinetic term, see section VI. On the other hand,
our results obtained in section V show that we may not
need to have a large continuous range of parameters 3:
the predictions of the cosmological attractors described
by the two stripes 8 = 2 and 8 = 5/3 completely cover
the 1o region in the (ns, r) space favored by Planck 2018,
see Fig. 10.

While we are unaware of any specific targets for r in D-
brane inflation models and general pole inflation models
with g # 2, the search of the B-modes, in combination
with the improvement of the precision in the measure-
ments on ng, may be very important to distinguish dif-
ferent versions of these models from a-attractors and to
get a better understanding of the post-inflationary evo-
lution of the universe, including reheating, affecting the
required value of the e-foldings N in all of these models.?

II. INFLATIONARY a-ATTRACTOR MODELS

We would like to explain here that in general class of
a-attractor models the information about observables ng
and r is codified in their kinetic terms, under specific
conditions. For example, the models have to be in their
attractor regime, etc. The reason why «a-attractors have
specific benchmarks, to be discussed later, is this fact
that the observational data are defined by kinetic terms
of the theory. Kinetic terms for scalars are often defined
by the symmetries of the theory, which may be broken by
the potential. For example, the kinetic terms of scalars
in maximal N' = 8 supergravity is defined by U-duality
symmetry, Er ).

It is convenient to explain this feature using the ‘pole
inflation’ version of a-attractors [53].

2 The standard assumption is that N can be in the range from 50 to
60 (or from 47 to 57), but this range can be more broad, depend-
ing on the mechanism of reheating. For example, for quintessen-
tial a-attractors with gravitational reheating, the required value
of the e-foldings N can be greater than in more conventional
models by AN ~ 10, which increases the predicted value of ng
by about 0.006 [57]. This additional increase can be greater than
the Planck 1o error bar for ns.



A. «-attractors and pole inflation: E-models

There are many different ways to introduce a-
attractors. In the context of this paper, it is useful to
start with the pole interpretation of these models [53]

L= Lan—V=—1%

5oa @0 V(). @)

Here the pole of order ¢ is at p = 0 and the residue at
the pole is aq. If the potential is regular near the pole,

V=Vl—-cp+...), c>0, (4)
one finds that inflation occurs in a small vicinity of the
pole. Inflationary predictions ng and r depend on ¢, on
aq, on the number of e-foldings NV, and, in general, on
the constant c¢ in the potential.

As an example, let us first consider the simplest and

the most important case ¢ = 2, with as = 3“. In that

case one can make a change of variables p = e™V 5o
The theory (3) after the transformation represents a
canonical field ¢ with action

L= L=V =500 -V VE)L ()

We called these models E-models, because of the expo-

nential change of variables p = e~V ¢ Inflation occurs
at large positive values of the canonically normalized field
, where the potential is given by

V:Vo(lfcef\/g“"Jr...). (6)

It approaches the plateau from below. The canonical ki-
netic term —2(9¢)? is invariant under the constant shift
of the inflaton, and the constant ¢ can be absorbed into a
redefinition of the exponential term. Therefore the the-

ory at 370‘90 > 1 is equivalent to the one with a potential

V=1(l-eVE2t.). (7)
But this is not a good potential because it is unbounded
from below at ¢ — —oo. The simplest example of a con-
sistent inflationary potential in this context is provided
by V = V4(1 — p)2. In the canonical variables it is given
by

V:VO(l—e— %”v)Q. (8)

For a = 1 this potential coincides with the potential of
the Starobinsky model. The main difference is that the
action of the original Starobinsky model by design rep-
resents the Einstein action with an additional term R2?,
with a very large coefficient in front of it. But if one is al-
lowed to add the large term ~ R?, one may also consider
general terms F'(R), which may change the structure of

the potential. The situation is similar to what happens
in the theory of a scalar field m?¢?/2 if one replaces it
by an arbitrary potential V(¢): Inflation remains pos-
sible for an appropriate choice of V(¢), but inflationary
predictions depend on the choice of the potential. This
is related to the so-called n problem.

Meanwhile in the context of a-attractors, the asymp-
totic expression for any potential V' (p) growing but re-
maining non-singular at p — 0 continues to be given by
equation (7). This explain stability of the predictions of
a-attractors with respect to considerable modifications
of V(p), including possible quantum corrections [58].

Some part of this stability is a general property of the
theories (3), but the possibility to absorb the constant ¢
in (4) into a shift of the field ¢ is a unique property of
the models with ¢ = 2. In this case the residue of the
pole, introduced in [53], ap = 3¢ = |72 r has a geomet-
ric origin. It was explained in [59, 60] that the Kahlzer

curvature of the underlying moduli space is Rk = — 35

One can also absorb the constant ¢ in the potential
into p for an arbitrary ¢

p=cp. (9)
In such case
1 (0p)?
£:—§aq pq) —Vo(l—cp+...) (10)
1, o, (0p)? .
__acq 2aq7( ﬁq) —%(1—p+.) .

For ¢ # 2 removing ¢ from the potential results in the
rescaling of the residue of the pole

ag = c?a, . (11)

Thus, we could have started with a potential with ¢ =1
and a redefined residue of the pole, as shown in eq. (11)

1 (9p)° )
E:—iaq 5 —Vo(l—=p+...). (12)
Note that only in ¢ = 2 case where we have the hyperbohc
geometry, the residue of the pole ay = 3% = as

2 R
has a geometric meaning, and we see that ren‘loxjf{ilng the
constant ¢ from the potential does not change the residue.
In all other cases the original value a, or the rescaled
one G, are not associated with any geometry and can be
used for the purpose of a convenient description of the
inflationary predictions of these models.

Explicit expressions for the spectral index ng, the
tensor-to-scalar ratio r, and the amplitude of perturba-
tions Ay in leading order in 1/N at small o were derived
in [53] for ¢ # 1. We use the following notation here for
the order of the pole ¢ in eq. (3)

N _q
q_ﬁa 5—ﬁ7 (13)



and we find

5 rzsaqﬁ*l(ﬂ];l)ﬂ, a,=20

i = 3wy
(14
Thus, at ¢ = 2, all dependence on the parameter in the
potential ¢ in (3) in r disappears without the need to
redefine the residue of the pole, it is by preserving the
one defined by geometry! For ¢ = 6 =2, as = 37", these
predictions are

2 12c N?

ng =1 N rsz, A37va1871'2. (15)
where V,, = % This means that for sufficiently small «
and large N all 8 = ¢ = 2 «a-attractor models have the
same values of ns and a value of  which is independent on
the potential, and depends only on . We will explain in
Section III that these 8 = 2 a-attractor models originate
fro;n the hyperbolic geometry, with the curvature R =
—3a [P9)-

As long as the prediction n, =1 — % provides a good
fit to the Planck 2018 data, the single parameter that
we need to adjust is Vi, ~ 107'°, which provides the
amplitude of perturbations consistent with Planck nor-
malization. And then, by adjusting o we can describe
any value of r found by the B-mode searches.

Meanwhile the situation with ¢ # 2 is slightly more
complicated. The values of r and A, for ¢ # 2 depend
on ¢, i.e. on the functional form of the potential, see (9),
(11), (14), even though this dependence can be absorbed
into the field redefinition. For a more detailed discussion
of related issues see [53, 54] and section V.

