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Axions are some of the best motivated particles beyond the Standard Model. We show how the
attractive self-interactions of dark matter (DM) axions over a broad range of masses, from 10722 eV
to 107 GeV, can lead to nongravitational growth of density fluctuations and the formation of bound
objects. This structure formation enhancement is driven by parametric resonance when the initial
field misalignment is large, and it affects axion density perturbations on length scales of order the
Hubble horizon when the axion field starts oscillating, deep inside the radiation-dominated era.
This effect can turn an otherwise nearly scale-invariant spectrum of adiabatic perturbations into
one that has a spike at the aforementioned scales, producing objects ranging from dense DM halos to
scalar-field configurations such as solitons and oscillons. We call this class of cosmological scenarios
for axion DM production “the large-misalignment mechanism.”

‘We explore observational consequences of this mechanism for axions with masses up to 10 eV. For
axions heavier than 1075 eV, the compact axion halos are numerous enough to significantly impact
Earth-bound direct detection experiments, yielding intermittent but coherent signals with repetition
rates exceeding one per decade and crossing times less than a day. These episodic increases in the
axion density and kinematic coherence suggest new approaches for axion DM searches, including
for the QCD axion. Dense structures made up of axions from 10722 eV to 107° eV are detectable
through gravitational lensing searches, and their gravitational interactions can also perturb bary-
onic structures and alter star formation. At very high misalignment amplitudes, the axion field
can undergo self-interaction-induced implosions long before matter-radiation equality, producing

potentially-detectable low-frequency stochastic gravitational waves.
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I. INTRODUCTION

The overwhelming majority of the energy density in
the Universe appears to interact only gravitationally, in
all available observational and experimental data so far.
A quarter of this energy density is in the form of dark
matter (DM), a matter component that does not emit or
interact strongly with light. Two of the main pieces of
evidence for DM are the fluctuations in the cosmic mi-
crowave background (CMB) and the formation of grav-
itational structures over a large range of length scales,
from the size of the largest superclusters of galaxies down
to the smallest observable dwarf galaxies. These two bod-
ies of evidence are in mutual quantitative agreement with
one another.

Among the best motivated particle physics candidates
for DM are azions, CP-odd scalar fields. The most fa-
mous one is the QCD axion [1-3], responsible for address-
ing the strong CP problem as it explains the smallness
of the neutron’s electric dipole moment. Axions are also
ubiquitous in extensions of the Standard Model such as
string theory, where they arise as the byproducts of com-
plex topology [4].

Axions have a natural production mechanism of near-
pressureless energy density, through what is known as the
misalignment production mechanism [5-7]. The dynam-
ics of the axion field ¢ are described by four-dimensional
partial differential field equations which depend on the
potential of the axion. Inflation irons out all spatial wrin-
kles, converting the axion into a spatially homogeneous
but time-dependent field. Near the minimum of its po-
tential (here at ¢ = 0), the potential of the axion is well
approximated by a quadratic function of ¢, which then
behaves cosmologically as a damped harmonic oscillator:

¢+ 3Hd+m?p =0, (1)

where H is Hubble parameter and m the axion mass.
Initially, the axion field value is frozen due to Hubble
friction; the axion only starts oscillating once 3H < m.
The energy density associated with this oscillation red-
shifts exactly like cold DM: ps; o a=3. However, there
is no reason to expect that the axion will start close to
the minimum. If the axion misalignment is large, the
quadratic approximation to its potential is no longer ad-
equate and higher order terms must be included. The
axion potential generically contains quartic terms which
convert its equation to that of a nonlinear damped an-
harmonic oscillator:

¢+ 3HG+m*¢ — Ap + - =0 (2)

The all-important negative last term describes an attrac-
tive self-interaction. When |¢?| > m?/), nonlinearities
at all orders in the axion field become relevant, and can
cause a delay in the onset of oscillations: Hyse < m. In
this scenario, the lower Hubble friction and the attrac-
tive quartic self-interaction conspire to usher in a qual-

itatively new phenomenon: a parametric resonance am-
plification of semi-relativistic axion fluctuations around
the spatially constant ¢ background. In this work, we
show that these attractive self-interactions can cause DM
structure to grow at scales that are comparable with the
axion Compton wavelength when the field starts oscillat-
ing. This leads to both denser and more numerous small
halos than in ACDM. We stress that such behavior is only
possible when the field amplitude of the axion is large
enough for the attractive non-linearity to be significant,
so we term this the “large-misalignment” mechanism for
axion DM.

For definiteness, we will mainly focus on a simple pe-
riodic potential that is well motivated for several axion
models, namely the cosine potential:

) G

where f is the axion decay constant. Nonperturbative
effects generically generate periodic axion potentials; the
form of Eq. 3 arises from the one-instanton contribu-
tion, which is typically dominant in weakly coupled the-
ories. Periodic potentials will in general have attractive
(negative) self-interactions because these tame the rapid
growth of the quadratic potential and foretell the pres-
ence of an upper bound. As we will discuss, the above
potential is also nearly that of the QCD axion at tem-
peratures above the QCD phase transition, albeit with a
time-dependent mass. We stress that the observable con-
sequences of this work emerge solely from this attractive
self-interaction, and do not qualitatively depend on the
detailed form of the potential. In fact, some of our sig-
natures will be more naturally realized with nonperiodic
potentials. The quartic interaction for the cosine is given
by V D A¢*/4 with A = —m? /6 f2.

If the axion’s initial misalignment amplitude ¢q is in
the “large-misalignment” range |¢o|/f > 7/2, we show
that there will be enhanced structure around a comoving

wavelength:
2 10=22eV
T ~0.69Mpe Y (4)
2ma2, Heq m

generating numerous halos with scale mass of My ~ M

Arp0 (A1 107220V ]2
M = ”’;DM (2) ~ 5 x 10° My, {me] . (5)

A

The halo scale density ps is an increasing function of
|po|/f, and can be much larger than the scale density
pSPM of CDM halos of the same mass by a parametric

factor:

_ps m
B:pSDNINeXp{é-HOSC}. (6)

The parametric form of this “density boost factor” B is
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FIG. 1. Summary of signatures for axions with mass m, decay constant f, cosine potential of Eq. 3, and an initial axion
misalignment chosen such that the axion accounts for all DM. The left axis shows f normalized relative to fr/2, the value
for which the initial axion misalignment is |¢o|/f = 7/2; for f/fr,2 decreases, the misalignment has to be closer to =.
Diagonal gray lines represent contours of constant f. The top axis displays the typical halo scale mass M whose density is
maximally enhanced by the effects of the attractive axion self-interactions (see Eq. 5). The right axis shows the time ¢y, o in
Compton units for which the amplitude of the axion field oscillation is ® = ¢/f = 1. For axions lighter than 107° eV, the
enhanced-density halos can be detectable through their gravitational (lensing) interactions (blue). Axions heavier than 107° eV
can produce “femto-halos” lighter than 107'° Mg that have important consequences for direct detection experiments (green).
Axions lighter than 107'® ¢V can affect baryonic structures and accelerate star formation in the early Universe (brown). At
low f, self-interaction-induced collapse into oscillons happens prior to matter-radiation equality (red), a process that produces
gravitational waves, which may be detectable in the yellow region. Signature contours are extracted from Figs. 11, 12, 14,
and 15 of Sec. III, and translated to f/f 2 via the numerical results for B as a function of m in Fig. 2.

valid for generalized axion potentials as well; £ is an O(1)
model-dependent constant. The corresponding scale ra-

o " 13 05\ 1/3
dius is ry = 87 pc (WSM_Q) (?)

We present our analysis of the development and dy-
namics of these enhanced structures in Sec. II. To fix
ideas, we mainly focus on a cosine potential and study the
evolution and signatures of axion DM structures when
|pol/f > 7/2 as a function of the axion mass and decay
constant.” First, we provide a fully relativistic treat-
ment of the growth of density fluctuations in linear per-

I Requiring that the present-day axion density accounts for all the
DM automatically fixes the initial value ¢g of the axion field as
a function of m and f.

turbation theory. Starting from a standard spectrum of
primordial density perturbations, we show that growth
in density contrast can be understood as the result of a
parametric resonance instability at the level of the equa-
tions of motion, which are valid in the early universe up to
axion masses of O(107) GeV (Sec. IT A). We also present a
perturbative Newtonian approximation, where the boost
in structure growth can be attributed to a negative pres-
sure resulting from the nonlinearities in the potential of
Eq. 3. In Sec. II B, we describe the nonlinear evolution
of the axion density fluctuations. For moderate enhance-
ments in the density contrast with respect to large scales,
compact halos will form after matter-radiation equality
(Sec. IIB1). Depending on their density, these com-
pact halos may be solitons—gravitationally bound scalar
field configurations of minimum energy (App. A)—and



can even have a gravothermal cusp (Sec. IIB2). At yet
larger density contrasts, we demonstrate in Sec. IIB3
that our mechanism can produce oscillons—metastable
configurations solely supported by axion self-interactions
(App. A)—during radiation domination. Further, we
show that these dense structures are expected to survive
tidal stripping in the Milky Way (Sec. IIB4).

Armed with the understanding of the behavior of these
more numerous and higher-density halos, we focus in
Sec. III on several observable consequences that follow in
cosmological histories with a boost in structure on small
scales (cfr. Eq. 5). These are summarized in Fig. 1 in
the parameter space of m and f as extracted from from
Figs. 11, 12, 14, and 15 of Sec. III, translated via the
results of Fig. 2.2 Compact axion halos and other poten-
tially long-lived axion structures have irreducible gravita-
tional couplings, so one may look for their local gravita-
tional perturbations on stellar structures or their gravita-
tional lensing (Sec. IIT A). Extremely small minihalos—
“femto-halos”, their mass being < 107 My—can dra-
matically alter the signatures and sensitivity of direct
detection efforts to search for nonminimal couplings of
the axion (Sec. IIIB). Early-forming minihalos can also
influence the formation of the first stars and leave other
imprints on baryonic structure (Sec. IITC). The implo-
sion and subsequent explosion of oscillons can lead to a
low-frequency stochastic gravitational wave background
(Sec. IIID).

We next focus on the QCD axion in Sec. IV, which is
one of the best-motivated particles beyond the Standard
Model. This axion, which has a temperature-dependent
potential, will collapse into halos of mass M, ~ 1078 M,
for axion decay constants f, < 2 x 100 GeV, with im-
portant consequences for direct detection searches of
high-mass, cosmic QCD axions, potentially improving
prospects for their discovery in the laboratory. We stress
that these femto-halos are produced from a standard
spectrum of small primordial perturbations. In contrast,
ultra dense QCD axion miniclusters [8-13] rely on large
density fluctuations caused by a late post-inflationary
Peccei-Quinn (PQ) phase transition. Their internal den-
sity is so high that they encounter Earth too infrequently
to positively impact direct dark matter searches.

For the cosine potential of Eq. 3, significant enhance-
ment in structure growth via our mechanism requires the
axion field to start very close to |¢g|/f =~ 7, with self-
interaction-induced collapse requiring apparent tunings
of 1 part in 10'2. This apparent tuning is not, however,
necessarily an actual tuning. We discuss this in Sec. V,
and in this section we also discuss other forms of axion
potentials, such as those in some axion monodromy mod-
els [14-17]. In this latter case, the structure growth can
be even more extreme and lead to long-lived oscillon con-

2 For clarity, the oscillatory behavior in Fig. 2 is suppressed by
Gaussian smoothing over neighboring m bins, and we used Eq. 5
for the Ms—m correspondence, not the M™% results of Fig. 2.

figurations, all without any tuning whatsoever (apparent
or actual). We offer concluding remarks and discussion
in Sec. VI.

The appendices of this paper deal with further details
that are relevant for a complete understanding of our
proposed mechanism. In App. A we review the spectrum
of bound, metastable scalar field configurations (solitons
and oscillons) because in much of our parameter space
they will be formed inside the DM overdensities we pre-
dict. In App. B we discuss the implementation and re-
sults of various numerical simulations we utilized to help
understand the nonlinear behavior of the axion field in
regimes particularly relevant to this work. App. C dis-
cusses possible constraints coming from the production
of isocurvature fluctuations in the CMB, although these
constraints are only present in some models. Finally,
we summarize in App. D, the projected sensitivities and
detection prospects for ultra-low-frequency gravitational
waves, which can be produced particularly by very light
(m <1071 GeV) large-misalignment axions.

We note that some of the components of this paper
have been previously touched upon in the literature (see
e.g. Refs. [17-25]). In particular, the linear perturba-
tion effects under consideration in this work were pre-
viously discussed in Refs. [26-30]. These works how-
ever focused on the regime of m ~ 10722eV and ob-
servables such as the matter power spectrum and the
Lyman-« forest. We here extend their analyses and pro-
vide a comprehensive treatment of the linear and non-
linear evolution for any axion mass m and decay con-
stant f. As we shall see, much larger nonlinearities
are permitted (by current data) for larger axion masses
(and thus smaller structures). This leads to qualita-
tive differences in phenomenology and observable con-
sequences. On the other hand, a large body of literature
has studied the effective theory and potential observables
of “axion stars” (i.e. solitons and oscillons) but has for
the most part disregarded their formation mechanism
(see e.g. Refs. [17, 31-43]). We provide such a mecha-
nism here, and calculate for the first time the enhanced
contrast in adiabatic fluctuations for the QCD axion.
Ref. [44] studied a scenario wherein a late-time phase
transition in an arbitrary-mass axion potential sources
large isocurvature fluctuations and associated small-scale
structures; such a structure formation history has a qual-
itatively different matter power spectrum and no tunable
density contrast.

We also note that claimed constraints on ultralight DM
due to Lyman-a forests [45, 46] or the DM distribution
of present-day dwarf galaxies [47, 48] do not necessarily
apply. The attractive self-interactions and gravitational
thermalization both have significant effects which must
be taken into account, and reanalyses are required to
understand the true constraints. We expand upon these
effects and discuss more realistic constraints in Sec. ITIC
(Lyman-«) and Sec. IIB 2 (dwarf galaxies).

Throughout this paper, we take the dark matter en-
ergy density fraction in the Universe to be Qpy =



0.23, the scale factor at matter-radiation equality
aeq = 1/3250, the present-day Hubble constant Hy =
67.8kms~! Mpc~*!, and therefore present-day Universe-
average DM density pd,; = 2.9 x 1078 Mg pc = and the
Hubble parameter at matter-radiation equality Heq =
1.8 x 1072%eV. We assume a local DM energy den-
sity in the Galaxy of pS,, = 04GeVem™ = 1.1 x
102 Mg pc—3. We use the reduced Planck mass Mp; =
1/4/87Gy, and set the reduced Planck constant and the
speed of light to unity 2 =c=1.

II. EVOLUTION OF DENSITY FLUCTUATIONS

In this section, we analyze the growth of adiabatic
axion density perturbations in the early Universe and
demonstrate how self-interactions can lead to substantial
deviations from the CDM prediction. The relevant ob-
servable throughout is the gauge-covariant axion energy
perturbation ¢ (we work in Newtonian gauge, cfr. Eq. 7).
In the CDM framework, after the physical wavelength of
a density perturbation with amplitude § becomes smaller
than the Hubble horizon, § grows logarithmically with
the scale factor during radiation domination, and lin-
early with the scale factor during matter domination. We
will find that for a range of comoving scales close to the
axion’s Compton wavelength at horizon crossing, there
is enhanced growth due to the self-interactions. Length
scales much smaller than this will have their growth sup-
pressed, and density perturbations on much larger scales
will resemble those of CDM.

Figure 2 summarizes the results of both the linear
and nonlinear evolution of density perturbations as pre-
sented in this section. We show the maximum boost
Bmax = maxys {B} in halo scale density relative to the
CDM prediction (cfr. Eq. 6) as a function of m and
I/ fx 2 for the cosine potential of Eq. 3. We also show the
corresponding halo scale mass M"** = argmax,, {B}
for which this maximum density boost factor is achieved,
which can be seen to closely track the value Mgx of Eq. 5
(top horizontal axis). Finally, we also indicate parameter
space where production of solitons and oscillons occurs.

In Sec. IT A, we discuss the linear regime, where all frac-
tional density perturbations are small: |6] < 1. This is
appropriate for all adiabatic perturbations early enough
in their history (given a standard primordial curvature
power spectrum). In Sec. IT A 1, we present a full general-
relativistic treatment of the density perturbations from
the time the axion field starts oscillating and show that
the growth of structure is due to a parametric reso-
nance instability well before matter-radiation equality.
We calculate analytically (cfr. Eq. 27 and Eq. 28) the
G = |0k/05PM|? in the power spectrum (the boost B in
density is proportional to G3/ 2). Figure 3 compares the
time evolution of adiabatic density perturbations for a
large- and small-misalignment axion. The results of our
linear analysis for any misalignment are summarized in
Fig. 4 and 5. In Sec. IT A 2, we evolve these parametric-

resonance-boosted perturbations past matter-radiation
equality (see Fig. 6).

When |6| becomes O(1), axion DM structures can form
(Sec. II B). The properties of the collapsed structures de-
pend on the amount of growth they receive through ax-
ion self-interactions. If the growth is small enough that
the perturbations are still linear after matter-radiation
equality, their collapse is fueled by gravitational self-
interactions. In Sec. IIB 1, we study the halo spectrum
(see Figs. 7 and 8) and show that, for moderate structure
growth, the collapsing structures can be solitons. Grav-
itational cooling effects can further change the internal
structure of these compact halos and ultimately lead to
gravothermal collapse and a central soliton (Sec. IIB 2).
In the extreme case where the axion self-interaction in-
duced structure growth is large enough, structures can
grow nonlinear well before matter-radiation equality;
their dynamics are dominated by self-interactions, and
oscillons are formed (Sec. IIB 3). Finally, we show that
these compact halos can easily survive tidal stripping
within the local galaxy (Sec. IIB4).

The range of axion masses for which this section’s
analysis is relevant is from 10722eV to 107 GeV. The
lower end is an observational limit from structure forma-
tion (Sec. III C). The upper limit comes from two require-
ments: one is that m < f which is necessary to ensure
that during parametric resonance the axion occupation
number is large enough to justify the use of classical wave
equations; the second is the condition that the axion is
the DM (see discussion around Eq. 11). The require-
ment that the axion lifetime is longer than the age of
the Universe is automatic if the only interactions of the
axion are gravity and its self-couplings (Eq. 3), as these
are both axion number conserving in the nonrelativistic
limit. To have an axion detectable in laboratory exper-
iments we need further interactions that directly couple
the axion to photons, electrons, or nuclei. An example
is the coupling to the photon given by ﬁ%FF In the
presence of such a coupling, the longevity of the axion
constrains the axion mass to be at most 10keV corre-
sponding to f = 10'! GeV. Note that axions as heavy as
107 GeV or even 10keV are not well described by classi-
cal field equations today because the occupation number
in a de Broglie wavelength is much smaller than unity.
Nevertheless, the classical field description is valid during
the crucial era of parametric resonance, when the axion
occupation number is large and the initial overdensities
are generated. Subsequently, these overdensities grow
under the influence of gravity which, by virtue of the
equivalence principle, just couples to energy regardless
of occupation number or the applicability of the classical
approximation.

For simplicity, we will first consider the case of the co-
sine potential in Eq. 3. We will study entirely analogous
phenomena for the temperature-dependent QCD axion
potential in Sec. IV, and present case studies of general-
ized (but time-independent) axion potentials in Sec. V.
Finally, for those interested in the signatures of compact
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FIG. 2. Summary of properties of compact structures resulting from the linear and nonlinear evolution of axion density
perturbations in Sec. II. The maximum density boost factor Bmax is shown as a color map (legend on right) as a function of
axion mass m and misalignment angle ©¢ (right axis), or equivalently f/f 2 (left axis). For parameter space where Bmax > 2
(below the thick blue contour), dark gray contours indicate the halo scale mass M}*** that exhibits the maximum density boost
relative to the CDM prediction, parametrically tracking the reference scale mass M of Eq. 5 (top axis). Below the orange
contour (f/fr/2 < 0.065), solitons are produced; in the red region (f/fr/2 < 0.055), early collapse into oscillons also occurs.
We assumed the axion cosine potential of Eq. 3 and a scale-invariant curvature power of Py ~ 2.1 x 107°.

axion halos, they can directly skip to Sec. III, where the
observational effects of these halos are described as a
function of their scale mass M, and density ps.

A. Linear regime

In the linear regime (i.e. |§| < 1), most of the self-
interaction-induced growth occurs at very early times,
when semi-relativistic modes enter the horizon and the
axion potential is poorly approximated by a quadratic.
This means that a full general-relativistic treatment
of the perturbations is necessary, which we give in
Sec. ITA1. At later times, when nonlinearities in the
background axion field are small and the modes of in-
terest are nonrelativistic and well within the horizon, we
can patch the general-relativistic solutions onto Newto-
nian fluid equations, which we describe in Sec. IT A 2.

1.  General relativistic treatment

We consider adiabatic perturbations in the axion field
and adopt the method of Ref. [29], the only substantive

difference being our focus on the potential of Eq. 3 and
slight changes in notation. The dynamics of interest oc-
cur in the radiation-dominated era, where we can study
the evolution of the axion field in the background metric

ds? = [1 4 20(t,x)]dt* — a®(t)[1 — 2®(t,x)]dx>  (7)

where a(t) o t'/? is the scale factor and ®(t,x) are the
curvature fluctuations. We also define the Hubble param-
eter H = a(t)/a(t) = 1/2t where the second equality is
true only during radiation domination. During this era,
the energy density in the axion field is a tiny perturbation
to the overall energy density in the radiation bath, so we
will neglect its backreaction on the metric. We expand
the axion field into modes of comoving wavenumber k as:

(t, x)
f

=O(t) + Y bh(t)e ™ (8)
k

where O is the zero mode (spatially-averaged axion field)
and Oy are Fourier modes of its perturbations.

Zero mode

Before studying the growth of the perturbations, we de-
scribe the evolution of the zero-mode. A field of mass m



is frozen by Hubble friction at least until H ~ m, which
motivates the definition of a dimensionless time ¢, given
by:

b = o
Y

mt 9)

the latter equality approximately true deep into the
radiation-dominated era. The equation of motion for ©
in the metric of Eq. 7 is given by:

0" + %@' +sin(0©) =0 (10)
where from hereon primes denote derivatives with respect
to t,,. The initial conditions sourced by inflation are a
fixed initial misalignment angle O(¢,, = 0) = Oy and
zero kinetic energy ©'(t,, = 0) = 0. We can then see
that indeed for t,, < 1 the field is frozen and for ¢,, > 1
the field will roll to and oscillate around the bottom of
the potential.

The energy density contained in the axion field is given
by p = m?f%[(©")?/2 + 1 — cos(©)]. For t,, > 1, an
approximate solution to Eq. 10 can be found to show
that this energy density redshifts as p o t;f/ ®. We define
pry2(tm) as the energy density at late times given an
initial misalignment angle |©¢| = 7/2. By the above, we
have that

Prj2 = Cﬂ/2m2f2t;13/2 (11)

for some constant of proportionality C /2, and a numeri-
cal evolution of Eq. 10 then gives Cr /o ~ 1.15. Requiring
that the axion field is the totality of dark matter then
implies that an axion with initial misalignment /2 and
mass m must have a decay constant fr /o given by:

1/2 1/4
fry2 ~ 3!/ Heq . (12)
Mp; 25/401§3 m

At fixed m, larger values of f > f;/5 require the initial
misalignment angle to be closer to the bottom of the
potential (i.e. |©¢] < 7/2). Asymptotically for small
initial ©g < 1 we have p/pr /s = 0.3302, which implies
for f > fr/2 arequired initial misalignment angle ©g ~
Jr2/0.33f.

