
The Cosmological Analysis of the SDSS/BOSS data

from
the Effective Field Theory of Large-Scale Structure

Guido d’Amico1,2, Jérôme Gleyzes3, Nickolas Kokron4,
Dida Markovic5, Leonardo Senatore1,4, Pierre Zhang6,

Florian Beutler5, Héctor Gil-Marín7

1 SITP, Physics Department, Stanford University, Stanford, CA 94306

2 Dipartimento di SMFI dell’ Universita’ di Parma, Parma, Italy

3JPL and Astronomy Department, California Institute of Technology, Pasadena, CA 91109

4 KIPAC, SLAC and Stanford University, Menlo Park, CA 94025

5 Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, UK

6 Department of Astronomy, School of Physical Sciences, CAS Key Laboratory for Research
in Galaxies and Cosmology, School of Astronomy and Space Science,

University of Science and Technology of China, Hefei, Anhui 230026, China

7 ICC, University of Barcelona, IEEC-UB, Martí i Franquès, 1, E08028 Barcelona, Spain

Abstract

The Effective Field Theory of Large-Scale Structure is a formalism that allows us to predict the
clustering of Cosmological Large-Scale Structure in the mildly non-linear regime in an accurate and
reliable way. After validating our technique against several sets of numerical simulations, we per-
form the analysis for the cosmological parameters of the DR12 BOSS data. We assume ΛCDM, a
fixed value of the baryon/dark-matter ratio, Ωb/Ωc, and of the tilt of the primordial power spec-
trum, ns, and no significant input from numerical simulations. By using the one-loop power spec-
trum multipoles, we measure the primordial amplitude of the power spectrum, As, the abundance
of matter, Ωm, and the Hubble parameter, H0, to about 13%, 3.2% and 3.2% respectively, obtaining
ln(1010As) = 2.72± 0.13, Ωm = 0.309± 0.010, H0 = 68.5± 2.2 km/(s Mpc) at 68% confidence level.
If we then add a CMB prior on the sound horizon, the error bar on H0 is reduced to 1.6%. These
results are a substantial qualitative and quantitative improvement with respect to former analyses,
and suggest that the EFTofLSS is a powerful instrument to extract cosmological information from
Large-Scale Structure.
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1 Introduction

General Remarks: In the past few decades, cosmology has evolved from a highly specu-
lative science to a highly precise one, where percent-level error bars are the norm. This has
happened thanks to our capability to measure the primordial density fluctuations first in the
Cosmological Large-Scale Structure (LSS), and then, dominantly, in the Cosmic Microwave
Background (CMB). Such precision in the measurements has allowed cosmology to contribute
to the exploration of the fundamental laws of Nature, that is, those laws from which any other
law can be derived.

In order to continue this splendid journey, it is essential that we continue to measure
new primordial fluctuations. The next leading source of cosmological information will come
from LSS, which will be observed either directly, or indirectly through CMB lensing. There
is however a tremendous challenge from extracting information from LSS: at short distances
the fluctuations are large and the dynamics is extremely complicated, with stars and galaxies
forming and exploding. Because modes are coupled at non-linear level, these uncontrolled
short-distance non-linearities affect the long-wavelength fluctuations. This makes the theo-
retical modeling very challenging, so that, in practice, either only very-long wavelength data
are analyzed, as in this regime the corrections from non-linear scales become either negligible
or easy to model, or also short-wavelength data are analyzed, but at the cost of adding po-
tentially large, and often uncontrolled, systematic uncertainties. These limitations come with
a huge cost in terms of information that we can extract from LSS data. In fact, in everything
that we measure in cosmology, with very few exceptions, information comes from measuring a
high number of modes, Nmodes, i.e. the error bars scale as 1/

√
Nmodes. The number of modes

scales like Nmodes ∝ k3
max, where kmax indicates the highest wavenumber where the theory

prediction can be trusted, and, as long as the modes are not order one nonlinear, these modes
are essentially uncorrelated 1. By dropping the highest wavenumbers, we drop most of the
information.

The EFTofLSS: There are several ways in which we might try to make progress. One is
the use of numerical simulations that can simulate the formation of galaxies at all wavelengths
observed by the experiments. This appears to be a prohibitive task. In practice, a more
realistic approach is to try to simulate dark matter dynamics exactly, and then model in
some physically-motivated and data-guided way galaxy formation physics. Doing this at all

1There is a well-spread argument that suggests that the information does not scale as Nmodes ∝ k3
max.

It is often left implicit to state that one is usually referring to the information contained within the two-
point function. This is true in principle, but in practice, as long as non-linearities are perturbatively small,
information is spread hierarchically to the higher N -point functions, which can also be analyzed, as we will
show later. Something even simpler is also true: in the same mildly non-linear regime, the non-linearities
represent a small correction, and therefore most of the information is still in the two-point function, and it
is still scaling as k3

max. Of course this discussion does not deal with the need to include parameters in our
predictions that account for uncontrolled physics and that therefore could in practice limit the amount of
information available. We will discuss this explicitly later on.
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wavelengths of interest appears again to be very hard, but there is hope that one can do this
at long-enough wavelengths. This is a potentially fruitful approach, it has delivered many
important results, but, so far, it has allowed to analyze only the data up to a somewhat
limited kmax. It should definitely be pursued more, but it is not the approach we use here.

The approach we use here is instead much less ambitious. Instead of using all the modes
that are measured by a survey, we try to analyze the ones for which the non-linearities are
non-negligible, but still smaller than order one. Though this might be a humble aim, it has
the potential to bring us tremendous results. In fact, if we denote the modes for which non-
linearities are negligible as the linear modes, Nlin., and the ones for which they are sizable
but still less than order one, as ‘mildly non-linear’, Nmild. non−lin., and if we also assume that,
roughly, at redshift zero, the validity of linear theory is up to klin.

max ∼ 0.1hMpc−1, while the
mildly non-linear regime is valid up to kmild. non−lin.

max ∼ 0.5hMpc−1, then we have that the
Nmild. non−lin. ∼ 100 · Nlin.: even within our extremely-rough approximations, the number of
modes in the mildly non-linear regime is much larger than the linear ones.

The idea behind our approach is the following. If we restrict the analysis to wavenumbers
which are in the mildly non-linear regime, then it is possible to write the equations of motion
for the fluctuations, within which the effect of short-distance non-linearities is parametrized
in the most general way. These equations are therefore correct, i.e. cannot be wrong, unless
some basic principle of physics, such as Lorentz invariance, matter conservation, etc., are
violated, because they are the most general ones compatible with the aforementioned principle
of physics. In fact, given a particular galactic process, there are coefficients in the equations of
motion whose numerical value can be adjusted to exactly reproduce the effect of that specific
galactic process at long wavelength 2. When we apply this construction, we obtain what is
called the Effective Field Theory of Large-Scale Structure (EFTofLSS) [1, 2].

Let us give a rough overview of the EFTofLSS, referring the reader to some lectures
notes 3 and some relevant literature for more detailed information. In the EFTofLSS, we
derive some equations of motion for the long-wavelength fields: dark matter density [1, 2, 3]
and velocity [4, 5], baryons [6], neutrinos [7], dark energy [8], etc., which, as mentioned just
above, contain some terms with coefficients that are unknown and depend on the short-
distance physics. In the jargon of the EFTofLSS, these coefficients are named ‘counterterms’.
Just to give a rough idea of these equations, if the universe is filled only with dark matter,
with δ` being the long-wavelength overdensity, v` the long-wavelength velocity and φ` the

2The fact that this is possible to do should not be surprising. If we think of the dielectric Maxwell
equations, we know that the effect on the propagation of long-wavelength photons of any atomic structure of
the dielectric material, no matter how complicated that could be, is described by a proper numerical value of
the dielectric constants.

3See EFTofLSS repository.
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long-wavelength Newtonian potential, these equations read approximately

δ̇` +
1

a
∂i((1 + δ`))v

i
`) = 0 , (1)

v̇i` +Hvi` +
1

a
vj`∂jv

i
` +

1

a
∂iφ` =

∫ t

dt′ [cs,1(t, t′) δ`(xfl(~x, t, t′), t′)

+cs,2(t, t′) δ`(xfl(~x, t, t′), t′)2 + . . .
]
,

where xfl(~x, t, t′) represents the location at time t′ of a fluid element that at time t is at
position ~x, and where . . . represents in principle an infinite number of terms. cs,1, cs,2, . . .

represent the unknown coefficients that encode the effect of short distances at long distances.
The resulting equations are solved perturbatively in powers in the fluctuations. Schemat-

ically, we write
δ`(~k, t) =

∑

n

δ
(n)
` (~k, t) , (2)

where δ(n)
` is of order (δ

(1)
` )n, with δ(1)

` being the solution to the linearized equations, and we
solve eq. (1) to a given order in n, assuming δ(1)

` � 1. Importantly, at a given perturbative
order, only a finite number of counterterms needs to be kept, as, roughly, each counterterm
starts contributing at a specific order in n.

The perturbative solution allows us to compute correlation functions of long-wavelength
fields that depend only on a finite number of unknown coefficients. Then, long-wavelength
fluctuations of galaxies are described as biased tracers of the long-wavelength fluctuations of
these fields. Schematically, if δ`,g is the long-wavelength overdensity of galaxies, we have [9]

δ`,g(~x, t) =

∫ t

dt′ [c̄1(t, t′) δ`(xfl(~x, t, t′), t′) (3)

+c̄2(t, t′) ∂iv
i
`(xfl(~x, t, t′), t′)2 + c̄3(t, t′) δ`(xfl(~x, t, t′), t′)2 + . . .

]
.

This means that correlation functions of galaxies can be perturbatively computed as linear
combination of more complicated correlation functions of matter density and velocity fields,
weighted by unknown coefficients that are named ‘biases’ (we will also use the name ‘coun-
terterms’ or ‘EFT parameters’). Again, at a given order n in the perturbative expansion, only
a finite number of biases should be included.

Finally, the overdensity of galaxies in redshift space, δ`,g,r, is given in terms of the galaxy
fields in real space by a formula that, roughly, reads [10]

δ`,g,r(~k, t) = δ`,g(~k, t)− i
kz
aH

vz`,g(
~k, t) +

i2

2

(
kz
aH

)2

[vz`,g(~x, t)
2]~k (4)

− i
3

3!

(
kz
aH

)3

[vz`,g(~x, t)
3]~k − i

kz
aH

[vz`,g(~x, t)δ(~x, t)]~k +
i2

2

(
kz
aH

)2

[vz`,g(~x, t)
2δ`,g(~x, t)]~k +

+

∫
dt′
(
aH

kNL

)2 [
cr,1(t, t′)δ

(3)
D (~k) +

(
cr,2(t, t′) + cr,3(t, t′)

k2
z

k2

)
[δ`(xfl(~x, t, t′), t′)]~k

]
+ . . . ,
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where δ(3)
D (~k) is the Dirac three-dimensional δ-function, [. . .]~k means that we take the Fourier

transform at momentum ~k of the quantity inside the brackets, and ẑ is the direction of
the line of sight. kNL is the wavenumber associated to the non-linear scale, i .e. where
k3δ(1)(k)2

∣∣
k→kNL

' 1. Again, there is only a finite number of unknown numerical coefficients
that needs to be used for the calculation at a given order n.

Therefore we can schematically summarize the full perturbative structure as follows. Cor-
relation functions of the density of galaxies in redshift space are obtained as linear combination
of correlation functions of galaxy density and velocities in configuration space, which, in turn,
are obtained as linear combinations of correlation functions of long-wavelength matter fields
satisfying eq. (1). These correlation functions are computed in a perturbative expansion in
powers of δ(1)

` � 1, or, equivalently, in powers of k/kNL � 1, with k being the wavenumber
of interest. For a given order n used in perturbation theory, only a finite, albeit by now
potentially large, number of free coefficients is used.

Therefore, the EFTofLSS is a perturbation theory for the LSS. While there is a plethora
of perturbative approaches to LSS, dating back to the time of Zeldovich [11], it should be
stressed that there can be only one correct perturbative approach. By this we mean that
there is only one correct set of equations that describes the long-wavelength behavior of the
universe. Others can be correct only either if they are just a change of variables of the same
equations, and so essentially the same equations, or if they solve the same equations expanding
in different subsets of parameters. The novelty of the EFTofLSS with respect to the other
perturbative approaches is that it has free coefficients that encode the effects of short distance
physics at long distances. Their numerical value is unknown to the EFTofLSS and must be
provided by either a direct fit to the data, or by some knowledge of the short distance physics,
i.e. of the galaxy formation physics. But it is thanks to these coefficients that the EFTofLSS
can be made arbitrarily accurate4 at long distances. Explicitly, for a given order n, the error
associated with the lack of inclusion of the higher order terms scales as (k/kNL)γ·n, with γ

being an order one number. This is known as systematic theoretical error [2, 4, 10, 12, 13]. So,
for a given required precision and a given wavenumber, one has an idea, albeit rough, of what
order n to choose and how large the mistake of the prediction can be. It is the presence of
the unknown numerical coefficients that makes these bold-sounding claims correct, though it
comes at the cost of harming at some level the predictivity of the theory. But these coefficients
are as non-vanishing as the viscosity for honey is a non-vanishing coefficient. One could use
a more predictive theory to simulate honey’s motion: a fluid without viscosity. The theory
would be more predictive, as it would have one less parameter to measure from experiment,
but would be wrong. This is why the EFTofLSS should be used.

Though the EFTofLSS provides the only correct set of equations for a perturbative ap-
proach to the large-scale clustering of LSS, it should be thought of as the result of an evolution
of many attempts to formulate a consistent set of equations and a consistent perturbative ap-
proach to solve them and predict the clustering of LSS. Here we name, as an example, a

4In the sense of asymptotic series such as Quantum Electrodynamics.
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few of the perturbative approaches that were developed prior to the EFTofLSS and that
were essential for the development of the EFTofLSS, and we list a very-small sample of the
relevant references: Zeldovich approximation [11], SPT [14, 15], LPT [16], RPT [17], MPT-
breeze [18, 19], RegPT [20], CLPT [21], combined Perturbation Theory, Halo Model and
Simulations [22], etc..

Application to data: In this paper, we apply the EFTofLSS to the cosmological data.
More specifically, we compare the EFTofLSS prediction for the monopole and quadrupole of
the power spectrum of galaxies in redshift space at one-loop order (i.e. at perturbative order
n = 3), and for the monopole of the bispectrum of galaxies in redshift space at tree level (i.e.
n = 2), to the DR12 sample of galaxies as measured in the BOSS/SDSS data [23, 24, 25, 26].
We use such a comparison to infer a measurement of each of the following cosmological
parameters: the amplitude of the primordial power spectrum, As, the fraction of matter of
the universe, Ωm, and the present value of the Hubble constant, h. For convenience, we will
work in ΛCDM cosmology and fix the tilt ns and the ratio of baryons versus dark matter. A
reason of concern for the predictive power of the EFTofLSS is the potentially-large number
of parameters its predictions depend on. Nevertheless, we believe our results show that very
substantial qualitative and quantitative gains in extracting information from the LSS data
can be achieved by employing the EFTofLSS in an analysis.

This paper is the completion of a long journey for the EFTofLSS, which started from the
initial development of the theory [1, 2, 3] and involved many important steps in order for it to
be compared to the data. Here we mention a few of them in order to give a broad orientation
within the relevant literature to the interested reader. The dark matter power spectrum has
been computed at one-, two- and three-loop orders and compared with simulations in [2, 4,
27, 28, 29, 30, 31, 32, 33, 34, 35]. This also involved some additional theoretical developments,
such as a careful understanding of renormalization [2, 36, 37] (including some rather-subtle
aspects such as lattice-running [2]) and of the way of extracting the numerical value of the
counterterms from simulations [2, 38], of the non-locality in time [4, 28, 9], and of some
subtleties with the velocity field [4, 5]. These theoretical explorations also include a study in
1+1 dimensional spacetime [38]. In order to correctly describe the baryon acoustic oscillation
(BAO) peak, an IR-resummation of the long displacement fields had to be performed. This
has led to the so-called IR-resummed EFTofLSS [10, 39, 40, 41, 42]. A method to describe
baryons and baryonic effects has been developed in [6], and was shown to work extremely
well when compared with simulations. Concerning the computation and comparison with
simulations of higher n-point functions, the dark-matter bispectrum has been computed at
one-loop in [43, 44] (and compared with simulations), the one-loop trispectrum in [45], the
dark matter displacement field in [46] (and compared with simulations). Understanding the
dark matter dynamics has allowed us to compute the first observable, lensing [12]. Passing to
biased tracers, they have been studied in the context of the EFTofLSS in [9, 47, 48, 49, 50, 51]
(see also [52]), the halo power spectrum and bispectrum including all cross correlations with
the dark matter field have been studied and compared with simulations in [9, 48]. Redshift
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space distortions have been first developed for dark matter [10, 53], and then applied to
biased tracers in [50]. Some potentially present subleading ingredients of the universe have
also been included in the EFTofLSS, such as clustering dark energy [8, 34, 54, 55], primordial
non-Gaussianities [48, 56, 57, 58, 53, 59], and neutrinos [7, 60].

With the completion of [50], the one-loop power spectrum of biased tracers in redshift
space in ΛCDM cosmology had been computed and compared to simulations. At that point,
the EFTofLSS had become ready to be compared with observational data of galaxy clustering.
This is where the journey of this paper begins.

2 Summary of the Theory model

2.1 Biased tracers in redshift space

With a handful of parameters, the EFTofLSS can describe the gravitational clustering of
galaxies in redshift space at sufficiently long wavelengths with arbitrary accuracy. This is
done by adding suitable counterterms, whose form is dictated by the symmetries obeyed by
LSS, that are able to correct for the sensitivity to uncontrolled short-distance wavelengths
that affect the perturbative expression. For completeness, we here review the basic equations
of the EFTofLSS that we use to analyze the data.

In the standard very accurate approximation where the time dependence of the diagrams
is approximated by the growth factors, at one loop, the galaxy power spectrum in redshift
space depends on the cosmology and the redshift but also on 10 free parameters [50]. There
are 4 galaxy biases bi entering in the one-loop expression 5. Those biases are introduced when
the galaxy density and velocity fields are expanded in terms of the underlying dark matter
density and velocity fields that satisfy the effective ‘smoothed’ equations of motions for the
long wavelength modes [9]. These biases and 3 additional counterterms absorb the sizeable
sensitivity of the one-loop expressions to the uncontrolled short-distance non-linearities that
enter in the kernel of the convolution integrals. One captures the nonlinear effects of the short-
scale physics on long-wavelength dark matter modes, parametrized by the so-called effective
‘sound speed’ of dark matter cct [2] and that, at this order, is degenerate with higher-derivative
terms of the bias derivative expansion. Two additional counterterms, parametrized by cr,i,
with i = {1, 2}, cancel the UV-dependence arising from redshift-space distortions [10]. Finally,
there are 3 stochastic terms cε,i to account for the difference between the actual realization
of the galaxy fields in our universe and their expectation values taken in the computation of
the observables [50] (the first of them is the well-known shot-noise term). They also correct
the UV-dependence of some perturbative diagrams.

5While at third order in perturbations the galaxy fields depend initially on 8 bias parameters [48], 4 are
enough to describe the galaxy power spectrum at one loop due to some accidental degeneracies in the P13

diagram [50].
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The one-loop redshift-space galaxy power spectrum reads 6 [50]:

Pg(k, µ) = Z1(µ)2P11(k)

+ 2

∫
d3q

(2π)3
Z2(q, k− q, µ)2P11(|k− q|)P11(q) + 6Z1(µ)P11(k)

∫
d3q

(2π)3
Z3(q,−q, k, µ)P11(q)

+ 2Z1(µ)P11(k)

(
cct
k2

k2
m

+ cr,1µ
2 k

2

k2
m

+ cr,2µ
4 k

2

k2
m

)
+

1

n̄g

(
cε,1 + cε,2

k2

k2
m

+ cε,3fµ
2 k

2

k2
m

)
.