B. T-models

From this perspective it may be important that the
original a-attractor models derivable from supergravity
always have the pole of order ¢ = 2, due to hyperbolic
geometry [40-44, 60].

’hyperbolic geometry = q=2 ‘ (16)

Prior to discussing it, it is important to introduce yet
another class of a-attractors, T-models. The simplest
example is given by the theory

1R (00
Ve e T

Here ¢(x) is the scalar field, the inflaton. Once again,
the kinetic term is singular, but now the singularity is
at |¢| = v6a. Instead of the variable ¢, one can use
a canonically normalized field ¢ by solving the equation

99 = §¢, which yields ¢ = v6a tanh “&. The full

theory, in terms of the canonical variables, becomes

L B0 o tann 2
\/jg,c_2 5 V(Wtah@). (18)

Asymptotic value of the potential at large ¢ > 0 is given
by

V(p) = Vo —2V6a V] e Via? | (19)

Here Vo = V(¢)|,—5a is the height of the plateau po-
tential, and Vi = 9,V|[,_ 55 As in the E-models, the
coefficient 2v/6a V{j in front of the exponent can be ab-
sorbed into a redefinition (shift) of the field . Therefore
all inflationary predictions of this theory in the regime
with e"V3:? < 1 are determined only by two parame-
ters, V5 and a.

The amplitude of inflationary perturbations A in
these models matches the Planck normalization for Yo
10719, For the simplest model V = 7"72¢2, belonging to
a class of T-models with the potential symmetric with
respect to ¢ — —¢, one finds

~

V = 3m%atanh? —— . (20)

V6o
Then the condition 2 ~ 1070 reads m ~ 0.6 x 107°.

We should note that even though the predictions for
large N and small « are rather well defined, the value of
N itself does depend on the mechanism of reheating and
post-inflationary equation of state, which is reflected in
the uncertainty of the choice between N ~ 50 and N ~
60. Also, predictions of different versions of a-attractors
converge to their target (15) in a slightly different way. In
Fig. 2 one can see that the predictions of the simplest T-
models and E-models coincide in the two opposite limits,
a — 0 and at @ — oo. Meanwhile for intermediate values
of a the E-models predict somewhat higher values of ng.
As a result, a combination of these two models cover a
significant part of the range of ng and r favored by Planck
2018, see Figs. 2 and 3.

As we already mentioned, predictions of the models E-
models (8) for « = 1 coincide with the predictions of the
Starobinsky model. Similarly, the predictions of the T-
model with the potential V' ~ tanh? \/% for & = 1 nearly
coincide with the predictions of the Higgs inflation. How-
ever, unlike Higgs inflation, predictions of a-attractors at
small are rather stable with respect to the change of the
potential V(¢) and allow much greater flexibility with
respect to the tensor to scalar ratio r by changing «. In
this respect, a-attractors are more “future-safe”, allow-
ing to describe and parametrize various outcomes of the
B-mode searches.

On the other hand, predictions of «-attractors at
greater values of a and r allow some variability, see the
behavior of ns and r at all « for N = 60 in Fig. 6, taken
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FIG. 6. Values of ns and r for simplest T-models

models (8). Here n = %, %, %, 1, 3,2,3, starting fro
increasing to the left, with the purple line for n = 1

dle, for N = 60 [61]. The predictions of these models interpolate
between the predictions of various polynomial models 2™ at very
large a and the vertical attractor line ng = 1 — 2/N for a < 1.
Note that E-models tend to have slightly higher values of ns than

T-models at r > 1073,

from [61]. At o 2 1 they are not given by the attrac-
tor equation (15), they approach the predictions of the
potential V' ~ 2" in the limit o — oc. If inflationary
B-modes are detected above 7 ~ 1073 and precision in
ns improves, one may use these choices of a-attractor

models to find the best one.

One of the important features of a-attractors is the
fact that they depend on one parameter «, and therefore
this parameter can be, eventually, inferred from the ob-
servational data, or better bounds on it can be obtained.
Consider, for example, the description of the Tibet’s ex-
periment probing primordial gravitational waves, see Fig.
7 here, in [62, 63]. They show the scheduled ALiCPT sen-
sitivity of the measurements on r superposing it with the
theoretical predictions of three simple inflationary mod-
els.

Note that the simple targets here, below the predic-
tions of the most studied string theory axion monodromy
model [10-12] shown by the dashed green line, are given
for T-models with for r ~ 2.3 - 1072 with & = 7 and
r~ 1072 with o = 3.

C. Geometry of a-attractors

Geometric features of inflationary a-attractors origi-
nate from supergravity [59, 60]. In case of N' = 1 su-
pergravity we can start with the Kahler potential in the
foom K = —3aln(l — ZZ), ZZ < 1, and the metric in

20 constraints on r

2020 2021 2022 2023 2024 2025
Year

FIG. 7. The black and red curve represents the ALiCPT 20 limits
on r where in the simulations they have considered residual fore-
ground of 1% (black) and 10% (red). The black dashed line is the
limit from BICEP/Keck Array and Planck collaborations, 2016.
The yellow dashed line shows the already excluded ¢? model, the
green dashed line shows the predictions from the axion monodromy
model with potential ©3/2 [12]. The blue dashed and dotted lines
are for the simplest a-attractor model tanh? \/% [40] with a =7,

«a = 3, respectively. The number of e-folds is taken to be N = 60.

the line element ds?> = g,5dZdZ is

3o

9zz = 8282K(Z, Z) = m .

(21)

The meaning of ‘scalars are coordinates of the moduli
space’ is the following: we identify the kinetic terms of
the complex scalar Z from the moduli space metric (21):

- 0207 3a
— o = > Z Z = o E——— = —
Ek:zn gZZa 0 304(1 — ZZ)2, 9z2 (1 — ZZ)2
(22)

and the part of the action, gravity + kinetic term for
scalars, in units Mp =1, is
1 3a

L=-R— ———_0707 . 23
2 (1-227)? (23)
Once we have a geometry and a metric, we can define the
curvature which in our case is a negative constant

> 2
R = 977020;(loggyz) = —— (24)

3«

Since the corresponding geometry is a Kahler geometry,
977 = 020;K(Z,Z), the curvature Ry = —% is known
as a Kahler geometry curvature.

We now switch from Cartesian coordinates Z = x + iy

to polar coordinates on the disk, with some rescaling

L re'? . (25)

V3a

The moduli space metric becomes

T +iy =

dr? + r2d6?

ds® = g,,d2d7Z =
9zz (1 — g%)z

,  r?<3a  (26)



FIG. 8. A computer generated picture by D. Dunham inspired by
Escher’s picture Circle Limit III presents a Poincaré disk model of
a hyperbolic geometry. The Md&bius symmetry of the geometry is
illustrated here via a configuration of fishes.

where the original geometric constraint ZZ < 1 becomes
r?2 < 3a. Here r has a clear interpretation of the radial
coordinate of the disk, whereas 6 is an angular coordinate
of the disk. The boundary cycle

r? = 3a (27)

is not part of the disk model of the hyperbolic plane, it
is called absolute.