Similarly, f < fr/2 requires |G| > /2, our case of
interest. As |Oq| approaches 7, the onset of the field’s
oscillation is delayed from its typical time of ¢, ~ O(1)
to a logarithmically larger value, due to the much smaller
gradient near the top of the potential. The delay results
in an enhanced final density p, and an empirical approx-
imation to the true numeric solution of Eq. 10 yields:

P~ 0209 + 4Ine]? (13)
Pr/2
1 21/471'1/2
tos¢ =1n (14)
m™—100] T(3)

where I' is the Euler Gamma function and t5¢ corre-
sponds roughly to an effective “delayed oscillation time”.
For 10715 < 7 — |©g| < 1072, this approximation is ac-
curate to within a fractional error of 5%.

Finite-wavenumber modes

Now that we understand the evolution of the zero-mode
O, we turn our attention to the perturbations 6. We be-
gin by also expanding the curvature perturbations into
Fourier modes: ®(t,x) = Y, ®x(t)e ™ *. To leading
order in perturbative quantities 0 and @y, modes with
different k do not interact, and so we may consider each
independently. It is then helpful to introduce another di-
mensionless time coordinate ¢ as well as a dimensionless
measure k of the comoving wavenumber k:

_ ko

. ,_ ka3
V3H

o K2e? _ 36
2mH 4t,,

(15)

Note that in a radiation-dominated universe, k is con-
stant and parametrizes how relativistic a perturbation
mode is at t,, ~ 1, i.e. roughly when the axion zero
mode starts oscillating.

Adiabatic fluctuations in the axion field are sourced
by curvature fluctuations @y, and an exact solution for
these may be found in the linear theory [29]:

cos(ty)  sin(tg)
t t

Dy (t) = 3Pp 0 |— (16)

where @y is the primordial value imprinted by infla-
tion. Planck measurements over scales k < 1Mpc™! are
consistent with a Gaussian-distributed curvature with
dimensionless power spectrum Pg(k) = (Pk oPxo) =~
(2.1 x 1079)(k/(0.05 Mpc™1))™ =1 and a slight spectral
tilt ng — 1 ~ —0.03 [49].> For specificity and to elu-
cidate the scale dependence of our mechanism, we will
ignore the spectral tilt and take |®k o] ~ V2.1 x 1079 as
a fiducial amplitude. Note that for ¢, < 1 the curva-
ture perturbations are frozen, but for ¢, = 1 they begin
oscillating and decay as Py t;Q x a2

Now we can finally write the relativistic equation of
motion for axion perturbations 6y in the background of
the zero-mode solution © to Eq. 10 and the curvature
perturbations of Eq. 16:

k2 -
o + %91{ + |cos(©) + 7 [ i = (k,tm) . (17)
_ t d®
S (ktm) =) [t’“ W:@/ — By sin(@)] . (18)

3 The dimensionless power spectrum of a scalar s(r) is Ps(k) =
P, (k)k3 /272, where the power spectrum is Ps(k) = V=1 (s(k)2)
and the Fourier transform is s(k) = [, d3r s(r)e= T Py(k) is
independent over the averaging volume V as long as k3V >> 1.
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FIG. 3. Transfer function |6x/®x,0|? of the axion density fluctuation dx relative to the primordial curvature fluctuation ®y o,

as function of rescaled time t,, = mt and dimensionless wavenumber constant k= %/a\/ﬂ The left panel has an initial
condition of m — |@¢| = 107'°, while the right panel shows the reference case of a nearly free scalar field with ©¢ = 0.1. When
m—]0o| = 107'°, one can see that modes with ko~ get enhanced by up to 10 orders of magnitude soon after the axion enters
the parametric resonance regime (see main text for details). When k < 1or k> 1, for both values of the initial axion field, the
behavior of the density perturbations is similar; y is suppressed when k > 1, while for k < 1 modes experience logarithmic
growth after they enter the horizon in the radiation dominated era.

Here the forcing term S is such that even with initial
conditions 0} (0) = 6x(0) = 0, a nonzero i will be gener-
ated by the curvature fluctuations. Nonzero initial 6y (0)
will be sourced by inflation and manifest as isocurvature
fluctuations in the CMB. Their absence in Planck mea-
surements of the CMB [50] provides a joint constraint on
f and the inflationary Hubble scale H;,¢, derived later in
App. C and shown in Fig. 28.

Axion density perturbation results

The gauge-covariant axion energy perturbation at
wavenumber k is the fractional energy density per-
turbation minus the velocity potential for the axion
species [29], which can be written as:

S = 6/0{< + sin(@)@k — (@/)Q(I)k
T L2 4 (1—cos(0))

(19)

At late times, when | @y / Pk o] < 1, |O] < 1, and £, > 1,
0k tends to a Newtonian fractional energy density fluc-
tuation dpx/p:

0'0;, + by

— 20
I©)+ 167 20)

(Sk’l’

Note that nearly all of the forcing effects from S occur
early, as @y redshifts as ¢ % o t;,!.

At this point, we can numerically solve the full set of
equations to obtain dk(¢,,) for any value of k and initial
misalignment angle ©q. In Fig. 3, we show the evolution
of & (by means of the transfer function |d/®x o|?) as a

function of time ¢,, at different rescaled wavenumbers k,
for a large-amplitude axion with |@g] = 7 — 10710 (left
panel) and an axion with a small misalignment amplitude
|©0] = 0.1. In Fig. 4, we fix the time at t,, = 103, to
highlight the dependence of the transfer function on both
the wavenumber k and the misalignment angle ©¢, which
has a one-to-one map with f/f/, from the discussion
around Eq. 12. We can classify the qualitative behavior
into three wavenumber regimes:

k < 1: In this regime, the curvature perturbation ®y
enters the horizon at a time t,, ~ 1/k?, long after the
axion has started oscillating (regardless of initial ampli-
tude) at t,, ~ 1. The zero-mode © has already been
damped down to the harmonic regime |©] < 1. In this
regime, an axion behaves as a noninteracting, pressure-
less fluid, whose density perturbations thus grow like
those of CDM—Ilogarithmically with time during radi-
ation domination.

k> 1: Curvature perturbations with high enough
wavenumbers enter the horizon long before the axion
stars oscillating. By the time Hubble friction is reduced
to a point where both © and 6y can start oscillating
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FIG. 4. Transfer function |§i/®ko|*> of the axion density
fluctuation dx relative to the primordial curvature fluctua-
tion @k, at a fixed dimensionless time ¢,, = mt = 1037 as
function of rescaled comoving wavenumber k = %/a\/ﬂ and
initial misalignment angle m — |G| (right axis), or equiva-
lently the axion decay constant f (left axis) relative to the
reference value fr,o of Eq. 12. This plot assumes the axion
comprises all of DM and has the cosine potential of Eq. 3, for
which large enhancements manifest only for initial misalign-
ments very close to the top of the potential |©¢| ~ w. This
apparent tuning of initial conditions only serves to delay the
onset of oscillation (see Fig. 5); it can be explained by nat-
ural dynamics, and is not present for generalized potentials
(Sec. V).

(tm 2 1), the curvature perturbation ®y and thus the
forcing term S have been damped away significantly by
the radiation bath, such that §y is suppressed. In addi-
tion, &y oscillates in time (as opposed to the logarithmic
growth for k < 1), since the behavior of the modes is
dominated by a large positive kinetic energy pressure,
further suppressing the structure relative to the CDM
prediction. R

k ~1: The qualitative behavior of very high-k and
low-k modes is not strongly dependent on the misalign-
ment amplitude. At large misalignment angles |Og| ~ m,
an intermediate regime with new phenomenology ap-
pears. Unlike the free scalar case, where the k ~ 1 case
is a smooth interpolation between the high- and low-
k regimes, a dramatic enhancement in density fluctua-
tions is possible. As Fig. 4 shows, both the maximum
boost in structure and the wavenumber at which this
boost occurs, are monotonically increasing with decreas-
ing m — |©¢| and thus f/fz /2.

Parametric resonance
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FIG. 5. Top panel: Transfer function ratio of axion pertur-
bations dx versus CDM perturbations OSPM as a function of
dimensionless wavenumber k and normalized axion decay con-
stant f/fr/2, at a dimensionless time t,,, = 10® shortly after
the modes shown have crossed the horizon, as in Fig. 4. On
the right vertical axis, we indicate tm,,0, defined as the dimen-
sionless time at which the axion amplitude equals unity; ty,,0
has a one-to-one map with f/fr 2 and |©o| discussed around
Egs. 11, 12, 13, 14, and 25. Bottom panel: Boost function
G(k,tm) that captures all perturbative parametric resonance
growth until ¢, = 103, and parametrizes the curvature forc-
ing suppression for high-k modes. The analytic function G
is seen to be a reasonably good parametric estimate of the
enhancement (and suppression) of the relative matter power
spectra |0k /05 °M|? calculated numerically.

tm,



The dramatic growth of fi—and thus dx—perturbations
for k ~ 1 modes can be understood in terms of a paramet-
ric resonance instability. After the onset of oscillation,
we can expand to subleading order in the amplitude of
the zero mode, ©, which itself is decreasing slowly, but
on a time scale much slower than the oscillatory time
scale. This turns the zero mode cosmological evolution
equation into one for a damped non-linear harmonic os-
cillator. Using the Poincaré-Lindstedt method [51], the
zero mode itself can be found to behave according to:
33

O = O cos(wt,,) + T [cos(@ty,) — cos(3wt,,)], (21)
where @ = 1 — ©2/16.

We can recast Eq. 17 in terms of a damped Mathieu
equation, i.e. a damped harmonic oscillator with a peri-
odically modulated fundamental frequency:

d26 de

?2“ + CCT: +[6 + €cos()] b = 0, (22)
where we have defined 7 = 2&t,,. Above, we have ig-
nored the forcing term from Eq. 18, and identified the
perturbatively small quantities:

ey Tor| =1 (23

02 i? ] o2

Eq. 22 has several instability regions; the primary one
at small ||, and the one of interest to us, is the region
le| > c+4(5—1/4)% corresponding to a parametric varia-
tion of the natural frequency at approximately twice the
natural frequency. The parametric resonance instability
can be understood as a process where the quartic inter-
action converts two zero-mode particles into two finite-
momentum particles with & # 0.

The two exponential growth rate eigenvalues for the
amplitudes of Ay, expressed in the original ¢,, coordi-

nates, are:
giz \
1—11—-—1. (24
( ) 1

We see that in the limit ® — 0 or & — 0, the 6

amplitude decays as t;f/ 4, commensurate with the red-
shifting of the zero mode’s energy density redshifting as

- 3 0?2

02 x tfn?’/z. For k > 1, the second term becomes purely
imaginary and produces an additional oscillatory behav-
ior with frequency k?/2t,, that redshifts with time; there
is no parametric resonance growth, just as expected for
relativistic modes.

Axion density perturbations will exhibit exponential
growth when k% ~ ¢,,02/8, i.e. when the root in Eq. 24
is real. At least one mode will undergo a substantial
growth phase as long as the inequality ©2 > 8/t,, is sat-
isfied at some point. Because the amplitude growth is
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exponential in time (with a rate given in Eq. 24), much
of the parametric resonance amplification is dominated
by the period in which ©® < 1.* For simplicity, we in-
tegrate the growth term of Eq. 24 starting from t,, o,
defined as the time at which © = 1 (or the energy den-
sity is p ~ m2f2/2), and take ©2 = (t,,, /t;n.0) /2. For
axions starting near the top of the cosine potential, a
good approximation is

]4/3

tim,0 ~ 0.596 [t + 41n to%° (25)

with t2°¢ as in Eq. 14. The boost in axion power from
parametric resonance is

tm ~
Gk, tm) ~ Cexp 2/ dt,. Re [P;R(k,t;nH 3 ] .
tm,0 4t{m

(26)

Curvature fluctuations at high k have already partially
decayed away to a value that is O(1/k%*t,, o) smaller than
their maximum by the time the axion starts oscillating at
tm,o (see Eq. 16), leading to a suppression of the initial
curvature forcing in Eq. 18. We account for this effect
(that is unrelated to parametric resonance) by the mul-
tiplicative suppression factor ¢ = [1 + k2t 0/7%] 2.

In the top panel of Fig. 5, we plot the exact numerical
results for the relative matter power spectra of axions vs
CDM, at a time t,, = 103.> The bottom panel shows the
function G(k, t,,) evaluated at t,, = 103, displaying qual-
itative agreement with |8 /dSPM|? of the top panel, and
justifying the identification of structure growth as due to
a parametric resonance effect. We note that the G func-
tion gives an overestimate to the boost in power at low
k; this difference is due to the forcing of long-wavelength
modes after t,, o, an effect that is also responsible for the
nodes and oscillatory behavior which are present in the
top panel (but not the bottom panel) of Fig. 5.

With the above assumptions and simplifications, the
asymptotic boost in power relative to that in a CDM
scenario, namely G(k) = G(k, t,,, — 00), can be expressed
in closed form:

) exp {Q%W — 41%2arccos{ iio} }

g(k) = (1 N ];2;7;)0)2

(27)

The parametric resonance shuts off entirely at a time

4 As we will show later in the top panel of Fig. 10, some amplifi-
cation also occurs in the nonperturbative regime of © > 1.

5 The axion transfer function |5y /®¢ k|? is as calculated in Fig. 4,
while the CDM perturbation obeys dx/®g k = 79[15,:1 sinty +
t,:2 costy — t,:3 sinty +1Inty, — Ci(tg) +vg — 1/2] in this notation,
where Ci is the cosine integral function and ~g is the Euler-
Mascheroni constant [29].



tm = tf’n’o/(16l~f4) or when the perturbation becomes non-
linear; in practice, this asymptotic form is thus reached
rather quickly.

The numerator of Eq. 27 is maximized at k., with:

];* = C’]m/lfm7 ~ 02\/7%

018t m,

= , ~_ &
G(ks) = Crexp{&tmo} =~ 1+ O.thn,o/ﬂz’

(28)

As we will discuss below, the parametric form of the
expressions in Eq. 28 holds for other (time-independent)
potentials as well, with different values for the constants
C and ¢'.5 Finally, we note that the boost in halo scale
density B is proportional to the boost in |6|? o G3/2,
justifying our claim from Eq. 6 up to polynomial correc-
tion factors.

We have so far focused on the case of a cosine po-
tential. However, the parametric resonance instability is
quite generic: there is always an unstable wavenumber
k, as long as the nonlinearities in the potential are large
enough to overcome Hubble friction. For a Lagrangian
parametrized as £ = f2(90)%/2 — m? f2(62/2 — X\0* /4! +
...), the condition for parametric resonance is

26?2 > L (29)

2

For the cosine potential of Eq. 3, A\ = 1, so given the
scaling of ©2 =~ (L, /tm0)~%/?, all that is required is a
delay in the onset of axion oscillations from its natural
time scale of t,,, o ~ 1. For a cosine potential—including
for the QCD axion potential in Sec. [V—this is achieved
by having the initial misalignment angle close to the top
of the potential, cfr. Eqs. 25 and 14. We postpone a
discussion of these peculiar initial conditions to Sec. V.
Parametric-resonance-fueled growth of density pertur-
bations happens more naturally for “flatter” potentials,
those for which ¢,, o can be much larger than unity even
for generic initial conditions. We work out two such cases
in Sec. V for two axion potentials given by Eqgs. 93 and
95, which have A = 6 and A\ = 3, respectively. For gen-
eral potentials, all appearances of ©2? in Egs. 21, 23, and
24 need to be substituted by A©2. The asymptotic boost
factor in the power spectrum, analogous to Eq. 27, can
then be found by performing the integral of Eq. 26. The
results in Eq. 28 remain valid, provided one makes the

replacements Cj, — \/XC’;€ and & — A¢’. Note that the
temporal scaling of ©? is in general different for time-
dependent potentials, such as that of the QCD axion in
Sec. IV, in which case the integral of Eq. 26 does not

6 The constant Cj = 0.2 is a solution to the transcendental

equation 2C} = cos/1/(16C%) —1/4, and the constant & =
Cry/1—4C2 =~ 0.18.

11

yield Eq. 27.

If one extrapolates the nearly scale-invariant pri-
mordial curvature perturbation spectrum measured by
Planck [49] all the way to small scales, one can expect
fluctuations on the order of @y ~ O(107%5). The
extreme growth of density perturbations, illustrated by
transfer functions |6x/®ko|? as large as > 10'% in the
top right of Fig. 4, can thus lead to early nonlinearities
in the axion perturbations and the subsequent possibility
of collapsed structures, which we discuss in Sec. IIB. In
Sec. IT A 2, we will first work out the evolution of per-
turbations that remain linear long after parametric res-
onance effects cease. In this case, Newtonian linear per-
turbation theory is a good approximation at late times,
when numerical integration of the equations of motion
(Egs. 10 and 17) is computationally expensive.

2.  Newtonian treatment

In the subhorizon, nonrelativistic limit, we can study
the evolution of density perturbations using a Newtonian
fluid approach.” This approximation amounts to inte-
grating out the harmonic oscillations of the axion, and
makes it feasible to study the evolution over many e-
folds of the Universe’s expansion. We can then stitch our
early-time solution from Sec. ITA 1 onto the Newtonian
equations to get the late-time behavior.

At sufficiently late times, namely

1
> max < ty.0, = (30)

a Newtonian fluid approximation becomes appropriate.
Well beyond the onset of axion oscillations t,, > t,, o, we
can average over the effects during one period of the axion
oscillation, as the natural axion frequency is much larger
than the Hubble rate, and we can also treat the nonlin-
earities in the axion potential perturbatively (i.e. only in-
clude effects from the quartic). The inequality t,,, > 1/k>
ensures that the perturbation is well within the horizon,
as well as nonrelativistic (k/ma < 1). Both the axion
background density p and its fractional perturbations dy
should then obey standard Newtonian fluid equations.

The zero mode energy density will redshift as p
a=304®) where w = P/p is the equation of state. For
an axion with a cosine potential, the pressure equals
P = —p?/16m?f? [53]. The fractional density pertur-
bation obeys the differential equation [54-56]:

k>

s }51(:0 (31)

a2

b + 2H 0y — |:47TG,0 -

7 See Ref. [52] for an equation-of-motion treatment of the gravita-
tional instability of a self-interacting scalar field.



where ¢, \/O0P/ép is the sound speed of perturba-

tions. It receives a k-dependent kinetic pressure contri-
bution [57, 58] as well as an adiabatic contribution dP/dp
from the quartic nonlinearity:

, K@ R (8
ST 4m?2 8m?2 f2

= — — . 32

At 16 (32)
For generalized axion potentials with a different quartic
interaction A (cfr. the discussion around Eq. 29 and in
Sec. V), the quartic contribution to the sound speed is
to multiplied by A.

It is convenient to rewrite Eq. 32 as a differential equa-
tion in the variable y = a/aeq = 21/4\/theq/m:
d?6y 1 3
a (y i 2) dy
4 2
= 3 _K i}?%Hﬁqi S (33)
2y oy a2 2 omoy?
which also takes into account the transition of the Uni-
verse from radiation-domination (y < 1) into matter-
domination (y > 1). The initial conditions for this equa-
tion must be found by patching to the solutions from
Sec. IIA1 at some intermediate time tP, which satis-
fies both Eq. 30 and (y?)? = 2t/ Heq/m < 1. In
other words, we choose a patch time long after the field
has started oscillating nonrelativistically but long before

matter-radiation equality. The matching conditions for
the perturbations are then:

ddk

(1+y)

ddk

; —| =2tP 4
dy mYk

yl’

(34)

yP th th

Patching our solutions from Sec. II A 1 allows us to evolve
them out of radiation-domination to the present day,
which we use for many of the observables discussed in
Sec. III.

We demonstrate this full, patched evolution of a few
representative k-modes in Fig. 6. As long as the patch-
ing procedure satisfies Eq. 30, there is no dependence of
|0k| on the patching time. Indeed, the qualitative behav-
ior of the modes is the same in the Newtonian regime
of Fig. 6: the k = 5 density perturbation keeps oscillat-
ing with the same amplitude and a period that steadily
increases (stays constant in log a time), while the k = 1
mode continues to grow in amplitude (with non-negligible
contributions from the third term in Eq. 33). Modes with
k 2 1 have too much kinetic pressure at matter-radiation
equality to experience this gravitational Jeans instability,
and commence linear growth dy oc a only after a ~ aeqk?.
After matter-radiation equality, all modes with k <1ex-
hibit a gravitational instability, and will undergo linear
growth dx oc a. These modes will eventually become
nonlinear—the topic of discussion in Sec. II B.
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FIG. 6. Evolution of fractional axion energy density fluctu-
ations Jx as a~function of the scale factor for four rescaled
wavenumbers k = {0.1,1, 3,5}, corresponding to comoving
wavenumbers of k = {9,29, 50,65} Mpc™* for m = 102! eV.
The general-relativistic evolution is patched onto the Newto-
nian one at t,, = 4 X 10*, at the black vertical line. The
k = 5 mode is suppressed and oscillates due to kinetic pres-
sure, while long-wavelength fluctuations (e.g. kK = 0.1) match
onto the CDM predictions (dashed lines). For an axion mis-
alignment angle of |©o| = 7—107'2, the k = 1 mode receives a
boost in structure, causing it to collapse gravitationally earlier
during matter domination, while modes around k = 3 collapse
due to self-interactions and will lead to oscillon production.

B. Nonlinear regime

In the linear regime of Sec. IT A, we have seen that
the amplitude dx of density perturbations with k ~ 1
can experience a rapid burst of growth during radiation
domination, shortly after the field starts oscillating. Pro-
vided the transfer function |8 /Py o|? is less than the in-
verse of dimensionless primordial power Pg (k) at the rel-
evant wavenumber, the perturbations remain linear dur-
ing radiation domination but have much larger values
of |0k| at matter-radiation equality than predicted in a
ACDM universe. They will thus undergo gravitational
collapse—with slight modifications due to kinetic pres-
sure of the scalar field—much earlier than they would
have in ACDM, and will form correspondingly denser
halos (Sec. IIB1). If the halos exceed a threshold den-
sity, they will undergo gravothermal collapse, resulting
in a central profile consisting of a steep density cusp cut
off by a soliton in the core (Sec. IIB2). In even more
extreme cases (e.g. the top-right portion of Fig. 4), a
density perturbation may even go nonlinear and collapse
during radiation domination due to the attractive axion
self-interactions. We devote Sec. II B 3 to the conditions
for such “quartic collapse”. Finally, in Sec. IIB4, we
discuss tidal stripping of halos, relevant for late-time ob-
servables discussed in Sec. III.