(5)

Here we set k−1
m , which controls the bias derivative expansion, to be . k−1

nl , which is the scale
controlling the expansion of the dark matter derivative expansion. n̄g is the mean galaxy
density. Providing estimates for these physical parameters, all free parameters in the EFT
are expected to be order O(1) 7. This fact is of some importance when one is only interested
in the cosmological parameters and wants to marginalize over the others. We will build on
this consideration for the partial marginalization procedure described in section 3.4.

The redshift-space galaxy density kernels are given by:

Z1(q1) = K1(q1) + fµ2
1G1(q1) = b1 + fµ2

1, (6)

Z2(q1, q2, µ) = K2(q1, q2) + fµ2
12G2(q1, q2) +

1

2
fµq

(
µ2

q2

G1(q2)Z1(q1) + perm.
)
,

Z3(q1, q2, q3, µ) = K3(q1, q2, q3) + fµ2
123G3(q1, q2, q3)

+
1

3
fµq

(
µ3

q3

G1(q3)Z2(q1, q2, µ123) +
µ23

q23

G2(q2, q3)Z1(q1) + cyc.
)
,

where here µ = q · ẑ/q, q = q1 + · · ·+ qn, and µi1...in = qi1...in · ẑ/qi1...in , qi1...im = qi1 + · · ·+ qim ,
with ẑ being the unit vector in the direction of the line of sight, and n is the order of the kernel
Zn. Ki and Gi are the galaxy density and velocity kernels, respectively, given in Appendix A,
and f is the logarithmic growth rate, which can be calculated by first solving for the linear
growth factor, D, yielding:

D(a) =
5

2
ΩmH

2
0H(a)

∫ a

0

da′

a′3H(a′)3
, (7)

from which f follows:

f(a) ≡ d logD(a)

d log a
=

(5a− 3D(a))Ωm

2D(a)(Ωm + a3(1− Ωm))
. (8)

The form used here in (6) is a re-writing with different notations of the eexpressions in [50]
(see eq. (3.23) there).

6In the following we make the time-dependence implicit in the notation when it is clear from the context.
In practice all observables need to be computed at all the effective redshifts, zeff’s, of the survey sample.

7 More exactly, for the type of galaxies that are of interest here, all EFT parameters are expected to be of
order of the linear bias b1, which is ∼ O(2), see for example [50, 51].
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The bispectrum in redshift space is a function of five kinematic variables. Three describe
the shape of the triangle, such as two sides k1, k2 and the angle between them x = cos θ =

k̂1 · k̂2 = −k2
1+k2

2−k2
3

2k1k2
. The orientation of the triangle with respect to the line of sight ẑ is

characterized by two variables, such as the polar angle ω and the azimuthal angle φ of k̂1, or
equivalently by µ1 = cosω = k̂1 · ẑ and µ2 = k̂2 · ẑ = µ1 cos θ −

√
1− µ2

1 sin θ cosφ.
The tree-level galaxy bispectrum in redshift space reads

Bg(k1, k2, k3, µ1, µ2) = 2Z2(k1, k2, µ12)Z1(k1)Z1(k2)P11(k1)P11(k2) +
cε,4
n̄g
P11(k1) + cyc. +

c2
ε,1

n̄2
g

,

(9)
where one needs to introduce only one extra (stochastic) parameter, cε,4, with respect to
the power spectrum. Indeed, using a basis of renormalized bias coefficients allows one to
identify the constant piece of the bispectrum as the square of the constant piece of the power
spectrum [48].

For an efficient exploration of the cosmology dependence of the power spectrum, one can
expand the EFTofLSS prediction as a sum of terms that are bias- and redshift-independent.
Symbolically, the EFTofLSS power spectrum can be written as:

Pg(k, z) =
∑

n

µ2αnf(z)βnbin(z)γnbjn(z)δnD(z)2ρnPn(k) , (10)

where {αn, βn} ∈ {0, 1, 2, 3, 4} (redshift-space distortions), {γn, δn} ∈ {0, 1} (biasing), ρn ∈
{1, 2} (linear or loop term), with the pieces Pn(k) depending only on the cosmological param-
eters. While the linear power spectrum and the counterterms are straightforward to obtain,
efficient evaluations of the loop integrals are needed to explore the cosmological parameter
space in a timely fashion. To this extent, we adopt two computational strategies, a numeri-
cal one [33] and an analytical one relying on the FFTLog decomposition of the linear power
spectrum [61], described in appendix B. Proceeding in this way allows us to keep robust
control over numerical instabilities while adequate performances can be reached for practical
purposes. The description of biased tracers in redshift space would not be complete with-
out resumming the long wavelength displacements whose effect can be accurately described
in the Eulerian perturbative treatment outlined above only at very high perturbative order.
We adopt the original IR-resummation scheme developed in [29], further extended to redshift
space with controlled approximations in [10, 53]. Details on the IR-resummation can be found
in Appendix C 8.

Finally, we make a comment on additional higher order terms. In the EFTofLSS, each
term contributes with a typical size controlled, roughly, by an expansion in k/kNL (see for
example [10] for details). Given that the power spectrum, around the k’s of interest for
us, scales approximately as P11(k) ∼ 1

k3
NL

(k/kNL)−2, a term of order ∼ k4P11(k) is roughly

8With this publication we release a C++ code that computes the IR-resummed one-loop power spectrum
multipoles and tree-level bispectrum monopole of biased tracers in the EFTofLSS, called CBiRd: Code for
Biased tracers in Redshift space at CBiRd GitHub (see also for a repository of all EFTofLSS codes EFTofLSS
repository).

10

https://github.com/pierrexyz/cbird
http://stanford.edu/~senatore/
http://stanford.edu/~senatore/


comparable to the k2 stochastic term, and could therefore be included in our model prediction.
We will do this in this paper to test the dependence on this additional counterterm. We find
that the numerical and observational data prefer the stochastic k2 term, while the k4P11 is
hardly measurable. We therefore do not include it in the final analysis.

2.2 Alcock-Paczynski effect

To estimate the galaxy spectra from data, a reference cosmology (usually denoted as ‘fiducial’
cosmology) is assumed to transform the measured redshifts and celestial coordinates into
three-dimensional cartesian coordinates. The difference between the reference cosmology
and the true cosmology (usually denoted as ‘observed’ cosmology) produces a geometrical
distortion known as the Alcock-Paczynski (AP) effect [62]. The wavenumbers transverse k⊥
and parallel k‖ to the direction of the line-of-sight get distorted, such that the measured
wavenumbers assuming a reference cosmology, denoted with a subscript ‘ref’, relate to the
true ones as (see for example [22]):

kref.
⊥ = q⊥k⊥, kref.

‖ = q‖k‖, (11)

where the distortion parameters are given by:

q⊥ =
DA(zeff)H(z = 0)

Dref.
A (zeff)Href(z = 0)

, q‖ =
Href(zeff)/Href(z = 0)

H(zeff)/H(z = 0)
. (12)

and wavenumbers are measured in units of h/Mpc. Here H(z) is the Hubble parameter, and
the angular-diameter distance DA(z) is defined as:

DA(z) =
1

1 + z

∫ z

0

dz′

H(z′)
. (13)

When exploring the cosmological parameters, the distorsion parameters are calculated
at each probed cosmology using the usual formula for H and DA (9). Note that since the
wavenumbers k are measured in [h/Mpc], the AP parameters q⊥ and q‖ are independent of h.

The power spectrum in eq. (10) is expanded in Legendre polynomials P`(µ) and its mul-
tipole moments read:

P `
n(kref) =

2`+ 1

2q‖q2
⊥

∫ 1

−1

dµref µ(µref)2αnPn
(
k(kref , µref)

)
P`(µref) , (14)

9The procedure we describe here is quite different from other analyses present in the literature that usually
assume a fixed cosmology for their template and measure the cosmology and redshift-space distortions through
the AP effect (see e.g. [22], [25], [63]), where q⊥ and q‖ are taken as free parameters to fit. We rather choose
to evaluate our theoretical predictions in each step of the regression such that the AP effect is a completely
deterministic effect. The exploration of the parameter space stems from the cosmology and redshift dependence
of the observables, for which no unnecessary degeneracies are introduced by an approximate modeling.
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where the true (k, µ) are related to the reference (kref , µref) by [64]:

k =
kref

q⊥

[
1 + (µref)2

(
1

F 2
− 1

)]1/2

, (15)

µ =
µref

F

[
1 + (µref)2

(
1

F 2
− 1

)]−1/2

, (16)

where F = q‖/q⊥.
For the bispectrum, we focus on the monopole, given by [63]:

B0(kref
1 , kref

2 , kref
3 ) =

2 · 0 + 1

2q2
‖q

4
⊥

∫ 1

−1

dµref
1

∫ 2π

0

dφref Bg(k1, k2, k3, µ1, µ2), (17)

where the true components (ki, µi) are again related to the respective fiducial ones (kref
i , µref

i )

by eq. (15) and (16) [65].

3 Technical Aspects of Analysis

Given our theory model for the clustering of LSS as specified by the EFTofLSS, it is, at least
in principle, a well-established procedure to perform the analysis of the data. We sample
the posterior distribution using an MCMC routine, in a standard way that we review later
in the section. However, the use of the EFTofLSS enables us to perform some interesting
manipulations that simplify the analysis. We therefore describe them in some detail. In this
section we focus on the analysis that includes only the power spectrum. The manipulations
when we include the bispectrum are very similar, and we describe them in detail in App. D.

We denote the data by d and the model parameters by {~Ω,~b}, ~Ω being the cosmological
parameters, ~b being the EFT parameters. Explicitly,

~b = {b1, b2, b3, b4, cct, cr,1, cr,2, cε,1, cε,2, cε,3, cε,4} . (18)

Similarly, we denote the multipole ` of the power spectrum of the data as P (d)
` . The Likelihood

of the data given the model parameters is assumed to be a Gaussian distribution in the
residuals:

L(d|{~Ω,~b}) = (19)

= Exp

[
−1

2
(P

(EFT)
`

(W )(k, {~Ω,~b})− P (d)
` (k)) · C−1(k, k′)`,`′ · (P (EFT)

`′
(W )(k′, {~Ω,~b})− P (d)

`′ (k′))

]
,

where repeated indexes are summed over. Here C−1(k, k′)`,`′ is the inverse of the covariance
matrix of the data, and P (EFT)

`
(W )(k) is the EFT power spectrum after being convolved with

the window function of the survey:

P
(EFT)
`

(W )(k) = W (k, k′)`,`′ · P (EFT)
`′ (k′) , (20)

where W (k, k′)`,`′ is the window function in Fourier space.
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3.1 Window function

The real space correlation function multipoles ξ`(s) after application of the survey window
function are given in terms of the configuration-space window functions, Q`,`′(s), by [66, 25,
67]:

ξ`
(W )(s) = Q`,`′(s) · ξ`′(s) . (21)

Explicitly, Q`,`′(s) ≡ C`,`′,`′′ Q`′′(s), where:

C0,`′,`′′ =




1 0 0

0 1
5

0

0 0 1
9




`′,`′′

, C2,`′,`′′ =




0 1 0

1 2
7

2
7

0 2
7

100
693




`′,`′′

, C4,`′,`′′ =




0 0 1

0 18
35

20
77

1 20
77

162
1001




`′,`′′

, (22)

and the Q`(s) are given in [66, 25, 67]. The window functions for the power spectrum,
W (k, k′)`,`′ of (20), are then given by:

W (k, k′)`,`′ =
2

π
(−i)`i`′k′2

∫
ds s2 j`(ks)Q`,`′(s) · j`′(k′s) . (23)

We defer to App. D to discuss how we apply the window function for the bispectrum.
Computationally, it is quite straightforward to pre-compute W (k, k′)`,`′ for the values of

interest. In fact, for each couple {k, `}, eq. (23) can be computed with a simple Bessel-
transform of j`(ks)Q`,`′(s). Therefore, W (k, k′)`,`′ can be computed by evaluating N` × Nk

Bessel transforms, with N` being the number of multipoles, and Nk being the one of k’s
(N` = 3, Nk = 68 in the case of the analysis presented in this paper). We plot W (k, k′)`,`′

for k ' 0.1hMpc−1 in Fig. 1. One easily sees that indeed, being the window function a
multiplication in real space, it is a convolution in Fourier space. One can also see that the
computation of W (k, k′)`,`′ does not present numerical challenges, and, on the linear power
spectrum, we have checked that we obtain the same result on the power spectrum as the
standard procedure which acts on configuration space.

Now that we have W (k, k′)`,`′ at our disposal, we can follow two approaches. If one uses a
grid of cosmological predictions, it is possible to apply directly (20) to the points of the grid,
so that the evaluation-time in each step in the MCMC is shortened as the window function is
applied only once, directly at the level of the grid, for a given choice of the model parameters.
The result of the application of the window function to P`(k) is given in Fig. 2. This is the
approach we will use in this paper.

Alternatively, one can notice that one can expand eq. (19) and write:

L(d|{~Ω,~b}) = Exp

[
−1

2
P

(EFT)
` (k, {~Ω,~b}) · C−1

WW (k, k′)`,`′ · P (EFT)
`′ (k′, {~Ω,~b})+ (24)

+P
(EFT)
` (k, {~Ω,~b}) · C−1

W (k, k′)`,`′ · P (d)
`′ (k′)− 1

2
P

(d)
` (k) · C−1(k, k′)`,`′ · P (d)

`′ (k′)

]
,
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Figure 1: Fourier-space window function W (k, k′)`,`′ , for k = 0.1023hMpc−1. One easily sees that
indeed, being the window function a multiplication in real space, it is a convolution in Fourier space.
One can also see that the computation of W (k, k′)`,`′ does not seem to present ringing or other
numerical issues.

where

C−1
WW (k1, k2)`1,`2 = W (k′1, k1)`′1,`1

† · C−1(k′1, k
′
2)`′1,`′2 ·W (k′2, k2)`′2,`2 , (25)

C−1
W (k1, k2)`1,`2 = W (k′1, k1)`′1,`1

† · C−1(k′1, k2)`′1,`2 ,

where † means hermitian conjugate and applies to both the {k, k′} and {`, `′} indexes. In
practice, C−1

W is obtained by a left multiplication of C−1 with W †, while C−1
WW is obtained by

a left and right multiplication of C−1 with W † and W respectively. Notice that eq. (24) has
drastically simplified the implementation of the window function. Once W (k, k′)`,`′ has been
computed, C−1

W and C−1
WW in eq. (25) can be pre-computed. So, there is no need to apply the

window function at each step of the MCMC.
In terms of computational cost, this advantage compensates for the fact that now to

evaluate eq. (24) at each step of the MCMC, we have to evaluate two contractions of the
power spectra with the covariance matrix: one for the term in C−1

W and one for the term
in C−1

WW . The term in C−1 does not depend on the cosmological parameters and so can be
precomputed. This is in contrast with the evaluation of eq. (19), which, after P (EFT)

`
(W ) has

been computed, has only one contraction. However, the computational advantage of eq. (24)
is quite large.

In the case of the EFTofLSS, the advantage of using eq. (20) or eq. (24) is particularly
important also for another reason. In the standard approach of applying the window func-
tion, one takes P (EFT)

` (k), Bessel transforms it to obtain ξ(EFT)
` (s), applies Q`,`′(s), that acts

diagonally in s space, and Bessel transforms it back to obtain P (EFT)
`

(W )(k). The EFTofLSS
has the peculiarity that it is able to reach arbitrarily large accuracy at low wavenumbers,
and this is achieved somewhat at the cost of producing large mistakes at large wavenumbers,
where the theory is not reliable. These mistakes take the form of steep functions that make it
particularly hard to Fourier transform P

(EFT)
` (k). It is therefore challenging to go back-and-
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Figure 2: Typical power spectra before (dashed) and after (continous) the application of the window
function, using the Fourier-space formula of (23). Blue is monopole, green is quadrupole. As expected,
the window function suppresses the power spectra at low wavenumbers. We also see that there seem
not to appear any numerical artifacts, such as oscillations and ringing.

forth from P
(EFT)
` (k) to ξ(EFT)

` (s). Being able to use the window function in Fourier space
avoids this difficulty.

3.2 Redshift selection effects

The BOSS data we analyze in this paper have been binned in broad redshift bins. For example,
the largest data set, the high-z North Galactic Cap (NGC), has the redshift distribution n(z)

given in Fig. 3, up to a normalization factor. In principle, it is possible to account for this
distribution exactly in the EFTofLSS. In fact, it is enough to average the EFTofLSS prediction
over this redshift distribution:

P
(EFT)
`,binned(k) =

∫
dz n(z)P

(EFT)
` (k, z) . (26)

The z-dependence of P (EFT)
` (k, z) is rather straightforward, as it factorizes in the sum of

terms with different z-dependence, and the z-dependence is factorized from the k-dependence.
The dark matter power spectra depend on z as D(z)2, f(z)D(z)2 and f(z)2D(z)2 at linear
level, according if we consider matter-matter, matter-velocity or velocity-velocity power spec-
tra. At one loop level, one has, respectively, D(z)4, f(z)D(z)4 and f(z)2D(z)4. On top of
this, the EFT-parameters depend on z in a way that is expected to be similar to the one
of powers of the growth factors. Therefore, implementing eq. (26) amounts to pre-compute
several integrals of the form

∫
dz n(z) bi(z)n1bj(z)n2 f(z)n3 D(z)n4 . (27)

In the limit that the redshift bin is much smaller than the scale of variation of D(z) and the
EFT-parameters, we expect that for all these quantities the binning corresponds to evaluating
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all the quantities at the same effective redshift. Let us start by discussing the terms with
n1 = n2 = 0. In this case, the integral in eq. (27) can be performed, and one can set it
equal to a f(zeff(n3, n4))n3D(zeff(n3, n4))n4 . Mathematically, zeff depends on n3,4. However,
in Fig. 4, we show, as an example, that for n4 = 2, 4 and n3 = 0, 2, the choice of zeff = 0.55 is
extremely accurate for all the terms. In particular, notice that the loop terms will contribute
by a smaller amount to the final answer (about 10%), so one can afford a larger inaccuracy in
those. Notice also that the contribution of the term in f 2 to the monopole, which is the better
measured quantity, is suppressed by several numerical factors. Since the dependence on z of
the EFT-parameters is expected to be comparable, we extend this conclusion to all the terms.
This allows us to conclude that we can safely approximate P (EFT)

`,binned(k) ' P
(EFT)
` (k, zeff).

0.45 0.50 0.55 0.60 0.65 0.70
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2.0

2.5

3.0

3.5
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4.5

5.0

n
(z

)

Figure 3: Redshift distribution, up to a normalization factor, of the galaxies in the CMASS NGC
sample.

3.3 Fiber Collisions

In the BOSS survey, fiber collisions affect the determination of the redshift of nearby galaxies,
systematically affecting the power spectrum at k & 0.1hMpc−1. Several methods have been
proposed to correct for this systematic error. In this paper, we will employ the ‘effective
window method’ of [68]. This method has been shown to be extremely accurate in cancelling
the systematic error induced by fiber collisions up to very small scales, well beyond the ones
we will be interested in this paper: k & 0.3hMpc−1 and, possibly, even much higher than
this [68]. The method consists of adding to the model power spectrum a ∆P (k) (defined
in eq. (24) of [68]), which is computed in terms of the model and in terms of the window
function of the fiber collision, plus two nuisance parameters that correspond exactly to the
shot noise of the monopole and the k2 stochastic term in the quadrupole that already appear
in the EFTofLSS prediction. The resulting power spectrum has to be compared to the data
measured with the method dubbed ‘Nearest Neighbor’ (NN), which already takes into partial
account the effect of the fiber collisions.