The Poincaré disk is often depicted in Escher pictures,
see Fig. 8 here and [60] for more details on this. The ra-
dius of the Poincaré disk, which we call Rggcher, is defined
as

Réscher = 30{, (28)
since the radial coordinate r is constrained by
2 2
re < REscher : (29)

REgscher is related to the Kéahler curvature as

2
Rk =—5—"". (30)
RIQEscher
In particular for 3 = 1 we recover the unit size Poincaré
disk with R%_, .. = 3a =1 and metric (26):

dz? + dy? dr? + r2do?
0 s0mt = g P = T (31)
(=g~ (-
The scalar kinetic term in (22) in polar variables becomes
o 2 2 o0 2
— Lpin = M . (32)
(1-53)?

At 6=0, which corresponds to a stabilization of the angu-
lar variable during inflation, this is a slice of the Escher’s
picture, at fixed angular direction. It is useful to compare
this kinetic term for the scalars with the expression in
(17) where r = % and in (18) where ¢ = v/6a tanh \/%,
so that ¢ is a standard canonical field of a single-field in-
flationary model.

IIT. FROM THE MICROSCOPIC THEORY OF
a-ATTRACTORS TO B-MODE TARGETS

A. N =1 d=4 supergravity predictions for
observables in a-attractors

Supergravity moduli space must be described by the
Kahler geometry, it is a necessary condition for super-
symmetry. A class of N' = 1 supergravities beyond the
general class of a-attractors is based on a Kéhler poten-
tial

K=-3aln(l-22), a>0. (33)
The corresponding metric defining the kinetic term for
scalars is a second derivative of the K&hler potential
Jy7 =020; K = (1:”#)2 Thus microscopic inflationary
models of a-attractors are based on hyperbolic geometry.
This means that the theory has a kinetic term for com-
plex scalars, which are coordinates of the Poincaré disk,
Z7 < 1, the kinetic term is of the form shown in eq.
(22). And as explained above, we can define the Kéahler
curvature as R = g?20705(log g, 7) which in our case is

a negative constant, R = —%. The scalars in these mod-
els are coordinates of the coset space Sg(d’)l). For related
supergravity models of inflation in no-scale supergravity

see [64] and references therein.

The potential is usually a function of the disk coordi-
nate Z and is chosen so that the inflationary trajectory
is stabilized at Z = Z, # = 0, and the real part of the
complex scalar Z is an inflaton.

>_ ¢ 2
Z =7 =—— =tanh — | 34
V3a V6o (34)
C ot 0207
and the kinetic term _30‘(1—22)2 vz becomes
1 (0¢)? 1

- 5( _ ¢2) = —5(‘9@)2 . (35)

6a

Microscopically we have a clearly identified fundamen-
tal parameter: a negative curvature of the hyperbolic

moduli space, R = —z=. T-models have a potential

3a

Vi ~ (ZZ)™ ~ tanh®" Nt

E-models are simpler when the half -plane variables

T = % are used. The moduli space metric in this case
and the kinetic term are
drdr - oToT
ds? =30——=— = gppdTdT, Ly = —30—=—,
SR DER kin = 30005
(36)

and the potential is

2n

Vie ~ (1= T)?" ~ (1 e —¢> . @37



The kinetic terms in disk or half-plane variables with
an arbitrary o have a simple embedding into minimal
N =1 d=4 supergravity as shown in [40-42]. Therefore
these models compatible with the data are also compat-
ible with A/ = 1 supergravity, so in this context minimal
N = 1 supergravity implies
2 12«
N’ N2 7
where « can take arbitrary values. In particular, A" =1

supergravity is compatible with any value of » < 7-1072,
which is the current experimental bound on r.

(38)

ng~1—

B. U-duality benchmarks

A U-duality symmetry is a fundamental symmetry in
M-theory, string theory, maximal d=4 N = 8 supergrav-
ity. In d=4 N = 8 supergravity U-duality E7(7y symme-
try acts on scalars and on vectors of the theory.® It was
observed in [43] that one can start with M-theory in d=11
with its maximal supersymmetry, N' = 1, and compact-
ify this theory on a specific Go manifold. Alternatively,
one can start with type IIB string theory in d=10 with
its maximal supersymmetry, N' = 2, and compactify it
on a T? x T? x T? manifold, or one can start directly
in d=4 with its maximal supersymmetry, N’ = 8. In all
these cases one ends up with a theory which depends on
7 complex scalar fields, each being a coordinate of the
hyperbolic disk,

7

0Z;0Z;
[:kin - ; m . (39)

For each disk we have 3a; = 1. As long as all maxi-
mal supersymmetry is preserved, there is no potential in
ungauged supergravity.

The origin of the 7 hyperbolic disks is easiest to ex-
plain in the case of N = 8 supergravity in d=4, which
has a duality symmetry FE7(7). For M-theory and string
theory the explanation is available in [43]. N/ = 8 super-
gravity in d=4, has duality symmetry E77). When the
maximal A/ = 8 supersymmetry is broken to the minimal
N =1 supersymmetry, one finds a decomposition into 7
hyperbolic disks,

E;nR D [SL(2,R)]” . (40)

since [SL(2,R)]7 is a subgroup of E7(7y. The correspond-
ing kinetic terms are shown in eq. (39). To view this set

3 This U-duality symmetry together with maximal supersymmetry
is believed to be the reason why in perturbative N = 8 super-
gravity the UV properties are better than expected naively, and
N > 4 supergravities may be even UV finite, if U-duality sym-
metry has no anomalies, see for example [65-67].

of kinetic terms as a viable model of a single-field infla-
tion, one can proceed by cutting/identifying some of the
moduli, so that the resulting kinetic term of a single disk
becomes

0ZdZ

Lyin = —30— = ,
K “0-z2)y

3a=17,6,5,4,3,2,1, (41)
replacing 7 units size disks, each with 3a; = 1, as pro-
posed in [43].

Later, in [44] a dynamical mechanism, which we
called ‘disk merger’, was proposed, replacing the cut-
ting/identifying moduli procedure suggested in [43]. The
choice of the potential (Kéhler and superpotential) de-
pending on 7 complex scalars was found with unbroken
minimal A" = 1 supersymmetry, which dynamically ei-
ther removes some of the disks, or identifies some of them
with each other. All possibilities were listed, and the re-
sult confirmed earlier kinematic choices made in [43] and
shown in Fig. 4.

All models with the potentials for the inflaton field pre-
served the kinetic terms originating from the 7 disks of
M-theory /string theory/maximal supergravity. The re-
sult is a single disk kinetic term, which can only take the
7 values above as shown in (41). Now we have to re-
member that all observables in a-attractors depend only
on the kinetic geometric terms for the scalars, not on a
choice of the inflaton potential. Therefore, the predic-
tions from maximal supersymmetry spontaneously bro-
ken to minimal supersymmetry depend on the choice of
N so that our 7 benchmarks are

2 28 24 20 16 12 8 4

N TZW’W7W’F’F’W’W'
(42)

ng=1-—

When our models are derived from maximal super-
symmetry, spontaneously broken to the minimal one,
we do not have anything above o = 7/3 and below
a = 1/3. The a-attractor realizations of the potential
of the Starobinsky model, and of the Higgs inflation po-
tential, is an intermediate one, a = 3/3 = 1.