10°



1. Gravitational collapse; halos and solitons

During matter domination, linear axion density per-
turbations grow with the scale factor, dx o a as long
as a 2 aeqmax{l,k*}. Thus for standard primor-
dial power spectra, subhorizon fluctuations will become
nonlinear before the present day (¢ = 1) unless k 2
5. For axions with large misalignment angles, fluctu-
ations with k& ~ 1 will go nonlinear earlier than in a
ACDM universe. ACDM simulations show that overden-
sities with solely gravitational interactions form gravita-
tionally self-bound objects—halos—with a density pro-
file well-fitted by a Navarro-Frenk-White (NFW) pro-
file p(r) = 4ps/[(r/rs)(1 + r/rs)?] [59].8 The scale ra-
dius rg, scale density ps = p(rs), and scale mass M, =
4r [;* drr?p(r) = 8mpsr3(In4—1) remain approximately
constant for times subsequent to the formation of the
halo [61, 62], and are relatively robust against moder-
ate tidal stripping (see Sec. IIB4).? We will therefore
describe axion compact halos, the nonlinear structures
resulting from axion overdensities, in terms of their scale
quantities Mg and ps, the latter enhanced relative to a
typical CDM halo due to the boost in §x over a small
range in k and thus scale mass M;. We define the scale
potential as the gravitational potential at the scale ra-
dius, namely ®; = ®(ry) = —167In(2)Gnpsr?, and use
the scale velocity vy = v/—®, as a measure of internal
velocity dispersion.

Gravitational collapse dynamics can be understood
analytically within the Press-Schechter formalism [63],
where a spherical tophat perturbation decouples from the
ambient Hubble flow to form a virialized object at acon,
the scale factor at which linear perturbation theory would
have predicted the fractional overdensity to have equaled
0. ~ 1.686 in a matter-dominated Universe. The virial
density of the resulting halo is approximately 178 times
the mean density of the Universe at acon. A question still
remains about the precise conditions for collapse, because
axion density fluctuations §(r) = (2m)~3 [ d3k d(k)e’ ™
are a (initially Gaussian) random field, with overdensities
that are neither spherically symmetric nor even of similar
shape and amplitude. In practical terms, to explore fluc-
tuations at different scales, d(r) is smoothed to a density
field d(r, Rs) over a size Rg using an appropriate window

8 We note that the NFW fit has been thoroughly verified only
for nearly scale-invariant power spectra within ACDM contexts,
where one expects many mergers. In light of Sec. II B 2, it should
definitely not be trusted at radii » < 1/mus for axion DM. A
spike in the power spectrum—a shape more similar to what is
generated by the large-misalignment mechanism—produces cus-
pier halos, with an inner density profile p(r) o< 7~3/2 [60].

This is in contrast to the oft-used quantities r2gg, the radius
within which the mean halo density is 200 times the Universe’s,
and Mago = [;2°° d3r p(r), the mass inside that radius. Both
these quantities increase with scale factor, but can drastically
decrease with tidal stripping (even if the halo is not completely
disrupted).
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function W(r —r’, Rg):
5(r, Rs) = / B W(r 1, Re)S(x).  (35)

Inspired by the spherical collapse model, the window
function is commonly taken to be a spherical tophat
W (r,Rs) = O(Rs — r)(3/47R%). One then posits that
a point r is part of a halo of mass My, > Mg =
(47/3) P\ RS when (r, Rg) 2 6.

The variance 02(Mg) = (§(r, Rs)?) of the density field
at the mass scale of Mg can be written as

2

% | 1wk, m) P (36)

2 _ n Uk
7 (0s) = [ dtn(h) Po(b) e

where W(k, Rs) = [d3r W (r, Rs)e ™7 is the Fourier
transform of the window function. In the top panel
of Fig. 7, we show the standard deviation o(Mg) as a
function of the smoothing mass scale Mg for an axion
mass m = 10718 eV and misalignment 7 — |©g| = 10710,
Assuming the fluctuations are Gaussian-distributed, the
collapsed fraction of structures with a smoothing mass
larger than Mg is F(Ms) = erfc[6./v/20(Ms)] in the
extended Press-Schechter formalism. We can then con-
struct a differential collapsed energy density per logarith-

: : dpeon — ,0 dF(Ms) :
mic smoothing mass 7547 = ppy g az. > and a differ-

ential collapsed fraction that evaluates to:

2
-8

1 deoll em. (37)

\/5 6. |dno(Ms)
POy d1In Mg -V ro(Ms) ‘ dln Mg

We plot this function in the bottom panel of Fig. 7 for the
same axion parameters as in the top panel. Already at
z = 3000, F(Mg) ~ 1% of perturbations exceed the crit-
ical threshold of §.. The majority of points in space are
in a dense, gravitationally-collapsed halos before redshift
z = 100. Over time, the differential collapsed fraction at
small smoothing masses Mg decreases as halos at these
mass scales become part (i.e. subhalos) of larger halos.

One drawback of the Press-Schechter procedure with
a spherical tophat window function is that it largely fails
to account for halo substructure. For example, d(r, Rg)
can be large even when there is no structure at scales of
order Rg, as long as there is structure on scales bigger
than Rg. Likewise, the differential collapsed fraction of
Eq. 37 does not include structures of mass Mg that are
already assimilated into more massive halos. So while
the above procedure and the results of Fig. 7 are useful
to track parts of the density field’s statistics, they are
crude instruments for extracting the halo spectrum.

The two issues pointed out above—non-isolation
and wundercounting of substructure at the scale Rg—
stem from the fact that the Fourier transform of the
spherical tophat window W(k, Rs) = 3[sin(kRg) —
kRs cos(kRg)]/(kRs)? has nonzero support even for k <
Ry ! Therefore, rather than summing the cumulative
structure above Rg, which is effectively what the spheri-



m=10"8eV, |m-0g|=10"1°, ®f=2.1x10"°

-2 S
10 z=1000
z=3000
z=10000
1073 T T T r T T T r
10° 10t 102 10° 104 10° 10° 107 108 10°
Ms[Mo]
m=10"18eV, |m—0o|=10"1°, ®3=2.1x1079
10° 2
10*] 4
_ 1072 -
3l
sls
Tlo —
|2 —
1= o N 2=0
z=3
z=10
z=30
2=100
107 4 \ 2=300
2=1000
—— z=3000
—— 2z=10000
10-% T r T r - - -
10t 102 103 104 10° 108 107 108 10°
Ms[Mo]
FIG. 7. Standard deviation of the smoothed axion den-

sity field (top panel) and the resulting differential energy
density fraction in collapsed halos per logarithmic mass bin
(bottom panel), as a function of the smoothing mass scale
Ms = %’r pO RS of the spherical tophat window function
with radius Rs. Our results are plotted for the benchmark
case of m = 1078 eV and 7 — || = 10719 also plotted in
Fig. 8, at different redshifts z. Despite our input of a stan-
dard scale-invariant spectrum of curvature fluctuations, O(1)
density perturbations at small scales are already common by
matter-radiation equality. Further growth at these scales oc-
curs during matter domination, albeit slightly delayed rela-
tive to large scales due to effects of kinetic pressure, leading
to a collapsed halo fraction of 56% (82%) by redshift z = 100
(z = 30) entirely in dense halos lighter than 10° Mg. Af-
ter z ~ 30, these halos are assimilated into larger CDM-like
halos.

cal tophat smoothing procedure does, one can also use a
window function that isolates the structure at a length
scale R:

W(k, R) = N exp { - [ln(kw} (38)
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with & = 1/2 and a normalization constant N such that
[ dIn(k)|W(k, R)|?> = 1. The disadvantage of this win-
dow function is that its volume in real space formally di-
verges, and therefore cannot be interpreted as a smooth-
ing kernel as in Eq. 35. Nevertheless, we find this window
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Halo Spectra: ®3=2.1x107°, §=1/2
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FIG. 8. Halo spectra in terms of scale mass M, and scale den-
sity ps (as in Egs. 39 and 40) for several different axion masses
m and misalignment angles Og, as well as the reference CDM
halo spectrum. The thick solid lines are computed with a di-
mensionless smoothing kernel of & = 1/2. For m = 10715 eV
and m—|©g| = 1078, we also display the halo spectrum with a
narrower kernel of & = 1/10 (thin red line), revealing the os-
cillatory behavior of the power spectrum at high wavenumber.
The dashed lines depict the dilute soliton branch of Eq. 41,
the densest possible stable axion configuration, for the same
three axion masses, and the dotted vertical lines indicate the
maximum (critical) soliton mass. The dot-dashed lines delin-
eate the density above which gravothermal catastrophe occurs
inside the halo, resulting in a steep internal density profile (a
cusp cut off by a central soliton).

function useful to construct a halo spectrum, i.e. a typical
mass-density relation {Mj, ps}:

47
M, = C’Mgp%MR‘g (39)

Acoll = {G‘U(RS) = 60} (40)

with fiducial values of Cjs ~ 1 and C, ~ 200. In other
words, our procedure amounts to smoothing the dimen-
sionless linear power spectrum P(k) in In(k) space, and
taking a typical halo to form when a smoothed 1-sigma
overdensity reaches a value of 6, ~ 1.686. Note that with
our definitions, the total fraction of DM within gravi-
tationally collapsed structures can be larger than unity,
because we are counting a halo and all its subhalos (and
subsubhalos etc.) separately. We expect that if linear
perturbation theory predicts o2 > 1 at some scale R
with our window function, O(1) of the DM is contained
within structures of mass M as in Eq. 39, provided they
survive tidal stripping (see Sec. IIB4).

In Fig. 8, we plot the halo spectrum as defined in
Egs. 39 and 40 for four different cases, assuming a scale-
invariant primordial curvature power spectrum Py (k) =
2.1 x 1072, We see that the enhancement of density
perturbations at scales with k& ~ 1 results in halos that
collapse earlier than in ACDM cosmological history and
can be significantly denser than the ACDM prediction at
comparable scales if T — |©g| < 1. The typical mass of

_ 0o -3,
ps = CoppMcon;



these overdense halos is thus the one given in Eq. 5.

As the halos become denser, eventually the de Broglie
wavelength of the gravitationally bound axions becomes
comparable to the size of the halo. At that point, the re-
pulsive kinetic pressure of the axions becomes important
for the dynamics of the halo and the halos transition to
the soliton regime, represented by the dashed line shown
in Fig. 8. These gravitationally-bound axion field config-
urations have been extensively studied in the literature
[31-42], and we devote App. A to a review of some of
their properties. There are, however, two facts that are
quite relevant for the discussion here.

The first is that solitons have a well-defined relation-
ship between mass and density. Defining a soliton’s scale
radius by 7°! = {r|0lnp(r)/0Inr = —2}, we can nu-
merically solve for the ground-state of the Schrodinger-
Poisson equation to find:

P ~ 0.7 GRmO (M)! (41)
where p%°! = p(r$°!) and M5! is the mass enclosed within
the scale radius. For a fixed total mass of axions M (with
the scale mass given numerically by M3°! ~ 0.4 M), this
soliton state is the unique minimum-energy state, and the
densest energy eigenstate. This one-parameter family of
solutions parametrized by M:°! acts as an upper bound
to the scale density of a stable halo as a function of its
scale radius, and we plot this bound for a few different
axion masses in Fig. 8. For high misalignment angles, it
is possible to saturate this bound, which we also show in
Fig. 8.

The second relevant fact is that the gravitational soli-
ton branch described in the above paragraph has a max-
imum possible mass M (see App. A) which corresponds
to a maximum scale mass (for an axion with a cosine
potential):

M ~ 0.4 ML ~ 10% (42)
which we plot on Fig. 8 for each choice of axion mass
m by means of a vertical dotted line. Above this
value, the attractive axion self-interactions overwhelm
the repulsive kinetic pressure and no nonrelativistic,
(metastable) ground state configuration exists. Any suf-
ficiently dense axion configuration above this mass will
collapse within a dynamical time (i.e. an infall time).
Such self-interaction-induced collapses have been studied
previously in Ref. [64]. The large-misalignment mecha-
nism can produce dense solitons at the mass M in Eq. 5,
which is parametrically only slightly below the critical
soliton mass M55, by a factor of ~ (Heq/m)'/*. We
speculate that mergers and accretion due to the gravi-
tational cooling mechanism of Sec. II B 2 below may tip
them over the edge, thus opening up the possibility for
late-time supercritical soliton collapse into oscillon-like
configurations. We leave a detailed analysis of these phe-
nomena and their impact on detectability to future work.
In Sec. II B 3, we will study the early-time, direct produc-

15

tion of oscillon-like states, a process that does not involve
a soliton as an intermediate state.

2. Gravitational cooling

For the halos described above, gravitational cooling
is another process, beyond mergers and accretion, that
can significantly alter their structure. Compact halos
not in the soliton regime can cool and form a soliton
at their center, and solitons already present can accrete
more mass from the cooling of their surrounding halos.
The cooling timescale 7, has been estimated by Ref. [65],
and in terms of the scale quantities defined in Sec. IIB 1
their expression reads:

Gm3M2 1

P (43)

Tor ~ Cgy

where Cy, is an O(1) constant, and M, and p, are
the halo’s scale mass and density, respectively. Here
A ~ log(mugrs) is a Coulomb logarithm (with r, the
scale radius and v, the scale velocity), which we keep for
completeness but which is O(1) for the whole parameter
space, and so does not substantially change the results.

The cooling time scale of Eq. 43 is simply the inverse
rate of gravitational scattering, which is greatly increased
by a bosonic enhancement factor. Indeed, Eq. 43 gives
the rate of gravitational scattering of quasiparticles of
mass ~ ps A2 and size A\; ~ 1/muy; one can therefore view
the gravitational cooling process as being due to the scat-
tering of the interference fringes of the axion field [66],
which cause O(1) density fluctuations on the scale of the
de Broglie wavelength A;. Ref. [65] finds that after a
timescale of roughly 7, a soliton will spontaneously form
in the halo, and grow in mass on similar time scales, at
least initially.

For moderately enhanced halo scale densities, the soli-
ton that forms initially is much smaller than the halo in
both mass and size (A\; < 75, the “kinetic regime” of
Ref. [65]). Nevertheless, at time ¢ > 74, the backreac-
tion of gravitational cooling on the halo is likely to be se-
vere. Gravitationally bound systems have a negative heat
capacity, so gravitational scattering (or any form of ki-
netic energy exchange for that matter) generically causes
a runaway instability to take place—the “gravothermal
catastrophe”. This phenomenon is known to occur in
globular clusters on a time scale of ~ 3007, [67, 68],
and we expect it to be operative for compact axion halos
as well.

The physical mechanism can be understood as follows:
heat transfer from the dynamically warmer halo core to
the colder periphery of the halo will cause the core to
lose energy, and thus heat up and contract by the nega-
tive heat capacity and the virial theorem. This process
is recursive: the core will continue to collapse (heat up
but shrink in mass Mo while its density peore increases)
by using its immediate outskirts as a heat sink. Ref. [67]



showed that for the case of gravitational scattering, there
is an attractor solution for this process, with the collaps-
ing core expected to leave behind a cuspy halo density
profile of p(r) ~ ps(r/rs)~« for r < rs. Ref. [67] argues
that « takes values between 2 and 2.5, with numerical
simulations favoring « & 2.21. (We expect the halo scale
radius and density to be only moderately increased and
decreased, respectively, by the gravitational cooling pro-
cess.)

In the case of axion dark matter, the core collapse
should be halted when the core reaches a size where re-
pulsive kinetic pressure becomes important, i.e. when the
line { Mcore, Peore } intersects the soliton branch of Eq. 41,
depicted also in Fig. 8 for some benchmark axion param-
eters. The assumption of self-similar collapse combined
with the above reasoning thus allows us to derive a re-
lation between the solitonic core mass and the host halo

mass. The core density and a function of its mass is
Peore X MCT);XE/ (3_a), resulting in a core soliton of mass:
o\ Tmw
471_ Ms_ﬁ 34—
M3, = <3”g; ; ) . (44)
M

For a = 2.21, this gives M¢ore X MSO"“, which is to be

contrasted with the expectation of Mg o M} /3 for an
isothermal profile, where o = 2. The latter relation ap-
pears to arise in fuzzy DM simulations [69]. We do not
believe this to be in conflict with what we are describ-
ing here. In our mechanism with self-interactions, ps is
drastically enhanced and gravitational cooling is more
efficient than for a free scalar field minimally coupled to
gravity. We point out that a transition from an NFW to
an isothermal profile is expected as the first step in the
gravothermal collapse process.'©

In Fig. 8, we show the minimum halo scale density at
which gravothermal core collapse is expected to occur.

Specifically, the dot-dashed lines are contours at which

Tg_rl = 300 Hy, for the three benchmark axion masses

considered. Halos above this contour, e.g. those with
M, ~ 10* Mg, of the blue halo spectrum in Fig. 8 with
m = 107%¥eV and m — |©g| = 10712, will have their

10 The scaling relation of Mcore Msl/3 has been extrapolated to
halos heavier than those simulated to place constraints on axions
above 10722 eV [47, 48] in mass. We do not believe these con-
straints should be trusted; the above scaling applies to isother-
mal profiles when the average velocity inside the solitonic core
is equated with the velocity right outside. This core-halo mass
relation should then break down in NFW halos for which the
thermalization radius (the radius within which Tgr ~ HO_1 and
out to which the halo profile now becomes isothermal) is smaller
than the scale radius rs. For particle masses of 10719 eV, this
happens in halos heavier than 107 Mg, and this cutoff scales as
m~3/2 for other axion masses. Above this halo mass cutoff, cal-
culating the radius for which 74y ~ H ! and relating this radius

to the halo mass suggests that Mcore o Mf/w and the extrapo-

lation used in the above references clearly does not apply.
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cores collapse to the soliton branch. Subsequent to this
collapse, the central soliton is expected to accrete and
therefore increase further in mass and density. For axion
decay constants far below fr /2, it may be possible that
this central soliton could accrete to the critical soliton
mass at late times, the point at which a dramatic implo-
sion and bosenova of the type described in Ref. [64] and
App. A would take place. For the parameters plotted
in Fig. 8, we do not foresee this scenario to materialize,
as the host halos affected by gravothermal core collapse
are below the critical soliton mass of Eq. 42, but halo
mergers and accretion are possible loopholes to these ar-
guments. Further numerical work is needed to study this
possibility; it is clear, however, that soliton formation is
greatly aided by the initial enhancement of small-scale
structure by our mechanism. Finally, gravitational scat-
tering between compact axion subhalos may also affect
the dynamics of their larger host halos. This aspect is
discussed in Sec. IIT A 6.

8. Quartic collapse; oscillons

At very large misalignment angles, namely m — |G| <
10~'2 for the cosine potential, it can be deduced from
Fig. 4 that the parametric resonance growth of pertur-
bations can lead the axion field to grow nonlinear on
scales k ~ 1 well before matter-radiation equality. For
the nonperiodic potentials of Sec. V, the same effects
are obtained for |©g| > 1, as indicated in Figs. 19 and
20. Density perturbations on these scales can potentially
decouple from the expansion of the universe, leading to
DM structures that collapse solely via self-interactions.
In this section, we numerically examine the conditions in
which this “quartic collapse” can occur and compare our
results with a (very) simple analytic model of the col-
lapse process. We restrict ourselves here to spherically
symmetric fluctuations, but we do not expect qualitative
differences in the collapse condition for O(1) asymmetric
perturbations.

Our numerical procedure involves taking a field config-
uration that consists of a zero-mode background 6y and
a spherically-symmetric Gaussian axion field wavepacket
of radius Ry, o and fractional overdensity dy at the center:

1415 i (45)
2P\ TaRe (]|

where t,,, o is the time at which we start our simulation.
We also switch to a new comoving coordinate system
{tm,Xm} where the axion mass dependence drops out,
and the metric is ds? = m~2(dt2, —t,,dx2,). The dimen-
sionless time coordinate is t,, = m/2H = mt as before,
while x,,, = tfnl/ %amx is a dimensionless spacelike coordi-
nate in which a momentum mode characterized by k has
a wavelength of 27/k. Note that, relative to Eq. 7, we
are ignoring curvature perturbations and that r,, = |X,|

o(tm,Oa X'm) = 0o




in Eq. 45. Let us also assume that 9, 0(tm,0,%Xm) = 0.
We study the evolution of this wavepacket via the full
nonlinear field equation (with spherical symmetry and
without metric perturbations), which in this coordinate
system reads

2
o+ —8tm - — (82 + r—armﬂ 6 +sinf = 0,
(46)

along with the initial condition of Eq. 45. Ignoring the
forcing terms from curvature perturbations in Eq. 18 be-
comes an increasingly good approximation at late times,
so our real-space, nonlinear simulations with Eq. 46 cap-
ture and thus isolate the effects from the self-interactions
only. They are thus complementary to the linear Fourier
analysis of Sec. ITA1. We collect specifications of our
numerical method in App. B.

For certain values of the four parameters 6y, t,, 0,
0o, and R, o, the wavepacket separates from the Hub-
ble flow and collapses into an oscillon-like object with
p/m?f% > 1. In Fig. 9, we show the evolution of one such
collapsing configuration. The initially small fractional
overdensity 69 = 0.01 deforms over the course of several
e-folds, decouples from the Hubble flow expansion, and fi-
nally collapses into an oscillon-like structure by ¢,,, ~ 700.
The oscillon is shrinking in comoving size but is decay-
ing more slowly in physical size R, %2 Ry /m. Tt is
clearly a dynamical object, with perlodlc bursts of semi-
relativistic scalar radiation that decrease in intensity as
the central object loses energy. The semi-relativistic ra-
diation bursts can be seen as the streaks that fan out as
T X (tm — tmbum)l/ 2 initially but then slow down due
to the expansion of the Universe. Note that the density
at large comoving radius is redshifting like dark matter:

Poo X t:n3/2. In Sec. III D and App. B, we study the pre-
cise characteristics of the collapse process and the outgo-
ing radiation—both in scalar and gravitational waves—at
higher resolution and without spherical symmetry but in
a static (not expanding) geometry.

In the bottom panel of Fig. 10, we delineate the min-
imum Jy needed to collapse into an oscillon as a func-
tion of R,, 0. We started a suite of real-space simula-
tions all at 8p = 1 and several benchmark starting times
tmo = {20,30,40, 50,60, 70,80,90}, which correspond
to misalignment angles 7 — [©g] = {5.1 x 1073,2.3 x
1074,9.9x107%,3.3x 1077, 1.1 x 1078,5.1 x 10710,2.6 x
107,99 x 10713}, respectively. In those parameter
scans, “oscillon collapse” was operationally defined as
p(rm = 0) > m?f? before t,,, = 103, i.e. the central den-
sity exceeding double its starting value of (1+ &g)m?f2/2
despite initially decreasing until the configuration be-
comes nonlinear. In the top panel of Fig. 10, we show
the results of a linear Fourier analysis, using the meth-
ods of Sec. IIA1 to evolve axion density perturbations
Ok from t,, = 0 to ¢y, o for different k, the Fourier dual
of Ry0. We took the axion fluctuations to be sourced
by adiabatic curvature perturbations of standard size:
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FIG. 9. Spherically symmetric simulation of the axion field
as a function of dimensionless time t,, and radius r,,, start-
ing from a stationary gaussian wave packet with fractional
overdensity do = 0.01 and radius R,,,0 = 0.64 on top of
a homogeneous background with 6§y = 1 at an initial time
tm,0 = 80, cfr. Eq. 45. The evolution is governed by the
differential equation of Eq. 46. The top panel shows the en-
ergy density p(tm,rm) in units of m?f2, the middle panel the
density difference Ap = |p — poo|, and the bottom panel the
total enclosed energy Eenc(tm,7m) = 4w [;™ rmtf,{Qp(tm, Tm)
in units of f2/m. The dashed line shows the scale of the phys-
ical reduced Compton wavelength m~™'. The initially linear
overdensity collapses into an oscillon by t,, ~ 700 and emits
semi-relativistic scalar waves.