16



0.52 0.53 0.54 0.55 0.56 0.57 0.58
zeff

0.990

0.995

1.000

1.005

1.010

∫
dz′n(z′)D(z′)2/D(zeff )2

∫
dz′n(z′)f(z′)D(z′)2/(f(zeff )D(zeff )2)

∫
dz′n(z′)f(z′)2D(z′)2/(f(zeff )2D(zeff )2)

∫
dz′n(z′)D(z′)4/D(zeff )4

Figure 4: We plot the ratios 1
D(zeff)2

∫
dz n(z)D(z)2 , 1

f(zeff)D(zeff)2

∫
dz n(z) f(z)D(z)2,

1
f(zeff)2D(zeff)2

∫
dz n(z) f(z)2D(z)2 and 1

D(zeff)4

∫
dz n(z)D(z)4 as a function of zeff . We can see

that the choice of zeff = 0.55 for all the integral is very accurate, better than 0.5%. In particular,
notice that the loop terms will contribute by a smaller amount to the final answer (about 10%), so
one can afford a larger inaccuracy in those. Notice also that the contribution of the term in f2 to
the monopole, which is the better measured quantity, is suppressed by several numerical factors. We
conclude that we can simply evaluate the EFTofLSS prediction directly at zeff .

In order to get a sense of how much, potentially-undetected, residual inaccuracies of
this method might affect the determination of cosmological parameters, we compare the
results of the Effective Window Method with the ones we obtain if we instead use the less-
accurate (but still, as we will see, sufficiently so) method of [69], dubbed ‘Nearest Neighbor
Method+adjustable shot noise’ (NN&shot-noise).

The result of the implementation of the corrections for fiber collisions can be seen in
Fig. 5, where we plot the residuals between the true power spectra and the ones reconstructed
using the NN&shot-noise method, measured in BOSS-like Patchy mock catalogues whose
characteristics we describe later in Sec. 4, together with the error bars of the data. On the
same plot, we show the reconstructed signal obtained with the Effective Window Method.
We see that, after the implementation of the Effective Window Method, the residuals are
negligible, safely guaranteeing that we have fully accounted for the effect of fiber collisions.
As an extra precautionary note, we analyze our data also using the NN&shot-noise method,
finding that the mildly inaccurate implementation shifts our As parameter by less than 1/6

of a σ, and unmeasurably so the other parameters. Given that the Effective Window Method
is much more accurate than the NN&Shot-noise method, we therefore conclude that fiber
collisions present no residual non-negligible source of systematic error.

3.4 EFT-parameter marginalization

The prediction P
(EFT)
` depends on several counterterms and galaxy bias parameters (EFT

parameters). Their measurement is interesting, as they contain information about galaxy
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Figure 5: Residuals between the monopole (dotted, blue) and quadrupole (dotted, green) power
spectra and the ones reconstructed using the NN&shot-noise method, measured by the mean of 30
BOSS-like Patchy mocks, together with the error bars of one box. The dashed lines represents the
correction given by the ‘Effective Window Method’ of [68] with ktrust = 0.25hMpc−1. In the figure
we use the nuisance parameters of [68] equal to −43 for the monopole shot-noise and −9 for the
quadrupole k2 stochastic term (Notice that these values are much smaller than the natural ones
we have for the stochastic EFT-parameters). We see that the signal is reconstructed with extreme
accuracy, allowing us to neglect any residual systematic error from fiber collision effects.

formation: it is the way different galaxy formation mechanisms affect large scales. However
if somebody is only interested in the cosmological parameters, as we are in this paper, one
will eventually marginalize over them.

In this paper we take two approaches. We will explore the Likelihood in eq. (24), which
depends on 10 EFT parameters and the cosmological parameters, by sampling with MCMC’s,
and then marginalize over them. We will use this as a consistency check of a more efficient
approach, which is the following. If we are ultimately interested in marginalizing over the bias
parameters, it means that we are interested in the Likelihood of the cosmological parameters,
which is the Likelihood after integration over the EFT parameters:

L(d|{~Ω}) =

∫
db L(d|{~Ω,~b}) . (28)

We now split the EFT parameters as:

~b = {~bG,~bNG} , (29)

where the distinction between ~bG, and ~bNG is that the ~bG’s appear in the exponent of eq. (24)
only up to quadratic level. This means that the bG’s appear in P (EFT)

` (k, {~Ω,~b}) only up to
linear level. In our notation, ~bG = {b3, cct, cr,1, cr,2, cε,1, cε,2, cε,3}, and ~bNG = {b1, b2, b4}. We
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therefore can write 10:

P
(EFT)
` (k, {~Ω,~b}) ≡

∑

i

bG,i P
(EFT)
`, lin, i (k, {~Ω,~bNG}) + P

(EFT)
`, const(k, {~Ω,~bNG}) . (31)

Plugging back in eq. (28), we realize that the integral over the bG’s can be done analytically,
as it is a Gaussian integral, without the need to explore the Likelihood numerically. In order
to make the Gaussian structure more apparent, we can define:

L(d|{~Ω,~bG,~bNG}) = Exp

[
−1

2

∑

ij

bG,i F2,ij

(
P

(EFT)
`, lin ({~Ω,~bNG}), C−1

WW

)
bG,j+ (32)

+
∑

i

bG,i F1,i

(
P

(EFT)
`, lin ({~Ω,~bNG}), P (EFT)

`, const({~Ω,~bNG}), P
(d)
` , C−1

WW , C
−1
W , P

(d)
`

)

+F0

(
P

(EFT)
`, const({~Ω,~bNG}), P

(d)
` , C−1

WW , C
−1
W

)]
.

where

F2,ij = P
(EFT)
`, lin, i (k, {~Ω,~bNG}) · C−1

WW (k, k′)`,`′ · P (EFT)
`′, lin, j(k

′, {~Ω,~bNG}) , (33)

F1,i = −P (EFT)
`, const(k, {~Ω,~bNG}) · C−1

WW (k, k′)`,`′ · P (EFT)
`′, lin, i(k

′, {~Ω,~bNG}) +

+P
(EFT)
`, lin, i (k, {~Ω,~bNG}) · C−1

W (k, k′)`,`′ · P (d)
`′ (k′) ,

F0 = −1

2
P

(EFT)
`, const(k, {~Ω,~bNG}) · C−1

WW (k, k′)`,`′ · P (EFT)
`′const(k

′, {~Ω,~bNG}) +

+P
(EFT)
`, const(k, {~Ω,~bNG}) · C−1

W (k, k′)`,`′ · P (d)
`′ (k′)

−1

2
P

(d)
` (k) · C−1(k, k′)`,`′ · P (d)

`′ (k′) ,

and then we can perform a Gaussian integral to define the partially marginalized Likelihood:

L(d|{~Ω, bNG}) =

∫
dbG L(d|{~Ω,~bG,~bNG}) = (34)

= Exp

[
1

2
F1,i({~Ω,~bNG}) · F2({~Ω,~bNG})−1

ij · F1,j({~Ω,~bNG})

+F0({~Ω,~bNG})−
1

2
log
[
det
(
F2({~Ω,~bNG})

)]]
,

where in the last passage we neglected an irrelevant constant. L(d|{~Ω, bNG}) depends on only
3 EFT parameters, so it is quite easier to explore numerically with an MCMC. This is com-
pensated, but only in part, by the fact that this Likelihood is slower to evaluate numerically

10Explicitly,

P
(EFT)
`, const(k, {~Ω,~bNG}) = P

(EFT)
` (k, {~Ω,~b})

∣∣∣
~bG→0

, P
(EFT)
`, lin, i (k, {~Ω,~bNG}) =

∂P
(EFT)
` (k, {~Ω,~b})

∂bG,i

∣∣∣∣∣
~bG→0

.

(30)
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for each choice of the cosmological parameters, as the functional form is more complex than
a simple χ2-one. We will refer to this Likelihood as the partially marginalized Likelihood.
The partially marginalized Likelihood in the case in which we include the bispectrum is dis-
cussed in App. D. Notice finally that this procedure does not require to include priors on
the EFT-parameters, but these can always be simply included before performing the integral
in eq. (34).

3.5 Details on the MCMC analysis

We obtain the parameter Likelihood described above using the Python-based Monte-Carlo
Markov Chain (MCMC) sampler emcee [70]. We run four separate chains in parallel and
use the Gelman-Rubin convergence criteria [71] with a threshold of ε ≤ 0.005 on the scale-
reduction parameters, to determine convergence.

Beyond the Gelman-Rubin convergence criteria, we have performed several additional con-
vergence tests. Here we list a few. We have checked that the non-marginalized Likelihood of
eq. (24) and the partially marginalized Likelihood of eq. (34) give consistent results. Similarly,
we obtain consistent results if we impose the Gelman-Rubin test threshold to be 0.005 instead
of 0.003, or if we change other settings of the MCMC (such as the number of walkers).

At each step of the likelihood evaluation, we take the model from a pre-computed grid of
the cosmology-dependent pieces of eq. (10). The dependence on the EFT parameters is instead
analytic, and so evaluation for the model concerning the variation of these parameters can be
done directly at the level of the MCMC. This setup allows for an extremely rapid evaluation
of the likelihood. For this first analysis of the BOSS data using the EFTofLSS, we limit ourself
to a three-dimensional grid scanning over the cosmological parameters ln(1010As), Ωm and h,
where As is the amplitude of the primordial power spectrum, Ωm is the matter abundance,
and h is the present day Hubble parameter measured in units of 100 km/(sec Mpc). We will
therefore fix the ratio of the baryons versus dark-matter abundance, Ωb/Ωc, and the tilt of the
primordial power spectrum, ns−1, to the Planck2018 best-fit values. However, there should be
no difficulty in extending our analysis to include these additional cosmological parameters as
well as others, such as, for example, the dark-energy equation of state, w. In fact, one possible
option is the following. Since the cosmological parameters are already quite well-determined,
we are interested only in small relative variations of them. Therefore, the predictions for
all models of interest can be obtained by Taylor expanding the prediction around the best
cosmology (say, for example, Planck2018+BOSS DR12), to the desired order. In this way,
the dependence on all the parameters would be analytical, allowing for a rapid evaluation of
the likelihood directly at the level of the chain, without building grids, and potentially for
some additional simplifications. This approach has been developed in [33] for the two-loop
dark-matter power spectrum in the EFTofLSS, and was found to give sub-percent accuracy.
We foresee no obstacles in doing this also for the power spectrum of biased tracers in redshift
space. We leave this to future work [72].

Finally, in the EFTofLSS, the EFT parameters are supposed to be order one, as in this
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case all operators become strongly coupled at around the same scale. We will therefore impose
the following priors on the parameters that encompass the physically-motivated range:

b1 ∈ [0, 4]flat , c2 ∈ [−4, 4]flat , c4 ∈ 2gauss , b3 ∈ 2gauss , (35)

cct ∈ 2gauss , cr,1 ∈ 4gauss , cr,2 ∈ 4gauss ,

cε,1/n̄g ∈
(

400

(hMpc−1)3

)

gauss

, cε,mono ∈ 2gauss , cε,quad ∈ 2gauss ,

where b2 = 1√
2
(c2 + c4), b4 = 1√

2
(c2 − c4), cε,mono = cε,1 + 1

3
cε,2, cε,quad = 2

3
cε,2. We choose

kNL = kM = 0.7hMpc−1. Notice that n̄g = 4.5 · 10−4(hMpc−1)3 for CMASS and n̄g =

4.0 · 10−4(hMpc−1)3 for LOWZ (11). Here the subscript ‘flat’ meanst that we impose a flat
prior with the stated boundaries, while the subscript ‘gauss’ means that we impose a gaussian
prior centered at zero with that standard deviation.

We perform the change of variables between (b2, b4) and (c2, c4) as we find for all simu-
lations and in the observational data that the former are almost completely anti-correlated
(at ∼ 99%). Thus, c4 that parametrizes the difference between the contributions of b2 and
b4 in the 1-loop term, which are highly degenerate, is practically undetermined, and we put
a gaussian prior with standard deviation of 2 on it. Then, upon comparison with the nu-
merical and observational data, we find that for the signal-to-noise ratios that are relevant
in our study (for BOSS-like volume), the functions that are multiplied by c4 and cε,mono are
too small to significantly affect the results. We therefore set c4 and cε,mono to zero. As we do
not analyze the hexadecapole in our analyses, we set cr,2 = 0 and put a prior 8gauss on cr,1
to absorb the main contribution of cr,2 in the quadrupole. Also, we impose a prior on the
shot noise consistent with fiber collisions and selection effects, since (most of) the Poisson
shot noise is subtracted from the data. Our choice of the priors plays no role as long as all
parameters are well determined by the data, as we will find to be the case in simulations with
volume as large as the Challenge boxes that we describe later, and whose volume is about
16 times the BOSS volume. We have checked for those boxes that significantly enlarging the
priors does not affect our results, and all parameters stay of order of their expected physical
size. For volumes of the size of the BOSS data, the priors make certain that the fit lies within
the physical region of the EFT parameters, as potential unbroken degeneracies allowed by
the large error bars of the data might lead to undesirable systematic errors. We will test
our prior choice using the Patchy mocks that have the same volume as the data we want to
analyze. When we fit the bispectrum, we do not set c4 to zero, as b2 and b4 now enter in the
observables in a less degenerate way. Furthermore, as we fit the bispectrum only up to a low
kmax, the bispectrum shot noise terms are neglibly small, especially since most of them are
subtracted from the data. We therefore put them to zero.

11 For the Challenge boxes, we use n̄g = 3 · 10−4(hMpc−1)3.
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4 Tests on Simulations

While there is no question that the EFTofLSS is accurate at low enough wavenumbers, it is
unclear what is the wavenumber at which, given the error bars on the data, the EFTofLSS
becomes too inaccurate and measurements begin to be biased. We call this error the ‘theory-
systematic’, to be distinguished from the observational and instrumental systematic errors,
and from the bias parameters of the EFTofLSS. As discussed above, it is possible to have
a rough idea of what this wavenumber is, because, in the EFTofLSS, one can estimate the
theoretical error associated with the higher-order terms that have not been computed [2, 4,
10, 12, 13]. However, this procedure is quite approximate, and, given the importance of going
to higher wavenumbers to gain more information, it is preferable to have additional methods
to measure the theory systematic error in the measurements.

Testing the EFTofLSS against simulations can provide a systematic way to quantify these
different errors, even though it is a bit unclear if the systematic error associated with the
simulations is much smaller than percent level (see for example [73]) 12. We analyze two sets
of simulations.

BOSS DR12 Challenge boxes

The BOSS DR12 analysis [23, 25] performed a blind mock challenge on a set of high-resolution
N-body simulations populated with galaxies using Halo Occupation Distribution (HOD) mod-
eling. There are seven different catalogs with different HOD prescriptions, constructed from
periodic simulation boxes with varying cosmologies, and they do not include any sky-geometry
selection function effect. The seven catalogs are labeled A through G. Several of the boxes are
based on the Big MultiDark simulation [74]. The catalogs are constructed out of simulation
boxes with a range of 3 underlying cosmologies, and boxes with the same cosmology have
varying galaxy bias models, with resulting variance of the overall galaxy bias by about 5%.
The redshift of the boxes ranges from z = 0.441 to z = 0.562. We analyze the simulations at
high redshift, which are relevant for our analysis, i.e. A, B, F, G and D. These cases were
designed to quantify the sensitivity of RSD models to the specifics of the galaxy bias model
over a reasonable range of cosmologies. The cosmology and relevant simulation parameters
for each of the boxes that we use are given in Table 1. A comparison of the results from the
mock challenge in the context of the BOSS DR12 results is presented in [23], and individual
Fourier-space clustering results from the challenge are discussed in [25, 75].

12Not all systematic errors in the simulations are very problematic for this test. As long as the simulations
implement some mechanism that preserves the laws of physics that are used to derive the EFTofLSS, such as for
example coordinate reparametrization invariance, the EFTofLSS should be able to describe it, notwithstanding
that the actual physics of galaxy formation in our universe might be different than the simulated one.
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Simulation name Veff (Gpc3) Ωm Ωbh
2 h ln(1010As) ns zeff

Challenge A, B, F, G 50.2 0.307 0.022 0.6777 3.0824 0.96 0.5617

Challenge D 50.2 0.286 0.023 0.7 3.096 0.96 0.5

Patchy lightcone NGC 3.0 (×16) 0.307 0.022 0.6777 3.091 0.96 0.55

Table 1: Cosmological parameters and specifications of the N-body simulations analyzed in this
work. Veff is the effective volume of the box, while zeff is the effective redshift, accounting for the
window and redshift selection. The factor of ‘×16’ in the Veff of the Patchy mocks represents the
fact that we will use 16 independent boxes, each with effective volume equal 3 Gpc3.

Patchy Mocks

The BOSS collaboration provides a set of mock catalogs, which mimic the clustering properties
and geometry of the observed dataset [76]. These mock catalogues have been produced using
approximate gravity solvers and analytical-statistical biasing models. The catalogues have
been calibrated to an N-body based reference sample extracted from one of the BigMultiDark
simulations [77], which were performed using Gadget-2 [78] with 38403 particles in a volume
of [2500h−1Mpc]3 assuming a ΛCDM cosmology with Ωm = 0.307115, Ωb = 0.048206, σ8 =

0.8288, ns = 0.9611, and a present-day Hubble constant of H0 = 67.77km s−1Mpc−1. Here σ8

is the root mean square of the linearly-evolved matter power spectrum within a top-hat radius
of 8hMpc−1 at redshift zero. Halo abundance matching is used to reproduce the observed
BOSS 2- and 3-point clustering measurements [76]. This technique is applied at different
redshift bins to reproduce the BOSS DR12 redshift evolution. These mock catalogues are
combined into lightcones, also accounting for the selection effects and survey mask of the
BOSS survey. While they are usually called ‘Patchy lightcones mocks’ in the literature, we
will refer to them simply as ‘Patchy mocks’. In total we have 2048 mock catalogues available
for each patch of the BOSS dataset that we analyze: CMASS NGC and SGC and LOWZ
NGC. We analyze the power spectra and bispectra of 16 NGC boxes only, as they are suffi-
cient for our purposes, but we use all of them to estimate the covariance matrices.

In this section, we present the results of the fits of the monopole and quadrupole of the
power spectrum with the partially marginalized likelihood of eq. (34) on measurements from
these simulations. We do not analyze the hexadecapole because we find it adds very marginal
information and it is more subject to measurement systematics. We analyze five challenge
boxes A, B, F, G and D, and 16 Patchy boxes for the North Galactic Cap (NGC) region.
The characteristics of these simulations are given in Table 1. Besides asserting the validity
range of the EFTofLSS and its ability to determine the cosmological parameters, these tests
provide interesting complementary results, following from the specificity of the simulations.
The challenge boxes ABFG have all the same underlying cosmology but different HODmodels,
while box D represents both a different cosmology and a different HOD model. This allows
us to study the response of the EFTofLSS to the UV physics (i.e. galaxy formation physics),
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not only to see if it introduces significant biases in the determination of the cosmological
parameters, but also to explore the sensitivity of the EFT parameters to different HOD
populations. In fact, as we will see shortly, our results suggest that the measurement of the
EFT-parameters can potentially be used to learn which formation mechanism was actually
dominant for the galaxy sample under consideration. The Patchy mocks reproduce important
observational aspects, such as the effects of a mask and the redshift selection. Again, it is
of interest to keep control of the possible induced systematics from these geometrical factors.
Furthermore, since measurements of the bispectrum from the Patchy mocks are available, we
will use it to test the performance of the EFTofLSS when the bispectrum is included.