All 7 cases, which we show in Fig. 4 are testable and
falsifiable if B-modes are not detected at r > 10~ since
for o = 1/3 and the largest value of N = 60 we find

4 4 _3
= m . r = @ ~ 10 . (43)
The earliest U-duality benchmark starts with the 7 disk
merger, with 3o = 7 at smallest value of N = 50
28 28
=Nzt T e
Therefore these models compatible with the data are also
compatible with N' = 8 supergravity (and M-theory and
string theory) have the following property: U-duality and
maximal supersymmetry lead to

r

~1072. (44)

1073<r<1072. (45)



In the range 1072 < r < 1072 there are U-duality
benchmarks for the B-mode detection, based on the sim-
plest T-model which is shown by two yellow straight lines
on ng — r plot in the Fig. 4. Note that all a-attractor
models in the small « limit asymptotically give the same
predictions as the simplest T-model, as we show in Fig. 6.
The region 1073 < r < 1072 is still pre-asymptotic. The
spread of lines shown in Fig. 6 in the left panel is small in
this region for more general T-models. However, in the
right panel in Fig. 6, one can see that the general class
of E-models has a certain shift towards higher values of
ns, as compared to the T-models.

Therefore a possible detection of the B-modes in the
range 1073 < r < 1072 to the right of the two yellow
lines in Fig. 4 could be associated with the predictions
of the E-models in this region, as we show in Fig. 6. For
these E-models, U-duality origin of the kinetic term is
intact. The slight shift of the benchmarks to the right
originates from the slight dependence of the predictions
of the theory on the choice of the potential, since we
are in the region where E-models have not reached the
attractor point yet.

C. Special benchmarks

All 3ae = 7,6,5,4,3,2,1 are on equal footing with re-
gard to the origin of their kinetic term from theories with
maximal supersymmetry. However, few of these have an
additional meaning.

e the predictions of 3a = 6, = 2 theory are known
to be the same as in the string theory model of fibre
inflation [45, 46]. This is the second from the top
benchmark in Fig. 4.

e the predictions of 3a = 3, « = 1 theory are known
to be the same as in Starobinsky model [35] and
in Higgs inflation model [36, 37] and in conformal
inflation model [47]. This is the third from the
bottom benchmark in Fig. 4.

e The case 3a =2, a = % has the interesting prop-
erty that the moduli space curvature |R| = 2= = 1.
It is also one of the possible candidates for the char-
acteristic scale of the potential [68]. This is the

second from the bottom benchmark in Fig. 4.

e The case 3a = 1, a = % is special. First, it is
the last one in the 7-disk story [43, 44] which fol-
lows from U-duality and maximal supersymmetry:
M-theory in d=11, string theory in d=10, and max-
imal supergravity in d=4. Moreover, kinetic term

with a = %, a unit disk geometry, can also be de-

rived from the maximal superconformal theory in

d=4, as we explained in [60] and in Appendix C

of this paper. This is the last from the bottom

benchmark in Fig. 4.
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IV. D-BRANE INFLATION MODELS

The string theory origin of D-brane inflation model is
associated with the KKLMMT model [52], where D3-
brane-D3-brane interaction was studied in the context of
the volume modulus stabilization. Earlier proposals for
D-brane inflation relevant to our current discussion were

made in [69-71].
D-brane inflation models have a potential [14]

mkE

Vberane ~1- @ + - (46)
Here the ellipsis stay for higher order terms. These mod-
els were studied in detail in [16, 72] and in Planck 2013
[50]. In the small m limit, predictions of these models for
ns do not depend on m and on the omitted higher order
terms, i.e. they exhibit an attractor behavior:

2k+1
l— ——. 4
Nk+2 (47)

Nng =

D-brane inflation models with the potential ignoring
higher order terms are called BI models (from brane in-
flation) [16].

mF

g .

This potential is unbounded from below, so it does not
describe a consistent cosmological evolution.

Ver ~1— (48)

Consistent generalizations of these models were pro-
posed in [52] in the context of D3 brane inflation. These
models were generalized and called KKLTI (KKLT in-
flation) in [16] and further developed in [51]. They have
potentials

k mk

-1
Vkkrrr ~ ) , k=T7—p. (49)

¥

mk b ( + oF
The derivation of these potentials following [16, 52] in-
volves the inverse harmonic function for Dp-brane po-
tentials in Euclidean 9 — p dimensions. Note that the
Dp-brane potentials of this type can contribute to the 3d
vacuum-like potential energy density and lead to inflation
only for p > 3, i.e. for k < 4.

The cosmological evolution of these models was de-
scribed in detail in [16, 72], and studied more recently
in [9, 51]. At very large m they have the same predic-
tions as the models with V' ~ ©* but at m < 1 and and
r < 1073 they have the same predictions (47) as the BI
models. For example, for a quartic KKLTI model, k = 4,
8= g for D3-branes with p = 3, we find for small m that

5 Ams
ng~1—— TR = .
(BN)=

(50)



For the quadratic KKLTI model, k = 2, § = % for D5-
branes with p = 5, we find for small m that

3 N\@m

D ~~ 1
2N’ " N3 (51)

ng~1-—

51

PP oo B r—————
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FIG. 9. Predictions of a-attractors and KKLTI models. Two yel-
low lines are for the quadratic T-model of a-attractors at N = 50
and N = 60. Two purple lines are for the quartic KKLTI model,
two orange lines show the predictions of the quadratic KKLTI
model. Predictions of all of these models converge to their asymp-
totic values for 7 < 103 indicated by the blue dashed line.

As one can see from Fig. 9, quartic and quadratic ver-
sions of D-brane inflation in Fig. 9 with a non-singular
potential bounded from below are among the simplest
string theory motivated models to be tested by the B-
mode searches. Their predictions for ns in the small m
limit are positioned to the right of the a-attractors in the
ns—r plane. At small r, the combination of these models
describes (8 stripes with § = 2, 27 and % A combination
of these three classes of models almost completely covers
the area in the (ng, r) space favored by Planck 2018 at
the 1o level.

There are no specific predictions for the value of the pa-
rameter m in these models. If anything, presently avail-
able string theory examples of this kind have m < 1 and
r ~ 107% — 10710, as suggested in the discussion of the
KKLMMT model [52] in Appendix C, and in examples in
[16]. However, we are at early stages of development of
such models, so it might be possible to have greater val-
ues of r in such models. There are no obvious constraints
on m and r in the string theory motivated supergravity
versions of these models [51]. Moreover, the potentials
described in this section can be obtained in other way.