<I>(2) k= 21x 10~°. The linear evolution was performed
for the same parameters as in the bottom panel, i.e. with
initial misalignment angles such that the amplitude of
the zero mode, ©, equals unity at tm,0. With a misalign-
ment of ™ — 16| < 2.6 x 1071, © = 1 is reached at
tm,0 2 2> 80, when one-sigma axion overdensities between
1 < k < 5 will reach values & > 0.002 and are rapidly
growing. Comparison against the real-space results of
the bottom panel reveals that these perturbations are
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FIG. 10. Top panel: Linear momentum-space analysis of
axion density fluctuations dx as a function of k sourced
by adiabatic curvature perturbations with small amplitude
Po,x = V2.1 x 1079. The evolution is tracked for seven dif-
ferent values of misalignment angles |Og| (see text) until the
zero mode has amplitude © = 1 at seven corresponding times
tm,0. Bottom panel: Minimum overdensity do for a spheri-
cally symmetric gaussian wavepacket of radius Ry,,0 (Fourier
dual to I;) to collapse into an oscillon, starting at the same
seven start times t,,,0 at which the zero mode 6y equals unity.
Dashed lines show results based on a (0 + 1)-dimensional re-
duction assuming wavepacket rigidity and mass conservation,
principles which break down badly for small R, o due to para-
metric resonance and other relativistic effects.

destined to collapse. For these supercritical parameters,
the collapse time ¢, con is shortly after the fluctuation
becomes nonlinear with only a weak dependence on Jy,
Ry0, and ™ — |Og]. It is always several e-folds after
the zero mode starts oscillating, yielding the hard lower
bound of t,, con > 10.

We can attempt to capture these quartic collapse dy-
namics in the radiation-dominated era by following a
variational procedure similar to that of Ref. [34, 35]. We
derive an effective equation of motion for the physical size
R, = VPR, /m of the overdensity, and deduce under
which conditions R, — 0 in a finite amount of time. This
procedure is analogous to the standard calculation for
gravitational collapse of a spherical-tophat-shaped over-
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density [63], which also reduces the problem from one in
d =3+ 1 dimensions to one in d = 0 4 1 dimension.

In order to derive the equation of motion for R,, we
expand the energy density of the axion field to fourth
order in 6:

o [0 46 (9,07 0
pmif { 2 T o, T (47)

This expression can formally be expanded as a Taylor
series in 6: p = po + ps + pss + .... At every order
in §, we can break down each term into a “mass” and
“interaction” piece, p = p™ + p'"*, corresponding to the
first and last two terms of Eq. 47, respectively. The mass
of the initial state wavepacket (cfr. Eq. 45) is then:

2
sv, M 70 2,372 13

M= /d VM ~ 559075,,{701%,,1. (48)
The combination 0%%2 is approximately a constant to
zeroth order in ¢, and in the absence of any dynam-
ics, § and R,, are constant as a function time as well,
such that the physical radius of the wavepacket R, =
},{QRm /m is expanding with the Hubble flow. However,
the wavepacket does have nontrivial dynamics due to its
interaction energy, which can be estimated as:

Eint = /dSVp&St >~ MW |:t_R2 — 03:| . (49)

In the subhorizon, nonrelativistic limit, and assuming
wavepacket rigidity'’ and mass conservation, the physi-

cal radius of the wavepacket should then obey a Newto-
nian ODE:

int
R,y=—— |:(I)FRW+ } (50)
b dR, M
BCTR N SR ) B
o420 99/2 mzRg R, ’

The first term is the leading correction that takes into ac-
count the deceleration of the Universe’s expansion [70],
with ®pryw = —(H + H?)R2/2 = R2/8t* during radi-
ation domination. The second term is the leading self-
interaction force. The initial conditions corresponding to
those of Eq. 45 are:

1/2
Ry(to) = to 37m;

1A “rigid” wavepacket is one whose (in this case Gaussian) shape
is preserved. Wavepacket rigidity assumes that the variational
ansatz that we have used to convert the d = 3 4+ 1 Schrédinger
equation to a d = 0+ 1 equation for the wavepacket size R, is a
good solution to the original equations of motion for a station-
ary state. The middle panel of Fig. 9 clearly shows wavepacket
deformation before collapse.



where in the latter equation, the first term is due to the
Hubble flow velocity H R,, and the second term takes into
account the “spreading” of the wavepacket. Again, we
define a collapsing wavepacket as one for which R, — 0
in finite time.

In Fig. 10, we depict the critical parameters for col-
lapse using the R, equation with dashed lines. One can
observe that the dichotomy between collapsing and co-
moving configurations of Eqgs. 45 and 46 is captured by
the simplified dynamics of Eqs. 51 and 52 only at large
wavepacket sizes R, o 2 3, and then only approximately.
For smaller wavepacket sizes, the 0+1-dimensional reduc-
tion breaks down spectacularly. As evident from Fig. 9,
the assumption of wavepacket rigidity (constant shape)
is badly violated even in the linear regime. Likewise, the
assumption of mass conservation is also not a good princi-
ple at small R,,, as parametric resonance (see Sec. ITA 1)
can be understood as a process wherein two axions with
zero momentum (the background) are converted into two
axions with finite momentum (part of the perturbation).

Our numerical simulations further show (see App. B
for details) that the collapsing structures eventually set-
tle into evaporating oscillons, scalar field configurations
whose dynamics are dominated entirely by the dynamics
of the axion potential, with little influence from grav-
ity. This relaxation happens mainly through scalar wave
emission, some of which can be seen in Fig. 9. Os-
cillons have been known to exist generically for poten-
tials containing attractive self-interactions, and they can
be relatively long-lived for some axion potentials, al-
though there is no simple quantitative or qualitative un-
derstanding for their longevity. Our high-resolution sim-
ulations show that the oscillon lifetime in physical units is
< O(10%) m~1 for the cosine potential, not long enough
to be cosmologically relevant.'? Since the actual struc-
tures collapsing via these self-interactions are O(1) asym-
metric, they can also emit gravitational waves during
their infall and collapse, which we discuss in Sec. III D.

The violent dynamics of the oscillons’ implosion and
evaporation leaves behind regions of axion debris with
O(1) density fluctuations. This is quite analogous to the
case of dissipating oscillons which form or become part
of QCD axion miniclusters, if the Peccei-Quinn phase
transition occurs after inflation (see e.g. Ref. [71]). We
expect that these regions are slightly larger in comov-
ing scale than the original density perturbations, and
that they will gravitationally collapse into ultra-dense
halos and solitons at around matter-radiation equality,
cfr. Sec. IIB1. We still expect O(1) fraction of DM to
be in these structures; the debris of the oscillons’ decay

12 As we will discuss in Sec. V, the oscillon lifetime can be sig-
nificantly longer than O(103) m~1! for potentials other than a
cosine and/or for very large oscillons whose evaporation rate is
suppressed by a form factor. This raises the possibility of DM
being comprised of oscillons; some of the potential signatures of
oscillon DM are discussed in Sec. III.
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will be the bulk of the dense DM matter substructure,
and their signatures will be discussed in Sec. ITI.

4. Tidal stripping

The halos that result from the parametric-resonance-
fueled growth of axion overdensities are the densest ob-
jects in the Universe upon their initial formation. They
are therefore robust against tidal stripping effects even
as they are assembled into larger DM halos such as those
of galaxies and clusters. However, present-day baryonic
structures such as stars, globular clusters, and the Milky
Way (MW) disk are of course much denser than typical
ambient DM densities. Most of the observational and ex-
perimental signatures of Secs. III A and IIIB rely on the
survival of the halos in our Galaxy, so one needs to ad-
dress the possibility that they are tidally disrupted by the
MW disk or its stellar constituents. We divide our dis-
cussion into two distinct cases, depending on whether the
halo scale radius 7 is either much smaller (ry < Arggar)
or much larger (rs > Argay) than the average inter-
stellar separation in the MW disk: Argar ~ pc. For
the intermediate regime ry ~ Arga,, there is no separa-
tion of scales, but it should be approximately correct to
interpolate between the constraints of the two limiting
regimes.

First, we discuss the case of halo scale radii much
smaller than the interstellar separation, the case of inter-
est in particular for the femtohalos of Sec. III B. In this
regime, stellar encounters are brief compared to the (in-
ternal) dynamical time of the halo, so the relevant quan-
tity is the differential velocity kick imparted on axions on
opposite sides of the halo in the impulse approximation:
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In the above estimate, we assumed a relative velocity
of ver = 1072 and a solar-mass perturber My =~
Mg. We also defined a typical impact parameter b as
biyp = (Mstar/T%6) /2 = 0.07 pc, with the surface mass
density of the MW disk at the Sun’s position equaling
Yo ~ 60Mgpc=2. The local density boost factor is

Be = ps/ng. By contrast, the scale velocity of a halo
is vs = /167 In(2)G N psr2, or numerically:

M 13 15\ /6
~ —13 s o)
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Comparison of Egs. 53 and 54 shows that a single disk
crossing has little effect on the interior structure of a
moderately overdense halo.

Of course, the halo may experience N disk crossings
over the course of its lifetime, with a minimum expected




impact parameter of bmin = beyp/ V/N. The requirement
that Av(bmin) < vs is equivalent to a mass-independent
lower bound on the scale density, or equivalently the
boost factor:

TGN X2PDM 2 N
> TN ZOIDM 2 g0 () 55
O~ 2 2 100 (55)
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We regard Eq. 55 as a conservative lower bound on the
minimum overdensity necessary to prevent a catastrophic
tidal disruption event for a halo that crosses the disk N
times. Typical halos will have N at most ~ 150, while
those on eccentric orbits or recently accreted onto the
MW could have substantially lower values of N. Instead,
one could consider the process wherein the internal bind-
ing energy per unit mass (—v2/4) of the halo is grad-
ually reduced by dynamical heating of N tidal encoun-
ters, each interaction dumping kinetic energy per unit
mass of vsAv(b), under the assumption of mass conser-
vation. One then arrives at a bound similar to that of
Eq. 55, except stronger by a factor of (4In N)? on the
RHS. However, tidal interactions do cause partial mass
loss—preferentially of particles on more weakly-bound
orbits, leaving behind more deeply bound particles and
a denser halo. Ref. [72] indicates that even Eq. 55 may
be overly restrictive: a tidal shock energy far exceeding
the halo’s original binding energy can result in a sur-
viving halo fragment. We therefore expect halos with
rs € Argpar to survive tidal interactions inside the Milky
Way if they are only moderately overdense.

In the case of larger subhalos with rg > Arg,,, tidal
survival constraints are relaxed because the subhalos are
effectively probing a lower-density medium; the tidal
forces from individual stars are only strong on scales
much smaller than the subhalo itself, and cannot cause
its entire disruption. In the commonly-adopted simpli-
fied model of Ref. [73], one posits that all mass of subhalo
outside the tidal radius r; is tidally stripped by a spher-
ically symmetric perturber with enclosed mass function
Mp,(R). If the subhalo is on a circular orbit at radius
R from the center of the host halo, the tidal radius is
implicitly given by:

M(re) dIn M,(R)
3 _< - dlnR

T

M,(R
R) R(3 ) (s6)

Above, M(r) is taken to be the enclosed mass function
of the subhalo. If we require that r, > 7, on a cir-
cular orbit at the Sun’s radius R ~ 8.3kpc from the
MW with scale radius rMW ~ 18 kpc and scale density
MW~ 2.6 x 1073 Mg pc™? [74], we arrive at the weak
constraint B 2 1.2. Tidal fields from density variations
in the Galactic disk on scales of order the subhalo size
can be significantly larger, as one can generally expect
O(1) overdensities in the disk with mean local density
pdo ~ 0.087Mgpc™? [74]. Still applying Eq. 56 and
conservatively taking the RHS to be 47pg o, we find that
ry > rs requires that Bg 2 11. Most of the mass is lo-
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cated outside the scale radius of an NFW-shaped halo,
so if these inequalities are only barely satisfied, one can
expect survival but with substantial mass loss from tidal
stripping.

III. OBSERVATIONAL PROSPECTS

In Sec. II, we described how the attractive self-
interactions of axion DM at large initial misalignment
give rise to compact halos much denser than the ACDM
expectation at similar scales. In Secs. IV and V, we will
repeat this analysis for the QCD axion and for general-
ized axion potentials, respectively, with similarly boosted
DM power spectra and thus denser halos. When formed,
these halos constitute O(1) fraction of the DM, and their
spatial distribution will trace the ambient DM density.

In this section, we describe how we expect DM phe-
nomenology to change in our scenario. We divide the
observable signatures of compact axion halos into four
categories. In Sec. III A, we consider direct gravitational
interactions between these halos and astrophysical ob-
jects such as stars. These include perturbations in stellar
phase space distributions, various gravitational lensing
signatures, and potentially-observable dynamical friction
effects. The rough region of affected parameter space is
shaded in blue in Fig. 1, and the reader interested in the
key results of this section should focus first on Fig. 11.

We then move in Sec. III B to a discussion of how such
compact halos affect DM direct detection experiments
that search for nonminimal axion couplings to the SM.
This is relevant for high axion masses (shown by the green
region in Fig. 1), and the key results are summarized in
the final two paragraphs of Sec. III B as well as Fig. 13.
In particular, we point out the importance of these effects
for the QCD axion (see also Sec. IV).

We next consider indirect gravitational effects on bary-
onic structures and early star formation in Sec. IIIC.
These are relevant only for the lightest axions (with
masses less than O(107 1) eV), a region shaded in brown
in Fig. 1, and we report the key findings on star forma-
tion in Fig. 14. In the final paragraph of this section we
also discuss effects observable in Lyman-« forests, and
why current constraints on ultralight dark matter do not
apply and must be reanalyzed in our case.

Finally, in Sec. III D, we study the extreme case when
collapse happens well before matter-radiation equality
and oscillons are formed. The collapsing structures
will emit gravitational waves and form a stochastic
GW background, and for light axions (masses less than
O(107) eV), this background may be detectable in the
future. We shade the affected region of parameter space
in orange in Fig. 1, and Fig. 15 contains our estimates of
power in the stochastic background as well as the poten-
tial reach of upcoming experiments.



A. Direct gravitational interactions

The compact halos formed through the large-
misalignment mechanism can be large enough to grav-
itationally bend or magnify the light emitted by astro-
physical objects as they move in front of them, or to
gravitationally affect the motion of nearby stars as they
move through the Galactic halo. Here we analyze these
effects in detail, and Fig. 11 summarizes the parameter
space that each effect probes as a function of the halo
scale mass M and the halo scale density ps;. Purely
from the minimal coupling to gravity, there are discovery
prospects for halos seeded by large-misalignment axions
with masses as high as m ~ 107°eV. We note that most
of the effects in Fig. 11 do not rely on subhalos that
transit the MW disk or can only probe relatively dense
subhalos, and are thus robust to tidal stripping.

We begin in Sec. IITA1 by discussing how compact
subhalos perturb local stars. In Sec. IIT A 2, we show that
the most powerful probe in a large part of the parameter
space is astrometric weak lensing. DM subhalos’ lensing
of stellar light can appear as a distortion of the apparent
motion of stars. We consider two types of observables,
one based on the apparent velocity of background lumi-
nous sources such as distant stars or quasars (blue curves
in Fig. 11), the other based on apparent stellar accelera-
tions (red curves in Fig. 11).

In Secs. TITA 3, IIT A4, and TITA 5, we discuss signa-
tures of DM subhalos that rely mainly on strong gravi-
tational lensing, where lensing produces significant mag-
nification and multiple images of the lensed object. We
find that DM subhalos within our galaxy are generically
too diffuse to satisfy the strong lensing criterion, but that
for some rare extragalactic stars, located behind critical-
lensing caustics of galactic clusters, can lead to observ-
able signatures in a very wide range of parameter space
(Sec. IIT A 4). For extragalactic halos that almost but not
quite satisfy the strong lensing criterion, we describe pos-
sibly detectable anomalous dispersion in LIGO events,
although more analysis is required to firmly establish the
reach of such techniques (Sec. III A 5).

At the end of Secs. IIT A 2 and IIT A 3, we also contem-
plate the possibility that oscillons survive to the present
day and constitute a significant component of DM. In
this case, we outline their corresponding lensing signa-
tures and constraints. This scenario does not apply to the
cosine potential we have considered thus far because it
does not support cosmologically long-lived oscillons, but
could be relevant for the generalized axion potentials we
will consider in Sec. V. As we discuss there, oscillon con-
figurations in other axion potentials can be significantly
longer lived, although we do not yet know whether these
or other potentials support oscillons that survive to the
present day.

Finally, in Sec. IIT A 6, we discuss dynamical friction
effects coming from massive DM subhalos, but deem cur-
rent observations not sufficiently robust to constrain our
scenario.
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1. Local gravitational perturbations

As DM subhalos traverse the Galaxy, they will gravita-
tionally attract nearby stars and perturb their 6D phase
space distribution. A star that passes near a compact
subhalo with impact parameter b, which we assume to
be spherical for simplicity, will receive a velocity kick of:

AQGNM(b)
Av=-b——F—~=
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where V' is the relative velocity between the subhalo and
the star and M (b) is the subhalo mass enclosed within
the impact distance b. As the subhalo moves through
the interstellar medium, it causes a correlated distor-
tion in the real-space distribution depending on the time
elapsed since impact. It has been proposed to search for
these perturbations in the 6D phase space distribution
of stars in the MW’s disk [75] and stellar halo [76], with
purported sensitivities to subhalos with masses down to
perhaps as low as 107 M, in the CDM paradigm. The
effect of Eq. 57 is too small to be seen on any one star
for all but the most massive and/or densest subhalos,
since the velocity dispersions in the Galactic disk and
stellar halo are ~ 25kms™! and ~ 166kms™!, respec-
tively. Since the effect of Eq. 57 is coherent for all stars
along the subhalo’s trajectory, one can in principle av-
erage down this intrinsic dispersion noise, as well as any
additional instrumental uncertainties. However, to what
extent this averaging procedure can beat down the noise
remains an open question, as it depends on the degree of
pre-existing departures from kinetic equilibrium, which
have recently been found in both the disk [77] and stellar
halo [78-83]. In Fig. 11, we mark by the green dashed
line as potentially detectable those subhalos for which the
velocity kick produced by a compact subhalo’s passage is

larger than 2kms™?'.

Promising alternative targets for local gravitational
perturbations caused by DM substructure are stellar
streams [84—89], the tidal debris tails originating from
disrupted globular clusters or dwarf galaxies. They can
be thought of as low-noise “antennae” of gravitational
effects, as they are inherently dynamically cold, out-of-
equilibrium systems. This is because their velocity dis-
persion is bounded from above by the dispersion of the
progenitor, and their morphology delineates their orbit,
i.e. the velocity vectors of their stellar constituents are
approximately tangential to the stream. For example,
the GD-1 stream has a dispersion of about 2.3kms™!,
a length of 2 100kpc, and a width of about 30pc [90].
Close encounters with a dense subhalo would kick stars
out of the stream, creating a local underdensity near
the point of impact (a “gap”) and a potentially observ-
able secondary stream (a “spur”) emanating from the
gap [91, 92]. Interestingly, such features have recently
been discovered in the GD-1 stream [93]. Tantalizingly
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FIG. 11. Astrophysical probes of direct gravitational effects from compact halos, parametrized in terms of their sensitivity to
halo scale mass M, and scale density ps. Above the dashed (dotted) green line, compact subhalos would produce observable
velocity kicks in stellar streams (the Galactic disk). The green region outlines the best-fit parameters of one such tentative
impact on the GD-1 stream. In the dark gray region, these kicks can be strong enough to eject stars from the Galactic disk or
even halo. Above the solid (dashed) blue line, astrometric lensing by compact halo induces localized distortions in the proper
motion p of background sources that are observable by Gaia (SKA). Likewise, correlations in stellar proper accelerations «
induced by astrometric weak lensing are detectable by Gaia (Theia) above the solid (dashed) red line. On the purple line,
the halo scale radius equals the typical distance traveled over a 9-year observation time, demarcating the transition between
transient and enduring lensing effects for unmagnified sources. Inside the gold-colored solid (dashed) line, an observable fraction
of GW events at aLIGO (LISA) will be diffracted. Photometric irregularities in the microlensing light curve of highly magnified,

caustic-transiting stars may be observable above the orange line.

for our purposes, if these features are due to a subhalo
puncturing the stream, they appear to have been caused
by one that is denser than predicted in the standard
CDM framework. Unfortunately, it is challenging to un-
ambiguously attribute the disruption features to a dark
subhalo, as they become apparent only after about a MW
orbital time, so it is hard to exclude close encounters
with known or unknown globular clusters. In Fig. 11, we
recast the posterior best-fit parameters from the poten-
tial DM subhalo impact of Ref. [93] in green. We also
outline the parameter space for which one can generate
velocity kicks large enough to disrupt a very cold stream:
Av > 0.5kms™! for max{b,rs} > 10 pc.

2. Astrometric weak gravitational lensing

Compact subhalos in the Milky Way can also induce
apparent motions of stars and other luminous sources
through gravitational lensing whenever they are near
the line of sight to the background light source, with-
out producing multiple images or magnification. As-

trometric weak lensing was first considered for point-
like objects in Refs. [94-96] and for cuspy minihalos
in Refs. [97, 98]. A program of searches with opti-
mal observables for both compact object and extended
subhalos was outlined in Ref. [99], in light of ongo-
ing (Gaia [100], HSTPromo [101]) and future astromet-
ric surveys (WFirst [102-104], Theia [105], SKA [106],
TMT [107], etc.) with much improved precision and/or
catalogue size.

Time-domain astrometric lensing signatures can be
usefully divided into two categories: transient and en-
during effects, depending on whether the minimum im-
pact parameter b to the line-of sight is smaller or larger,
respectively, than the change in impact parameter over a
typical multi-year astrometric survey vr ~ O(1073 pc).
Unless the subhalo is extremely cuspy (e.g. p(r) o 7
with v < —2), the lensing deflection angle is maximized
for impact parameters near the scale radius, i.e. b ~ r,.
A subhalo can thus produce a gravitational lensing tran-



sient only if
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An object that forms via gravitational collapse of a linear
density perturbation cannot have a density that paramet-
rically exceeds the density at matter-radiation equality
(see Sec. IIB1):

Ps oo S 200peq =~ 2 % 107 p5y. (59)
Therefore, only very light (M, < 1073 M) gravitation-
ally collapsed subhalos can produce transients, but at
densities bounded by Eq. 59, they yield too small an an-
gular deflection (4G M, /b ~ 0.04 pas for My = 1073 Mg,
and b = 1073 pc) to be detectable by current state-of-the-
art astrometric observatories, which reach at best pas-
level precision for bright sources. We outline the bound-
ary of this transient regime by the purple line in Fig. 11.
In this transient regime, pulsar timing arrays may shed
light on compact substructures via the Shapiro time de-
lays and Doppler effects that they induce [108].