After discussing how one can estimate and measure the theory-systematic error from tests
on simulations in Sec. 4.1 and Sec. 4.2, we explain in Sec. 4.3 how within the EFTofLSS it
is possible to determine with precision the cosmological parameters without introducing un-
necessary degeneracies and uncontrolled systematics from approximate treatments. We also
explore in Sec. 4.4 the impact on the fit of the inclusion of a prior on the sound horizon
at decoupling from CMB measurements, and in 4.5 of the inclusion of the tree-level bispec-
trum monopole. The reader uninterested in the details can directly go to Sec. 4.6 where we
summarize our findings from the tests.

All the MCMC are run with the baryons-to-dark-matter ratio Ωb/Ωc and the tilt of the
primordial power spectrum ns fixed and given in Table 1, while we freely scan over As, Ωm and
h. We have checked on Fisher forecasts of the CMASS NGC dataset that removing the priors
on Ωb/Ωc and ns to about ten times the errors from Planck2018 degrades our constraints just
roughly by about 18% for lnAs, 27% for Ωm, and 53% for h (13).

4.1 Size of the loop terms

Before analyzing the measurements in a systematic way, a simple χ2-fit at the best fit of the
simulations can provide insights on how much the various terms in the power spectrum of
eq. (5) contribute overall (one could perform this study equally well by fixing the fit to the
fiducial cosmology). One can get a sense of the applicability range of the EFTofLSS along
with other interesting features that we detail in the following. In Fig. 6 are shown various
contributions to the monopole and quadrupole for the challenge boxes and Patchy mocks.

First, at high wavenumbers, kmax ' 0.23hMpc−1, on the monopole, we notice that, on
the Challenge A box, the linear part contributes to ∼ 85% of the total while the one-loop
contributes to ∼ 15%. On the quadrupole, the contribution of the loops is instead larger,
and reaches order half of the linear one. On Patchy, on the monopole, the loop contribution
is about 10% , while on the quadrupole the loop contribution is about half of the linear one.

13If instead we put an extremely wide prior on ns to roughly the interval [0.70 − 1.22], which is about 60
times the error bar from Planck2018, and put a prior on Ωb/Ωc of the order of four times the percentage
error on Ωbh

2 obtained by Big Bang Nucleosynthesis (BBN) (which is about 20σ’s of Planck2018) [79], the
error bars are degraded by about 117%, 158% and 267% for lnAs, Ωm and h respectively. Given that we
will measure these quantities to to 12%, 3.2%, and 2.9% respectively, we still would have a significant and
valuable measurement.
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Figure 6: Size of various contributions to the monopole and quadrupole of the one-loop power
spectrum of eq. (5) evaluated at the best fit cosmology at kmax = 0.23hMpc−1 for the challenge
boxes (top) and for the Patchy mocks (bottom). Dashed stays for negative value. We also plot, in
dotted, the size of the statistical error bars.

This allows us to very roughly estimate the theoretical error which corresponds to the size of
the next-to-leading contribution, namely, the two-loop. The size of the L-loop P (L)(k) can
be roughly estimated as P (L)(k) ∼ αLP11(k), where P11 is the linear power spectrum and
α is a small number representing the size of the loop contribution. It follows that around
k ∼ 0.25hMpc−1, the theoretical error is about 1% of the power spectrum for the monopole,
which is of the same order as the measurement statistical error, and a similar conclusion holds,
approximately, for the quadrupole, where the statistical error is larger. This suggests, if not
completely justifies, that we can use the EFTofLSS at one-loop order up to kmax in the range
0.20hMpc−1 to 0.25hMpc−1 for surveys with volume similar to the BOSS CMASS one. We
will discuss further the k-range accessible by the theory at this order in the following, when
concluding our systematic analysis.

Second, representative contributions are also plotted in Fig. 6. We first observe that
keeping only one galaxy bias bi to its best-fit value (∼ O(2)) while setting all other EFT
parameters to zero gives the typical size of the contributions entering in the one-loop con-
tribution. We notice that there are some cancellation at play in loops in the monopole, but
they are not extremely large. Additionally, in the quadrupole, the k2 stochastic term seems
to be the larger contribution.
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To finish on preliminary considerations, we would like to make a comment on the constant
stochastic term. In principle, it is of size n̄−1

g , which is of the order of the typical significant
contributions to the one-loop. In practice, the shot-noise contribution is often subtracted from
the measurements. However, this procedure relies on estimators for weighting and selecting
the galaxies to account for the spatial variance of the number density. For these reason, we fit
without shot noise the Challenge boxes as the shot-noise subtraction is reliable in simulations
where the number density is known, while we fit with a shot noise the data to account for
small inaccuracies in the estimation of n̄g. We indeed find that keeping the constant stochastic
term with reasonable priors (a few percents of n̄−1

g ) in regards of the above discussion helps
the performance of the fit. Furthermore, we remind the reader that the ‘Effective Window
Method’ correcting fiber collisions contains a nuisance parameter in the form of a shot noise.

4.2 Theory-systematic error

On the left of Fig. 7, we show the marginalized posterior distributions of the cosmological
parameters measured from the Challenge boxes, by fitting the individual power spectrum of
each box with the partially marginalized likelihood of eq. (34). By power spectrum, here and
in the rest of the paper, we mean the monopole and quadrupole of the power spectrum. On
top of each posterior distribution, we give the expectation value of the cosmological parameter
with its statistical error and theory-systematic error, to be read from top to bottom. In Fig. 9
we plot level contours of the partially marginalized likelihood, after marginalizing over all but
two EFT parameters.

We see that each box is fitted in very comparable terms. Concerning the cosmological
parameters, we see that in each box we can measure As,Ωm and h, breaking all degeneracies
without any significant input from Planck or other CMB experiments 14. We will comment
in the next subsection on the physical origin of this.

We call σsys an estimate of the theoretical error associated with the higher-order terms
in the EFTofLSS prediction that we have not computed yet and so are not included in the
model we fit to the data. Usually σsys is called a systematic bias, but we do not use this
nomenclature in order to avoid confusion with the EFTofLSS parameters or with other forms
of systematic errors. The challenge boxes A B F and G are highly correlated, as their initial
conditions are the same (since they are extracted from the same dark-matter simulation, the
Big MultiDark). Thus, σsys is measured by computing the distance between the true value
and the 68% confidence region of the average over the four boxes of the distribution of the
posteriors of each box for a given parameter. In particular, σsys is taken to be zero when the
true value is within the 68% confidence region. We perform the same procedure for box D.
Then, since box D and boxes A B F and G are constructed from independent simulations, we

14This statement refers just to the inclusion of the sound horizon prior, which is a typical procedure to
calibrate BAO data (see for example [80, 81]). We remind the reader that we are fixing Ωb/Ωc and ns to
their Planck value, and that we discussed in footnote 13 about the degradation of our measurements when
this priors are relaxed, concluding that we would still have a significant measurement of the parameters.
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Figure 7: Marginalized posterior distributions of the cosmological parameters obtained from fitting
the power spectrum of the four Challenge boxes ABFG and their average (top) and for box D (bottom),
without (left), and with (right) the inclusion of Planck sound horizon prior. For each cosmological
parameter, the expectation value is given together with the statistical error and the theory-systematic
error (from top to bottom in each subplot). The vertical lines represent the fiducial cosmology of the
simulation.
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combine the two measurements of the distance of cosmological parameters from the fiducial
ones as independent Gaussian distributions, and measure the theoretical systematic error as
the distance of the one-sigma region of the resulting distribution from zero.

Due to the finiteness of the statistical error of the boxes, this procedure implies that
our systematic error could be underestimated by an amount equal to σstat/

√
2 for Challenge

boxes. On the other hand, we are declaring the detection of a theoretical systematic error
if the fiducial value of the simulation is just off the 68% confidence region of our posteriors.
This is clearly a conservative choice. Given this, and given how larger is the combined volume
of these simulations compared to the one of BOSS, we consider the measurements we perform
of the theoretical error accurate enough.

The challenge boxes are high precision N-body simulations with HOD modeling. On box
D, we find no evidence of theoretical systematic error in Ωm and h all the way to kmax =

0.25hMpc−1, except a small σsys = 0.007 ' 0.3σstat,CMASS on h at kmax = 0.15hMpc−1. On
As, we find a theoretical systematic error that starts very small at kmax = 0.2, where we mea-
sure σsys = 0.02 ' σstat,CMASS x low−z/7, and becomes comparable to σsys ' 0.4σstat,CMASS x low−z

and 0.5σstat,CMASS x low−z at kmax = 0.23hMpc−1 and kmax = 0.25hMpc−1 respectively.
On the combination of boxes ABFG, we similarly find no evidence of theoretical systematic

error in Ωm and h all the way to kmax = 0.25hMpc−1, with the exception of a small σsys =

0.006 ' 0.4σstat,CMASS on Ωm at kmax = 0.15hMpc−1 and a tiny σsys = 0.002 ' 0.1σstat,CMASS

on h at kmax = 0.25hMpc−1 . Similarly, on As, we find a theoretical systematic error that
is tiny up to kmax = 0.20hMpc−1, and it is larger at kmax = 0.23, where we measure σsys =

0.04 ' σstat,CMASS x low−z/3, while it becomes a sizable σsys = 0.09 at kmax = 0.25hMpc−1.
When we combine the measurements of the mean of ABFG and D, we can measure the
theoretical systematic error more accurately by a factor of ∼ 1/

√
2. We find no evidence of

any systematic error on h up to kmax = 0.25hMpc−1, with a minimum detectable error of
σsys, min = 0.008. For Ωm, we detect a systematic error σsys = 0.0037 at kmax = 0.15hMpc−1

and σsys = 0.0017 at kmax = 0.20hMpc−1, with a minimum detectable error σsys, min = 0.0032.
In comparison to the error bars we will obtain on the observational data, all these systematic
errors are negligibly small (. σstat,CMASS x low−z/6), with the possible exception of kmax =

0.15hMpc−1 where the error is about σstat,CMASS/4, which we however assume to be due to
a statistical fluctuation. Instead, on ln(1010As), we detect a systematic error that becomes
significant at kmax = 0.20hMpc−1, equal to 0.06, and at kmax = 0.23hMpc−1, equal to 0.09.
At kmax = 0.20hMpc−1, we detect a systematic error on ln(1010As) equal to 0.036, which is
is about 1/4 cot σstat,CMASS x low−z, which is sufficient for being negligible 15.

We conclude that we can safely perform the analysis of the data with negligible theoretical
error up to kmax = 0.20hMpc−1. It is now worthwhile to remark that a systematic error
even as large as the statistical error can be accounted for by shifting the posterior of the
parameter by about this quantity. This has a very small effect on any statistically-significant
statement that one can make on the posterior of the parameters. Therefore, overall, the

15This interpretation is probably reinforced by the fact that our measurement of the theoretical systematic
error is in this case potentially affected by a statistical fluctuation that is already visible at low kmax.
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systematic errors appear to be small even in the highest wavenumbers that we consider. This
in particular means that even though we will conservatively decide not to quote the result
obtained kmax = 0.23hMpc−1 as our main results, the systematic error in this case is still
quite small, and one could decide to consider the ones obtained with this kmax to be the most
significant results.

Though the challenge boxes are high precision N-body simulations with accurate HOD
modeling, they lack the window function, redshift sampling and fiber collisions, that char-
acterize a survey such as BOSS. While the challenge boxes are therefore a good tool to test
for the theoretical systematic, they do not test for those. However, as we have discussed in
Sec. 3.1, 3.2, and 3.3, all of these effects have been accurately implemented in our pipeline,
and so we expect negligible systematic error from them.

Overall, one should keep in mind that the window function does not give a huge effect:
even analyzing the data without accounting for it, the shift in the cosmological parameters is
of the order of the statistical error. So, an implementation which is accurate just to about 10%
is enough to make any error negligible. However, to check the accuracy of the treatments of
these survey systematics in our pipeline to an even higher level of safety, we analyze 16 Patchy
lightcone NGC boxes. The total volume is roughly equivalent to the one of one Challenge box,
which allows us to measure survey-systematic errors to the same precision as we measured
the theory-systematic errors using the Challenge boxes, though one should keep in mind that
the level of accuracy of the mocks is less than the one of an N-body simulation. We fit the 16

boxes separately and do the product of the individual 1D marginalized posteriors. Even if this
procedure is not fundamentally correct, as the correct procedure would be to multiply the full
likelihoods, it is rather conservative and good enough to measure the theoretical systematic
error. Another reason to fit the Patchy boxes individually is to measure the response of the
EFT to our choice of priors on the EFT parameters for one volume equivalent to the one of
the data. Indeed, for a volume as large as the one of Challenge box, all EFT parameters are
well determined. However, when we turn to a volume like the one of Patchy or data, we might
encounter unbroken degeneracies that can potentially drive the fit to an unphysical region.
Therefore, it is important to test if our choice of priors, which follows solely from theoretical
considerations, is enough to keep the fit in the physical region.

On the left of Fig. 8, we show the marginalized posterior distributions of the cosmological
parameters measured from the Patchy mocks, by fitting the individual power spectrum of
each box with the partially marginalized likelihood of eq. (34). We find for each cosmological
parameter at each kmax that the product of the 1D posteriors appear with negligible small
systematics errors, with vanishing ones for As and Ωm, and tolerably small σsys . 0.005 '
σstat,CMASS x low−z/4 on h.

We conclude that, on one hand, all survey geometrical and selection effects are well ac-
counted for in our pipeline, and, on the other hand, our theoretical priors are suitable to keep
the parameters in the physical region for a volume like BOSS data.

Before moving on, we would like to make the following comment about the theory-
systematic error as extracted from simulations. One can take the point of view that the
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Figure 8: Marginalized posterior distributions of the cosmological parameters obtained from fitting
the power spectrum of 16 Patchy lightcone NGC boxes, without (left), and with (right) the inclusion
of Planck sound horizon prior. For each cosmological parameter, we quote the expectation value
together with the statistical error and the theory-systematic error of the product of the individual
1D posteriors (from top to bottom in each subplot). The vertical lines represent the fiducial cosmology
of the simulation.

simulations and the HOD modeling are exact, i.e. they represent the exact distribution of a
population of galaxies generated according to some physical mechanism. Any deviation from
the exact representation of the physical model (for example if the trajectory of the particles
had a numerical error) would induce a numerical systematic error, that we here assume to be
negligible 16. It is a well-recognized limitation that the HOD models do not actually simulate
the formation of galaxies from first principles, but rather ‘model’ them according to some rule
guided by a mixture of physical processes and data. We point out that, from the EFTofLSS
point of view, it is absolutely not important that the HOD model correctly represents a popu-
lation of galaxies that actually exists in the universe. In fact, as long as the galaxy-formation
physics is modeled by the HOD with a process that satisfies the principle of general relativity,
i.e. it is controlled by locally observable quantities, then the EFTofLSS is expected to be able
to describe the distribution of this population with arbitrary accuracy. Of course, for a given
model, the non-linearities induced by the higher order biases can be larger than in other mod-
els. In this case, to reach a given accuracy, one might need to include higher-order terms in
the EFTofLSS. For example, in [50, 51], higher-order derivative terms were included in order
to reproduce to a given accuracy the distribution of highly-biased tracers. This discussion

16Of course, due to modeling issues, it is unlikely that this assumption is entirely true.
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Figure 9: 2D posterior distributions of the cosmological parameters ln(1010As), Ωm, and h, and the
EFT parameters b1 and c2, obtained from fitting the power spectrum up to kmax = 0.2hMpc−1 of
the challenge boxes ABFG (left). On the right, we plot the same quantities for box A, as a function
of kmax (right). We can see that we can measure all the cosmological parameters as well as the EFT
parameters. All degeneracies are broken, though some to a different extent than others. We see that
the four HOD models on the left differ mainly for their value of b1. The results for the cosmological
parameters, which should be equal for all of them, appear to be remarkably consistent.

makes it clear that, in the absence of numerical systematic error, the inferred cosmological
parameters obtained from the four HOD models should not only be equal to the true ones,
but also the same for each model. By looking at Fig. 9, we notice that indeed all HOD models
of the challenge boxes give very similar results for all the cosmological parameters. All the
EFT-parameters that have not been already integrated out have almost identical values apart
from the linear bias b1, which seems to be the one over which the differences in the HOD
models accumulate. It is therefore not a complete surprise that the model with the smallest
systematic error is the Challenge box G, which has the smallest b1, and so the neglected loops
are the smallest.

4.3 Physical considerations

We have seen above that we can measure the three cosmological parameters As, Ωm, and h,
without any significant theory-systematic error. As we will see, this measurement can be
done also on the SDSS/BOSS data. Given that the official analysis of the SDSS/BOSS data
do not provide independent measurements of all of these quantities without the addition of
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external priors, here we briefly highlight why it is actually possible to measure them 17.
First, we remind the reader that we are working in the ΛCDM setting. Thanks to the

accurate modeling of LSS provided by the EFTofLSS, we are allowed to use, implicitly or
explicitly, all the relations among quantities that are implied by this (as for example the
dependence of f on Ωm from eq. (8), or the dependence of the sound horizon at decoupling
on Ωm that is implicitly encoded in the transfer functions), without the need to introduce
artificial free parameters beyond the ones given by the EFTofLSS. In this sense, our analysis
is identical to the standard CMB analysis of Planck or WMAP.

We also remind the reader that we are analyzing all the simulation data up to kmax =

0.2hMpc−1 and 0.23hMpc−1, without making any splitting between oscillating and broad-
band signal. However, for the purpose of explaining the physical origin of the signal, we can
separate the part of the signal that originates from the BAO and from the broad-band shape
of the power spectrum.

Focusing on the BAO signal, this is well approximated by an oscillating signal in the power
spectrum, corresponding to a peak in the real space correlation function. The wavelength of
this oscillation, equivalent to the location of the peak in real space, is the sound horizon at
the end of the baryon-drag epoch. In the case of the CMB, the observed quantity is the
angle at which this peak appears, θCMB, which scales as θCMB ' rd(zCMB)/DA(zCMB), where
rd(zCMB) is the sound horizon at the time of decoupling, zCMB ∼ 1100, and DA is the angular
diameter distance. Ref. [82] (see Sec. 4.4) carefully derives that such a measurement is mainly
dependent on the combination Ωmh

3.4 (18). In the case of LSS, the angle (or ratio of length
scales) under which the BAO oscillation is observed, θLSS, scales as the geometric mean of
what is observed parallel and perpendicular to the line of sight (see for example [80, 81])

θLSS '
rd(zCMB)

(DA(zLSS)2 · c zLSS/H(zLSS))1/3
. (36)

Straightforwardly repeating the analysis of [82], we find that,

∂ log θLSS

∂ log Ωm

∣∣∣∣
Ωm=0.3, h=0.7

= −0.12 ,
∂ log θLSS

∂ log h

∣∣∣∣
Ωm=0.3, h=0.7

= 0.48 , (37)

for zLSS = 0.5. θLSS therefore mainly depends on the combination Ωmh
−4 (19).

The relative amplitude of the BAO peak with respect to the smooth part instead gives
a measurement of ∼ Ωm h

2. This is quite intuitive as the amplitude of the oscillating part,
17We stress again that we are fixing ns and Ωb/Ωc to the fiducial value of the simulations, or, for the data, to

the central value from Planck2018. However, we fix these two cosmological parameters just for computational
reasons, the analysis could be generalized to include them as well. We discussed earlier on the implication of
this choice on the error bars of the parameters.