For example, a quadratic model V ~ > Was pro-

Ceimrs
posed in [73] as an example of a flattening mechanism
due to the inflaton interactions with heavy scalar fields.
In the next section we will show that similar potentials
can be also obtained in the context of pole inflation; these
models do not impose any constraints on the values of m

and r.
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V. GENERAL DP-BRANE AND POLE
INFLATION MODELS WITH Q # 2

A. Pole inflation models with g # 2

The hyperbolic two-dimensional geometry naturally
leads to a pole inflation with a pole of order ¢ = 2 and
the residue of the pole defined by the Kdhler curvature of
the complex manifold. Meanwhile, the one dimensional
slice of the geometric scalar manifold, where the sinflaton
partner of the inflaton is stabilized, corresponds to a one
dimensional Riemannian manifold of the form

la
ds® = gpp(p)dp® = dp® ,  gpp(p) = 5;3 . (52)
which we encounter in the pole inflation models of Sec.
II. In the case that ¢ = 2 the Kdhler manifold metric of
the Poincaré disk

3a
7= =5 53
97z (1 — ZZ)2 ( )
is given in eq. (22) and therefore ay = 37“ is associated
with the Ké&hler manifold curvature ao = —Rg. The

same curvature is obtained using the half-plane coordi-
nates with the metric

3o

9r1T = m ) (54)

as given in eq. (36).

Note that a one-dimensional Riemannian manifold of
the kind shown in eq. (52) does not have an intrin-
sic curvature, it is always locally isometric to a straight
line. Indeed, a local change of variables from p to ¢
leads to a trivial metric g,, = 1.* Formally, the Rie-
mann curvature tensor has a single component Rii11,
but this element is required to be equal to 0 due to the
anti-symmetric property of the Riemann curvature ten-
sor R;ji; under the interchange of the indices.

Therefore interpretation of the single field pole in-
flation with ¢ # 2 may rise some questions because
there is no geometric structure associated with the one-
dimensional pole-type metric. Nevertheless this frame-
work is quite useful since it provides a simple unified
interpretation of a rather large class of cosmological at-
tractors, including hilltop models and D-brane inflation.

Following our discussion in section II, we start with
the Lagrangian (3),

ﬁzﬁkin—V:—E%(

5 oa @0 = V(). (59)

4 Note that globally such a change of variables may not be well
defined, which may lead to confusing situations, some of which
will be discussed below.



For ¢ = 2 this theory describes a-attractors. Consider
now the case ¢ # 2. Then the canonical variable ¢ is
related to p > 0 as follows:

:V2—@¢
2,/aq

The absolute value appears because the equation to be
solved is :I:p?% = ¢, with one of the signs, and the so-

lution for p must be positive. However, already at that
stage the situation becomes somewhat delicate.

2
2—q

(56)

For ¢ = 2, the solution of the corresponding equation

is p = e V¥ = e~V This transforms the field
p in the original range of values 0 < p < 400 into a
canonical field ¢ defined in the full unconstrained range
—00 < ¢ < +00. By solving equations of motion using ¢
variables, one can never reach infinitely large values of ¢
within finite time. Therefore the same should be true for
the field p: neither the values of p = 400 nor the point
p = 0 can be reached within finite time.

Meanwhile for ¢ < 2, the canonical field ¢ can reach
the point ¢ = 0 within finite time, and therefore the point
p = 0 is also accessible. This means that the coordinate
system covering 0 < p < oo is incomplete; see [74] for a
related discussion.

This is not necessarily a problem. For example, for

%. Therefore the potential V' (p)
becomes a certain function of or %, which can be easily
continued to ¢ < 0, thus making it possible to consider
the full range of values —oco < ¢ < +oo. This simple
procedure works for ¢ = 2 F 1/n, resulting in p ~ @*2".
One can use a similar procedure for general values of
q < 2, as long as it does not lead to anomalous behavior
of V(p) at ¢ = 0.

q = 3/2 one has p =

For ¢ > 2, the transformation to canonical variables
makes the change p = 0 — ¢ = 400 and p = +00 —
@ = 0. Thus the field cannot reach the singularity at
p = 0, which would require an infinitely long journey for
the canonical field ¢, but it can reach p = +o00, which is,
therefore, not a true physical infinity. A potential V(p)
slowly growing when p approaches 0 looks like an infi-
nite plateau at large ¢, but one should check whether
the potential has an acceptable behavior (e.g. whether
it is differentiable) at ¢ = 0, prior to performing its con-
tinuation to ¢ < 0.

Let us consider some simple potentials, and check how
they look in canonical variables.

Wm=%0—wﬂ=H60—(iyi>7 (57)

where

2V (58)

m=———.
2 — gl
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In particular, for ¢ = 1 one has a quadratic hilltop poten-
tial V = V(1 — p?/m?). For ¢ = 3/2 one has a quartic
hilltop potential V = Vy(1 — ¢*/m?*). For ¢ = 5/2 one
has a quartic BI D-brane potential V = V(1 — m*/¢?).
For ¢ = 3 one had a quadratic BI D-brane potential
V = Vo(1—m?/$?). As we already discussed, all of these
potentials are unbounded from below, and therefore they
should be discarded. Nevertheless, it is remarkable that
all of them can be easily obtained from the simple linear
potential Vo(1 — ¢ p) in the context of pole inflation.

One can improve these potentials and make them pos-
itively definite by doing the same as we did in the deriva-
tion of the Starobinsky model, or the E-models in the
context of a-attractors. One can introduce the positively
defined potential

2

V@)val—cm2=:W6<1—(i)2q>2- (59)

For ¢ = 1 one has the usual Higgs-type potential,

%
V:%@—Eg. (60)
which leads to inflation for m > 1 [75-77], but its predic-
tions do not provide a particularly good fit to the Planck
2018 data. For ¢ = 3/2 one has the squared hilltop po-

tential introduced in our previous paper [9],

%

V:%@—Ea. (61)
This theory provides a good fit to the Planck 2018 data
[9], but previously it did not have any physical or math-
ematical motivation. Now we see that this model is a
generalization of the E-models with ¢ = 2 for pole infla-
tion with ¢ = 3/2. However, the attractor nature of this
model is not helpful here since this hilltop model in the
attractor regime with m < 1 predicts too small values
of ns. This model is compatible with the Planck 2018
data only for m > 1, where its predictions are very dif-
ferent from the predictions of the simple hilltop inflation
models V = Vy(1 — p*/m*) [9].

For ¢ = 7/4 one has the squared hilltop potential in-
troduced in our previous paper [9].

%
This theory provides only a marginal fit to the Planck
2018 data in the attractor regime with m < 1, where it
predicts ny, = 1 — % This value is smaller than the

a-attractor prediction ng =1 — % by about 0.006.

One may study a more complicated possibility:

2
Vip) = Voeo? = Vpe (£) 77 (63)
These potentials, in different notation, were used in
[3, 55]. Note that these functions for ¢ < 2 look like



the hilltop models with potentials that do not have a
minimum, but instead become super-exponentially small
at large ¢. They might be useful for a description of
quintessential inflation. For ¢ > 2, these functions de-
scribe plateau potentials with an extremely flat mini-
mum, such that the mass of the field vanishes at ¢ = 0.

Until now, we assumed that when the field approaches
p = 0, the potential grows linearly. However, one may
also consider the models where the potential V' (p) is sym-
metric with respect to the change p — —p. This would
mean that the simplest potential V'(p) at small p is

2, .2
vun_vu1—8p%+”,:>%(1—<igzq)+

(64)
For example, for ¢ = 1 one has a quartic hilltop potential
V = Vo(1—p*/m?). Meanwhile in the theory (57) with a
linear term in the potential V' (p) the resulting potential
for ¢ = 1 was V = Vy(1 — »?/m?). This illustrates a
distinctive feature of the attractors with ¢ # 2. For a-
attractors (¢ = 2), elimination of the linear term in the
potential V' (p) changes «, and therefore r, but it does
not affect ns. Meanwhile for ¢ # 2 elimination of the
linear term in the potential V' (p) changes ns, moving the
predictions from one 3 stripe to another.