Enduring gravitational lensing effects arise for im-
pact parameters (and subhalo radii) larger than about
1073 pc. The instantaneous angular deflection is in prac-
tice unobservable because the true celestial positions of
luminous sources is not known, and the lensing-induced
number density changes are much smaller than intrinsic
and shot-noise density fluctuations over angular scales
that a subhalo subtends over the sky. However time
derivatives of the angular deflections, specifically lensing-
induced proper motions and accelerations, are observ-
able in practice. Ref. [99] proposed to look for local (us-
ing templates) and global (using correlations) evidence of
these distortions. In Fig. 11, we show their projections
for the reach of local proper motion templates (blue)
with Gaia (solid) and SKA (dashed), and of global ac-
celeration correlations (red) with Gaia (solid) and Theia
(dashed), assuming a Qg,1/QpMm =~ 0.30 DM fraction in
subhalos of mass M, and density ps;. For other DM frac-
tions and at fixed M and signal-to-noise ratio, one can
employ the approximate scalings p, oc Q% [99].

sub

Astrometric weak lensing from oscillons. Observable
astrometric lensing transients can be produced by oscil-
lons, as their internal density is parametrically equal to:
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where C7°¢ is a model-dependent constant of order unity.

The typical mass of oscillons forming through our mech-
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anism of Sec. II B 3 is:

MOSC — oscfi2 ~ Czc\?c Peq f 2
s M m N 25/20#/2 m3/2H§({2 f7r/2

osc 10715 eV 3/2 f 2
~ 6 x 1071 Mg =M [ } { ]
© C,T/Q m fﬂ'/2
(61)

with C{3¢ a model-dependent constant that is O(10?) for
a cosine potential at ¢,, o ~ 90 but can be larger for other
potentials and very small values of f/f /2. The density
of Eq. 60 is so high that oscillons are effectively point-like
when it pertains to their lensing signatures. Ref. [99] pro-
jected that the ongoing Gaia survey has the potential to
discover point-like objects making up at least a percent
of dark matter down for masses greater than 10~* Mg
by the end of its mission. Time-domain, astrometric,
weak lensing is thus a powerful probe of axion models
with “flat” potentials (such that oscillons are cosmologi-
cally long lived), low f/f; /o (such that they form at high
abundance), and axion masses less than 1071% eV.

8. Photometric microlensing

One of the most promising purely-gravitational probes
of our scenario is photometric microlensing [109]. Histor-
ically, this is a program which has set tight constraints
on sub-unity DM fraction in compact objects down to
10719 Mg [110-114], but such constraints are limited to
extremely dense objects. Microlensing surveys search for
the transient order-unity increase in brightness of a back-
ground luminous source caused by the passage of a lens
near the Einstein radius 0g = \/4GNMDLS/(DLDS)
where Dy, Dg, and Dpg are the angular diameter dis-
tances to the lens, to the source, and from the lens to the
source respectively. This expression is only valid when
the entire mass M is enclosed within fg, but with the
exception of potentially long-lived oscillons, the axion
minihalos discussed here are not dense enough to strongly
lens, and so prior constraints do not apply. We can, how-
ever, employ a technique first discussed in Ref. [115].

The basic idea is to exploit single stars at z 2 1 that are
located near gravitational lensing caustics of intervening
galaxy clusters and are thus highly magnified (with mag-
nification p ~ 10% — 103, see e.g. Refs. [116-118]). Very
small changes in the mass distribution of the lensing clus-
ter can shift the location of the image closer to or further
away from the caustic and result in large changes in mea-
sured brightness, so tracking the brightness of such stars
over time can provide information about the cluster sub-
halo distribution. In particular, Ref. [115] suggests us-
ing stellar microlensing events (when one of these source
stars is additionally magnified due to microlensing by a
star in the lensing cluster), and finds that with reason-
able observing parameters they should be able to detect
variances in the lensing convergence x down to one part




in 10* at length scales ¢ ~ 10-10* AU/h in the lensing
cluster. Here we repeat an abbreviated analysis for our
case using slightly more conservative values: We assume
only that one can detect variances in & of O(1073) at
length scales of £ ~ 30 — 10* AU.

The lensing convergence « is defined as the ratio of the
surface density of the lens to the critical surface density
Yeit = 1/(4mGDegr) where Dqg is an effective distance
given by Deg = DpDps/Ds. In the event that a lens
halo is composed of several subhalos (and our line of sight
through the halo passes through several such subhalos),
the power spectrum of the convergence due to halo sub-
structure is given by [115]:

N [ dM, df(M,)
> M2 dln M,

crit

P.(q) |p(q; M) [? (62)

where ¥ is the surface density of the cluster, f(M;) is
the subhalo mass distribution, and p(q; Mj) is the Fourier
transform of the subhalo density distribution p(r; My). In
the case of spherical symmetry this is simply:

plai M) = ar [0 pirian). (o3

The relevant measure of fluctuations in x is then given
in terms of the power spectrum above by:

2
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where here and above ¢ can be mapped onto a specific
length scale ¢ by ¢ = 27/q. We can now estimate how
sensitive this technique will be for our case. We take
Deg ~ 1Gpe, p(r; Ms) to be an NFW profile of given
scale mass and density, and f(Mj) to be a delta function
with 30% of the DM concentrated in subhalos of a fixed
mass. Because we select for stars located on strong lens-
ing caustics, we take X ~ 0.8 X¢,t, the factor of 0.8 al-
lowing for a star that is nearby but does not exactly lie on
a caustic. The lens model for the star of Ref. [116], for ex-
ample, predicts that for that star, X = 0.83 Xy [119].
Finally, we must check that the assumption of many
subhalos along our line of sight is valid, and that
the timescale of the fluctuations is shorter than the
timescale of a typical intracluster-star-microlensing event
Tmicrolens = O(10%)s. During such an event, if the lens-
ing star and the source star have a relative velocity vyel,
then the image of the source star moves an approximate
distance dpicrolens ~ Urel 4Tmicrolens Where g ~ 102103 is
the magnification. Typical cluster velocities are of the
order 1072-1073, so we have dmicrolens ~ 10%s ~ 103 AU.
To ensure that there are many subhalos along our line
of sight, we require that Samd? .. jens = 10M;, and
dmicrolens 2, Ts 1s required for the timescale of fluctuations
to be shorter than a typical microlensing event duration.
Assuming these requirements are satisfied, we calcu-
late A, (2m/¢). We mark as potentially detectable pa-
rameter space wherein A, (27/¢) > 1073 for at least one
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length scale in the range 30 AU < ¢ < 10* AU, and we
delineate the lower boundary of this region by the orange
line in Fig. 11. Because this technique can probe even
relatively low boost factors (and thus relatively weakly
bound structures), simulations of subhalo mergers and
accretion are needed to refine our estimate here.

Microlensing from oscillons. As mentioned above, in-
ducing a substantial change in brightness during a usual
microlensing event requires the lens halo to lie entirely
within its Einstein radius on the sky. This can be trans-
lated to a requirement on internal density:

Mo 12 [kpe ]2
Ms DL '
(65)
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Comparing Egs. 60 and 65 shows that oscillons within the
MW (with Dy < 10kpc) can satisfy this, meaning the
photometric microlensing surveys of Refs. [110-113] are
sensitive to oscillons that are cosmologically long-lived
and produced at high fractional abundance. They can
thus test axion models wherein oscillons are produced at
2> 10% fractional abundance and the axion mass is in the
range 1071t eV <m <107 eV (such that 1071 Mg <
Mo < 10% Mg).

4. Eaxtragalactic strong gravitational lensing

Flux ratio anomalies in multiply-imaged background
sources can provide indirect windows into the substruc-
ture of strongly lensing galaxies [120-125]. DM substruc-
ture can also perturb the position [126-129] and rela-
tive time delays [130, 131] of the lensed images, and
many studies [132-139] have explored the potential to
pin down the subhalo spectrum of strong gravitational
lenses. Ref. [140] claims a detection of a subhalo of
Mg ~ 10°Mg, and also derived limits on the abun-
dance of subhalos down to M ~ 2 x 10" Mg. The in-
terpretation of the upper limits on subhalo abundance
depend strongly on poorly determined quantities such as
the host galaxy’s mass and concentration, so it would
be interesting to characterize these uncertainties more
quantitatively and recast the observations of Ref. [140]
to constrain axion subhalo mass functions such as those
depicted in Fig. 8.

5. Diffraction of gravitational waves

Gravitational waves emitted from BH-BH merger
events will be lensed by the intervening mass distribution
and can potentially provide another probe of dark matter
substructure. Even if the lens is not massive enough to
lead to multiple images (detectable as multiple copies of
the same merger event at different time delays), it can
imprint characteristic distortions in both the waveform’s



amplitude and phase [141]. The strength of these distor-
tions is characterized by a dimensionless parameter w:

fGW Menc
102Hz | | 100 Mg,

w~13(14+ zz) { (66)

where zj, is the redshift of the lens, fow is the GW fre-
quency, and Mg, is the mass enclosed within the impact
parameter of the lens. Distortion effects are maximized
when w ~ O(1). The detection potential for such dis-
tortions has been studied by Ref. [141], who claim that
high-signal-to-noise-ratio events (SNR 2 20-30) at ad-
vanced LIGO (aLIGO) will be able to probe BH-BH
merger events with w ~ O(1) out to 2 1Gpe. Since
aLIGO operates at frequencies of O(10'-10%) Hz, it will
thus be sensitive to DM substructure with mass of order
O(10-1000) Mg, enclosed within the impact parameter.

As Ref. [141] points out, the GW diffraction effect can
change significantly based on the lens mass profile. Com-
pact axion halos produced from the large-misalignment
mechanism have a different internal density profile than
CDM halos (see footnote 8) so a reanalysis is necessary
for a precise appreciation of the sensitivity. We can make
conservative estimates for this GW diffraction technique
by using an NFW profile down to a smoothing scale of
27 /(mws). We do this as follows:

In the case of strong self-interactions, we expect that a
large fraction f, of the DM is bound up in minihalos of a
characteristic mass M, and density ps. The probability
of any given BH-BH merger passing by such a minihalo
with an impact parameter at most b is roughly [141]:

1+2.1°[D 10° M, b 12
P ~oosss, |25 || [P [

where Dpgy is the proper distance from us of the BH-BH
merger event and zj, is the redshift of the lens. Taking
Dy ~ 5 Gpe, z, ~ 0.3, and f,; ~ 0.3, we compute the
smallest impact parameter b, such that at least 1% of
the BH-BH events will be lensed with b < bypin. If byin
is less than the smoothing scale 27/(muy), then we take
bmin to be the smoothing scale instead). We then require
that there exists a b > by, such that the lens mass en-
closed within a cylinder of radius b leads to 0.5 < w < 5
for some GW frequency 10' Hz < fow < 10°Hz. In ad-
dition, we check that this b is no larger than ten times
the Einstein radius for this mass, as suggested by the
discussion in Ref. [141]. If these requirements are satis-
fied, we mark the parameters My and ps as potentially
detectable in Fig. 11 by aLIGO. Finally, we repeat the
same analysis for LISA [142] but for the frequency win-
dow 107*Hz < fow < 107! Hz.

We find that this technique is a second promising probe
of regions of parameter space also covered by present or
future astrometric lensing surveys, but we caution that
these results are schematic estimates and a full reanalysis
is necessary to be more precise.
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6. Dynamical constraints

Massive subhalos will experience a dynamical friction
force from their collective gravitational scattering of the
surrounding medium [143], and will thus gradually lose
angular momentum and sink to the center of their host
halo. Following Ref. [144], a subhalo on a circular orbit of
initial radius r; and speed v., embedded in an isothermal
halo with density profile p(r) = v2/47Gxr? made up of
constituents much less massive than My, will sink to the
center in a time:

Lo LT r2v.  4.0x100y [18Mo | [ r 17
PE="F GaM, ~ F M, 8kpc|
(68)

with v, ~ 235kms~! appropriate for the MW halo at the
Sun’s location. The form factor F is an effective Coulomb
logarithm F = [In(1 + A?%) — In(1 + A2)]/2 with A =
bmaxV?/GnM, and Ay = A\/Rg/bfnax + 2R/ Abpax,
that depends on the maximum impact parameter, by .x ~
200 kpc for the MW, and the minimum impact param-
eter, which we take to be the scale radius of the sub-
halo R,. For reference, F' ~ InA ~ 10(15) for M, =
108 M (106 Mg), as long as Ry < 3pc(0.03pc). For
larger sizes Ry > GnM,/v?, the Coulomb logarithm is
suppressed and tends to F' ~ In(by,.x/Rs) regardless of
M, and v,.

Eq. 68 does not take into account backreaction,
subhalo-subhalo scattering, baryonic components, mass
loss from tidal disruption, orbit eccentricity, nor the more
complicated density profile of the MW halo, but we nev-
ertheless presume it to be a reasonable approximation.
We expect the MW’s evolution to be drastically altered
if a significant fraction of its constituents have a dynam-
ical friction timescale shorter than a Hubble time. It is
evident from Eq. 68 that MW subhalos as light as 107 M,
are significantly affected by dynamical friction, but until
galaxy-scale simulations are performed and compared to
data, we refrain from extracting constraints pertaining
to dynamical friction effects on the evolution of the MW.

The flipside to the above dynamical friction effects
is that subhalos also have the capacity to dynamically
heat their surrounding medium, including star clusters
or compact ultra-faint dwarf galaxies. Ref. [145] has em-
ployed this effect on a star cluster in Eridanus II and
ten compact dwarfs to set constraints on point-like dark
matter objects of masses 2 5Mg. For extremely com-
pact objects such as long-lived oscillons, those constraints
would likely apply without change. It would be interest-
ing to repeat the analysis of Ref. [145] and investigate the
phenomenology for compact subhalos: in this scenario,
the stars can also dynamically cool by gravitational scat-
tering on the internal structure of the subhalos, so the
limits will likely weaken. A related effect, namely the
catastrophic tidal disruption of wide stellar binaries (as
opposed to the diffusive dynamical heating from tidal
forces), is in principle also sensitive to sub-pc dark matter




objects heavier than a few tens of solar masses [146, 147,
although current observations are not yet sufficiently ro-
bust to exclude an order unity dark matter fraction in
such objects [148].

To conclude, dynamical friction or heating effects from
compact subhalos are a promising probe of DM substruc-
ture, but we believe more work is required in order to
consider them robust.

B. Femto-halo effects in direct detection

For heavier axion masses, the large misalignment
mechanism enhances power at scales too small to be
relevant cosmologically or even astrophysically. Still, if
the axion has nonzero interactions with the SM, these
changes to the power spectrum can affect the prospects
for direct detection. In this section, we will focus on axion
halos with masses at or below 10~° Mg, which we will
refer to as femto-halos (FHs). As we will see in Sec. IV,
this part of the parameter space is also relevant for QCD
axion DM searches. These FHs have a large number den-
sity and can potentially be observed by Earth-bound di-
rect DM detection experiments, as the FH incidence rate
on Earth is:

v~ (69)
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where Bg = ps/pSy is the femto-halo’s density boost
relative to the local DM density.

Current direct axion DM searches look for a monochro-
matic signal at frequency f ~ m/27 that is coherent for
roughly vv_if ~ 10° periods. The amplitude of the signal
is set by the local DM density and is typically assumed to
be stationary. Axion searches are mostly resonant and,
since the axion frequency is unknown, the resonant fre-
quency is scanned.!'® As we have seen in Sec. II B, the
large misalignment mechanism may result in only a frac-
tion of DM being in the form described above. With
most of the axion DM in FHs, the DM signal becomes
transient, lasting for the FH’s crossing time:

Is ~ 0.3 day

Urel
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= | -+ (70)
B@ 10_18 M@
where we have taken vy = 1073 for definiteness. For
completeness, we note that this corresponds to a FH scale

radius:
10311 M, Y3
~ -7 s

13 The most notable axion experiment that falls in this category
is ADMX [149]. We also refer the reader to the Particle Data
Group review of axions [150] for a summary of other proposed
experiments that are relevant for our discussion.
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FIG. 12. Contours of constant incidence rate (solid lines)
and detector crossing time (dashed lines), as a function of the
FH mass and density boost factor Bg relative to the local
DM density. The shaded region gives a conservative esti-
mate of the tidal disruption constraint from disk crossings,
as estimated in Sec. IIB4. We also show halo spectra for
the QCD axion with decay constants of f, = 10'° GeV and
fo = 2 x 10*° GeV in red and green, respectively, derived in
Sec. IV and also shown in Fig. 18. For reference, we display
on the upper horizontal axis the axion mass m that yields the
value of M (see Eq. 5) on the lower horizontal axis, but as
the QCD axion halo spectra demonstrate, any fixed value of
m leads to FHs with a couple orders of magnitude variation
in mass.

During an encounter with a FH, the expected signal
power is a factor of By higher than expected from a
smooth DM component. Fig. 12 shows contours of con-
stant incidence rate and crossing time as a function of
the FH mass and the overdensity relative to the local
DM density.

FH axions have a much lower velocity dispersion rel-
ative to galactic axions, greatly increasing the effective
coherence time of a DM signal in any axion experiment
while a FH goes through the detector. The correspond-
ing ratio between the scale velocity inside the FH v, and
the virial velocity outside is:

1/3
} . (72)
of

The effective fractional spread in the frequency of the
FH’s DM signal is then

1/3
= el ~2x10717 { ] , (73)

with veer ~ 1073 the relative velocity between the DM
FH and the detector.

A natural question is to what degree these dynami-
cally ultra-cold structures are distorted by tidal effects

1/6
Ys ~d4x 1071 879 / L
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upon their entry into the Solar System. The tidal force
from the Sun is practically always much greater than the
self-gravity of the FH as it approaches Earth. Neverthe-
less, the FH does not get completely torn apart before
it reaches our planet, due to the limited time it spends
traversing the Solar System. We estimate the fractional
change in the FH’s size to be:

ATS GN M@
T AUv?

rel

~ 0(1072), (74)

where AU is the Earth-Sun distance. We thus expect the
shape and the size of the FH to be essentially unaltered
from their prior values.

Tidal effects will primarily affect DM searches via the
differential velocity they impart across the FH. This dif-
ferential velocity is typically much larger than the FH’s
internal scale velocity, and will appear as a frequency
drift in the laboratory’s rest frame, drastically reduc-
ing the effective coherence time in a practical axion
DM search. (In principle, one can construct frequency-
drifting signal templates, but these are computationally
costly to implement, as shown by searches for monochro-
matic gravitational waves in LIGO [151].) We estimate
the total differential velocity across the FH to have a
magnitude of dvgiga ~ GNM@rs/(AUzvrel) upon its ar-
rival at Earth. The resulting frequency drift is then de-
termined by how much of this differential velocity is ex-
perienced during a “shot” time tghot, which we take to
be a small fraction of t¢oss:

m Lshot m GyM
0 farift ~ == UrelOVtidal ——— ~ = Vrel
27T tCrOSS 2

WQGtshot- (75)
Requiring that the frequency drift be small enough that
it may be ignored during any one shot, one gets an up-
per bound on the shot time as a function of the FH mass,
density, and axion mass, i.e. by requiring tshot < 0 f(;ril&.
Breaking up the total integration time into shots of du-
ration tgot that saturates this inequality constitutes an
axion DM search with effective fractional frequency res-
olution of:

_ 1/2
%f ~ 10712 (10 :lev) . (76)

There is thus a parametric gain in effective coherence
time—10'? periods or more instead of the usual v ;> ~
10° periods—even though the effects Solar System’s tidal
forces are substantial.l4

Based on the above considerations, we can outline a
new strategy for axion DM in the form of FHs. First of
all, the intermittent nature of the signal favors a broad-

band data-recording approach: looking at a more ex-

™ Since the FH size is much larger than the size of the earth for
nearly all of the parameter space discussed here, we believe the
tidal effects of the earth to be subdominant.
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tended range of frequencies increases the probability that
the experiment is operating at the right frequency when
a FH is going through the detector. Since most axion
experiments are based on resonant antennae, a few com-
ments are in order. Any experiment, resonant or non-
resonant by design, can be run in a broadband mode.
The problem is that for some resonant experiments such
as ADMX, many of the components are optimized over
an extremely narrow bandwidth, which makes running
the experiment off-resonance suboptimal. This can be
ameliorated by redesigning this hardware to respond to
a wider range of frequencies.

This brings us to the second point: the reduced sensi-
tivity off resonance can be compensated by the long co-
herence time and the boost in power relative to a search
for a diffuse Galactic axion DM component. In fact, the
sensitivity in axion coupling for FH DM searches can ulti-
mately be improved relative to a search for a standard ax-
ion signal, provided an optimized broadband data-taking
protocol is implemented. The signal power is not station-
ary: it is expected to spike at the incidence rate v for a
duration t.;0ss by the local axion density boost factor Bg.
Such intermittent signals will be missed more often than
not in most currently implemented experimental proto-
cols, and sometimes even downright rejected if they are
confused with a systematic background transient. In-
stead of slowly scanning a narrow frequency bandwidth
over the total running time of the experiment, a better
strategy is to coherently integrate the data stream and
record a broader frequency bandwidth over a the longest
possible shot satisfying tspot < 6 fd_rilft, and then incoher-
ently adding the Fourier signal power of the shots. A
more optimized search strategy could involve frequency-
drifting matched filters over longer shot times (perhaps
up t0 teross ), at the cost of considerable additional compu-
tational complexity and data volume. Our suggested pro-
tocol entails a data volume of O(tshot f) bytes every teross,
the result of taking the average Fourier signal power of
teross/tshot number of shots.

Besides being temporally intermittent and more co-
herent, the signal from axion FHs is distinguishable from
the standard Galactic axion signal also in terms of its
spatial properties. For a standard axion, the mean ve-
locity o = (v) and the spread in velocity, e.g. quantified
by the standard deviation o, = ((v — ©)?)'/2, are of the
same order, so the spatial coherence length Ao, ~ 1/mo,
roughly equals the typical reduced de Broglie wavelength
Aap = 1/mu. For FH axions, the typical reduced de
Broglie wavelength is Agqg = 1/mu,el where v,q is the
speed of the FH in the lab frame, but the coherence
length is much larger: Acon ~ 1/mws. Two or more de-
tectors with separations larger than Agg but shorter than
Acon Will therefore still pick up spatially phase-correlated
signals, unlike for standard Galactic axions not bound
in ultra-cold FHs. Such an array of detectors can even
reconstruct the FH’s velocity from these phase correla-
tions, and would aid rejection of systematic transient
backgrounds.
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FIG. 13. Axion-photon coupling vs axion mass plot, adapted
from Ref. [150]. Assuming that the axion-photon coupling is
given by gayy ~ ﬁ, where « is the fine structure constant,
we show the value of the coupling as a function of the axion
mass for which the axion displacement is 7 — |©g| = 0.1 (blue
line) and 7 — |@¢| = 10~ '® (purple line). The blue line thus
defines the region above which the large-misalignment mecha-
nism can be responsible for DM production, and a large frac-
tion of the axion DM is in FHs. The DM constraints on this
plot, namely the haloscope and telescope searches (as well as
any prospective discovery reach curves) should be recasted in
terms of their sensitivity in this region.