18This derivation applies if we keep Ωb as an independent parameter. If the ratio Ωb/Ωc is held fixed, then
the scaling is rather Ωmh

5 (see Eq. (11) of [83]). However, for the purpose of our general discussion, we are
only interested in describing how the degeneracy between Ωm and h can be broken by single-redshift LSS
observations alone, and we therefore focus on the more general case where Ωb is left as a free parameter.

19Eq. (36) summarizes the information that we acquire if we only observe the monopole. In reality the
parallel and perpendicular directions to the line of sight can be disentangled by observing also the quadrupole.
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unlike its wavelength, is not affected by projection effects, and therefore simply scales as the
density of baryons and dark matter at the time of recombination, which, in the case of fixed
Ωb/Ωc, simply scales as Ωmh

2 (see [84] for a very pedagogical review and derivation).
We now pass to include the broad-band signal. The linear power spectrum monopole

and quadrupole give a measurement of b2
1A

(kmax)
s and b1fA

(kmax)
s ∼ b1Ω

1/3
m A

(kmax)
s . Here A(kmax)

s

represents the amplitude of the linearly evolved power spectrum at the maximum wavenumber
of our analysis, as this is where the signal peaks. A(kmax)

s is not quite the same as the primordial
amplitude, As, because the evolution of modes that enter the horizon before or after matter-
radiation equality is different. In fact, a scale-invariant primordial power spectrum decays,
roughly, as k−2 around the scales of interest (see for example [4]). We therefore have:

A(kmax)
s ≡ As

(
keq

kmax

)2

, (39)

where keq is the wavenumber that enters the horizon at matter-radiation equality, and scales
as keq[hMpc−1] ∝ (Ωmh

2)1/2. We also approximated f with the well known approximate
relation f(z) ∼ Ωm(z)4/7 (see, for example, [85]), which, for z ' 0.5 and accounting for the
z-dependence of the matter density, gives f(z ' 0.5) ∼ Ωm(z = 0)1/3.

These scalings allow us to solve for b1 ∝ Ω
1/3
m , A(kmax)

s ∝ b−2
1 ∝ Ω

−2/3
m . The constraint on

the sound horizon from the BAO gives h ∼ Ω
1/4
m . Having expressed b1, h, and A

(kmax)
s in terms

of Ωm, we can finally use the amplitude of the BAO peak, that, after substituting the scaling
of h, goes as ∝ Ω

1/2
m , to determines Ωm and, in consequence, b1, h, and A

(kmax)
s and, finally,

from eq. (39), As.
On top of this information, the power spectrum has a broad shape which also carries

information. For example, the power spectrum changes slope for k’s around keq. This carries
further information about the combination Ωmh

2. Furthermore, the nonlinear power spectrum
additionally contributes to lower the error bars on the cosmological parameters, as, though
there are many new EFT parameters that are introduced at this stage, each contribution
carries a different functional shape dependence, and so can be measured, at least in principle,
independently. Since the number of shapes is larger than the number of parameters, this adds
information.

The way the cosmological and EFT parameters are determined can indeed be recognized
by the contours of Fig. 9. The constraint on the linear power spectrum from the monopole
clearly must play a leading role, due to the smallness of the error bars. This amplitude
scales as b2

1A
(kmax)
s ∼ b2

1Ask
2
eq ∝ b2

1AsΩmh
2. This explains the anticorrelated degeneracies

between As & b1, between As &h. As just described, all the degeneracies are broken by the

In this case, there are two angles or ratios of length scales that are observed:

θLSS, ‖ '
rd(zCMB)

DA(zLSS)
, θLSS, ⊥ '

rd(zCMB)

c zLSS/H(zLSS)
. (38)

θLSS, ‖ mainly depends on the combination Ωmh
−3, while θLSS, ⊥ mainly depends on the combination Ωmh

−10.
This also allows to break the degeneracy between Ωm and h.
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information from the quadrupole and the BAO, but in general in a subleading way so that
these (anti)correlated degeneracies are still measurable. This might explain why we do not
find a strong anticorrelation in Ωm &h, but maybe, at least in the Challenge boxes, a slight
correlation between Ωm and h. The scaling of the observed BAO angle in LSS, θLSS, in fact
might explain this.

The fact that we are able to independently determine the cosmological parameters allows
for another interesting application of our results to the realm of astrophysics, beyond the
study of primordial cosmology. In fact, the breaking of the degeneracy between As and b1

allows for a measurement of b1. As it is evident from the left panel of Fig. 9, we can also
measure the other EFT parameters. But Fig. 9 tells us that the bias b1 correlates with the
specific HOD model, and, in general, all the EFT parameters correlate with it. This means
that by measuring the power spectrum, we can infer the EFT parameters, and, from them,
the galaxy formation mechanism that is at play.

4.4 Inclusion of Planck sound horizon prior

As we have just discussed in Sec. 4.3, the measurement of the sound horizon at decoupling
using the BAO is very important in order for us to measure the cosmological parameters, as
it strongly constraints the linear combination Ωm/h

4. While we have just shown that this can
be done using only redshift-space clustering data, it is a fact that the CMB experiments, and
the Planck satellite most lately, have provided exquisite measurement of the sound horizon at
decoupling, or rather of the angle θCMB described earlier, to per-mille precision. It is therefore
interesting to use this measurement as a prior for the LSS analysis. In fact, contrary to other
CMB measurements, this one is particularly insensitive to physical processes that act in the
late universe.

The combination of the LSS data with the CMB-measured sound horizon has a long
history of important applications in the community, dating back to the first measurements of
this effect (see for example [80, 81, 86] and references therein), and it is normally considered
essential to obtain constraints on the Hubble parameter from LSS data. However, contrary
to the usual cases, here we will use it simply to improve our constraints, as we already have
interesting constraints, and in general to explore the effect of such a CMB-motivated prior.

As we saw in the former section, the theory-systematic error that we measured is much
smaller than the statistical error of BOSS DR12. However, once we apply the Planck prior on
the sound horizon, one might worry that our statistical errors will drop and our theoretical
systematics, which naively will not change, will dominate the error budget. This motivates us
to test the EFTofLSS against the simulations again, using now a prior on the sound horizon.
We refer to App. E for details on the formulas for the sound horizon at decoupling and for
the numerical value of the prior we use.

The reason why the result of this test is non trivial is because it can happen that the
Planck prior will reduce not only the statistical error, but also the theory-systematic error.
On the right of Fig. 7, we plot the marginalized likelihood for the cosmological parameters,
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Figure 10: 2D posterior distributions of the cosmological parameters ln(1010As), Ωm, and h, and the
EFT-parameters b1 and c2, with and without Planck sound horizon prior, obtained from fitting the
power spectrum up to kmax = 0.2hMpc−1 of the challenge box A (left) and the Patchy box 1 (right).
In comparison to Fig. 9, we can see that the Planck constraint on the sound horizon has restricted
the allowed region for Ωm and h, and left us with a very strong, anticorrelated, potential degeneracy
between Ωm and h, We remind that this potential degeneracy had already been broken by the SDSS
data, without the Planck sound horizon prior.

.

after the inclusion of the Planck prior on the sound horizon. In Fig. 10 we plot the contours of
the posterior for the partially marginalized likelihood. By focusing on Challenge ABFG and
D for definiteness, we see that, typically, the statistical error on ln(1010As) has been reduced
in a marginal way, the one on Ωm by about around 25% on average, while the one on h is
reduced by about a factor of two. In terms of theoretical systematic error, on ABFG we find
overall tolerably small systematic errors for kmax ≤ 0.23hMpc−1:

- On ln(1010As), σsys = 0.02 . σstat,CMASS/7 at kmax = 0.15hMpc−1 and kmax = 0.2hMpc−1,
σsys = 0.04 ' σstat,CMASS x low−z/3 at kmax = 0.23hMpc−1, and σsys = 0.08 ' 0.6 ·
σstat,CMASS x low−z at kmax = 0.25hMpc−1;

- On Ωm, σsys = 0.006 ' 0.4σstat ,CMASS at kmax = 0.15hMpc−1, σsys = 0.002 ' σstat ,CMASS/5

at kmax = 0.2hMpc−1 and kmax = 0.25hMpc−1, σsys = 0.001 ' σstat,CMASS x low−z/9 at
kmax = 0.23hMpc−1;

- On h, σsys = 0.006 ' 0.4σstat ,CMASS at kmax = 0.15hMpc−1, σsys = 0.002 ' σstat ,CMASS/6

at kmax = 0.2hMpc−1 and kmax = 0.25hMpc−1, and σsys = 0.001 ' σstat,CMASS x low−z/10

at kmax = 0.23hMpc−1.

35



2.
96

3.
04

3.
12

3.
20

3.
28

ln(1010As)

0.
27

0.
28

0.
29

0.
30

0.
31

Ω
m

noPlanck

withPlanck

2.
96

3.
04

3.
12

3.
20

3.
28

ln(1010As)

0.
67

5

0.
69

0

0.
70

5

0.
72

0

h

noPlanck

withPlanck

0.
27

0.
28

0.
29

0.
30

0.
31

Ωm

0.
67

5

0.
69

0

0.
70

5

0.
72

0

h

noPlanck

withPlanck

Figure 11: In the absence of any prior, the theoretical systematic error can be represented as a vector
living in the space of the cosmological parameters that goes from the true value to the maximum
likelihood point as obtained from the MCMC’s. σsys for each parameter is the component of this
vector in the corresponding direction. If we impose a prior, the likelihood is forced to have support
only on a region that is narrower or equal to the one without prior. Therefore, roughly, the resulting
theoretical-systematic error obtained after imposing a prior is equal to the one we have without any
prior, projected on the region supported by the prior. This tends to reduce the systematic error. On
the Ωm-h plane, we plot the level contour of the Planck sound horizon at decoupling rd.

The potentially dangerous systematic errors are at kmax = 0.15hMpc−1 on Ωm with σsys =

0.006 ' 0.4σstat,CMASS and on h with σsys = 0.006 ' 0.4σstat,CMASS, but we assume that at
such a low kmax they are due to a statistical fluctuation. At kmax = 0.25hMpc−1 we find
a large systematic error on ln(1010As) of σsys = 0.08, and a marginally important one at
kmax = 0.23hMpc−1.

On box D, we detect vanishing errors for Ωm and h at all kmax’s. On ln(1010As), we find a
theoretical systematic error that grows with kmax. It starts with σsys = 0.03 ' σstat,CMASS/5

at kmax = 0.15hMpc−1, then we find σsys = 0.05 ' σstat,CMASS/3 at kmax = 0.2hMpc−1

and becomes ∼ σstat,CMASS/2 at kmax = 0.23hMpc−1 and σsys = 0.1 ' 0.8σstat,CMASS at
kmax = 0.25hMpc−1.

When we combine the measurements of ABFG&D, we find on Ωm and h neglibly small sys-
tematic errors with respect to what we find in the data (σsys ≤ σstat,CMASS/5). On ln(1010As),
we find a large systematic error of σsys = 0.11 at kmax = 0.25hMpc−1, while we have
σsys = 0.07 at kmax = 0.23hMpc−1 and σsys = 0.05 ' 0.4σstat,CMASS at kmax = 0.15hMpc−1

and kmax = 0.2hMpc−1. Though the systematic error so detected in As at kmax = 0.20hMpc−1

is not completely negligible, we notice that it is the same already at kmax = 0.15hMpc−1,
so we assume that its detected magnitude is affected by a statistical fluctuation, and so we
neglect it and proceed with the analysis at kmax = 0.20 by assuming negligible systematic
error.

It is worthwhile to explain why the systematic error has in some cases decreased, after the
inclusion of the Planck sound horizon prior. This is naively surprising given the reduction in
the statistical error, which also affects the size of the smallest systematic error we can detect.
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The reason is explained by Fig. 11. In the absence of any prior, the theoretical systematic error
can be represented as a vector living in the space of the cosmological parameters that goes from
the true value to the average maximum likelihood point as obtained from the MCMC’s. σsys

for each parameter is nothing but the component of this vector in the corresponding direction
(taking also into account the uncertainty associated with the finite number of simulations
at our disposal). If we impose a prior, for example on the sound horizon at decoupling, the
likelihood is forced to have support only on a region that is narrower or equal to the one
without prior. Therefore, the resulting theoretical-systematic error that is obtained after
imposing a prior is equal to the one we have without any prior, projected to the region where
the prior has support. This reduces the systematic error, and, in general, it suggests that
great care should be used when estimating how the the systematic error changes after the
addition of priors.

These considerations suggest an effective way to include the theoretical error for a given kmax

without the use of simulations but taking into account the effect induced by the priors. One
could add to the EFTofLSS prediction evaluated at a given order, i.e. the model, a reasonable
expression for the functional form of a higher-order term, for example chigher(k/kNL)4P11(k),
whose amplitude is parametrized by a parameter, here chigher. Then one can run the MCMC
including the new contribution, with a prior on this parameter, here chigher, to be a number
of order one. One can then measure the resulting shift induced on the maximum likelihood
point for a cosmological parameter, and call that number the theory-systematic error. We
leave the development of this potential method to estimate the theoretical systematic error
to future work.

4.5 Inclusion of bispectrum

We now discuss the effect of the inclusion of the bispectrum monopole in the likelihood,
obtaining the likelihood given by eq. (75) in App. D. Here we use the Patchy mock catalogues
to test our analysis pipeline, as we have measurements of the bispectrum monopole only for
this kind of simulations.

We point out that, as discussed at the end of App. D, the application of the window
function to the bispectrum is done approximately, and this might induce additional systematic
error bars. In order to better limit the systematic error induced by the window function, we
analyze the bispectrum monopole including only triangles whose minimum wavenumber is
kmin = 0.04hMpc−1, and whose maximum one is either kmax = 0.08hMpc−1 or kmax =

0.1hMpc−1, adding 10 and 34 triangles, respectively. For the power spectrum, we use kmax =

0.23hMpc−1, when analyzed in combination with the bispectrum, though we noticed earlier
that in this case the systematic error might be marginally important 20.

When analyzing the Patchy mocks using the partially marginalized likelihood of eq. (75),
we obtain the results presented in Fig. 12. In the same figure, as we did in Sec. 4.2, we

20Since the theoretical error grows with kmax, and since we will have negligible systematic error on simula-
tion, this is justified.
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Figure 12: Marginalized posterior distributions of the cosmological parameters obtained from
fitting the power spectrum and the bispectrum monopole of 16 Patchy lightcones NGC (left,
thin lines) and their average (left, thick lines), and with the inclusion of Planck sound horizon
prior (right). We analyze the bispectrum either with kmax = 0.08hMpc−1 or with 0.1hMpc−1.
For each cosmological parameter, the expectation value of the product of the posteriors is
given together with the statistical error and the theory-systematic error (from top to bottom
in each subplot).

also plot the product of the 1-D posteriors, which is a non-rigorous procedure, given that
we should multiply the full posteriors, but we checked that, given our error bars, it is quite
a conservative procedure. We see that the error bars are reduced in a marginal way by the
inclusion of the bispectrum monopole both with and without the inclusion of the Planck prior.
We detect negligible systematic error upon the inclusion of the bispectrum monopole, though
it is barely so when the bispectrum is analyzed up to kmax = 0.1hMpc−1.

We also point out that the improvement in the determination of the EFT parameters is
limited. Comparing the statistical errors between the cases with and without the bispectrum
in Table 2, we see that we get a marginal improvement on As of about 10% and no improve-
ment on Ωm and h. Furthermore, we have checked that the improvement in the measurement
of the EFT-parameters is much more significant if one were to use larger priors for the same
parameters.

Our conclusions about the inclusion of the bispectrum are clearly limited by several factors:
the fact that we do not perform a high order calculation does not allow us to go to high
wavenumbers; our approximate implementation of the window function forces us to exclude
low wavenumbers. It would be interesting to improve in all of these aspects in future work.
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Figure 13: Best-fit power spectrum on measurements on (from top to bottom and left to right):
Challenge box A, Challenge box D and Patchy box 1; Challenge box B, F, G; and residuals. The
error bars represent the diagonal terms of the covariance. The χ2/d.o.f is respectively 1.72, 1.75 and
1.17 for the top row, and 1.72, 1.86, and 1.65 for the bottom row. We remind the reader that the
error bars of Challenge are about a factor of four smaller than the ones of Patchy or the observational
data we analyze.
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4.6 Summary of tests on simulations

We summarize the results of our tests on numerical simulations in Table 2. We find that we
can determine As, Ωm and h from the power spectrum data, with no significant role played
by other observational data. We also can measure several of the EFT parameters, allowing,
in principle, to learn about the galaxy formation mechanism.

We give in Table 3 the best-fit results from the fit of the power spectrum up to kmax =

0.2hMpc−1, from both the simulations and the BOSS DR12 data we analyze next. All
minimum χ2 per degree of freedom (min χ2/d.o.f.) give an acceptable p-value, attesting for
the goodness of the fit. The values of the EFT parameters are all of order of the linear bias
b1 (∼ O(2)), all lying well within the chosen priors for this analysis. We remind that the
Challenge boxes were run without shot noise, as this has been subtracted exactly from the
measurements. We provide in App. F the correlation of all parameters as well as their 2D
posterior distributions from the fits of the power spectrum of Challenge A and D. In Fig. 13 we
plot the best-fit model against the power spectrum measured from all simulations: Challenge
A, B, F, G and D and Patchy box 1. We do not notice any warning feature in the residuals.

ln(1010As) Ωm h

σstat σsys σstat σsys σstat σsys

Challenge ABFG 0.07 0.04 0.005 0.000 0.011 0.000

Challenge ABFG with rd 0.07 0.04 0.004 0.001 0.005 0.001

Challenge D 0.06 0.05 0.004 0.000 0.012 0.000

Challenge D with rd 0.05 0.07 0.003 0.000 0.004 0.000

Challenge ABFG & D 0.05 0.036 0.004 0.002 0.008 0.000

Challenge ABFG & D with rd 0.05 0.05 0.003 0.001 0.004 0.001

Patchy NGC 0.18 0.00 0.014 0.001 0.030 0.002

Patchy NGC with rd 0.16 0.00 0.013 0.000 0.014 0.000

Patchy NGC with Bisp. 0.15 0.04 0.014 0.000 0.029 0.002

Patchy NGC with Bisp. with rd 0.14 0.03 0.013 0.000 0.015 0.000

Table 2: Summary of the individual analysis over simulations up to kmax = 0.20hMpc−1 for the
power spectrum and up to kmax = 0.1hMpc−1 for the bispectrum monopole (in which case we use
the power spectrum up to kmax = 0.23hMpc−1). As explained in the text, we use a conservative
way to asses the systematic error, which is however limited to about σstat for Challenge boxes, to
σstat/

√
2 for the combination of all the Challenge boxes, and to σstat/4 for Patchy mocks.