B. D-brane inflation and pole inflation with ¢ > 2

By construction, all pole inflation models are attrac-
tors. Here we will consider a subclass of these models
closely related to D-brane inflation. As we already men-
tioned, a simplest representative of this class is the quar-
tic BI inflation potential V' = V(1 — m?*/¢*), which cor-
respond to the theory with ¢ = 5/2. This potential is
unbounded from below, but one can consider some of its
consistent generalizations, such as the potential

Yo :»V0<1+(:)""2“’)_1. (65)

Vip) = Trep

For ¢ = 5/2 one finds the KKLTI Ds-brane inflation
potential
m4)*1 @

4
V:V(l LD R VA
0 +<,04 05Tt

(66)

For ¢ = 8/3 one finds the KKLTI Dy-brane inflation
potential

mS -1 s03
V=r(1+%) =Vogo—s 67
oll+ S 0 2 m? (67)
For ¢ = 3 one finds the KKLTI Ds-brane inflation po-
tential

2 2

m\ 1 %
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Finally, for ¢ = 4 we have the KKLTI Dg-brane inflation
potential

Vo -2
p+m

V:VO(H—%)A: (69)

The potentials (67) and (69) could seem unphysical be-
cause they become negative and are unbounded from be-
low for ¢ < 0. However, this is not a real problem. In
the D-brane context, ¢ is a measure of the distance be-
tween the branes, which is positive. One can describe
the theory by a potential symmetric with respect to the
change ¢ — —¢, using the procedure discussed in the
previous subsection, i.e. effectively replacing ¢ by the

positive distance 4/ ¢?.

Now we are using several different parameters, closely
related to each other: p, k, 8 and q. Relations between
these parameters for the 4 different Dp-brane models dis-
cussed above is explained in the Table 1:

o[ ]aq]

5/3(5/2
8/5/8/3
3/2| 3
4/3| 4

OO W
=N W

TABLE I. Relation between the parameters p, k, 3 and q for the
Dp-brane inflation models.

Thus the potentials mentioned above have two inde-
pendent interpretations, as the D-brane inflation poten-
tials, and as potentials of the cosmological attractors in
the context of the pole inflation. This can be very useful
for interpretation of the models with m > 1. Indeed, as
we already mentioned, the parameter m in D-brane in-
flation typically is very small, m < 1, see [16, 52, 72].
Meanwhile there is no such constraint for general pole
inflation models. In other words, the models (66)-(69)
represent, consistent pole inflation attractors for any m,
independently of their string theory interpretation. Note
that these potentials are symmetric with respect to the
change ¢ — —¢, and in this sense they are similar to
the T-models of a-attractors. The predictions of this set
of models, in combination with the simplest T-models
and E-models of a-attractors, are shown in Fig. 5 in the
Introduction.

Another set of consistent pole inflation models is de-
scribed by the potential (59) with ¢ > 2, generalizing
E-models. In particular, for ¢ = 5/2 one has a potential

4.2
m
V:Vo(l——4> . (70)
4
It is singular at ¢ = 0, and it has a minimum at ¢ = m.
It is instructive to show the predictions of the simplest
a-attractors (¢ = 2) simultaneously with the predictions
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FIG. 10. Predictions of pole inflation models with ¢ = 2 (a-
attractors) and ¢ = 5/2. Two yellow lines shows predictions of the
simplest T-models for N = 50, 60. Two red lines show predictions
of the simplest E-models. Two purple lines are for the quartic
KKLTT model (66), two magenta lines show the predictions of the
model (70). The set of these simple ¢ = 2 and ¢ = 5/2 attractors
completely covers the sweet spot of the Planck 2018 data.

of the ¢ = 5/2 attractors which we just discussed, see
Fig. 10. As one can see from this figure, the set of the
simplest ¢ = 2 and ¢ = 5/2 attractors completely covers
the dark blue 1o area of the Planck 2018 data for n, and
.

Moreover, a combination of the T-models (yellow lines)
and the model (70) (magenta lines) is already sufficient
to cover the sweet spot of the Planck data. In the small r
limit, any single choice of the family of a-attractors (T or
E-models) in combination with any family of attractors
with ¢ = 5/2 form two stripes which are sufficient to
describe the presently available data.

VI. ON PHENOMENOLOGICAL
PARAMETRIZATIONS OF THE CMB DATA

In our investigation we were trying to identify the
simplest inflationary models motivated by fundamental
physics, which would provide a good match to the Planck
data. All models that we have analyzed in this paper
have an unusual property: in the small r limit, their pre-
dictions form vertical 8 stripes in the (ng, ) space,

8
N
Few years ago, this property could seem very unusual in-
deed. Among dozens of models analyzed in Encyclopedia
Inflationaris [16], which was written prior to the inven-
tion of a-attractors, only two models possess this prop-
erty: hilltop inflation and D-brane inflation, in the limit
m < 1.

1—n,= (71)

An alternative approach developed in [3, 55, 56] is to be

14

agnostic with respect to fundamental physics, postulate
the equation (71),

B
1—nS(N):N , (72)
up to sub-leading corrections in an expansion in 1/N, and
then study consequences of this hypothesis. (We replaced
p+ 1 used in this equation in [3] by 8 to avoid confusion
with the Dp-brane notation.)

The proposal made in [3, 56] is to solve eq. (72). The
solution of this equation for the slow-roll parameter € is

-1 1
2N 1+ (N/Nog)f=1 "

e(N) = (73)

Here Noq is an integration constant. If Noq < N, which
is expected at sufficiently small r, this can be brought to
the form

(B - :[)]Veﬁq_1

€(N) = =5, (74)

which yields

8(5 - 1) ]Veﬂqi1

T(Na/BaNeq) = 16€(N) = NB

(75)
Since the models with ng(N) = 1—% studied in [3, 55, 56]
can be also obtained in the context of pole inflation, we
can compare the expression for r obtained in eq. (14),

1 (B—1\5
r = 8an 1 (T) y (76)
with the expression for r(N, 8, Neq) in (75). This gives
a
Nog = (8= Dag = 24 (77)
Here 8 = ﬁ, ¢ is the order of the pole in eq. (3), and a,

is the residue, redefined to absorb the arbitrary constant
c in the potential, as explained in section 2.

Thus, the theory of pole inflation provides a simple
interpretation of the important but somewhat obscure
parameter Noq in terms of the residue at the pole.