To summarize, these are the following key points to
keep in mind when designing an experimental search for
FH axion DM:

e As a FH crosses the detector, the signal is a factor
of B, bigger in power and at least ~ 10% times more
coherent than a DM signal coming from a diffuse
Galactic component.

e Given that most searches are based on resonant
antennae, it is imperative to also look for signals
off resonance. The loss in sensitivity off resonance
can be often be recovered by the boost in power
and longer coherence time.

e The experiment needs to record data for an ex-
tended period of time over large bandwidths, to
ensure that a FH has an O(1) probability to cross
the detector at least once during the experimental
running time, at each frequency. Special care needs
to be taken to handle the large data volume.

Ultimately, the exact data analysis strategy would have
to be independently determined for each experimental
setup, but the discussion above clearly shows that a
search for an intermittent signal can be done concurrently
with any search for a continuous galactic DM signal. As
shown in Fig. 13, taking into account the possibility of
axion DM in the form of FHs is of great importance for
high-frequency axion DM searches. Current exclusions
on the axion DM parameter space would not necessar-
ily apply if the vast majority of DM is in the form of
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FHs, while some experiments may be sensitive to smaller
couplings than originally envisioned. This means that
numerical simulations of the large misalignment mecha-
nism in the non-linear regime are crucial for extracting
limits in axion DM searches.

C. Baryon structure and early star formation

In ACDM, the bulk of star formation takes place in ha-
los with a mass greater than 10® M, at redshifts z < 30
(see e.g. Ref. [152] for a review). However, when struc-
tures collapse much earlier, stars may form at much
higher redshift and in lower-mass halos. For axion masses
between 10722 and 10™'8 eV, the axion self-interactions
affect halo masses between 10* and 10° solar masses. In
this section, we show that collapsed structures on these
scales at high redshifts can satisfy the two main require-
ments for star formation: a sufficient baryon component
and a cooling mechanism. At the end, we also briefly
discuss possible constraints from Lyman-« forests.

Baryons have a finite sound speed that inhibits their
infall into perturbations on arbitrarily small scales. Be-
fore recombination, this sound speed is close to the speed
of light and the growth of baryon density perturbations is
suppressed at all scales. After recombination, the baryon
sound speed drops to a value set by the baryon gas tem-
perature Tp, [153]:
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where v = 5/3, u = 1.22, Tomp—o &~ 2.7K is the present-
day CMB temperature, and my is the hydrogen mass.
The constants a; = 1/119 and az = 1/115 in the ex-
pression above adequately capture the behavior of the
baryon temperature after recombination. For redshifts
larger than ~ 100, Compton scattering of baryons with
CMB photons dominates over adiabatic cooling from the
Universe’s expansion, and T} tracks the photon temper-
ature.

We naively expect the effects of the finite sound speed
in baryons to be captured by the Jeans scale k; above
which baryons do not collapse into structures:

k.] (a) Y 47TGNpm(a) (78)
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where p,,(a) is the average matter density at a given
redshift. This Jeans scale is defined by an instantaneous
comparison between gravitational attraction and matter
pressure in the equation governing linear perturbation
growth, however even once gravity begins to dominate
over pressure, the process of infall takes a finite time.
This consideration leads to a more physical filtering scale,
k¢, that accounts for the baryons’ finite infall velocity. As
was first shown in [154], for small co-moving momenta k
one can approximate the small scale structure of baryons



dp(k) as:
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where d;, and ¢,, are the fluctuations in baryons and mat-
ter at very large length scales, respectively. Here k; is
defined as:

ar’ t” —1/2
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where fpy = 0.85 is the DM fraction of the matter com-
ponent. Unfortunately, Eq. 80 fails to capture an effect
of second order in the density perturbations that is nev-
ertheless sizeable. Baryon acoustic oscillations produce a
relative streaming velocity v, between DM and baryon
perturbations [153] with dispersion of o3, = 107%c
cd,, right after recombination, which subsequently red-
shifts adiabatically. Although of second order, this effect
is thus enhanced by the large pre-recombination sound
speed and can be important.

In Ref. [155], it was shown that both this relative
streaming velocity as well as the finite sound speed due
to the baryon temperature can be included in a modified
equation for kj:

k:f = Om / dt// dt”fDM ( >6b+(vbm'f<)25DM}7
(81)

p(k) ~ &, — Sm (79)

where t, is the time at recombination, vy, = nopm,, and
n quantifies the number of standard deviations of vp,,. It
should be noted that the relative streaming velocity has
a direction and thus the result depends on the direction
of wavenumber direction k.

From this newly derived ky, we can define a filter-
ing mass My(a) = 4p% (7/kg)® below which we ex-
pect halos with a baryon fraction much smaller than
the large-scale average. In Fig. 14, we plot M for
Vbm = {0, 0pm,20pm - As discussed in Sec. IIB, axion
self-interactions result in collapse of DM structures at a
much earlier time compared to ACDM cosmology, and
My (acor) corresponds to the minimum halo mass with a
significant baryon fraction for the different possible val-

ues of the scale factor a., at collapse.'® The baryon
fraction scales approximately as [155]:
M(a)] 3
fo= o, |1+ @ - MU ()

15 If collapse happens before recombination, we expect the early
formed DM halos to accrete baryons post-recombination when
Ms > My(ar). The resulting halo will consist of the earlier
formed dense DM core, and the more diffuse post-recombination
accreted component of matter.
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FIG. 14. We plot the value of the minimum mass a halo must
have in order to carry a significant fraction of baryons, i.e. the
filtering mass, My, for three different values of the baryon-DM
relative streaming velocity vpm = 0 (dashed green line), vem =
obm (solid yellow line), and vym = 204m (dashed blue line) as a
function of the halos’ collapse scale factor, a. In the shaded re-
gions, halos carry less than {10°* Mg, 10Mg, 0.1 Mg} of bary-
onic mass M. We also show the minimum halo mass, Min,
where baryons can cool through atomic (dot-dashed red line)
or molecular hydrogen cooling (dot-dashed mauve line). In
order for a halo to be able to form stars, it must have at least
one efficient cooling mechanism. Depending on when a com-
pact axion halo forms, the mass of the smallest star forming
halo can be as low as 10* Mg, which corresponds to axion
masses of 1078 eV. Given that baryonic structure formation
is significantly modified, this plot also shows that constraints
on fuzzy DM such as those coming Lyman-a need to be re-
visited.

with fp, = 4+0.15 — 0.005Vp, /0pm,. Fig. 14 shows which
halos have at least 102 M, 10M, and 0.1 M, of baryonic
mass, in our efforts to outline the critical condition for
the formation of at least one star.

A significant baryon fraction is a necessary but not
sufficient condition for star formation in a gravitation-
ally collapsed structure. Another important requirement
is that the virial temperature of the halo is large enough
to allow for gas cooling. In ACDM, the most important
form of cooling is provided by collisions of atomic hydro-
gen [152], which only occurs in halos with virial temper-
atures larger than 10* K. As Fig. 14 shows, this implies
that in ACDM, halos of mass smaller than 10® M, have
greatly suppressed star formation rates.

For axion DM, when self-interactions are important,
collapse can happen much earlier at higher densities.
Atomic cooling is possible for halos of smaller mass than
in ACDM, since Moo 1(a) = 2 x 10° M, (100a)~3/2, but
other cooling mechanisms could also be in effect. At the
high densities of the early universe, other cooling mech-
anisms can also be operational. Hs molecular cooling,
for example, is in principle active when the virial tem-
perature is higher than 100 K [156], or halo masses larger
than Meoor, = 2 % 102 Mg (100(1)*3/2. We record this
minimum halo mass in Fig. 14 as well, although the light



from a few early stars can disassociate Ho, halting fur-
ther cooling and star formation [157]. More work is thus
required to understand exactly how such stellar feedback
affects further star formation at high redshifts.

The discussion above clearly shows that for DM struc-
tures that collapse earlier, the minimum halo mass re-
quired to form stars can be greatly reduced from the
ACDM prediction. In principle, as Fig. 14 shows, the first
stars could form in halos with mass as low as 10* M. Un-
fortunately, beyond identifying that these requirements
are satisfied, we cannot make further quantitative predic-
tions. The reason is that little is understood about early
star formation beyond the ACDM paradigm. How does
gas cloud fragmentation proceed at such high densities?
Does radiative feedback inhibit or help star formation at
high densities? How does reionization happen? Although
it seems quite likely that stars will form in these high-
redshift structures, without proper simulations to answer
such questions it is impossible to be sure.

Given Planck’s measurement of reionization, one
might expect that early star formation would be highly
constrained. As extensively discussed in Ref. [158], one
cannot draw such a conclusion very easily. At high densi-
ties, recombination could be much more efficient so that
the ionizing radiation emitted from the first stars fails
to keep the universe ionized. It is also not known from
first principles how much ionizing radiation can escape
a primordial halo, and thus not completely clear what
the observable consequences of such early star formation
would be.

In addition to changing the process of reionization,
early star formation can alter the evolution history of
astrophysical black holes as well as the 21-cm line his-
tory of the Universe. For astrophysical black holes, a pe-
riod of star formation earlier than in the ACDM scenario
could explain the appearance of high-redshift quasars by
allowing for a longer growth period through Eddington-
limited accretion. In our scenario, the black hole seed
mass can be smaller by up to a factor of O(100). For
ULAS J1342+40928 [159], the most distant quasar known
with an estimated mass of 8 x 108 Mg, this would re-
lax the seed BH mass requirement from several tens of
thousands solar masses to less than 1000 M. Given the
size of the axion DM parameter space where the star
formation history can be significantly altered, we thus
believe our scenario deserves substantial further inves-
tigation through numerical simulations in combination
with present and upcoming high-redshift data from the
James Webb telescope and 21-cm probes of reionization
such as EDGES [160], HERA [161], LEDA [162], the SKA
low frequency aperture array, and others.

Simulations are also necessary in order to understand
how such shifts to the power spectrum can be probed
and constrained by Lyman-a forests. For ultralight
masses of O(10722eV), axion dark matter without large-
misalignment is constrained because of the matter power
spectrum suppression above the wavenumber k, [45]. In
our case, however, the structure enhancement discussed
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above will counteract some of this power suppression, and
in extreme cases may provide such an enhancement that
the excess of power will be constrained. Ref. [46] has
conducted a preliminary study of this effect, but more
work and simulations are necessary to understand ex-
actly what region of the parameter space is constrained.
Lyman-«a forests are perhaps able to probe up to masses
of O(10721) eV at values of f low enough to be in the
oscillon-formation regime, which would mean that halos
heavier than 10° Mg, can be affected. This region of pa-
rameter space is also relevant for the gravitational wave
signatures described below, in Sec. IIID.

D. Gravitational wave emission

As studied in Sec. II B 3, the large-misalignment mech-
anism in extreme cases can lead to oscillon formation
long before matter-radiation equality. The collapsing ax-
ion field structures are originally asymmetric and lose
mass and angular momentum as they transition to oscil-
lon configurations. While this process is dominated by
scalar wave dynamics, the spherical asymmetry of the
collapsing scalar field produces a small but potentially
detectable component of stochastic gravitational waves.

We have computed this gravitational wave emission via
numerical simulations which are described in App. B3,
and their most relevant characteristics and implications
can be estimated analytically and independently of the
specific form of the potential.

We find that a good fit to the gravitational wave emis-
sion can be drawn from the standard quadrupole formula:

Gy oo
) (83)

PGW ~

where Q is the third time derivative of the quadrupole
moment. We assign a quadrupole moment to each os-
cillon of size Q = nMos.R2,., where Mo is the (initial)
oscillon mass, R, its characteristic radius and n a factor
describing its eccentricity. Since the field of axion density
fluctuations is initially a Gaussian random field, eccen-
tricity factors of O(1) are physically reasonable. Accord-
ing to our simulations, for deformations of order 25-50%,
we have that n ~ 1.

The mass, radius, and frequency of oscillation of the
emitting oscillon are determined as follows. The mass
of the collapsing object, which will be roughly the mass
of the initial oscillon configuration, is estimated as the
enclosed mass inside a volume of comoving radius 7/k:
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where p%,, is the DM density today defined in Sec. I,

and k is the dimensionless comoving wavenumber from
Eq. 15. This mass will then collapse until the density

(84)



becomes of order m?f2, which is roughly the point at
which the oscillons are formed and gravitational waves
are emitted. This determines the radius R.s. that goes
into the quadrupole. Finally, the angular frequency of
oscillation and thus of the emitted gravitational waves,

will be wgw ~ aRL:

MOSC 1/3
3 ) (85)

-1
ow ~ Rose >~
GW 0sC (47T m2f2

our numerical simulations imply that a ~ O(3).

We are considering scales k which collapse at a time
tm = tm,con Well within radiation domination. The scale
factor at collapse is:

2H,
a (86)

Acoll = Qeq tm,coll

After collapse, both the energy density and frequency
of the GWs will be redshifted. Assuming that O(1) of
the DM is in these collapsing objects (an assumption sup-
ported by Ref. [25]), the energy density Qgw emitted in
gravitational waves relative to the DM energy density
today scales as

Qcaw _ waw Paw

QDM N Mosc feoll
~ 1010205 10722 eV Vtm,coll Pr/2 13
- n m ];2 P )

(87)

with characteristic frequency
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Note that Eq. 87 and the assumptions behind it are gen-
eral and hold for any potential that can give rise to con-
figurations that collapse long before equality.

The power and frequency of the expected GW signal
depend sensitively on k and %, con. Aided by numerical
simulations, we observe that when the power spectrum
boost G factor of Eq. 26 becomes of order 10% and thus
0 ~ 1, the resulting nonlinear structures collapse into rel-
ativistic objects shortly afterwards (cfr. Sec. IIB). This
observation allows us to estimate the collapse time from
the parametric resonance formulae within the linear the-
ory (cfr. Sec. ITA). We furthermore check that in the
d = 0+ 1 rigid wavepacket approach of Sec. II B, the self-
interaction term of Eq. 49 is larger in magnitude than the
kinetic term. This ensures that, if a structure reaches
0 ~ 1 within the time that Ej,; < 0, then it will col-
lapse into an oscillon and give gravitational waves. The
bottom panel of Fig. 10 suggests that this approach is ap-
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FIG. 15. The purple band is the expected stochastic grav-
itational wave background from Eq. 87 as a function of the
observable frequency of Eq. 88. The upper end of the pur-
ple band corresponds to tm,0 ~ 100 and the lower end to
tm,0 =~ 600. The black band on the lower frequency end cor-
responds to exclusions due to structure formation [45], since
the collapsing mass is > 10° Mg. The yellow band between
the orange dotted lines is the prediction of the linear theory.
The horizontal lines are current constraints (solid) and future
reach (dashed) of different experiments. Future PTA sensitiv-
ities (solid) are also shown (see App. D for details). The red
“Astrometry” line assumes 10® quasars and o, = 1 pas y "
noise levels, while the SKA-100 sensitivity curve assumes 100
pulsars observed for 30 yrs with an error of 10 nsec and a ca-
dence of 14days. The blue dotted lines are contours of con-
stant axion mass. The signal from the ~ 107?2-1072° ¢V and
~ 10715107 eV axion mass ranges is within expected fu-
ture sensitivities.

proximately correct at large values of § (when parametric
resonance shuts off due to the nonlinearities), especially
for larger collapsing structures (or small k).

Eqgs. 87 and 88 suggest that the signal is dominated by
the most massive collapsing structures, corresponding to
the smallest possible k£ that grows nonlinear. The above
combination of the linear parametric resonance theory
(Sec. ITA 1) and the nonlinear quartic collapse analysis
(Sec. IIB3) yields a set of three conditions that must
be satisfied for a scale k to collapse: (a) the power boost
factor must reach a value of Q(/%, tm.con) = 105, (b) tym.con
occurs well within radiation domination, and (¢) Ejnt of
Eq. 49 is negative. Note that the time at which paramet-
ric resonance shuts off, defined below Eq. 24, is paramet-
rically the same (with a somewhat larger numerical coef-
ficient) as the maximum time allowed by the constraint
Eint < 0, so satisfying (a) means that (c) is automatically
satisfied as well.

From the linear treatment of perturbations, we expect
a range of k to parametrically resonate and collapse, as
suggested by Fig. 4. However, by the time the smallest k
satisfies the above conditions, higher k£ have already be-
come nonlinear, if we assume a scale-invariant spectrum
of curvature perturbations. In fact, the linear theory
predicts that there can be substantial time separation



between the collapse of the first (and higher) k and the
collapse of the last (and smallest) one. But once the
first-collapsing scales have entered the oscillon regime,
the nonlinearities reduce the amount of energy available
in the zero mode, essentially stunting any further growth
for smaller k, and the linear regime procedure outlined
above fails. Simulations of similar systems in Ref. [25] in-
dicate that the vast majority of the axion energy density
leaves the zero mode after the first scales undergo quartic
collapse, rendering it unable to source the parametric res-
onance of the smaller wavenumbers.'® The same simula-
tions indicate that this collapsing process is rapid, taking
only roughly a factor of 10 in ¢,, from the first hints of
collapse to complete fragmentation into oscillons. Thus
we estimate the effects of nonlinearities on our signal by
finding the smallest &k that collapses within a factor of 10
in time from the first collapsing scale, and using this k
to evaluate Eqgs. 87 and 88.

The results of the procedure outlined above are shown
as the purple region in Fig. 15 for the cosine potential.
The upper blue line corresponds to ¢, 0 ~ 100 and the
lower one to t,,0 ~ 600. As one turns up the misalign-

ment angle and thus t,, o, the range of collapsing k in
the linear theory gets extended on both ends, causing
the first-collapsing k to be higher and collapse earlier,
ultimately suppressing the signal. In the shaded region
between the orange dashed lines in Fig. 15, we also de-
pict the naive expectation obtained by extending the lin-
ear regime description to the latest-collapsing structures.
As noted above, turning up the tuning allows for even
smaller k£ to parametrically resonate in the linear theory,
which also collapse much later, potentially resulting in an
enhancement of the signal with the tuning. In this case,
the upper part of the curve (i.e. for faw < 3 x 10710 Hz)
is cut off by the requirement that collapse occurs well
within radiation domination, and fteon < teq/10, where
teq is the time of matter-radiation equality. The shaded
black region also corresponds to scales such that the col-
lapsing mass is larger than 10° M, and is excluded by
structure formation [45]. Fig. 15 shows how the linear
description appears to overestimate by several orders of
magnitude the expected GW signal. This is mainly be-
cause a much larger hierarchy in the collapse time is pos-
sible between the different collapsing k¥ when the nonlin-
ear effects are neglected. As noted in footnote 16, this es-
timate can become accurate for different primordial cur-
vature power spectra.

There can be also GW emission from two additional
regimes: (i) the interaction of two oscillons as they de-
cay, expand, and collide; and (ii) the interaction of the
scalar waves, emitted during the early collapse of a struc-
ture, with another oscillon. The power emitted from such

16 One could consider a primordial power spectrum with suppressed
power at these large k’s, so that the smallest collapsing k as de-
termined from the linear procedure is still accurate, but consid-
ering such scenarios goes beyond the scope of this paper.
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configurations will, however, be suppressed by the usual
r~2 dilution due to propagation/expansion in 3D space as
well as by the geometric cross-section of the interaction.
As such, these additional contributions are subdominant
with respect to the signal of Eq. 87. These other GWs
will be produced later than the ones of Eq. 87, so both
their amplitude and frequency will be less redshifted by
the present day, but this is not sufficient to overcome
their suppression. We thus take Eq. 87 to be an upper
limit of the stochastic GW power leftover from these os-
cillon dynamics.

As Fig. 15 illustrates, the gravitational wave emission
can cover many orders of magnitude in frequency for dif-
ferent axion masses. We also show representative sensi-
tivities of several current and upcoming experiments that
promise to cover the relevant frequency window. These
experiments fall in three categories: (a) looking for ef-
fects in the apparent motion of stars or quasars through
astrometry, (b) pulsar timing observations, and (c) excess
gravitational wave radiation manifesting as additional
relativistic degrees of freedom. In App. D, we briefly
review each one of these and describe their sensitivity as
shown in the figure.

We should also note that for other potentials, such as
the ones discussed in Sec. V, the GW signal can be en-
hanced in the higher mass end of the spectrum, i.e. in
the range within the PTA sensitivity curves. This is the
result of the potentials being flatter at large field values,
delaying the onset of the oscillations and subsequent col-
lapse. Additionally, the larger quartic allows even smaller
k to parametrically resonate and collapse.

For most of our parameter space, these signatures fall
below existing sensitivities, but we are hopeful that ad-
vances in astrometric surveys and pulsar timing arrays
will be able to probe our scenario in the near future, to
constrain or detect gravitational waves from the large-
misalighment mechanism in the ~ 10722-10"2 eV and
~ 10715-1071* eV axion mass ranges.

IV. QCD AXION

We now turn away from a general analysis of ultra-
light scalar models to focus on the QCD axion. This
proposed solution to the strong-CP problem is indepen-
dently well-motivated [1-3], but the specifics of its po-
tential and phenomenology mean we need to make a few
major changes to the above computations. The first is
that the mass m, and decay constant f, of the field are
no longer independent, and are instead related by [163]:

(89)
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This has the effect of reducing the parameter space to
one dimension. Fixing f, determines m, uniquely, and
thus also determines the required initial misalignment
angle ©( necessary to produce the proper present-day



dark matter abundance (assuming dark matter is pre-
dominantly composed of QCD axions). Because we are
interested in effects that are most prominent when the
field begins near the top of its potential, we will be in-
terested in relatively smaller values of f, < 2 x 101 GeV

compared with much of the QCD axion literature. This
will correspond to masses m, > 3 x 10~*eV.

The second major change is that the axion potential
changes shape and becomes temperature-dependent. At
zero temperature, the potential is no longer a perfect
cosine and depends on the masses of the light quarks

[163]:
sin? (?) (90)

where m, and f; ~ 92 MeV are the pion mass and decay
constant respectively, and m,, and my are the masses of
the up and down quarks. For the measured values of the
SM parameters, this potential is sharper at the top than
a cosine potential, which would seem to imply a need for
greater tuning in order to see the sorts of extreme boosts
to structure growth that we are studying. However, this
potential is only valid at low temperatures.

At high temperatures, the dominant contribution to
the potential comes from QCD instantons, and a good
approximation to the potential is given by the dilute in-
stanton gas result:

dmymy
My + Mg)?

VD) =i 1o (£)] o)

where T is the temperature and m?(T) scales as:
ma(T)? = xqep(T) mi (T = 0). (92)

The topological susceptibility xqcp(T') scales as
T-316 for temperatures T > 1GeV, and can be com-
puted numerically using lattice QCD. For our analysis,
we use the numerical results of Ref. [164]. Because we
are interested in structure growth in the hot early Uni-
verse, we may approximate the full QCD potential with
the form in Egs. 91 and 92.

We can now proceed to the full analysis. Defining ¢,,,
tx, and k as in Sec. ITA 1 (using the zero-temperature
mass mq(T = 0) for m,) we have that the background
field evolves according to Eq. 10 with sin(©) replaced
by xqcp(T)sin(©). Note that because xqep(T) < 1
at high temperatures, the field may enter the horizon
and begin oscillating substantially after ¢,, ~ 1, and in
fact this is the case for the low-f, QCD axions under
consideration here. Using this, we fix the relationship
between f, and the required initial misalignment angle
Oy for a given DM abundance, the results of which are
shown in Fig. 16.