The relative statistical error on the cosmological parameters on BOSS-NGC-like Patchy
mocks is about 18%, 4% and 4.4% for As, Ωm and h respectively at kmax = 0.2hMpc−1. The
inclusion of the bispectrum monopole reduces the error bars marginally. Upon inclusion of
the Planck prior on the sound horizon, the error bars are decreased by very roughy about
10%, 20% and 50% for As,Ωm and h respectively. We have argued that the systematic error is
always comfortably smaller than the statistical errors we will find in the observational data as
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Best fits
ln(1010As) Ωm h b1 min χ2/d.o.f. p-value

Challenge A 3.18 0.317 0.668 1.94 50/(38-9) 0.007

Challenge B 3.24 0.312 0.671 1.96 50/(38-9) 0.008

Challenge F 3.17 0.314 0.671 2.09 54/(38-9) 0.003

Challenge G 3.17 0.312 0.673 1.80 48/(38-9) 0.014

Challenge D 3.19 0.290 0.708 1.83 51/(38-9) 0.006

Patchy NGC box 1 3.12 0.304 0.698 1.82 68/(68-10) 0.18

data CMASS NGC 2.70 0.311 0.725 2.22 65/(68-10) 0.27

data CMASS SGC 2.98 0.306 0.670 2.06 60/(68-10) 0.41

data LOWZ NGC 3.24 0.312 0.638 1.73 69/(76-10) 0.40

data CMASS NGC with bisp. 2.73 0.303 0.686 2.31 103/(68+34-11) 0.18

c2/c4 b3 cct cr,1 (+cr,2) cε,1/n̄g cε,quad

Challenge A 1.0 -1.6 -0.7 -6.9 - -4.1

Challenge B 1.1 -2.0 -1.1 -8.6 - -3.9

Challenge F 1.1 -2.3 -2.2 -7.0 - -4.2

Challenge G 0.9 -1.8 1.1 -6.7 - -3.3

Challenge D 1.0 -1.5 -0.8 -7.3 - -3.6

Patchy NGC box 1 1.0 -1.2 0.2 -9.9 0 -1.5

data CMASS NGC 1.2 0.1 0.4 -7.7 0 -3.7

data CMASS SGC 1.2 -0.6 -0.1 -9.0 0 -1.1

data LOWZ NGC 1.0 -1.0 0.2 -10.3 0 -2.1

data CMASS NGC with bisp. 1.8/-0.5 0.2 -2.0 -9.5 0 -1.1

Table 3: Best-fit values and goodness of fit of the power spectrum up to kmax = 0.2hMpc−1, with
km = 0.7hMpc−1 and n̄g = {4.5, 4.0} · 10−4hMpc−1, respectively. The values of n̄g for Challenge
boxes is given in footnote 11. For b1 of challenge A, the true value of b1 is 2.04. For the observational
data, the bins below k . 0.07 are correlated, therefore the value of the χ2/d.o.f should be taken with
care. Performing a similar calculation for the data with the minimum wavenumber k = 0.05hMpc−1

still gives good values of the fit. Regarding the p-value of the Challenge boxes, we remind that they
have error bars roughly a factor of four smaller than the data we analyze in the observational data.
Fitting without imposing priors results into a p-value of ∼ 0.03 both for Challenge A and D, while
the EFT-parameters best-fit values are still of physical size. As we do not fit the hexadecapole in
this analysis, we set cr,2 = 0. Thus, its contribution (mainly in the quadrupole) is absorbed by cr,1,
which takes overall higher values about two times its natural size.
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long as kmax ≤ 0.2hMpc−1: . 1/4 ·σstat,CMASS x low−z from the Challenge boxes analyses for all
cosmological parameters, and on h . 1/4 · σstat,CMASS x low−z from the analyses of the Patchy
mocks (otherwise vanishing for the other cosmological parameters). These are negligibly small
as long as kmax ≤ 0.20hMpc−1, which we therefore will take as the maximum wavenumber
for our CMASS analysis.

We also observe how the statistical error decreases with kmax. Ideally, the errors should
decrease as k−3/2

max , but this is affected by the fact that some parameters are dominated by
the information in the BAO peak, which is already well measured at low kmax, as well as by
the fact that there are degeneracies with some cosmological and EFT parameters. Taking for
definiteness the power spectrum-only analysis of the Challenge ABFG boxes, we find that the
error decreases roughly as k−0.4

max , k−0.7
max and k−0.6

max , for As, Ωm and h, respectively 21. It would
be interesting to see how this scaling is modified if one adds higher n-point function in the
analysis without the limitation we described earlier for our analysis.

It is worth to finally notice that the EFTofLSS at one-loop order is able to fit accurately,
without introducing unacceptably large systematic errors, the power spectrum measured from
the challenge boxes, whose volume is sixteen times larger than the effective one of BOSS NGC,
up to kmax = 0.2hMpc−1. This is promising in light of the forthcoming large-size surveys.

21In order to check, at least partially, the correctness of our pipeline, we have performed a Fisher-matrix
study of the expected error bars on the parameters around the best fit point for the power spectrum analysis
for Challenge box A. We find results similar, though somewhat smaller than expected, to the ones we find
with the MCMC. We notice here that we also performed the same Fisher-matrix analysis around the best fit
point for the data, again finding compatible results to what we find with the MCMC.

We have also checked through the Fisher-matrix analysis that we obtain very similar error bars if we do
not include the AP effect in the Fisher forecast. This is consistent with the fact that the AP effect is just a
calculable geometric effect that relates how the Fourier-space power-spectra are obtained out of the sky map,
and therefore should carry no cosmological information. Indeed, if we analyzed directly the three-dimensional
information in the z-dependent angular correlation function, usually referred as C`(z, z

′), there would be no
need of the AP parameters and no information would be lost.

We use the same Fisher-matrix analysis to study the degradation of our error bars if we lower the kmax

of the analysis. In particular, we find from the Fisher-matrix analysis of the CMASS NGC sample that the
error bars on the parameters at kmax = 0.1hMpc−1 are worse than the ones at kmax = 0.25hMpc−1 by a
factor of 133%, 180%, and 92% for As, Ωm and h respectively. Maybe even more significantly, if we do not
fix ns and, for Ωb/Ωc, we rather put a prior on Ωb/Ωc of the order of four times the percentage error on Ωbh

2

obtained by BBN (which is about 20σ’s of Planck2018) [79], the expected error bars at kmax = 0.1hMpc−1

are increased by a factor of 3.7, 2.2, 4.2 for As, Ωm and h respectively, to roughly about 60%, 30% and 50%

for lnAs, Ωm and h respectively, for CMASS NGC, making the overall measurement scarcely significant. On
the other hand, as mentioned earlier, the relative degradation of the measurements when we loosen the prior
on ns and Ωb/Ωc is much smaller at the kmax’s of interest here.
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5 Analysis of the SDSS/BOSS data

5.1 Main results

Having successfully tested our pipeline with simulations, we are ready to apply the same
pipeline to the data. When we analyze the power spectrum only, we obtain the results shown
in Fig. 14, 15, 16, 17, 20 and 23. They correspond, respectively, to the analysis of the
CMASS NGC, CMASS SGC, CMASS NGC combined with SGC, LOWZ NGC, and finally
to the combination of these three data sets. When we apply the bispectrum, we obtain the
results presented in Fig. 22 and 19. The best-fit values for all parameters are given in Table 3
and the 68% confidence intervals for the cosmological parameters are given in Table 4. In
Fig. 18, we plot the best-fit power spectrum for CMASS NGC, CMASS SGC and LOWZ
NGC, against the BOSS DR12 measurement and the residuals. We provide the correlation
among all parameters and the full 2D posterior surfaces in App. F.

Let us give some details of the analysis that are specific to the observational data. For
the AP effect, we use Ωm = 0.310 and z = 0.57 for CMASS and z = 0.32 for LOWZ. Since
we know neutrinos have a mass, we analyze the data as done in Planck2018 by fixing one
massive neutrino at 0.06eV. When we fit the different data sets, we keep all EFT parameters
as independent. While this is completely justified as we go from the CMASS to the LOWZ
sample, as the z-dependence of the EFT parameters is unknown, in principle CMASS NGC
and SGC should have the same EFT parameters if they observe the same population of galax-
ies. However, following BOSS collaboration [25], we conservatively keep the bias parameters
separate because we wish to account for different selection criteria among the samples 22.

Our comparisons with numerical simulations have shown that we do not have any signif-
icant systematic error until kmax = 0.2hMpc−1 for z ' 0.55 (in reality, due to k-binning, we
will use kmax = 0.188hMpc−1 at z = 0.55, but we will refer to it as kmax = 0.2hMpc−1 for
simplicity). We will analyze also the LOWZ NGC sample, which is centered at z ' 0.32.
In order to establish until which wavenumber we can trust our LOWZ prediction, we rescale
the theoretical error as measured at z = 0.55 to z = 0.32, and compare it to the statistical
error of the data finding that we can fit the LOWZ data up to kmax = 0.18hMpc−1 (23). The
results at kmax = 0.20hMpc−1 for CMASS and at kmax = 0.18hMpc−1 for LOWZ should be

22We observe that, however, given our priors and the size of the error bars of CMASS, all EFT parameters
are statistically consistent between the CMASS NGC and SGC samples, as it is can be seen from the full 2D
posterior surfaces in Fig. 26. We show in an App. G the results on CMASS if the NGC and SGC samples
are analyzed using the same set of EFT parameters with the exception of the shot noise. We find that results
are quite consistent, with a very marginal reduction of the error bars by about 10%, and, as we will see, most
significantly a slightly larger value of As by about half a statistical error.

23In detail, we use the following procedure. The limitation in the k-reach of the EFTofLSS is given by
the first order in the perturbative expansion that we do not compute. In our case, this is the two-loop
contribution. As a function of z, this contribution scales with good approximation as D(a)6P11(k) (k/kNL)

2.4,
where we used the fact that, very approximately, the linear power spectrum goes as k−1.8 in this range of k’s.
At z = 0.55, our comparison with simulations establishes that the theoretical error is a significant fraction of
the error bar of the data, σdata(k, z), at kmax = 0.2hMpc−1, which allows us to set the normalization of the
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ln(1010As) Ωm h

CMASS NGC 2.60± 0.18 (+0.17
−0.18) 0.309± 0.013 (+0.013

−0.012) 0.722± 0.032 (+0.034
−0.030)

CMASS NGC with rd 2.67± 0.17 (+0.17
−0.17) 0.304± 0.012 (+0.012

−0.011) 0.684± 0.013 (+0.013
−0.013)

CMASS SGC 2.75± 0.27 (+0.26
−0.27) 0.302± 0.023 (+0.022

−0.023) 0.658± 0.045 (+0.050
−0.041)

CMASS SGC with rd 2.71± 0.26 (+0.25
−0.26) 0.306± 0.022 (+0.022

−0.022) 0.681± 0.024 (+0.026
−0.023)

CMASS NGC x SGC 2.65± 0.15 (+0.14
−0.15) 0.307± 0.011 (+0.011

−0.011) 0.703± 0.026 (+0.027
−0.025)

CMASS NGC x SGC with rd 2.68± 0.14 (+0.14
−0.14) 0.305± 0.010 (+0.010

−0.010) 0.684± 0.012 (+0.012
−0.011)

LOWZ NGC 2.93± 0.28 (+0.28
−0.29) 0.319± 0.024 (+0.025

−0.023) 0.622± 0.043 (+0.047
−0.039)

LOWZ NGC with rd 2.88± 0.27 (+0.27
−0.28) 0.327± 0.023 (+0.024

−0.022) 0.659± 0.024 (+0.024
−0.023)

CMASS NGC x SGC x LOWZ NGC 2.72± 0.13 (+0.13
−0.13) 0.309± 0.010 (+0.010

−0.010) 0.685± 0.022 (+0.023
−0.021)

CMASS NGC x SGC x LOWZ NGC with rd 2.73± 0.13 (+0.12
−0.13) 0.309± 0.009 (+0.010

−0.009) 0.678± 0.011 (+0.011
−0.010)

Table 4: 68% confidence interval for the cosmological parameters from the individual analyses over
the CMASS sample and LOWZ NGC sample of the BOSS data up to kmax = 0.20hMpc−1 for the
power spectrum of CMASS, up to kmax = 0.18hMpc−1 for the power spectrum of LOWZ.

considered as our main results.

There are several features to discuss.

• Fitting the power spectrum up to kmax = 0.20hMpc−1 for the CMASS sample and
kmax = 0.18hMpc−1 for the LOWZ sample, determines As,Ωm and h to about 13%,
3.2% and 3.2% respectively, as seen from Fig. 17. If we add the Planck prior on the
sound horizon, As,Ωm and h are determined to about 13%, 2.9% and 1.9%, respectively.
This is quite consistent with what we see in simulations. Especially, the statistical errors
on CMASS NGC are quite similar to the ones we find in Patchy mocks, see Fig. 14.

• The best fit model has a good p-value and the EFT parameters are well within what
is theoretically expected, see Table 3, and comparable to what we see in simulations.
From Fig. 18 we do not see any surprising feature in the comparison of the data to the
model.

• We obtain consistent constraints on the cosmological parameters from the power spectrum-
only analysis as we change the data set, with and without the inclusion of the Planck
sound horizon prior. The change in the statistical error as we include the Planck sound-
horizon prior is quite consistent with what we saw in simulations. More in detail, if we
look at Fig. 19, we can see that the 1-σ contours in the 2D posterior distributions for
both the cosmological parameters and the EFT-parameters intersect or barely miss to do
so, with CMASS SGC and LOWZ NGC having a very strong overlap. This consistency
remains true at the level of the 1D posterior distributions.

two-loop term. We therefore rescale accordingly the kmax by imposing the following equality to hold:

σdata(kmax(zlow), zlow) = σdata(kmax(zhigh), zhigh)
D(zlow)6

D(zhigh)6

P11(kmax(zlow))

P11(kmax(zhigh))

(
kmax(zlow)

kmax(zhigh)

)2.4

. (40)

We find kmax(zlow) ' 0.18hMpc−1.
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p-value of Planck 1σ value effective-σ’s from Planck

ln
(
1010As

)
Ωm h ln

(
1010As

)
Ωm h

CMASS NGC 0.02 1.00 0.18 2.3 0.0 1.3

CMASS NGC with rd 0.04 0.72 0.69 2.1 0.4 0.4

CMASS SGC 0.29 0.77 0.82 1.1 0.3 0.2

CMASS SGC with rd 0.21 0.93 0.92 1.3 0.1 0.1

CMASS NGC x SGC 0.014 0.91 0.37 2.46 0.1 0.9

CMASS NGC x SGC with rd 0.02 0.74 0.64 2.3 0.3 0.5

LOWZ NGC 0.96 1.00 0.33 0.1 0.0 1.0

LOWZ NGC with rd 0.73 1.00 1.00 0.3 0.0 0.0

CMASS NGC x SGC x LOWZ NGC 0.02 1.00 0.78 2.3 0.0 0.3

CMASS NGC x SGC x LOWZ NGC with rd 0.03 1.00 1.00 2.2 0.0 0.0

CMASS NGC with bisp. 0.014 1.00 0.14 2.46 0.0 1.5

CMASS NGC with bisp. with rd 0.02 0.60 0.58 2.3 0.5 0.5

Table 5: Value of the probability (i.e. p-value) for the closest 1σ value of the cosmological param-
eters as measured by Planck2018, with respect to the individual analyses of the BOSS data up to
kmax = 0.2hMpc−1 for the CMASS and LOWZ power spectrum, respectively, and kmax = 0.1hMpc−1

for the bispectrum monopole. We also include the effective number of σ’s such a p-value would cor-
respond to in a putative Gaussian distribution. We conclude that our results are consistent with
Planck2018, with the largest, very-mild, discrepancy present in ln(1010As) only in the case we in-
clude the bispectrum in the analysis.
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Figure 14: Marginalized posterior distributions of the cosmological parameters obtained from fitting
the power spectrum of the CMASS sample NGC (top) or SGC (bottom) at zeff = 0.55 without (left),
and with (right) the inclusion of Planck sound horizon prior (right). The green lines represent the
1-σ constraints from Planck2018 while the orange lines represent the constraints from WMAP9yrs.

46



CMASS NGC×SGC
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Figure 15: Marginalized posterior distributions of the cosmological parameters obtained from fitting
the power spectrum of the CMASS sample NGC×SGC at zeff = 0.55 (left), and with the inclusion
of Planck sound horizon prior. The green lines represent the 1-σ constraints from Planck2018 while
the orange lines represent the constraints from WMAP9yrs.

• In Fig. 17, we plot our results for the posterior distribution of the cosmological parame-
ters together with the 68% confidence interval from Planck2018 [83] and WMAP9yr [88].
We see that while our measurements are clearly less precise than the ones of Planck2018
for As and h, while the error bar is very similar for Ωm. Once we compare to WMAP9yr,
we find that the size of our error bars is similar for h and smaller for Ωm. Furthermore,
our error bar on h is only about 20% worse than the one obtained with strong lens-
ing [89] and with the latest Supernovae results [90]. Given that, roughly speaking, BOSS
is currently not the latest generation LSS experiment (in comparison with DES, DESI,
etc.) similarly to how WMAP is not currently the latest generation CMB experiment,
this comparison with WMAP9yr (and also with Planck2018) is highly suggestive and
bears lots of hopeful expectations for the potentialities of LSS science in the next decade
or two.

We remind the reader that the accurate modeling of LSS provided by the EFTofLSS has
allowed us to use all the relations among parameters implied by the ΛCDM cosmology
(such as for example the use of the transfer functions or the dependence of f on Ωm),
without the need to add some artificial free parametrization beyond the one provided
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LOWZ NGC
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Figure 16: Marginalized posterior distributions of the cosmological parameters obtained from fitting
the power spectrum of LOWZ NGC at zeff = 0.32, without (left) and with (right) the inclusion of
Planck sound horizon prior. The green lines represent the 1-σ constraints from Planck2018 while the
orange lines represent the constraints from WMAP9yr.

by the EFTofLSS. In this sense, our analysis is identical to the standard CMB ones,
such as those of WMAP and Planck.

• As can be seen from Fig. 17 and Table 5, without the inclusion of the Planck prior on
the sound horizon, the preferred values of the cosmological parameters are in statistical
agreement with the ones measured from Planck2018.

Our value of ln(1010As) is slightly, 2.3σ, lower than the one measured in Planck2018,
while the values of Ωm and h are extremely consistent with CMBmeasurements. Though
statistically non-significant, the trend we see in our results is in accordance with trends
found in other LSS measurements (see for example results from the DES collabora-
tion [87]). For BOSS, this is in the same direction as the measurement of fσ8 from of
the high redshift bin [23]. By looking at Fig. 19, we see that, in the 2D posteriors, the
push to lower values of As is driven by the CMASS NGC sample.

• As expected, the central values of the posterior distribution for the cosmological param-
eters is slightly pushed towards Planck2018 values when we add the Planck prior on the
sound horizon. The compatibility with Planck2018 is similar to the case of no sound
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CMASS NGC × CMASS SGC × LOWZ NGC
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Figure 17: Marginalized posterior distributions of the cosmological parameters obtained from fitting
the power spectrum of the CMASS sample NGC and SGC at zeff = 0.55 and LOWZ NGC at z = 0.32,
with (top) and without (bottom) the inclusion of the Planck sound horizon prior. In each plot, on
the top row, we use kmax = 0.20hMpc−1 for CMASS and kmax = 0.18hMpc−1 for LOWZ. On the
bottom row, we use kmax = 0.23hMpc−1 for CMASS and kmax = 0.20hMpc−1 for LOWZ. The green
lines represent the 1-σ constraints from Planck2018 while the orange lines represent the constraints
from WMAP9yrs.

horizon prior.