The next step in [3] is the introduction of the charac-
teristic scale of inflationary potential M. The definition
the characteristic scale implicitly used in [3] is®

4
M? = o1 [ Nea
However, Eq. (78) is a definition of a new concept, the
characteristic scale M, which was not explained and ex-
plicitly presented in [3]. It is interesting therefore that

(78)

5 . N
° R. Flauger, private communication



Eq. (78), up to the coefficient 4, has a simple interpre-
tation in terms of pole inflation. Indeed, Eq. (78), in
combination with (77), yields

M?=4a, . (79)

Note that the choice of the coefficient 4 in 78) and in
front of a, in equation (79) is just a matter of preference
or convenience. Since all equations in this section apply
to models with arbitrary values of ¢ and (3, it may be
better to use a definition of the characteristic scale moti-
vated ;)by the theory of a-attractors, where § = ¢ = 2 and

o

aq = 5. If instead of M? = 4 a, we identify the square

of the characteristic scale M? with the pole residue a,

M? =aq (80)
we will have
M=y (s1)

and the asymptotic behavior of the inflaton potential for
all a-attractors will be described by a simple intuitively
appealing equation

V=vo(1-e ol M) (82)

Another advantage of this definition, used in [15, 68], is
that M would have a simple interpretation in terms of
the negative curvature of the hyperbolic moduli space

59, 60]
R=-M72. (83)

Now we have an additional argument in favor of this def-
inition: M? would coincide with the residue at the pole
aq.

Yet another physically interesting definition would be
M? = 2a, , (84)

which would imply
M =+3a . (85)

In that case, M would be given by the radius of the Es-
cher disc discussed in section ITC. At N = 60 it would
mean that for a-attractors the Planckian value of this
characteristic scale is r = % ~ 1073. This value of
r would also coincide with the lowest U-duality bench-
mark for a-attractors, see the black line in Fig. 4 and a
discussion in Appendix A.

If we are planning to use the results of the B-mode
search for finding the characteristic scale of inflation [3],
it would be important to find the best physically moti-
vated definition of this quantity. For example, the differ-
ence by the factor of 2 between the possible definitions
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of M for a-attractors given in (79) and (80) leads to the
change by the factor of 4 between the values of r for
M = 1. Once we make a well motivated choice of M for
a-attractors (8 = 2), one can multiply it by any func-
tion F(8) such that F(2) = 1. This modification is not
required, but it may be useful if one wants to associate
the Planckian characteristic scale M = 1 with the same
value of r ~ 103 for models with all relevant values of
B, e.g. in the range 2 < § < 5/2.

VII. SUMMARY

This investigation, involving also a series of our recent
papers [9, 15, 51], started soon after the Planck 2018
data release [14]. The main goal of this paper is to con-
clude this series of investigations by developing a unified
description of the models favored by Planck 2018.

As we mentioned in the Introduction, Ref. [14] de-
scribed three different classes of models of such type. The
first class of models includes the Starobinsky model, the
Higgs inflation model, the GL model, and the large class

of a-attractors with potentials V'~ 1 — e~V e .
which embedded and generalized all of these models [40—
42]. The second class includes the hilltop inflation models

with potentials V ~ 1 — % + ... [48, 49]. The third class
of models favored by Planck 2018 includes Dp-brane in-

flation models with V' ~ 1 — ’;—: +... [16, 50, 51].

These three classes of models have some similarity: For
m < 1 (o < 1), they have an attractor regime: their
predictions for ng do not depend on the higher order
terms in the inflaton potential, on m and on r: n, =
1— % In the a-attractors models one has 5 = 2, hilltop
models have g = 2 % > 2, and D-brane models have

2
k+1
B=251 <2

Despite these similarities, theoretical motivation and
observational status of these models is very different. The
hilltop inflation in the attractor regime is strongly disfa-
vored by Planck 2018 data, unless one considers models
with & 2 7. Outside the attractor regime, for m 2 1, one
cannot neglect the higher order terms, which are nec-
essary to avoid global collapse of the universe in such
models. We are unaware of any natural version of hilltop
inflation that would make predictions reproducing the
green area in the Planck, CMB-S4 and PICO Figs. 1, 2;
see a detailed discussion of this issue in [9)].

As for a-attractors, they have a compelling theoretical
motivation in the context of supergravity, and their pre-
dictions easily cover the left hand side of the 1o area
in the (ng, r) space favored by Planck 2018. Mean-
while we found that the right-hand side of the 20 area
is completely covered by predictions of models with phe-
nomenological potentials (66)-(69), which can be associ-



ated with D-brane inflation. These predictions, shown

in Fig. 5 in combination with the predictions of a-
attractors, form a series of stripes with § = 2, %, %, %, %

The last 4 values of 8 correspond to Dp-branes with
p=3,4,5,6.

We should note, that realistic versions of D-brane in-
flation models constructed so far have m < 1 and predict
very small r, in the range of 1076 — 10710 [16, 52]. This
may change with the further development of such mod-
els. Interestingly, the phenomenological potentials asso-
ciated with D-brane inflation (66)-(69), with arbitrary
values of m and r, also appear in the theory of pole infla-
tion [53, 54] describing the cosmological attractors with
the pole order ¢ in the kinetic term of the inflaton field.
In this context, a-attractors are the pole inflaton models
with ¢ = 2. The D-brane inflation potentials with k = 4,
3, 2, 1 corresponding to 8 = g, %, %, %, belong to the
class of the pole inflation potentials with ¢ = %, %, 3, 4
respectively, see section V.

Unlike a-attractors with ¢ = 2, pole inflation for g # 2
does not have deep roots in supergravity. In this respect,
it may not have an equally good interpretation in terms
of fundamental physics, but such interpretation may be
found in the future. At the very least, pole inflation
with ¢ # 2 provides a very powerful tool for develop-
ment, interpretation and classification of a broad class of
cosmological attractors. In particular, it allows to gen-
erate all inflaton potentials used in the phenomenologi-
cal parametrization of inflationary models developed in
[3, 55, 56]. This method immediately allows to explain
the attractor nature of such potentials, and find many
new potentials of desirable type.

For example, the hilltop inflation potential (1 — %)2

(61) and the plateau potential (1 — T(Z—:)Q (70) could
seem rather ad hoc. However, in the context of the
pole inflation approach, these two models represent the
simplest ¢ = 3/2 and ¢ = 5/2 counterparts of the
q = 2 a-attractor E-model (1 - e’\/%z“")2 generalizing
the Starobinsky model. And even though models with
¢ = 5/2 may not have a clear motivation in string theory
and supergravity, the ease with which a combination of
the simplest T-model (20) (¢ = 2, yellow lines) and the
model (70) (¢ = 5/2, magenta lines) cover the sweet spot
of the Planck data in Fig. 10 is quite remarkable.

In addition, the pole inflation approach provides a
unique way to derive simple general expressions for ng, r
and A, (14), as well as equation (77) for the parameter
Neq4 introduced in [3, 56], in terms of the residue at the
pole a4, see section VI. We find that the characteristic
scale of inflation M introduced in [3], has a particularly
simple relation to the residue at the pole, M2 = 4a4, see
(79), but we believe that from the point of view of the
theory of a-attractors it would be more natural to define
this scale as M? = 2a, (84), or simply as M? = a, (80).
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Let us briefly summarize the main results of our in-
vestigation of the inflationary models favored by Planck
2018. We found that some of these models, such as the
simplest versions of hilltop inflation and D-brane infla-
tion, are theoretically inconsistent. However, consistent
versions of D-brane inflation, in combination with the
simplest «-attractor models, can successfully describe
most of the area in the (ng, r) space favored by Planck
2018. These two classes of models are complementary
to each other: a-attractors tend to describe the left side
of the area in the (ng, r) space favored by Planck 2018,
whereas D-brane models describe the right-hand side of
this area, see Figs. 5, 9, and 10. We found that the pole
inflation approach to the theory of cosmological attrac-
tors can provide a unified phenomenological description
of the models favored by the Planck 2018, including a-
attractors and D-brane inflation.