Equations 17 and 18 then describe the growth of
QCD axion perturbations, and the covariant density per-
turbation is given by Eq. 19, replacing each appear-
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FIG. 16. QCD axion abundance €2, as a fraction of the

total DM abundance Q2pwm, as a function initial misalignment
angle ©g and decay constant f,. The thick black line de-
notes the curve where the QCD axion energy density matches
the observed DM density. Parameter space above this line is
therefore excluded, and a QCD axion below this line could
only make up a subcomponent of the DM, but can still ex-
hibit structure enhancement (which is only a function of G).
For QCD axions comprising the totality of the DM, the thick
black line gives a relationship between the decay constant f
and the required initial misalignment angle Oo.

ance of sin(©) and cos(®) with xqcp(T)sin(0) and
Xqcn (1) cos(O) respectively. We evolve these equations
numerically for a range of k and initial misalignment an-
gles; the results are shown in Fig. 17. Note that the
temperature-dependence of the QCD axion mass gen-
erally delays the onset of oscillation, so the wavenum-
bers that are unstable under parametric resonance are
noticeably smaller than those in Fig. 4, peaking around
k ~ 1072 rather than k ~ 5.

A Newtonian treatment—analogous to that of
Sec. IT A 2—of perturbations can be given long after they
enter the horizon, and at late times (O(100) periods after
the field begins oscillating), we stitch the exact general
relativistic solution to the Newtonian solution in order
to average out the oscillatory behavior. Because all tem-
peratures in the late-time universe are much lower than
1 GeV, the nonlinear behavior is exactly the same as dis-
cussed in Sec. II B, and we give a present-day halo spec-
trum for a few representative values of f, in Fig. 18.

Note in Fig. 18 that for scale masses larger than those
that receive a boost, the predicted scale densities are
actually below the ACDM result. This is due to the
temperature-dependence of the QCD axion mass, which
means the field does not be have like a matter fluid un-
til the temperature drops below that of the QCD phase
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FIG. 17. Transfer function |6k /®x o> of the QCD axion den-
sity fluctuation Jdx relative to the primordial curvature fluctu-
ation P o evaluated at a time t,, = 40t;;, where t;,¢ is the
time at which the QCD axion field begins oscillating (when
mq(T) ~ 3H(T)). The results are presented as a function of
comoving wavenumber k and axion decay constant f,. In this
plot we assume that the QCD axion comprises the totality of
the DM, and thus the decay constant f, uniquely determines
the required initial value of the misalignment angle Oo.

transition. Scales that enter the horizon at higher tem-
peratures have xqcp < 1 early in their history, which
means the forcing term from Eq. 18 does not cause as
much growth at early times as it does in CDM. For
scales that enter the horizon when 7' < 100 MeV,
the zero-temperature potential is a good approximation
throughout their evolution and the behavior returns to
the ACDM result. In practice, this depression of growth
at scales above the peak implies that when the structure
growth is enough to cause collapse, all the power in the
halo power spectrum will be confined to a smaller range
of scale masses, and so the fraction of DM in structures
at these scales will be higher than it would be for the
axions of the previous section.

The effects discussed in this paper are most promi-
nent for larger QCD axion masses, of the order m, 2>
3 x 107%eV, a range which will soon be probed by ex-
periments such as MADMAX [165], ORPHEUS [166],
HAYSTAC [167], ADMX-HF [168], ORGAN [169],
QUAX [170], TOORAD [171], dish antennae [172],
plasma haloscopes [173], and multilayer optical halo-
scopes [174]. If the structure growth is enough to result
in gravitationally collapsed robust against tidal stripping
(i.e. for f, <2 x 101°GeV), it is likely that most of the
DM in our Galaxy will be clustered into axion femto-
halos. In that case, the expected sensitivity of such ex-
periments must be re-evaluated to take this clustering
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FIG. 18.  Halo spectrum for QCD axion DM in terms of

scale mass M, and scale density ps for various values of de-
cay constant f,. The predicted CDM halo spectrum is also
shown, although the scales here are far smaller than any that
have yet been measured. For the red, green, and blue val-
ues of f,, the dashed lines depict the dilute soliton branch of
Eq. 41, the dotted lines depict the maximum (critical) soli-
ton mass, and the dot-dash lines delineate the density above
which gravothermal catastrophe occurs inside the halo (see
Sec. IIB2). Note that at scale masses larger than those that
receive a boost, the predicted scale densities are actually less
than those in CDM, implying a reduction of structure growth
on these scales. Although not shown on this figure, each of
these colored lines will continue to decrease until they meet
the gray f, = 10" GeV line at which point they will follow it
back up to the CDM prediction.

into account. Experiments such as ARIADNE [175, 176],
which are sensitive to this mass range but do not re-
quire that the QCD axion be the DM, will be unaffected.
We leave a complete reanalysis of the various constraints
for future work. Although the QCD axion is the most
motivated example of a light scalar with a temperature-
dependent mass, it is not the only option; our results are
readily modified for general time-dependent potentials.

Gravitationally bound structures in the context of the
QCD axion have also been discussed in the literature un-
der the name axion miniclusters [8-13]. Those objects
are qualitatively quite different from the ones discussed
here. Axion miniclusters form during a post-inflationary
Peccei-Quinn (PQ) phase transition, which leads to large
density fluctuations on small scales that collapse at or
slightly before matter-radiation equality. In our case,
there is no PQ symmetry present after inflation and the
perturbations in the axion field are simply the primor-
dial curvature perturbations enhanced by the axion self-
interaction effects discussed in Sec. IIA. One very im-
portant observational difference of the QCD axion mini-
clusters relative to the compact halos we consider here is
that the former are very necessarily extremely dense. As
a result, they encounter Earth only about once every 10°
years and cannot positively affect axion DM searches in
the laboratory.



V. INITIAL CONDITIONS AND GENERAL
AXION POTENTIALS

In Secs. IT and III, we have restricted ourselves to the
case of the cosine potential. This is because the one in-
stanton contribution to axion potentials is quite generic
in a weakly coupled theory and it is also the case most
relevant for the QCD axion. At first glance though, we
seem to be faced with a serious problem of tuning. In
order for the effects of self-interactions to be apprecia-
ble, the axion field has to start less than O(1073-1072)
from the top of the potential. The most extreme case,
namely that of self-interaction-driven structure collapse
during radiation domination, naively requires tuning at
the level of 1 part in 10'2, but this figure merits a few
comments.

First, there are dynamical mechanisms that can drive
the field’s initial value to the top of the cosine potential,
in which case it is natural for it to be tuned near w. One
possible such mechanism, described in Ref. [177], is to
have a contribution to the axion potential during inflation
that gives it a large mass (specifically m > H,¢) and
aligns the minimum with 7 rather than 0 (both 0 and 7
are natural choices for the minimum because they are the
only two values of © that preserve C P-symmetry). The
axion will then roll down to 7 and remain there until the
end of inflation when this potential contribution turns off.
From there, the field will evolve as discussed in Sec. II
with an initial value that appears to be tuned.

The concrete model constructed in Ref. [177] applies
specifically to the QCD axion, but similar mechanisms
likely exist for other axion-like particles. The basic in-
gredient necessary is a difference between the minimum
of the potential during inflation and the minimum af-
ter, which should be unsurprising given that the minima
of any potential are generically temperature-dependent.
During inflation the system is thermal at the Hawking
temperature Ty = Hine/27, and so thermal contribu-
tions to the axion potential can easily lead to the zero-
temperature maximum (© = 7) being a minimum during
inflation. Such dynamics also have the added advantage
that they suppress isocurvature fluctuations, relaxing the
constraints discussed in App. C.

Second, even if no dynamics are involved, an under-
standing of the tuning requires an understanding of the
probability measure associated with the initial field value
as well as the probability measure associated with an an-
thropic argument. The latter can in principle alleviate
the tuning substantially, which we investigate with a brief
discussion of an anthropic argument due to Ref. [178].
The basic idea is that if ppy were much less than we ob-
serve it to be, structures would not be able to collapse be-
fore the Universe entered the present era of dark-energy
domination. Since expansion would then rapidly dilute
all matter, no structures would collapse and thus no ob-
servers would form. On the other hand, if ppy were
much larger than its observed value, baryons would be
proportionally rarer and thus baryonic observers would
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be less common. In our case, using the technique and
priors of Ref. [178] yields an actual tuning of order the
square root of the “naive” tuning. This analysis cannot
be rigorous—the measures used are subject to significant
uncertainties and disagreement in the literature—but it
still serves to demonstrate that anthropic arguments can
substantially alleviate the tuning necessary to observe
the effects discussed in this paper.

Ultimately, we must note that the tuning depends
heavily on the shape of the potential near the top. As
discussed in Sec. IT A1, the requirement for large self-
interaction-induced growth in density perturbations is a
“delay” between the time when the field starts oscillating
and its naive oscillation time (i.e. when m ~ 2H). For
a field that begins near the top of its potential, changes
in the potential’s slope can lead to parametric changes in
how long it takes to begin rolling. Realistic axion poten-
tials descending from some unknown UV completion may
deviate significantly from the cosine potential of Eq. 3,
and more naturally realize a delay in the onset of oscil-
lations.

The effects that we point out in this paper are present
in large classes of models with different axion potentials
as long as they have attractive self-interactions. In sev-
eral of these models, including some models of axion mon-
odromy, the potential is flatter than quadratic (that is
they scale like V' (¢) ~ ¢ for some p < 2, or equivalently
V(¢) < 3m?¢? at large field values) for a large field
range, which is exactly what is required for the effects
described above to manifest themselves. As discussed
at the end of Sec. II A1, the extreme growth in energy
density perturbations requires a “delay” in the onset of
oscillations from its natural timescale t,, ~ 1 (m ~ 2H).
This natural timescale is the exact result for a purely
quadratic potential with mass m, so any delay must come
from the potential being flatter than quadratic. The pre-
cise nature of how it flattens will determine how much the
field is delayed in its oscillation, but any such delay will
lead to similar phenomenology: a set of wavelengths with
an exponential growth instability. To illustrate this, we
consider two different toy models and then discuss how
generic their behavior really is. More discussion of these
effects is also present in Ref. [17].

The first model we consider is an axion with potential:

V(¢) — m2f2 ¢2 — m2f2
22 4 ¢

92
—_— 93
2462’ (93)
where 6 = ¢/ f. This potential has the same mass m and
overall energy scale m?f2 as the cosine potential in Eq. 3.
Such a potential can arise quite naturally for example
from integrating out a heavy field in a two-scalar model.
As discussed in Ref. [179], we can begin with a potential
such as

VoL, on) = g>010% + M*(dr — 0)®,  (94)

and integrate out the heavy field ¢5 to obtain the po-
tential of Eq. 93 with m? = 2¢%¢2 and f2 = M?/(2g?).
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FIG. 19. Transfer function for the axion energy density (see
Fig. 4) for an axion with the ratio potential of Eq. 93.

We can now repeat the linear growth analysis from
Sec. ITA1 with this potential to obtain Fig. 19. For
|©0| 2 2, the field’s oscillation is delayed and there are
large enhancements to structure growth for a range of
length scales. For |©g| 2 4, some scales receive enough
of a boost that they will collapse during radiation domi-
nation. This potential will thus exhibit all of the observ-
able phenomenology discussed in Sec. III, but does not
suffer from any of the tuning issues present in the cosine
potential.

Axion potentials with an unbounded field range and
a flattening at large field values have also been dis-
cussed extensively in the axion monodromy literature.
e.g. Refs. [15, 16, 179, 180]. As a prototypical exam-
ple from this class of models we consider the case of
a D4-brane stretched between two NS5-branes around
an internal cylinder. This model is discussed briefly in
Ref. [181], but for our purposes it is only important that
the low-energy 4D-theory will include a moduli field 6
corresponding to the winding of the D4-brane around
the cylinder. The potential of this field is then given by:

V(e = f0) = m2f? (\/1+92—1).

This potential is quadratic near the origin and flattens
to become linear at field excursions 0| 2 1. Again we
can repeat the linear growth analysis from Sec. IT A1
with this potential to obtain Fig. 20, where we can see
that indeed there will be significant structure growth and
early collapse for |©¢| 2 10.

Both of these examples serve to demonstrate that the
phenomenology and signatures discussed in this paper are
not unique to the cosine potential of Eq. 3 but are rather

(95)
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FIG. 20. Transfer function for the axion energy density (see
Fig. 4) for an axion with the monodromy potential of Eq. 95.

generic to any axion model with a delayed onset of oscilla-
tion relative to the natural timescale t95¢ = 2Hs./m ~ 1
near any minimum where the quadratic expansion is good
approximation. For models with a cosine potential, this
requires an initial misalignment angle tuned quite close
to the top of the potential, but for other models this is
not the case. For the monodromy potential of Eq. 95,
it is easy to show that t2° ~ |@g|*/? for very large ini-
tial field misalignments |©g| > 1. As long as © > 1,
the energy density is linear in the field value, and will
scale as a=2 [53], so we have p/m2f2? ~ © ~ |©¢[t%/t,,
during radiation domination. Hence we find that © = 1
at a dimensionless time ¢,, o ~ |©¢|*>/? that can be very
large indeed, leading to strong parametric resonance ef-
fects (cfr. Eq. 28). The ratio potential of Eq. 93 has an
even steeper dependence of ¢,, o on large initial misalign-
ments |G|

Intriguingly, in numeric simulations of both the above
potentials, we have found metastable oscillon states with
substantially longer lifetimes than similar states for the
cosine potential. We have been unable to find a pre-
cise expression for their lifetimes, but simulations con-
firm that both Eq. 93 and Eq. 95 lead to states that
live at least O(10°/m) and possibly much longer (other
groups have also found states living at least O(10%/m)
in similar potentials [17]). If they live a few orders of
magnitude longer than this, they may be cosmologically
relevant and have observable signatures, some of which
we have already discussed in Sec. III A. We leave a more
detailed analysis of these states and their phenomenology
for future work.



VI. DISCUSSION

In this paper, we have shown how axion self-
interactions can lead to nongravitational DM structure
growth resulting in compact halos, and we have proposed
several observational signatures of these halos. This
growth is driven by parametric resonance for modes of
order the axion Compton wavelength at the time when
the axion field starts oscillating. The effect on DM den-
sity perturbations is bigger when the axion field starts
with “large misalignment,” that is at a flat portion of its
potential. This enhancement of structure formation thus
presents a qualitative and quantitative production mech-
anism for compact DM halos, which in extreme cases can
be scalar field configurations such as solitons and oscil-
lons.

The possibility of the existence of such objects in our
universe was considered before but without a concrete
cosmological production mechanism (with the exception
of the aforementioned QCD minicluster literature). Here
we outline a framework that can make quantitative pre-
dictions for the production of compact axion structures in
terms of fundamental parameters of the theory. The to-
tality of all our observational predictions is summarized
in Fig. 1, covering an enormous range of axion masses
from 10722eV to 10eV.

For axion masses larger than 107°eV-—and for the
QCD axion with decay constants near f, ~ 10'° GeV—a
large fraction of the axion DM is in compact dense ha-
los that episodically visit Earth, substantially affecting
contemporary and future experiments that target this
parameter space. Axion DM experiments operating in
this mass range should reconsider their search strategies
and their method of data analysis to account for these
effects. In fact, if the vast majority of the axions is in
dense halos, then regions of the axion parameter space
that are now considered excluded because of negative di-
rect axion DM searches could actually be allowed, so a
re-interpretation of the present axion exclusion plots may
become necessary. A related theoretical challenge is to
compute precisely the fraction of DM axions that is in
compact halos, which will likely require numerical simu-
lation.

Axions lighter than 107°eV can be probed through
various types of gravitational lensing searches as well
as measurements of our local DM distribution. Axions
lighter than 107'8eV can lead to substantially earlier
star formation, possibly accelerating the formation of
early supermassive black hole seeds, or providing new
signatures accessible with better measurements of re-
ionization. Understanding such signatures will also prob-
ably require numerical simulation, as will the computa-
tion of the compact halo spectrum and the relevance of
the gravothermal catastrophe for the late-time proper-
ties of these halos. Although we have not studied their
signatures in this paper, axions heavier than 10 eV can
also form gravitationally bound structures that survive
to the present day, and this could potentially spur new
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ideas for direct detection experiments in this range. We
leave this possibility for future work.

In the extreme case where nonlinear DM structure
forms well before matter-radiation equality, we are pre-
sented with the exciting possibility of oscillon DM. Of
course this would require that the oscillon is cosmologi-
cally long lived, which is not the case for the cosine po-
tential. Nevertheless, numerical simulations reveal that
oscillons of other well-motivated, flatter potentials can
live for at least 10® cycles [17], corresponding to lifetimes
of tens of millions of years for fuzzy DM. This suggests
the idea of oscillon DM may be realizable for some po-
tentials.

Axions are extremely well-motivated DM candidates,
and are a main focus of research beyond the Standard
Model. With this work, we hope to bring into focus
a largely overlooked property of axions that changes
our notions of DM structure and its signatures. The
large-misalignment mechanism for axion DM production
points to previously unexplored possibilities for the prop-
erties of axion DM and its experimental signatures over
tens of orders of magnitude in parameter space.
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Appendix A: Bound states

In order to understand the collapse dynamics and re-
sulting objects, we must first recall the spectrum of self-
bound axion field configurations. These are well-known
in the literature [31-42] and can be split into two cat-
egories: solitons and oscillons. The former are diffuse
objects (with size > 1/m) held together by their self-
gravity and stable over cosmological times. The latter, on
the other hand, are far more compact (with size O(1/m))
and only metastable.

Since they are not our main focus in this paper, we do
not go into much detail about these solutions except to
recall a few important results about them. First, solitons:
field configurations bound by self-gravity and stabilized
by kinetic pressure. For f < Mp;, we can treat these con-
figurations with a nonrelativistic approximation to the
scalar Klein-Gordon equation. This yields a Schrodinger
equation that can be solved numerically [34] (and ap-
proximated analytically [35]) to yield the following:

1. Solitons are long-lived, with lifetimes far longer
than the age of the Universe [36, 38]. Funda-
mentally, this is because they are diffuse objects,
with sizes much larger than 1/m and accordingly
small velocities vso. Since self-interaction-induced
radiation (i.e. outgoing axions) is a relativistic ef-
fect, it is exponentially suppressed by a form factor
~ e_l/vgol .

2. Solitons have a well-defined mass-radius relation
given by [34]:

9.95

Rog ~ ———
% GNmQM

(A1)

where Rygg is the radius containing 99% of the mass
of the soliton.

3. Solitons have a fixed density profile which can be
numerically obtained by solving the Schrodinger-
Poisson equation. Here we give an approxima-
tion to this profile. Defining the scale radius as
in Sec. [IB1 by 7! = {r|0lnp(r)/dInr = —2}
and the scale density p3°! = p(rs°), the soliton’s

density profile is well-approximated by:

2
p(r) = po exp —@ or
p
plr) ~ —L (A2)
1+ 57
where pg =~ 2.945p%°! and Ry =~ 0.6530r%°!. The

S
first of these approximations is accurate at small

radii, while the second with n = 8 is accurate to
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10% for r < 3.2r%°L. At asymptotically large radius,
In p(r) < —r, as for e.g. hydrogenic wavefunctions.

4. There is a maximum mass for solitons in potentials
with attractive self-interactions. At larger masses,
configurations are unstable to a violent collapse
and subsequent explosion due to the attractive self-
interactions of the cosine potential (which can be
seen in, for example, [34, 35, 182] and the simu-
lations of Ref. [64]). For the cosine potential of
Eq. 3, the critical mass M,,;; can be estimated an-
alytically to be:

M,
My =~ \/24773%. (A3)

We also briefly review oscillons, dense relativistic
structures bound together and stabilized solely by self-
interactions.!” They have also been studied in the litera-
ture (see e.g. Refs. [32, 39, 43, 186, 187]), although they
are not nearly as well-understood as solitons. For our
purposes, however, we only need a few empirical obser-
vations about them, all of which we checked for a wide
variety of initial conditions via numerical simulations de-
scribed in App. B:

1. The internal density of the oscillon is O(m? f?), the
natural scale associated with the potential of Eq. 3.

2. For small oscillons with sizes of O(few/m), we can
use the above density to obtain a rough estimate
of the oscillon mass: O(10%273f2/m), in agreement
with our simulations. Initial field configurations
with substantially more mass tend to radiate it
away in a transient burst and initial field configu-
rations with substantially less tend to immediately
disperse.

3. Because of their approximately constant internal
density, oscillons have a mass-radius relation given
by M x R3.

4. The per-particle binding energies of the oscillons
are not too large, of order @(0.1m). This can be
inferred from the spectrum of emitted radiation at
large distances (see App. B).

5. Perhaps most importantly, for the cosine potential
of Eq. 3, oscillons are only metastable, with rela-
tively short lifetimes 7osc < O(10%/m). They de-
cay by emitting axion radiation until they reach a

17 There has been disagreement in the literature over what to call
these objects. We use the word soliton to refer to those objects
which are bound by gravity and stabilized by kinetic pressure,
while we use the word oscillon to refer to those objects which
are both bound and stabilized by self-interactions and kinetic
pressure. The former have also been referred to as “dilute axion
stars” (e.g. in Ref. [39]). The latter, meanwhile, have been
referred to as “dense axion stars” (e.g. in Refs. [32, 39, 183-185])
and, in a particularly confusing turn of events, “solitons” (e.g. in
Ref. [43]).



small enough mass such that self-interactions are
no longer able to bind them. At that point, they
begin dispersing outward due to the repulsive ki-
netic pressure (and the expansion of the Universe).

This is observed in numerical simulations (see
App. B), but it is also known that different axion
potentials can give support far longer-lived oscil-
lons. Potentials with lifetimes 7,5 > O(108/m)
are known [17], and there is no clear upper bound.
Such long-lived objects may be cosmologically rel-
evant, but at the moment we defer these questions
for later work. Since the longest-lived oscillons of
the cosine potential have T,sc < O(103/m), they
will decay before matter-radiation equality if they
are formed in the early Universe.

Appendix B: Numerical results

To understand the dynamics of the axion field and
extract its generic behavior under the conditions of in-
terest, we employed several fully nonlinear, relativistic
numerical simulations. These allow us in particular to
develop and sharpen our analytic estimates for the time
and length scales involved in a self-interaction-induced
collapse (a highly nonlinear process) as well as to ex-
plore potential observable opportunities in gravitational
waves. In Appendix B 1, we discuss a set of spherically-
symmetric studies, which we used primarily to probe the
stability and lifetimes of oscillons in our various poten-
tials. These studies are complemented with correspond-
ing analysis in an expanding Universe of which imple-
mentation details and results are presented in B2. We
also employ fully three-dimensional simulations to con-
firm our estimates for the gravitational power radiated
during a self-interaction-induced collapse. These are dis-
cussed in Appendix B 3.