• The derived quantity fσ8 at z = 0 from our analysis of the power spectrum up to
kmax = 0.20hMpc−1 for CMASS and up to kmax = 0.18 for LOWZ NGC reads: f(z =

0)σ8(z = 0) = 0.363 ± 0.026. If use only the CMASS sample, we obtain the constraint
on this quantity at z = 0.55 to be f(z = 0.55)σ8(z = 0.55) = 0.399± 0.031. We remind
the reader that this is a derived quantity for us, as, since we assume ΛCDM and all the
relations implied by that, our natural parameters as As, Ωm and h. The measurement
does not improve significantly if we add the Planck prior on the sound horizon. Our
statistical error is roughly 20% better than the bound obtained by the final BOSS power
spectrum analysis in [69, 25], f(z = 0.57)σ8(z = 0.57) = 0.444± 0.038, and our central
value is a bit lower, though in a statistically compatible way. We plot the 2D posterior
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Figure 18: Best-fit CMASS NGC (left) and CMASS SGC (center) and LOWZ NGC (right) power
spectrum up to kmax = 0.2hMpc−1 for CMASS and kmax = 0.20hMpc−1 for LOWZ and residuals.
The error bars represent the diagonal terms of the covariance. Notice that the bins below k ' 0.07

are highly correlated as the binning is smaller than the fundamental mode of the survey. The χ2/d.o.f

is 1.10 for NGC, 1.02 for SGC and 0.85 (p-value ' 0.88) when combined, while 1.10 for LOWZ NGC.
When we combine CMASS and LOWZ NGC, the χ2/d.o.f is 0.85, corresponding to a p-value of
' 0.92. We stress that given the correlation of the low-k points, the interpretation of the χ2 and the
p-value should be taken with care.

distribution for h and fσ8 in Fig. 21. In the same figure, we also plot the 2D posterior
distribution for Ωm and the quantity S8 = σ8 (Ωm/0.3)0.5. The 1D posterior distribution
reads, at z = 0, S8 = 0.704 ± 0.051 and is lower than the one of DES1Yr [87], though,
again, in a statistically very compatible way.

• Finally, when we include the bispectrum monopole in the analysis of CMASS NGC,
we find the results presented in Fig. 22 and 23. As from Table 3, the p-value of the
best fit is 0.29. The values of the EFT-parameters and of the residuals, that we do not
show to avoid clutter, do not show any particular feature. The bispectrum monopole
brings no significant statistical improvement on our results, quite consistent with what
we saw in the Patchy mocks. The marginality of the improvement could be originating
from several limitations in our bispectrum analysis that we mentioned in Sec. 4.5. We
therefore do not use these data in our final constraints, though we here highlight its
importance as a complementary statistical probe.
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Figure 19: 2D posterior distributions of the cosmological parameters ln(1010As), Ωm, and h, and
the EFT-parameters b1 and c2, obtained from fitting the CMASS NGC and SGC, and the LOWZ
NGC power spectra up to kmax = 0.2hMpc−1. We can see the determination of the cosmological
and the EFT parameters, as well as the consistency of NGC and SGC data sets.

• We finally note that the unprecedented precision of these measurements, as well as
the breaking of previously unbroken degeneracies, should warn us against possibly yet
unmeasured observational systematics. Though we find no issues on the theory side
and in the comparison with the simulations, we make no assessment of the potential
observational systematics that could have become relevant. To fully trust our findings,
a reassessment of the observational systematic error is quite required.

5.2 Neutrino mass

We conclude the section on data analysis by highlighting an important fact that is shown by
our analysis. It is well known that the leading effect of the non-vanishing of the neutrino
masses is to induce a damping in the amplitude of the evolved power spectrum at distances
shorter than the free-streaming scale of the neutrinos. Since it is in general believed to be
hard to obtain a measurement of As and Ωm from the clustering power spectrum alone, in
order to detect the value of the neutrino masses from the analysis of this observable, it is
therefore generically assumed that one has either to detect the step in the power spectrum
induced by neutrinos, or to measure As (or equivalently Ωm) using some other observable (for
example, CMB, lensing, cluster abundance, etc.). In our analysis, we have seen that we can
measure As, Ωm and b1 directly using only the clustering power spectrum. This clearly adds
additional constraining power, as we are going to show.
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Figure 20: 2D posterior distributions of the cosmological parameters ln(1010As), Ωm, and h obtained
from fitting the CMASS and LOWZ NGC power spectra up to kmax = 0.2hMpc−1 and kmax =

0.18hMpc−1 respectively (left), and with the inclusion of the sound horizon prior (right), together
with the same quantities from Planck2018 [83] and DES1Yr [87]. We can see the consistency with
Planck2018.

An analysis of the neutrino masses in BOSS data goes beyond the scope of the current
paper, and we leave it to future work [72]. As a proof of principle and to show the potential
power of using the EFTofLSS to detect neutrino masses, here we perform an analysis in
flat ΛCDM with non-vanishing neutrino masses: we fix all the cosmological parameters to
Planck2018, and fit the data by varying the mass of neutrinos, assuming normal mass hierarchy
for definiteness.

At the level of the EFT model, we do not implement the rigorous derivation of the neutrino
effects developed in [7], but rather simply perform the EFT computation described in Sec. 2
using the linear power spectrum produced with such neutrino spectrum. Such an analysis
has several shortcomings: the dark matter and neutrino clustering could be computed more
accurately, we should allow the galaxy clustering to independently depend on the neutrinos
overdensity, we should properly account for the k-dependence of the growth factors in the
EFT-parameters (see for example [91]), one should impose Planck priors on the cosmological
parameters, rather than fix them to the most likely ones from Planck2018. However, the
effect we include should be the leading one [7]. We stress instead that it is acceptable to
impose the Planck priors on all the cosmological parameters, as it is a fair assumption to
study first the physics that we are sure is present in the ‘standard cosmological model’, such
as flat ΛCDM with neutrino masses, and not to limit the power of such a ‘standard model’
analysis by looking at the same time for more exotic physics, such as dynamical dark energy.
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Figure 21: 2D posterior distributions of the cosmological parameters f(z = 0.55)σ8(z = 0.55) and h
obtained from fitting the CMASS power spectrum sample (left), and of S8 = σ8(z = 0) (Ωm/0.3)0.5

and Ωm obtained from fitting the CMASS and the LOWZ NGC sample (right). We also plot the 2D
posteriors for the same quantities from Planck2018 [83] and DES1Yr [87] and the 1D posterior for
fσ8 from BOSS CMASS sample [69]. We find that the results are consistent.

With all these caveats in mind, we show on the left of Fig. 24 the posterior distribution
for the sum of the neutrino masses and for As from the analysis of the power spectrum of
the CMASS sample of the BOSS DR12 data, for the analysis we mentioned earlier. We see
that we have quite a tight constraint on the measurement of the sum of the neutrino masses,
with error bars that are roughly comparable to the ones from Planck2018. Of course, given
that our preferred value of As is lower than Planck2018, we find a statistically-non-significant
preference for non-vanishing masses once we fix As to Planck2018. The origin of such a tight
error bar can can be traced back to the plot on the right of Fig. 24, where we plot the ratio
of the linear power spectra with and without neutrino masses, together with the error bars
of the monopole and the quadrupole. Given that As, h and Ωm are fixed, for given neutrino
masses, the monopole can be fitted by lowering b2

1. The amplitude of the quadrupole then
drops by b1, but once the drop is below the error allowed by the quadrupole, the chosen
neutrino masses are excluded. We indeed can see that as the sum of the neutrino masses is
above ∼ 0.26eV, the neutrino should begin to be excluded. This is indeed comparable to the
error bars we have in the data.

In summary, though we find no evidence of a non-vanishing neutrino mass, and with the
caveats that we described earlier in this section, we see a slight statistical preference for a
mass above the minimal one imposed by neutrino oscillation experiments once we fix As to
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Figure 22: Marginalized posterior distributions of the cosmological parameters obtained from fitting
the power spectrum and the bispectrum of the CMASS sample NGC (left), and with the inclusion
of the Planck sound horizon prior (right) .

the Planck2018 value. Most importantly, the error bars are quite tight: with some optimism,
a detection of the neutrino masses, using LSS, might be around the corner.
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Figure 23: 2D posterior distributions of the cosmological parameters ln(1010As), Ωm, and h,
and the galaxies biases b1 and c2, obtained from fitting the CMASS NGC power spectrum up to
kmax = 0.20hMpc−1, with and without the bispectrum monopole up to kmax = 0.1hMpc−1, and
with and without the Planck sound horizon prior. This plot highlights the contribution of the
various data sets.

6 Conclusions

We have used the predictions from the Effective Field Theory of Large-Scale Structure
(EFTofLSS) to analyze the data from the DR12 BOSS CMASS and LOWZ samples. In
ΛCDM, by fixing Ωb/Ωc and ns to the best fit values of Planck2018, we have analyzed first
the power spectrum up to kmax = 0.2hMpc−1 for the CMASS sample and up to kmax =

0.18hMpc−1 for the LOWZ sample, finding that we can measure As, Ωm and H0 to about
13%, 3.2% and 3.2% respectively. We have then added the Planck prior on the sound horizon,
finding that this further improves the constraints to about 13%, 2.9% and 1.6% respectively.
We have also included the data on the bispectrum monopole, finding a limited further im-
provement on the measurement of As. We have performed extensive checks with numerical
simulations, that include several different HOD models, finding that the theoretical systematic
error of the EFTofLSS is negligibly small. We have also performed a careful implementation
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Figure 24: Left: Posterior distribution for the sum of the neutrinos in normal hierarchy, obtained
from fitting the CMASS NGC, SGC and NGCxSGC power spectrum up to kmax = 0.2hMpc−1,
and by fixing all the remaining cosmological parameters to Planck2018. Right: Ratio of the linear
power spectrum with and without neutrino masses, as a function of the sum of the neutrino masses
in normal hierarchy. We see the step in the linear power spectrum. We also plot the monopole and
quadrupole errors in red dashed and black dotted respectively. For fixed cosmological parameters,
we expect a value of

∑
imνi to be detectable once the drop in the power spectrum is below the error

from the quadrupole, suggesting
∑

imνi ∼ 0.25eV should be detectable.

of the window function and fiber collision effects, as well as studied the redshift selection
effects, concluding that they do not induce any residual sizable systematic error. We have
confirmed this conclusion using simulations that include these observational effects.

The analysis of the BOSS data using the EFTofLSS has required us to develop some
interesting technical implementations. For example, we have developed a numerically-non-
demanding way to apply the survey window function directly in Fourier space (as the standard
procedure of applying it in real space was numerically challenging due to peculiarities of the
observables in the EFTofLSS) 24; to reduce the number of parameters to be explored in the
MCMC, we have marginalized analytically over some of the EFT parameters that appear
linearly in the power spectrum.

It appears to us that these measurements, that were enabled by the EFTofLSS, represent
a very substantial qualitative and quantitative improvement of former analyses of redshift-
clustering data. In fact, these parameters were never measured individually, and in such an

24See also [92] for a different numerical implementation.

56



accurate way. If confirmed, our results suggest that the Large-Scale Structure (LSS) of the
Universe might contain much more exploitable cosmological information than previously be-
lieved. They therefore open up some research directions that we now briefly highlight.

On the side of the EFTofLSS and of the numerical simulations, we point out the following
interesting research avenues that could be pursued:

• Our analysis is limited by the order at which we have performed our calculation. Here
we have used the one-loop power spectrum and the tree-level bispectrum. It would
be useful to go to the next perturbative order in both these observables, as well as to
compute the trispectrum. This would allow us to additionally increase the accuracy of
our predictions, as we mention briefly in the main text.

• By the use of simulations, the theory systematic error has been measured to be small
up to the kmax at which we have stopped the analysis, and we have therefore simply
neglected it. It would be desirable to account for it in a more systematic way, either
within the EFTofLSS itself (as we have highlighted in the main text), or by using more
accurate and precise simulations.

• Notwithstanding the presence of many EFT parameters, our result show the great con-
straining power provided by the EFTofLSS. In this paper we have made no use of simu-
lations to determine any prior about the EFT parameters. Simulations have been used
only to estimate the theoretical systematic error. However, our statistical errors would
be much smaller if we had stronger priors on the EFT parameters. We have checked that
if we were to put a 15% prior on b1, and more stringent priors on the EFT-parameters,
our error bars would shrink. It would be very useful if simulations could provide reliable
priors of this order. For example, one could consider if it is possible to extend tech-
niques such as the ‘separate universe approach’ (see for example [93, 94, 95, 96, 97]) to
include galaxies in a reliable way. Similarly, one could consider to use the information
from physically-motivated phenomenological models, such as the very-well-known ‘halo
model’ (see for example [98]), to provide stringent priors on the EFT parameters.

• We have highlighted how the measurement of the galaxy-bias coefficients (and more
generally of the EFT parameters) that we can perform, could in principle allow us to
determine the galaxy formation mechanism in the LSS. It would be interesting if a
mapping between galaxy formation models and EFT parameters were to be performed.

• Our measurements are statistically compatible with the ones from Planck2018 [83], with
a slight lower value for As. It would be interesting to see if this extremely mild tension
can be ameliorated, for example, by including curvature or an equation of state for dark
energy (i.e. ΩK 6= 0 or w 6= −1), or allowing the mass of the neutrinos is larger (see [72]).
Of course, we should not forget that these tensions are not statistically significant, but
however go together with a general trend observed in analysis of other LSS data (see
for example results from the DES collaboration [87]).
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On the side of observations, we highlight a few interesting improvements and directions
that could be pursued:

� In the EFTofLSS, several n-point functions, with n > 2, are predicted using approxi-
mately the same parameters as the power spectrum. We have not analyzed any of them
beyond the bispectrum monopole, simply because we did not have such measurements
at our disposal. Given the opportunity provided by the EFTofLSS, it would be desir-
able if measurements of multipoles of higher n-point functions, such as, for example, the
bispectrum quadrupole or the trispectrum monopole, were available to us. The analysis
of these data is rather straightforward from the EFTofLSS point of view. Similarly, we
have not tried to optimize the analysis, for example studying the effect of the binning
of the data or the use of better estimators. Indeed, the main objective of this paper has
been to provide a first comparison of the EFTofLSS with data.

� Similarly, it would be interesting to repeat our analysis using the configuration-space
correlation function. In fact, the relatively-limited reach in kmax of the EFTofLSS at one-
loop forces us to neglect the signal associated to the BAO oscillations at wavenumber
higher than kmax. In fact, as already shown in [10], the BAO features can be accu-
rately reproduced in their entirety by the IR-resummed EFTofLSS. A configuration-
space analysis, or a modification of the current analysis in Fourier space, should allow
for this additional information to be used.

� Clearly, the fact that the EFTofLSS allows us to break degeneracies and measure sev-
eral cosmological parameters with such an accuracy requires that we re-asses the mea-
surement of the observational systematics. This is particularly true given the slight
disagreement with CMB experiments for the measurement of As, in particular when we
add the bispectrum measurements. We stress that this is very important to do to fully
trust our findings.

� Of course, it would be nice to apply our analysis to larger LSS surveys, such as DES,
DESI, eBOSS, Euclid, LSST, etc., as well as to intensity mapping experiments. Simi-
larly, it would be interesting to include the most common extensions to ΛCDM, such
as neutrinos (for which we presented a preliminary analysis), non-Gaussianities, Neff ,
curvature, etc., etc.. Overall, we have performed this first analysis of the BOSS data
using the EFTofLSS having in mind the current and next generation LSS surveys, and
more general cosmological parameters.

We leave all of this, and more, to future work, some of which is already in progress [72].
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A Galaxy kernels

We give the explicit expressions for the galaxy kernels appearing in the one-loop power spec-
trum and refer to [50] for details about their derivation. We choose to work in the basis of
descendants (this is the first complete set of bias coefficient for LSS, established in [9, 48] and
with some typos corrected in [49]; see [9, 48] for connection to former bases of bias coefficients,
as for example [52]). For the one-loop power spectrum and tree-level bispectrum, all kernels
can be described with 4 bias parameters bi.

The first and second order galaxy density kernel are:

K1 = b1, (41)

K2(q1, q2) = b1
q1 · q2

q2
1

+ b2

(
F2(q1, q2)− q1 · q2

q2
1

)
+ b4 + perm. . (42)

The galaxy velocity kernels Gn are simply the standard perturbation theory ones since the
galaxy velocity field follows the dark matter velocity field, up to higher-derivative terms which
are degenerate with other counterterms that appear in the renormalization of the redshift
space expression (see e.g. [15] for the expressions of Fn and Gn).

The third-order galaxy density kernel has a much more involved expression. However, for
the one-loop calculation, degeneracies appear in the one-loop diagram obtained from 〈δ(3)δ(1)〉,
when UV-divergences are removed and the integral over the angular coordinates is performed,
leading to the following simple expression:

K3(k, q) =
b1

504k3q3

(
−38k5q + 48k3q3 − 18kq5 + 9(k2 − q2)3 log

[
k − q
k + q

])

+
b3

756k3q5

(
2kq(k2 + q2)(3k4 − 14k2q2 + 3q4) + 3(k2 − q2)4 log

[
k − q
k + q

])
. (43)

B Evaluation of the loop integrals

We present two strategies to evaluate the loop integrals appearing in the galaxy power spec-
trum (5): a simple numerical one and an analytical one relying on the decomposition of the
linear power spectrum in log k-space.

For the numerical evaluation we adopt the IR-safe and UV-safe integrand version of the
22-diagram + 13-diagram [34], such that most of the (unphysical) divergences that are hard
to handle numerically are absent (see App. D of [50] for an explicit expression)26. To gain ad-
ditional computational speed, we calculate only their differences to a precomputed cosmology
[33]. The loop integrals are of the form:

Pn(k) =

∫
d3q

(2π)3
Pn,integrand(k, q), (44)

26The integrals are computed using the Cuhre routine of the CUBA library [104]. This cubature algorithm
happens to be very competitive in this low-dimension problem compared to Monte-Carlo algorithm such as
Vegas. As the integral over one angular coordinate can be calculated analytically, the integrals are only
two-dimensional.
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which can be calculated with respect to a reference cosmology:

P target
n (k) = P ref

n (k) + ∆Pn(k), (45)

where “target” and “ref” refer to a cosmology being evaluated and a fiducial (reference) cos-
mology, respectively. The difference ∆Pn(k) is the integral of the difference between the
reference and the target integrands:

∆Pn(k) =

∫
d3q

(2π)3

[
P target
n,integrand(k, q)−

(
Atarget
s

Aref
s

)2

P ref
n,integrand(k, q)

]
, (46)

where the ratio of the scalar amplitudes (Atarget
s /Aref

s )2 is inserted to rescale the amplitude of
the reference integrand to the target one such that ∆Pn(k) is as small as possible.

Once the loop integrals for a reference cosmology P ref
n (k) are precomputed to high-enough

precision, we are free to evaluate only the difference ∆Pn(k) instead of the full integral, to a
relatively low accuracy 27. This simple manipulation speeds up the computation by at least
a factor 2 without precision loss.

As we mentioned, following the procedure of [27, 34, 50], we make our integrals UV-safe,
by removing the UV-limit of the integrand. This contribution indeed, after integration, is
degenerate with the counterterms. This has the effect to make the integrals smaller, and so
easier to evaluate. It also diminishes the size of the ‘bare’ part of the counterterms, so that
they are, effectively, directly the renormalized ones, and therefore, expected to be of order
one.