Turning from the investigation of these models to the
future observational missions, it is important to identify
a set of specific targets for r and ns to be tested. If B-
modes are detected above r ~ 1072, the well motivated
models of inflation, such as the monodromy inflation [10-
12], may be validated relatively soon. However, if this
does not happen, we should clarify what is known about
r < 1072, Our conclusions are specific for the range
1073 < r <1072, where we can present the B-mode tar-
gets valid for U-duality symmetric class of a-attractors,
and for » < 1073, where we present B-mode targets for
which the future precision measurements of n, will be
decisive, see Fig. 4.

In the general class of a-attractors not related to super-
gravity, or in the models based on minimal N = 1 super-
gravity, « is an arbitrary parameter, and r can take any
value below the current experimental bound r < 6-1072.
The parameter 3« is related to the Kéhler curvature of
the hyperbolic geometry, Rx = —%. Thus, the search
for inflationary B-modes may go beyond investigation of
our space-time: It may help us to explore geometry of the
internal space of scalar fields responsible for inflation.

In particular, it is possible that the earliest moments
of the Universe are described by maximal supersymme-
try theories, including V' = 8 supergravity with Er7) U-
duality, spontaneously broken to the minimal N = 1 su-
pergravity. If spontaneous symmetry breaking occurs in
the potential, then the inflaton kinetic terms - and there-
fore the potential-independent predictions of a-attractors
- may reflect the geometric nature and the symmetries of
the original theory [43, 44].

U-duality symmetric «-attractors have 3a =
7,6,5,4,3,2,1, which leads to 7 different predic-
tions for 7 in the range 1073 < r < 1072, If B-modes are
detected at one of the discrete levels corresponding to
3a = 17,6,5,4,3,2,1, as shown in Fig. 4, it will provide
an evidence for the fundamental structure of the theory
with maximal supersymmetry discussed above.



Some of these targets may have a different origin. In
string theory fibre inflation [45, 46] one may encounter
a = 2. The Starobinsky model [35], the Higgs infla-
tionary model [36, 37], as well as the conformal inflation
model [47] correspond to o = 1. « = 1/3 is suggested
by the maximal superconformal symmetry [15], see Ap-
pendix A. Yet another target, a = 1/9, corresponds to
the GL model [38, 39].

In addition to a set of targets for r, now we have a
set of new targets for ny, = 1 — 8/N, including 8 = 2
for a-attractors, and g = g, %, %, % for D-brane inflation.
Note that these targets contain some uncertainty. First
of all, in some models the attractor regime n, =1—3/N
is reached only for r < 1073. Secondly, the value of
N depends on the process of reheating. However, these
general issues can be addressed for each particular model.
With the expected improvement of precision of determi-
nation of ng, the possibility to distinguish various classes
of models from each other by comparing their predictions
of ny becomes most interesting and informative [18]. This
may become especially relevant in the context of the cos-
mological attractors discussed in our paper, where the
predictions of ng in the small r limit become tightly con-
fined within each 3 stripe.

In particular, as we already mentioned, a-attractors
(pole inflation with ¢ = 2) tend to describe the left hand
side of the area in the (ns, r) space favored by Planck
2018, whereas D-brane models and pole inflation with
q > 2 describe the right hand side of this area, see Figs.
5,9, and 10. Therefore even a modest increase of preci-
sion in measurement of ng may provide crucial evidence
supporting one of these classes of models.
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Appendix A: Maximal superconformal theory and
3a = 1 benchmark

The origin of all 7 benchmarks in Fig. 4 was explained
in detail in [43, 44]. It was pointed pout there that
in NN = 8 supergravity there is a duality symmetry
E7(7y, which is broken to the minimal N = 1 super-
symmetry, and the corresponding subgroup of duality is
E7nR D [SL(2,R)]7, which describes 7 hyperbolic disks.
The corresponding kinetic terms are shown in eq. (39).
When all but one disk coordinates are frozen dynami-
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cally, one is left with a single disk geometry with SL(2,R)
symmetry, which is isomorphic to SU(1,1) symmetry. In
such case, the scalar fields are are coordinates of the coset

space 5 %,((21’;R ), or Sg(é’)l), and the kinetic term is the one

for a single unit size hyperbolic disk

L L 0702

aToT
(T+T)2"

(A1)

1-222

FIG. 11. On both panels there are Escher’s pictures of a Heaven
and Hell in disk and half-plane variables, Z and T, respectively.
The one on the left corresponds to a hyperbolic geometry with the
metric in the disk coordinates, as we derive from maximal super-
conformal theory in eq. (A3). The one on the right corresponds
to a hyperbolic geometry with the metric in the half-plane coor-
dinates, as we derive from maximal superconformal theory in eq.

(A4).

The relation to maximal superconformal theory of the
kinetic term in (A1) was pointed out in [60] with regard
to disk and half-plane variables and Escher’s pictures in
Fig. 11. Here we would like to explain this in a more
detailed way.

Extended superconformal theories were studied in [78—
80]. The maximal N = 4 superconformal theory has a
global duality symmetry SU(1,1) x O(6). The scalars
SU(1,1)

U((1) -
perconformal theory has a local SU(4) as well as a local
U(1) symmetry. A scalar kinetic term has the form

parametrize the coset space The maximal su-

1 *
5Dud" Do +he, 670 =1, ¢ =105, (A2)

where the scalars are doublets under SU(1, 1) symmetry,
a =1,2. Tt was shown in [78] that the local U(1) gauge
symmetry can be gauge-fixed by the choice Im ¢; = 0,
so that there is only one independent complex scalar, a
coordinate of the unit size Poincaré disk, Z = %, and

07207

GozzE WY

1
7D QDH o h, = —
2 uo P+ e Tme; =0

In [80] the choice of the gauge-fixing condition was
Im(¢p1 — ¢p2) = 0, the independent complex scalar is a

coordinate of the half-plane T = %, and the kinetic
term is
1 oroT

§DM¢QD“¢,X + he (A4)

Im(1—62)=0 (T+T)2"



There is a simple relation between the disk and half-plane
coordinates, known as Cayley relation

r=-"2. (A5)

Thus, from the point of view of the maximal superconfor-
mal theory, two Escher’s pictures in Fig. 11 correspond to
two different choices of gauge-fixing the local U(1) sym-
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metry. This, in turn, leads to two different coordinate
choices for the hyperbolic geometries with the same cur-
vature R = —2 for the unit size Escher disk with 3a = 1.
T-models are simple to formulate in Z-variables with po-
tentials V7 ~ (ZZ)", E-models are simple in T variables
with potentials Vi ~ (1 —T)?".

It is important that the maximal A/ = 4 superconfor-
mal theory has a scalar kinetic term (A3), which corre-
sponds to a precise value of the unit size Escher disk.
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