1. Spherically-symmetric simulations
Implementation

For simplicity, we adopt Schwarzschild coordinates where
the metric can be written as,

ds® = —a?dt* + a*dr? + r2dQ? . (B1)

Thus the only relevant metric functions are the lapse
function «(t,r) and a(t,r). These coordinates become
singular when a horizon forms but we study weak regimes
so this issue does not arise. In our implementation,
we employ “standard” first order variables as used in
e.g. Ref. [188],

¢, (B2)
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using the notation f = 8, f and f’ = 8, f; rescaling both
(r,t) by m~! and ¢ by f~!; and, for convenience, we also
introduce R = \/8*+MP' From the rr and rt components
of Einstein’s equations, we obtain

2 2 2 _
o = % |:’I"87TR2 <((I) +1) - Vaz) + i " 1] (B3)

2
a=4rdTMaaR?. (B4)
The first-order variables of the axion field then obey

. da\ 2

II= (a) + 222 av, (B5)
a ra
. « /
b= (—H) , B6
) (56)
Y

= —II. B7
§=2 (B7)

To efficiently cover the large range of scales relevant in
the problem, we employ a nonuniform radial grid defined
by r = vtan(z) with & € [0,27); « is then uniformly
discretized with do = 7/(2(N, — 1)). Here, v = 20 is
included for convenience and N, the number of points
in our discretization. The radial equation B3 is solved
at each given time while the evolution equations (B4-B7)
are employed to obtain the scalar field behavior and the
metric field a. The radial integration is done through
a Runge-Kutta 4th-order algorithm integrating inwards
with the asymptotic boundary condition o = 1; inte-
gration in time is performed with a Runge-Kutta 3rd-
order in time using the method of lines. Spatial deriva-
tives are computed with second (third, or fourth) or-
der finite-difference operators satisfying summation by
parts [189, 190]. Regularity at the origin is addressed by
using I’Hopital’s rule at » = 0 to regularize the equation.
We employ maximally dissipative boundary conditions
at the outer radial boundary. A small amount of arti-
ficial dissipation is added for convenience (for stabilility
and convergence as well as for ensuring spurious high fre-
quency behavior does not affect low frequency physics).
For further details see [190-192]. Finally, in our simu-
lations where we typically employ R = 1073,1072, the
timestep spacing is chosen as dt = 10~ 'dx to satisfy the
Courant-Friedrichs-Levy (CFL) condition and accurately
capture the rapid time-scale variations of the field dy-
namics.

Results and observations

We first ran a set of spherically-symmetric simulations
with initial conditions corresponding to subcritical and
supercritical solitons. The subcritical solitons remained
stable for as long as we simulated (> O(10%/m)), while
the supercritical solitons collapsed under the influence
of self-interactions to an oscillon of radius R, ~ 3/m,
before violently radiating away enough of their energy to
become subcritical and then fuzzing out to a subcritical
soliton. A typical central value of scalar field and density
profile for a collapsing supercritical soliton is shown in
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FIG. 21. Central value of the axion field for R = 5 x 1072
using an initial condition given by Eq. B8 with My, = 2 x
10*, ¢ = 40. This simulation used a spherically-symmetric
code which required far fewer computational resources than
the 3D code used to generate Fig. 24, but the results are in
agreement both qualitatively and quantitatively in terms of
rough timescales and field excursions.
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FIG. 22. Central value of the axion energy density for

R = 5 x 1072 using an initial condition given by Eq. B8
with Mo = 2 x 10*, ¢ = 40. Note the spikes in density visible
during the collapse and the eventual fuzzing out after enough
energy has been lost. While the configuration is far from per-
fectly periodic or regular, it is quite long-lived compared to
its natural timescale of m ™.

Figs. 21 and 22 respectively. These have been obtained
with initial data defined as:

bt = 0) = \/7/10 \/My /o3 /(277

Bt =0)=0. (BS)

In the plots here, we adopt My = 2 x 10%, ¢ = 40,
but we also simulated a variety of other masses and ini-
tial sizes and obtained qualitatively similar results in all
cases. Our results here should be compared with those
of Ref. [64], with which they are broadly consistent.

To establish that no “stable oscillons” (i.e. states
bound by self-interactions and long-lived on cosmolog-
ical scales) could form, we also simulated several high-
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energy-density initial conditions, including initial states
corresponding to solutions of the Schrodinger equation
under a nonrelativistic assumption. For the cosine po-
tential (Eq. 3), we found metastable states for a wide va-
riety of initial conditions, but no states that lived longer
than O(10%/m) = O(1000) yr w. They are thus
not cosmologically long lived, so we do not expect any of
them to be present in the late-time Universe. We note
in passing that in finely-tuned configurations significantly
longer lifetimes are in principle achievable (e.g. [183, 184])
though this possibility would not be generic. For other
potentials, such as those of Egs. 93 and 95, we also simu-
lated such initial conditions, and for these we were able to
find metastable states with lifetimes at least O(10°/m),
at which point the simulations became computationally
costly. Tt is unknown what leads to such longevity in
these potentials, and whether there is an upper bound on
the lifetime of such oscillons. We reserve a careful study
of this for future work, limiting ourselves in this paper
only to outlining some of the observable consequences of
cosmologically long-lived oscillons should they exist.

By measuring the scalar field at large distances from
the center, we were also able to extract the spectrum
of outgoing scalar radiation. We performed this analy-
sis both for collapsing supercritical solitons and for the
longest-lived metastable oscillon states we could produce,
and in all cases the results showed clear peaks at ener-
gies w approximately 3wg, bwg, Twg, ..., where wy is
the energy of the soliton or oscillon state and is slightly
less than m due to the state’s binding energy. A repre-
sentative spectrum is shown in Fig. 23. This is consis-
tent with self-interaction-induced 3 — 1, 5 — 1, 7 — 1,
...processes being the dominant contributors to scalar
emission from oscillons and collapsing solitons, which is
in turn consistent with the fact that all metastable oscil-
lon states we observed were small in size (with radius of
order 1/m).

2. Expanding-universe simulations

Implementation

In Sec. IIB 3, we simulated the collapse of fraction-
ally small, spherically symmetric overdensities in an ex-
panding Universe, according to Eq. 46 with the ini-
tial conditions of Eq. 45. We used Mathematica 11.3’s
NDSolve routine [193] with the adaptive time resolu-
tion (in ¢, space) of MethodOfLines. Anticipating
the need for higher spatial resolution near the origin
due to the collapse of the wavepackets, we transformed
the partial differential equation on a discretized spatial
grid uniform in r}n/Q using SpatialDiscretization and
TensorProductGrid. The spatial resolution was allowed
to float dynamically up to MaxPoints = 2 x 10%: for the
simulation in Fig. 9, we started with minimum number of
MinPoints = 600 initial spatial lattice points evenly dis-

tributed in r,ln/2 space between 7, min = 2.5 X 1073 and
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FIG. 23. Spectrum of outgoing radiation for R = 5 x 1073
using an initial condition given by Eq. B8 with My = 2 x 10*,
o = 40. This simulation used a spherically-symmetric code.
Note the peaks at peaks at =~ 3wo, bwo, Two, ... where wo =
0.9m. These indicate that 3 — 1, 5 — 1, 7 — 1 etc. pro-
cesses are dominant contributors to scalar wave emission from
oscillon-like field configurations. The large nonrelativistic
peak just above m is due partly to transient radiation still
present from our initial state and partly to the fact that the
oscillon has not yet settled to its ground state (and because
of its short lifetime, does not have time to before dispersing).

Tm,max = 29. We employed Neumann boundary con-
ditions at spatial boundaries, and checked that results
were independent of the box size, i.e. 7, min and 7, max-
(Because of the presence of the zero mode at the outer
boundary, dissipative boundary conditions would lead to
unwanted artefacts.) The time resolution was also dy-
namically variable but was never allowed to exceed a time
step in t,, space larger than MaxStepSize = 2 x 1073.
Numerical convergence and robustness of the obtained
results was verified by varying the spatio-temporal reso-
lution as well as slightly changing the initial conditions,
and inspecting if the qualitative features of the numerical
solution were the same.

Results and observations

The results of the simulation in Fig. 9 are described in
Sec. IIB 3, and serve as a bridge between the linear the-
ory, the collapse into an oscillon-like configuration, and
the subsequent evaporation. We have performed simi-
lar simulations for larger-radius wavepackets, which we
found to collapse into larger-mass oscillon states with
somewhat longer lifetimes, and more complicated behav-
ior in the nonlinear regime. Another simulation with
exactly the same parameters as in Fig. 9 save for the
opposite sign of 6y = —1072, i.e. a linear underdensity,
reveals that underdensities also grow via parametric reso-
nance but do not produce implosions, instead the growth
of fluctuations turns off smoothly when nonlinearity is
reached.

We have also run simulations for a handful of multi-
scale configurations, e.g. two superimposed wavepackets
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of different radii. In those cases, we found that the col-
lapse of the small wavepacket did not prevent the collapse
of the larger wavepacket. In order to study the interac-
tions between oscillons and to understand the mode mix-
ing over a large range of scales, simulations with a larger
dynamic range in both time and space would be helpful.

3. Three-dimensional simulations

We also ran a few fully three-dimensional simulations
incorporating full general relativity in order to study
gravitational wave radiation from an asymmetric collaps-
ing cloud. As discussed in Sec. II B 1, an axion cloud col-
lapsing under the influence of self-interactions in the early
Universe will in general be asymmetric. This asymmetry
will lead to gravitational wave radiation, but in order to
estimate the actual power radiated, we must know how
long it takes for the collapsing structure to radiate away
its asymmetry. Our fully consistent 3D simulations allow
us to follow the behavior of the scalar field and compute,
in particular, the gravitational radiation emitted by the
system and contrast it with our analytical estimates dis-
cussed in Sec. IIID.

Implementation

We employ the HAD [194] computational infrastructure
to efficiently study our system of interest, described by
a scalar field minimally coupled to the Einstein equa-
tions in 3D (subject to the cosine potential for concrete-
ness). This infrastructure provides distributed, adap-
tive mesh refinement Berger-Oliger style AMR [194, 195]
with full sub-cycling in time, together with an improved
treatment of artificial boundaries [196]. We adopt the
CCZ4 formulation of Einstein equations (for details see
Ref. [197]). Discretization is achieved through finite dif-
ference schemes based on the Method of Lines on a reg-
ular Cartesian grid. A fourth-order accurate spatial dis-
cretization satisfying the summation by parts rule, to-
gether with a third order accurate (Runge-Kutta) time
integrator, are used to achieve stability of the numerical
implementation [190, 191, 198].

Our simulations are performed in a domain
[—1600/m,1600/m]® with a coarse resolution of
Az; = 40/m and allow up to 7 levels of refinement
which automatically adapt through a self-shadow hier-
archy to ensure the error in the solution is kept below
4 x 107* (thus, the minimum resolution is 0.3125/m).
As observed in the spherically symmetric studies, the
system goes through a rather violent temporal oscillation
—even when relevant spatial wavelengths are relatively
long—, due to the source dependence on R. We thus
adopt a small Courant parameter of A\, ~ 102 such that
At; = M. Ax; on each refinement level [ to guarantee
that the CFL condition is satisfied and relevant physical
behavior is accurately captured. Previous related work
with this infrastructure (e.g. [199-202]) have thoroughly
tested the implementation.  Here we have further



verified its suitability for our current purposes through
convergent studies. Armed with this implementation,
we study asymmetric initial configurations—which are
also weakly gravitating—defined in a similar way as in
Eq. B8,

6t = 0) = \/7/10 /Mo /o3e~" /27"

9y¢(t = 0) = 0;

(B9)

with 72 = (012)% + (02y)? + 22. The parameters {01, 02}
are chosen to define nonspherical initial configurations
and explore the radiative properties of the system in the
gravitational and scalar sectors.

Results and observations

We have run several cases described by My = {5 x
103,2 x 10%}, 01 = 0 = {1,1.25,1.5}, o = {20,40} and
01 = 1,09 = {1.25,1.5}, for R = {1072,5x1073,1073} to
scan a range of relevant cases that could be studied with
reasonable computational resources—typically a month
of running employing 40 processors. As we show below,
the overall behavior follows closely that observed in our
extensive 1D studies and the combined information pro-
vides a clear picture of the axion field’s dynamics in the
nonlinear regime.

All cases progress in a similar manner. Initially, much
like what is seen in the spherically symmetric case, a tran-
sient stage lasting a few = 100/m shows the field oscil-
lating with frequency 2wm and slowly radiating—mainly
through the scalar channel. Then, through a rather sud-
den change, the scalar field extent of initial size =~ o
collapses to a size of ~ 3/m, which is followed by strong
oscillations interspersed with phases describing a modest
expansion and recollapse. Figure 24 illustrates such be-
havior by showing the central value of the scalar field for
{My =2x10* 0 =40,0; = 1,09 = 1.5}. It is during the
collapsing stages that gravitational radiation is mainly
produced at bursts due to sudden changes in the source.

The power emitted in gravitational waves agrees with
Eq. 87 presented in Sec. III D. This is illustrated in Fig. 25
which shows the power radiated in gravitational waves
for asymmetric initial configurations (0; = 1,02 = 1.5)
normalized by R~* (o< f=%). Also, Fig. 26 depicts the
cumulative energy radiated (until time t) versus time for
two asymmetric configurations (0; = 1,09 = {1.25,1.5})
normalized with respect to the initial mass of the axion
configuration (described by My = 2 x 10%,0 = 40). Im-
portantly, we note that as time progresses the matter dis-
tribution approaches a spherical shape mainly due to: (i)
significant scalar field radiation, and (ii) “gravitational
cooling”, where scalar field “blobs” with masses =~ 1% of
the initial mass are shed and propagate away'® from the

18 We note in passing that analogue behavior has also been observed
in other settings involving scalar field nonlinear interactions, e.g.
scalar field collapse [31, 203] and boson star collisions [202, 204,
205].
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FIG. 24. Central value of the axion field for R = 10735 x
103, Note this plot shows the same qualitative features
(and rough quantitive timescales and field ranges) as those
of Fig. 21.
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FIG. 25. Emitted power of gravitational waves vs time for
two representative cases (with R = 10725 x 1072 and oy =
o2 = 1.25) normalized with the expected R* dependency.

oscillon at v & 0.2 ¢. This latter behavior is illustrated in
Fig. 27, corresponding to the case My = 2 x 104, o = 40
and 07 = 03 = 1.5. Both of those processes together with
gravitational wave emission weaken gravitational radia-
tion as time progresses, as can be appreciated in Figs. 25
and 26.

Appendix C: Isocurvature constraints

Isocurvature fluctuations may also place constraints on
large-misalignment axions in some models. Provided the
field is light during inflation (m < Hiuf), we compute
constraints on the axion parameter space as a function
of Hin¢, shown in Fig. 28. However, as we discuss briefly
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FIG. 26. Total radiated energy, relative to the initial mass
of the field configuration, vs time for Mg = 2 x 10*, o = 40
and o1 = o2 = {1.25,1.5} together with their correspond-
ing estimates using the quadrupole formula and the leading
gravitational wave frequency.

FIG. 27. Representative snapshots at the equatorial plane
of the scalar field density p = Tpo at four different times
tm = 310,394,470,500. As the scalar field in the central re-
gion oscillates, two scalar field “blobs” are expelled from the
central region.

in Sec. V, the axion can be much heavier during inflation
(m > Hiy) if it has a temperature-dependent potential,
and in this case we will see that isocurvature fluctua-
tions are substantially suppressed and thus provide no
constraint on the axion parameter space. The dashed
lines shown in Fig. 28 assume the former, but should not
be interpreted as absolute constraints given the above
discussion.

Any scalar field ¢ with m < Hiyr present during infla-
tion will pick up fluctuations on all scales of order

Hiys

06~ — (C1)

where Hjys is the Hubble scale during inflation [206]. In
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our case, where ¢ is the axion field, this translates into
fluctuations in the misalignment angle of order /@ ~
Hins/(2wf). The Planck collaboration constrains such
fluctuations to be small [50], and requiring this will con-
strain f to be larger than some minimal value that de-
pends on Hiys.

M [Mg)
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FIG. 28. Same as Fig. 1, with isocurvature constraints (lower
bounds on f) indicated by dashed black lines for three differ-
ent inflationary scales Hixns.

‘We are primarily interested in the case where the field
starts near the top of the potential since this is where all
our signatures come from. For the pure cosine potential
of Eq. 3, we have from Section II A 1 that when the field
starts with an initial misalignment angle ©( near the top,
the late-time density p is proportional to:

p o 0.2[t%% + 4Int%)?; (C2)
1 91/4,1/2

ose — | C3

m lﬂ, . |90| T (%) l ( )

Fluctuations of order 8¢ in the initial misalignment an-

gle Gy translate into late-time density fluctuations dis, of

order:

9p _ dp 560 960

p dB p (71— [O¢|)In7/(m —|Ol)
(C4)

Jiso

where C' is a constant that varies between roughly 1.5
and 2.5 with weak dependence on 9.

Planck requires that isocurvature fluctuations in the
power spectrum be subdominant to the measured adia-
batic fluctuations by a factor of roughly 10~2 [50]. Since
the adiabatic fluctuations in the power spectrum are
O(1079) this means &, < V10-210—2 ~ 10755, For
fixed Hiys, this translates into a constraint on the small-
est allowable f or, equivalently, a constraint on the max-
imum allowable tuning for .

In the regime where |©g| < 1, the energy density in



axions is p o« m? 2032 and Eq. C4 reduces to:

Hipg
7Tf|@0|

diso = (C5)

The product f|G¢| for a given axion mass m is fixed by
the requirement that the axion carries all the DM density
today. Taking into account the analysis in Sec. ITA 1, a
bound on di, is thus equivalent to a constraint on fr/s.
In turn, this translates to an upper bound on the axion
mass m which is now a function of Hj,¢, scaling roughly
roughly as Hi;?. The above discussion of the two ex-
tremes, m — |Op| < 1 and |©¢| < 1, explains the asymp-
totic behavior of the exact bounds shown in Fig. 28 which
have been derived for an arbitrary Og.

With an understanding of the above, we turn to the
case where the temperature-dependence of the axion po-
tential causes it to be heavy during inflation (m > Hipn¢).
In this case it still picks up fluctuations, but they are
substantially suppressed when averaging over the scales
measured in the CMB [207]:

Hinf
3/2
mleng

0 (C6)

where fcyp ~ 10Mpe ~ 1/(1073%eV) is the smallest
length scale that can be probed with the CMB. In this
case Eq. C4 picks up a similar suppression, and so for
m 2 Hiyug, isocurvature fluctuations are suppressed far
below any level of detectability and thus provide no con-
straint on the axion parameter space.

Appendix D: Low-frequency gravitational wave
detection

For gravitational waves of frequency below 107 Hz,
there are three known detection methods: astrometry,
pulsar timing arrays, and the CMB. Here, we briefly re-
view each method and discuss their sensitivity as pre-
sented in Fig. 15.

Astrometry

Stochastic gravitational waves cause an apparent dis-
tortion of the position of background sources on the ce-
lestial sphere [208]. At low frequencies, where the GW
frequencies are smaller than the inverse integration time
of the observations, the time derivative of this distor-
tion will manifest itself as a stochastic proper motion of
e.g. extragalactic sources, which should otherwise appear
nearly stationary by account of their large line-of-sight
distance. The GW abundance is related to this stochas-
tic proper motion as [209-211]:

(1) 6 1~
QGW:ﬁ:gm > Z<|SZ:2,m’ > (D1)

0 m=—2i=1
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In the second equation, we used the fact that 5/6 of the
expected signal is contained in the quadrupole (¢ = 2)
modes, if one decomposes the proper motion field as p =

Ze,m sEir)L\I’gm + SEQ‘I’em, where ¥ = VY, /v /(0 +1)
and ® = 1 x ¥ are the (orthonormal) spheroidal and
toroidal vector spherical harmonics, respectively.

The variance at which any low-¢ mode coefficient can
be measured with N uniformly distributed sources mea-
sured with proper motion standard deviation o, is
02(527)1) ~ 4oy /N. Therefore, the expected precision
0Qaw to which one could measure the stochastic back-
ground is:

12 o7 s 0. \?[10°
0

If low-{¢ systematics can be held under control, which is
a challenge [212, 213], then Guaia is projected to reach
a limit of Qgw < 0.006 after its nominal 5-year mission
time with its current catalogue of 556,869 quasars [214].
With a likely quadrupling of the catalogue size and a
mission extension to 10 years, further improvements by
a factor of 1/32 in Qgw can be expected. (Note that a
statistics-limited O’Z [0'S Ti;t?’ scales as the inverse cube of
the integration time 7in.) Astrometry with radio inter-
ferometers is also a promising avenue, as evidenced by the
constraint Qgw < 0.0064 at 95% confidence level (CL)
with 711 radio sources observed by the Very Large Base-
line Array (VLBA) [214]. Future astrometric missions—
either space-based, optical satellites [105, 215, 216] or
ground-based, radio interferometers such as SKA [106]—
can potentially attain sensitivities of 6Qqw ~ 1078
with large and precise catalogues over long integration
times. Proper accelerations of quasars (SKA) or galac-
tic stars (Gaia, Theia) a = fu can also be used to
search for stochastic gravitational waves at low frequen-
cies f < 1/7ine.t? Their sensitivity in terms of dQqw
is parametrically worse by a factor of ~ 1/(f7ing)?, but
they offer the possibility of much larger and more precise
catalogues, as Galactic stars have tiny intrinsic proper
accelerations (but generally large proper motions).

Pulsar timing arrays (PTA)

Stochastic gravitational waves produce random
changes in the times-of-arrival of pulses from in-
dividual pulsars. The effects can be inferred from
cross-correlation of timing residuals of two pulsars [217].
The sensitivity improves with increasing pulsar stability
o, observation time ¢, and decreasing cadence (i.e. the
time At between two observations of the same pulsar).
Using the prescription of Refs. [218, 219] and [220, 221],
and assuming that our signal is peaked around frequency

19 This fact has, to our knowledge, not yet been appreciated in the
literature.



fow with a spread of Af ~ faw, the sensitivity of a
pulsar network consisting of N, pulsars is given by:

AtJQ 9/2

Np V tint aw

The above equation applies when ¢! < faw < At~
outside this frequency range there is essentially no sen-
sitivity to GW radiation. In Eq. D3, we have assumed
a detection SNR threshold g, = 3 [221]. In Fig. 15, we
present our estimates for current and future pulsar tim-
ing experiments. In particular, we indicate sensitivities
corresponding to EPTA [222], IPTA [223], and SKA [224]
assuming 5, 20 and 100 pulsars followed for 10, 15 and 30
years respectively. The apparent steady improvement in
sensitivity of PTA efforts indicate tantalizing prospects
for detection/constraints in the 1071510714 eV range.

H2Qaw ~ 6 x 10° (D3)

CMB, BBN, and large-scale structure

GWs produced deep in the radiation dominated era
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contribute to the total radiation that drives the expan-
sion of the Universe and can have an imprint on the CMB
as well as on Big Bang Nucleosynthesis (BBN). Their
energy contribution is indistinguishable from that of rel-
ativistic neutrinos and can thus be parametrized as a
relativistic degree of freedom Ngw, contributing to Neg.
The Planck [49] limit on Neg can then be translated into
a bound on Qgw. In Fig. 15, we plot the limits calculated
by Ref. [225], where the 2015 Planck polarization data
in the SimLow likelihood together with the Planck Lens-
ing likelihood and BAO observations at 95% C.L. was
used. Future satellite missions such as EUCLID [226]
will improve the bound by more than one order of mag-
nitude. The corresponding dashed lines on Fig. 15 come
from simulations of mock data (see Ref. [225] for further
details). The BBN bound is relevant only for structures
that collapse at z > 4 x 10% and is of the order of the
CMB bound.
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