One can also choose to evaluate the loop integrals on a set of complex power-law cosmolo-
gies produced by decomposing the linear power spectrum using an FFTLog algorithm [61].
This procedure has several advantages. First, the loop integrals in eq. (5) are analytic for
power-law cosmologies. In fact, they are formally equivalent to massless scalar propagator
loop integrals in quantum field theory. As such, all UV divergences are automatically removed
from the loop thanks to dimensional regularization and the counterterms needed to absorb
these divergences are assured to be order O(1). The second advantage is practical. The loop

27It can be shown that the allowed relative error ε∆ on the evaluation of ∆Pn(k) is inversely proportional
to its size:

ε∆ ≈
∣∣∣∣
P target
n (k)

∆Pn(k)

∣∣∣∣ εtarget , (47)

where εtarget is the required precision on the evaluation of P target
n (k). A close inspection of the integrals

involved in the 1-loop expression shows that the internal momenta that will contribute the most are of
order k. The kernels being independent of the cosmology, we can estimate the integrals as follows with the
corresponding linear power spectra evaluated at k:

∣∣∣∣
∆Pn(k)

P target
n (k)

∣∣∣∣ =

∣∣∣∣∣1−
(
Atarget

s

Aref
s

)2
∫
d3q P ref

n,integrand(k, q)
∫
d3q P target

n,integrand(k, q)

∣∣∣∣∣ ≈
∣∣∣∣∣1−

(
Atarget

s

Aref
s

)2(
P ref

11 (k)

P target
11 (k)

)2
∣∣∣∣∣ . (48)

This estimate has been shown to be good enough for the 2-loop matter power spectrum [33]. We thus
confidently use this estimate in our 1-loop calculation and choose ε∆ ≈ 5εtarget.
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integrals can be evaluate once and for all as they do not depend on the cosmology. Evaluat-
ing the loop integrals in eq. (5) at a new cosmology reduces to decomposing the linear power
spectrum in a sum of complex power-law cosmologies and a few matrix multiplications28.

For N sampling points, the linear power spectrum can be approximated using FFT in
log-space by:

P11(k) =

N/2∑

−N/2

cmk
ν+iηm , (49)

where

cm =
1

N

N−1∑

l=0

P11(k)kνl k
−iηm
min e−2πiml/N , ηm =

2πm

log(kmax/kmin)
. (50)

For −3 < ν < −1.5 the IR divergences in the loop cancel. Expanding the kernels in integer
powers of k2, q2 and |k−q|2, the loop integrals can be performed analytically on the power-law
cosmologies ηm. The 22-loop and 13-loop diagrams become simple matrix multiplications:

Pn,22(k) = k3
∑

m1,m2

cm1k
ν+iηm1 ·Mn,22

(
−ν+iηm1

2
,−ν+iηm2

2

)
· kν+iηm1 , (51)

Pn,13(k) = k3P11(k)
∑

m1

cm1k
ν+iηm1 ·Mn,13

(
−ν+iηm1

2

)
, (52)

where the matrix Mn,22(ν1, ν2) and the vector Mn,13(ν1) for each term Pn (which is either
of the 22 or the 13 form) in the decomposition of the kernels as induced by (10) can be
obtained by decomposing the kernels in power laws of momenta, and performing the resulting
momentum integral with the following expression:

1

2π3

∫
d3q

1

q2ν1 |k− q|2ν2
≡ 1

8π3/2
k3−2ν12

Γ(3
2
− ν1)Γ(3

2
− ν2)Γ(ν12 − 3

2
)

Γ(ν1)Γ(ν2)Γ(3− ν12)
. (53)

In our analysis, we have implemented both procedures for the evaluation of the integrals,
finding identical results for all practical purposes.

C IR-resummation scheme

The parameters parametrizing the tidal forces of long-wavelength modes k on the short-
wavelength modes and the effect of short-wavelength displacements are, respectively:

εδ< =

∫ k

d3q P11(q), εs> = k2

∫ ∞

k

d3q
P11(q)

q2
. (54)

Both of these scale as powers of k/kNL and are thus small: the perturbative expansion is
valid and the convergence is assured. However, long-wavelength displacements, which are
parametrized by:

εs< = k2

∫ k

d3q
P11(q)

q2
. (55)

28We acknowledge the use of the C++ library Eigen [105].
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are generically of order one. They can not be treated perturbatively and therefore need to be
resummed. We here follow the parametrically-controlled procedure developed in [29].

The IR-resummation in redshift space given in terms of multipole moments reads [53] (see
also [10]):

P `
n(k)|N =

N∑

j=0

∑

`′

∫
dk′ k′2

2π
M ``′

||N−j(k, k
′)P `′

n (k′)j, (56)

M ``′

||N−j(k, k
′) =

∫
dq j`′(k

′q)Q``′

||N−j(k, q), (57)

Q``′

||N−j(k, q) = i`
′
q2 2`+ 1

2

∫ 1

−1

dµk

∫
d2q̂ e−iq·k T0,r(k, q)× T−1

0,r ||N−j(k, q)P`(µk)P`′(µq),

(58)

where we denoted by ||N a quantity that is expanded up to order N in both εδ<, εs> and εs<,
while with |N a quantity is expanded up to the order N (loop level) in εδ<, εs> and all orders
in εs<29. T0,r(k, q) is given by

T0,r(k, q) = exp

{
−k

2

2

[
X1(q)

(
1 + 2fµ2

k + f 2µ2
k

)
+ Y1(q)

(
(k̂ · q̂)2 + 2fµkµqk̂ · q̂ + f 2µ2

kµ
2
q

)]}
,

(59)
where

X1(q) =
1

2π

∫ ∞

0

dk exp

(
− k2

Λ2
ir

)
P11(k)

(
2

3
− 2

j1(kq)

kq

)
, (60)

Y1(q) =
1

2π

∫ ∞

0

dk exp

(
− k2

Λ2
ir

)
P11(k)

(
−2j0(kq) + 6

j1(kq)

kq

)
, (61)

ji are the the spherical Bessel functions of type i and µk = k̂ · ẑ. Λir is the scale to which we
resum the linear IR modes, taken to be Λir = 0.066h Mpc−1 in this analysis.

The Q function can be approximated for efficient numerical evaluation [53]. The idea is to
expand the exponential in eq. (59) in powers of k2X1(µ2

k − 1/3) and k2Y1. Up to order 3 and
1, respectively, the convergence has been checked to be good enough for a 1-loop calculation.
Under this approximation, the integrals in eq. (58) can be done exactly, hence allowing a fast
numerical computation.

We finally perform another numerical improvement. As it is well known (see for example
the introduction of [10] and [39, 42]), the IR-resummation is trustable, in the sense that it
resums terms that are larger than the rest, only for as long as it acts only on the oscillating part
of the power spectrum. For this reason, we split the power spectrum at linear level and at loop

29The careful reader might have noticed that the integral in eq. (56) runs on the true non-distorted wavenum-
bers and not on the measured ones. Therefore one need first to expand the power spectrum in multipoles
without the AP effect, proceed to the IR-resummation scheme described here, then recombine the multipoles
into the resummed power spectrum, and finally expand it again in multipoles with the AP effect this time
included.
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level in a smoooth and an oscillating part. At linear level, the smooth part is defined with the
Eisenstein and Hu no-wiggle power spectrum [106], while the one-loop smooth part is defined
by performing the loop integrals with the Eisenstein and Hu no-wiggle power spectrum. The
oscillating part is what is left. Then, we act with the resummation matrices only on the
oscillating part of the linear and loop power spectrum. This approach has the advantage that
numerical inaccuracy in the resummation matrices and in the final resummation integral are
relegated to the oscillating part, which is small. However, it has some disadvantages, such as,
for example, the fact that whatever is oscillating and is accidentally included in the smooth
part, as the split in oscillating and non-oscillating part of the power spectrum is somewhat
arbitrary, is not resummed (see for example [41] for a accurate discussion about this). We
have checked that this numerically optimized procedure gives results that are practically
undistinguishable from the original one, for the error bars we are dealing with now.

The bispectrum should also in principle be resummed. However, given that we use the
tree level expression and we stop at rather long wavenumbers, where the errors from cosmic
variance are very large, we assume the effect of the IR-resummation can be neglected for the
bispectrum.

D Technical aspects of bispectrum likelihood

We first re-derive the formula analogous to section 3 with the inclusion of the bispectrum
in the likelihood and then briefly discuss the application of the window function. The full
covariance matrix can be decomposed into four blocks C−1

PP, C
−1
PB ≡ C−1

BP and C−1
BB, where P

and B stand for power spectrum and bispectrum, respectively. The full likelihood reads:

LFULL(d|{~Ω,~b}) = LPP(d|{~Ω,~b}) + LPB(d|{~Ω,~b}) + LBB(d|{~Ω,~b})

= Exp

[
−1

2
(P

(EFT)
`

(W )(k, {~Ω,~b})− P (d)
` (k)) · C−1

PP(k, k′)`,`′ · (P (EFT)
`′

(W )(k′, {~Ω,~b})− P (d)
`′ (k′))

]

× Exp
[
−(P

(EFT)
`

(W )(k, {~Ω,~b})− P (d)
` (k)) · C−1

PB(k, k′)` · (B(EFT)
0 (k′, {~Ω,~b}))− B(d)

0 (k′))
]

× Exp

[
−1

2
(B(EFT)(k, {~Ω,~b}))− B(d)

0 (k)) · C−1
BB(k, k′) · (B(EFT)

0 (k′, {~Ω,~b})− B(d)
0 (k′))

]
,

(62)

where on the second line we have the likelihood LPP(d|{~Ω,~b}) of the power spectrum only,
eq. (19), the third line represents the cross-likelihood LPB(d|{~Ω,~b}) of the power spectrum
and the bispectrum, and the fourth line is the likelihood LBB(d|{~Ω,~b}) of the bispectrum
only. The formulas with the explicit appearance of the window function and with the partial
marginalization for LPP(d|{~Ω,~b}) are given in section 3 and we do not repeat them here.
In this analysis, following [63], we apply the window function to the bispectrum in a rather
approximate way, where we apply the window function to each of the two power spectra
that appear in the tree-level expression in eq. (9). Such an approximate treatment should be
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sufficient given the large error bars of the data at large wavenumbers. Thus for LBB(d|{~Ω,~b})
the covariance matrix is unchanged while for the cross-likelihood, we have:

LPB(d|{~Ω,~b}) = Exp
[
−P (EFT)

` (k, {~Ω,~b}) · C−1
PB,W (k, k′)` · (B(EFT)

0 (k′, {~Ω,~b})− B(d)
0 (k′))

+ P
(d)
` (k) · C−1

PB(k, k′)` · (B(EFT)
0 (k′, {~Ω,~b})− B(d)

0 (k′))
]
, (63)

where
C−1

PB,W (k1, k2)` = W (k1, k
′)`′,`

† · C−1
PB(k′, k2)`′ . (64)

Similarly to the power spectrum, we can perform a partial marginalization over some
bias parameters. We now have ~b = {~bNG,~bG}, with ~bG = {b3, cct, cr,1, cr,2, cε,2, cε,3, cε,4} and
~bNG = {b1, b2, b4, cε,1}. Writing, in analogy to what we did for the case of the power spectrum
only:

P
(EFT)
` (k, {~Ω,~bG}) =

∑

i

bG,i P
(EFT)
`, lin, i (k, {~Ω,~bNG}) + P

(EFT)
`, const(k, {~Ω,~bNG}), (65)

B
(EFT)
0 (k, {~Ω,~b}) =

∑

i

bG,i B
(EFT)
0, lin, i(k, {~Ω,~bNG}) + B

(EFT)
0, const(k, {~Ω,~bNG}), (66)

we get:

LPB(d|{~Ω,~bG,~bNG}) = (67)

= Exp

[
−1

2

∑

ij

bG,iG2,ij({~Ω,~bNG})bG,j +
∑

i

bG,iG1,i({~Ω,~bNG}) +G0({~Ω,~bNG})
]
,

where

G2,ij = 2P
(EFT)
`, lin, i (k, {~Ω,~bNG}) · C−1

PB,W (k, k′)` · B(EFT)
0, lin, j(k

′, {~Ω,~bNG}) , (68)

G1,i = −P (EFT)
`, lin, i (k, {~Ω,~bNG}) · C−1

PB,W (k, k′)` · (B(EFT)
0, const(k

′, {~Ω,~bNG})− B(d)
0 (k′))

− P (EFT)
`, const(k, {~Ω,~bNG}) · C−1

PB,W (k, k′)` · B(EFT)
0, lin, i(k

′, {~Ω,~bNG})
+ P

(d)
` (k) · C−1

PB(k, k′)` · B(EFT)
0, lin, i(k

′, {~Ω,~bNG}), (69)

G0 = −P (EFT)
`, const(k, {~Ω,~bNG}) · C−1

PB,W (k, k′)` · (B(EFT)
0, const(k

′, {~Ω,~bNG})− B(d)
0 (k′))

+ P
(d)
` (k) · C−1

PB(k, k′)` · (B(EFT)
0, const(k

′, {~Ω,~bNG})− B(d)
0 (k′)), (70)

and

LBB(d|{~Ω,~bG,~bNG}) = (71)

= Exp

[
−1

2

∑

ij

bG,iH2,ij({~Ω,~bNG})bG,j +
∑

i

bG,iH1,i({~Ω,~bNG}) +H0({~Ω,~bNG})
]
,
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where

H2,ij({~Ω,~bNG}) = B
(EFT)
0, lin, i(k, {~Ω,~bNG}) · C−1

BB(k, k′) · B(EFT)
0, lin, j(k

′, {~Ω,~bNG}) , (72)

H1,i({~Ω,~bNG}) = −B(EFT)
0, lin, i(k, {~Ω,~bNG}) · C−1

BB(k, k′) · (B(EFT)
0, const(k

′, {~Ω,~bNG})− B(d)
0 (k′)) ,

(73)

H0({~Ω,~bNG}) = −1

2
(B

(EFT)
0, const(k, {~Ω,~bNG})− B(d)

0 (k)) · C−1
BB(k, k′) · (B(EFT)

0, const(k
′, {~Ω,~bNG})− B(d)

0 (k′)).

(74)

Defining Ta = Fa + Ga + Ha, the marginalized likelihood of the power spectrum plus
bispectrum is given by:

LFULL(d|{~Ω, bNG}) =

∫
dbG LFULL(d|{~Ω,~bG,~bNG})

= Exp

[
1

2
T1,i({~Ω,~bNG}) · T2({~Ω,~bNG})−1

ij · T1,j({~Ω,~bNG})

+T0({~Ω,~bNG})−
1

2
log
[
det
(
T2({~Ω,~bNG})

)]]
, (75)

where we dropped an irrelevant constant.
We finish by commenting on the application of the window function to the bispectrum

monopole. As mentioned, unfortunately, we do not have at our disposal an exact formula
for the application of the window function to the bispectrum, contrary to what we have in
eq. (20) for the power spectrum. Therefore, we use an approximate procedure that was used
in [26] and that we described above. It is unclear how accurate this procedure is, and, in order
to limit the systematic error induced by this approximation, we start analyzing the data for
the bispectrum at a minimum wavenumber kmin = 0.04hMpc−1. It would be preferable to
have a more accurate way to implement the window function. We leave this to future work.

E Sound horizon at decoupling

The sound horizon rd at decoupling at epoch zd reads:

rd =

∫ ∞

zd

cs(z)

H(z)
dz, (76)

where cs is the sound speed in the primordial photon-baryon plasma given by:

c2
s(z) =

c2

3

[
1 +

3

4

ρb(z)

ργ(z)

]−1

, (77)

where ρb and ργ are the enery density of baryons and radiation respectively. The integral
in (76) can be evaluated exactly as:

rd =
2c

H0

√
3RΩm

log



√

1 + zd +R +
√

(1 + zd)R
Ωrad
Ωm

+R

√
1 + zd

(
1 +

√
RΩrad

Ωm

)


 , (78)
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Table 6: Parameter Correlations Challenge D, kmax = 0.20

ln(1010As) Ωm h b1 c2 b3 cct cr,1 cε,quad

ln(1010As) 1.00 -0.10 -0.10 -0.89 -0.80 -0.01 0.09 -0.57 0.19

Ωm -0.10 1.00 0.34 -0.14 -0.02 0.40 -0.10 0.05 -0.25

h -0.10 0.34 1.00 -0.29 -0.15 0.50 -0.06 -0.02 -0.28

b1 -0.89 -0.14 -0.29 1.00 0.82 -0.13 -0.06 0.53 -0.06

c2 -0.80 -0.02 -0.15 0.82 1.00 -0.14 -0.33 0.16 0.05

b3 -0.01 0.40 0.50 -0.13 -0.14 1.00 0.03 0.07 -0.33

cct 0.09 -0.10 -0.06 -0.06 -0.33 0.03 1.00 0.25 0.15

cr,1 -0.57 0.05 -0.02 0.53 0.16 0.07 0.25 1.00 -0.69

cε,quad 0.19 -0.25 -0.28 -0.06 0.05 -0.33 0.15 -0.69 1.00

where R = 3
4

Ωb
Ωγ

, the normalized radiation density today is Ωrad =
[
1 +Nur

7
8
( 4

11
)4/3
]

Ωγh
2 with

Nur the number of ultra-relativistic species and Ωγh
2 = 2.47282 · 10−5, H0 is, as usual, the

Hubble constant at present time, and c is the speed of light.
When we use the Planck prior on rd, we use the following value from [83] Planck2018

TT,TE,EE+lowP+lensing (Table 2) to analyze the CMASS sample:

rd = 147.09 ± 0.26 Mpc, zd = 1059.94 ± 0.30, (79)

while for the simulations we use instead rd computed at their fiducial cosmology, Table 1, and
use the same error. In our analysis, we take zd at its fixed Planck fiducial value considering
that for the cosmologies under probe, rd(zd + σ(zd))− rd(zd − σ(zd)) < 0.2 σ(rd), and so the
effect is marginal.

F Correlation matrices

In Tables 6 and 7 we provide the correlation matrices for the parameters entering the likelihood
obtained by evaluating the non-marginalized posterior of the power spectrum. We present
results at kmax = 0.2hMpc−1 for Challenge Box D, and for the CMASS data. In Fig. 25
and 26 we plot the 2D posterior distributions for challenge D and for CMASS NGC and SGC.

G Joint-EFT analysis of CMASS NGC×SGC

For our main results, when analyzing the combination CMASS NGC and SGC, we conser-
vatively kept two independent set of EFT parameters between the two skycuts in the fit.
This is the same choice as done by the BOSS collaboration to account for different selection
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Table 7: Parameter Correlations CMASS NGC, kmax = 0.2hMpc−1

ln(1010As) Ωm h b1 c2 b3 cct cr,1 cε,1/n̄g cε,quad

ln(1010As) 1.00 0.08 -0.23 -0.90 -0.46 -0.18 0.12 -0.48 0.10 0.30

Ωm 0.08 1.00 -0.10 -0.13 -0.18 0.28 0.05 0.04 -0.05 -0.01

h -0.23 -0.10 1.00 -0.16 -0.13 0.40 -0.07 -0.11 -0.10 0.04

b1 -0.90 -0.13 -0.16 1.00 0.57 0.04 -0.10 0.49 -0.10 -0.31

c2 -0.46 -0.18 -0.13 0.57 1.00 0.14 -0.56 -0.21 -0.34 -0.11

b3 -0.18 0.28 0.40 0.04 0.14 1.00 0.02 -0.10 -0.01 -0.06

cct 0.12 0.05 -0.07 -0.10 -0.56 0.02 1.00 0.21 -0.08 0.12

cr,1 -0.48 0.04 -0.11 0.49 -0.21 -0.10 0.21 1.00 0.30 -0.67

cε,1/n̄g 0.10 -0.05 -0.10 -0.10 -0.34 -0.01 -0.08 0.30 1.00 0.02

cε,quad 0.30 -0.01 0.04 -0.31 -0.11 -0.06 0.12 -0.67 0.02 1.00

effects [25]. Here, we provide 1D marginalized posterior distributions of the cosmological
parameters in Fig. 27 if we choose to fit with one set of EFT parameters but the shot noises
for the whole CMASS sample. We find that the error bars on the cosmological parameters
are roughly improved by 10% at kmax = 0.23hMpc−1 with respect to the former case, and
the central values are shifting at most by about half a σstat. The minimum χ2/d.o.f. is 1.05.
From Fig. 26 we do not find evidence that the two samples NGC and SGC detect different
EFT parameters, but we cautiously opt for the most conservative choice of two independent
sets of parameters for our main results.
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