
Prepared for submission to JHEP

λφ4 in dS

Victor Gorbenko,a,b Leonardo Senatoreb,c

aInstitute for Advanced Study, Princeton, NJ 08540, USA
bStanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA
cKavli Institute for Particle Astrophysics and Cosmology, Physics Department and SLAC, Stanford
University, Menlo Park, CA 94025, USA

E-mail: gorbenko@ias.edu, senatore@stanford.edu

Abstract: We resolve the issue of infrared divergences present in theories of light scalar
fields on de Sitter space.

ar
X

iv
:1

91
1.

00
02

2v
1 

 [h
ep

-th
]  

31
 O

ct
 2

01
9

mailto:gorbenko@ias.edu
mailto:senatore@stanford.edu


Contents

1 Introduction 1

2 Strategy 6
2.1 Origin of the IR-divergences 6
2.2 Strategy: mode splitting, locality, classicality and the wave function 9
2.3 Reader’s guide 13

3 Perturbative calculation of the wave function 14

4 EFT for long modes 22
4.1 Continuity equation 22
4.2 Functional equation for long modes 23
4.3 Structure of the perturbative expansion: λ, ~, ∇, and δ 27

5 Single-point distribution 28
5.1 Equation for P1(φ1, t) 28
5.2 Leading equation 29
5.3 Non-equilibrium one-point distribution 32

6 Two-point distribution 33
6.1 Two-times distribution 33
6.2 Two-locations distribution, sudden perturbation theory 34

6.2.1 n-location distribution 40

7 Stability of rigid dS space and attractiveness of the Bunch Davies vacuum 43

8 Subleading-order calculations for λφ4 45
8.1 Subleading P1 45

8.1.1 φ -φ correlator 45
8.1.2 Subleading momentum 46
8.1.3 Subleading equation for the single-point distribution 48

8.2 Corrections to the Eigenvalues and large-distance correlators 50
8.3 Estimates of neglected corrections 51

9 Generic 2-point function and dS-invariance 55

10 Implications of thermality in the static patch 60

11 large-N 62

12 Outline of ~ corrections 64

– i –



13 Outline of gradient corrections 67

14 Summary and Outlook 69

A Wigner distribution and the phase space description of long modes 72
A.1 Phase space formalism 72
A.2 Wigner distribution for long modes 74

A.2.1 Time dependence of the moments 77

B Outline of finite δ corrections 77
B.1 Diffusion term including ΩΛ(t) 77
B.2 Remaining O(δ) corrections 79
B.3 Locality in space 80

C Fourier transform of the two-point distribution 84

D Distribution in the case of sharp window function 87

1 Introduction

The problem

The study of radiative corrections in spacetimes close to de Sitter space is extremely impor-
tant for several reasons. First, since inflation is believed to be the first cosmological phase
of the observable universe, we should understand its predictions at the quantum level, in
order to show the full consistency of the theory and of its inferred observable consequences.
In this sense, the study of radiative corrections is relevant to confidently connect inflation
and current observations. Second, at a more conceptual, but not less important, level, there
is the well-known difficulty of putting together gravity and quantum mechanics. While the
inadequacy of field theory to describe gravity at energies of order the Planck scale is what
has led to the development of String Theory, when we put together field theory and curved
spacetime we often encounter surprises also in the infrared, finding challenges for our un-
derstandings of the laws of physics in general. Renowned example of these challenges are
the black hole evaporation, from which the information problem arises, or the phenomenon
of eternal inflation, which leads to the problem of the landscape and the measure problem,
not to mention the interpretation of the de Sitter entropy.

In this paper, we will take Mpl → ∞, H = const limit, but, nevertheless, let us
first focus on inflation. A satisfactory understanding of the radiative corrections has been
reached in the case of single-field inflation or of multifield inflation where the additional
light fields that might be present are derivatively coupled 1. The main variable of interest,

1Depending on the topology of the moduli space, the case of derivatively coupled scalar fields might
have some strong coupling issues that appear only at non-perturbative level, and whose onset is at very
late times. This case was not covered in the former literature, but can be studied with the formalism we
develop here.
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out of which we compute correlation functions of observable quantities, is ζ. At quantum
level, ζ-correlation functions could receive many forms of corrections that could change its
functional form:

〈ζk1(t) . . . ζkn(t)〉 ⊃ a(t)n , (k L)n , log

(
k

a(t)H

)
, log(kL) , log(H(th.c.)/µ) , . . . ,

(1.1)
where a(t) is the scale factor, H(th.c.) is the value of the Hubble rate at the time of horizon
crossing for the modes of interests, µ is the renormalization scale and L is the comoving
size of the universe (i.e. the space slices of the 3+1-dimensional cosmological spacetime).
A first important paper by Steven Weinberg [1] has shown that a(t) could only appear
inside a logarithm. This dispenses of the first term in (1.1). A similar argument shows
that no factors of (k L) can appear but inside a logarithm. We give a simple derivation
of this fact in section 3. We are left with the three logarithms at the end of (1.1). The
last logarithm is the IR-limit of the logarithmic divergences that we find in Minkowski [2].
In particular, its form, which does not violate gauge invariance, dispenses of some earlier
results where the logarithmic divergence was claimed to take the form log(k/µ), in violation
of gauge invariance. Clearly, by choosing the renormalization scale close to the Hubble
scale, this radiative correction is perturbatively small. Next, Ref. [3, 4] showed at all
orders that log

(
k

a(t)H

)
is not present when the contribution of all the many diagrams is

included, while it is present when looking only at a (unphysical) subset of diagrams. Lastly,
factors of log(kL) do appear in correctly performed calculations [5], but Ref. [6] showed
that their form, which is constrained by diff. invariance [5], is such that all the infrared
dependence disappears once we compute physical observables. Therefore it appears that
radiative corrections in the case of single field inflation or when additional light fields are
present but are derivatively coupled, have been understood and shown to be satisfactorily
very small, at least as long as the curvature perturbation ζ is perturbatively smaller than
one.

It seems to us that the situation instead has not been settled for the case where during
inflation there are additional scalar fields that are light but not just derivatively coupled.
This case includes the one of spectators fields in de Sitter space. In this case, indeed, it has
been known for a long time (see for example [7, 8] and references therein) that in correlation
functions of these scalar fields there appears factors of log

(
k

a(t)H

)
that lead, at late time,

to a breakdown of perturbation theory:

〈φk1(t) . . . φkn(t)〉 ⊃ λ log

(
k

a(t)H

)
→ ∞ , (1.2)

where λ is some small coupling constant associated to a potential term. These large log-
arithms are believed to be associated to a physical effect, representing the build up of
non-linear effects at long times, which ultimately tell us that the asymptotic vacuum of
these field theories is non-perturbatively far from the free-theory Bunch-Davies vacuum.
Such a situation has lead to claims in the literature, most famously in [9] (see also [10–12])
that de Sitter space might be unstable at quantum level, its symmetries being spontaneously
broken, and ultimately the cosmological constant might be self-adjusted to zero. Clearly,
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the importance of the cosmological constant problem and of inflation demands this question
to be answered.

Summary of the main results

In this paper, we develop a rigorous formalism that allows us to compute correlation func-
tions of scalar fields in a perturbative expansion in small parameters, therefore with the
same accuracy as normal perturbative series in quantum field theory. We will work in the
rigid de Sitter limit. Focusing for simplicity on a theory with potential λφ4, we will develop
an equation that allows us to find a non-perturbative solution to the vacuum correlation
functions. The typical size of the fluctuations in this state is φ2 ∼ 1/

√
λ. We show how

we can consistently compute order by order corrections to the correlation functions in the
coupling

√
λ and several auxiliary parameters, ε, δ and ∆, and explicitly compute some

subleading in
√
λ corrections. The fact that our expansion parameter is

√
λ is another way

to see that we are expanding around a non-perturbative solution. Instead, the presence
of the auxilary parameters is artificial. The most important of them is ε. In fact, this
parameter represents the value of an artificial cutoff that we insert at scales much longer
than the de Sitter length, and that allows us to split the modes in ‘short’ and ‘long’. The
‘short’ modes are defined with a suitable infrared cutoff so that they do not experience
large radiative corrections in the infrared: their contribution to correlation functions can
be safely computed in ordinary perturbation theory. Instead, the ‘long’ modes are strongly
affected by the radiative corrections, and in order to solve for them, we develop a non-
perturbative treatment. The presence of the cutoff ε that allows us to focus only on long
modes is crucial for enabling us to develop such a non-perturbative equation. In fact, two
major simplifications come to our help. We can perturbatively expand in the smallness
of the gradients, that become irrelevant due to the presence of the de Sitter horizon, and
also in the semi-classicality of the long modes (we will later review that in de Sitter long
modes become more and more classical as they expand longer than the horizon). Both
these expansions are controlled by powers of ε. Clearly, the dependence on ε is artificial:
it will cancel order by order in perturbation theory, but it nevertheless gives us control
to solve our equations. Our non-perturbative equation is an equation for the probability
distribution of the long modes, and has a form similar, but with important differences, to
a Fokker-Planck equation. The “stochastic” nature of this equation is due to the fact that,
as time goes on, modes pass from being ‘short’ to ‘long’.

We stress that our formalism is rigorous: there is nothing that is dropped and that
is not recoverable in perturbation theory. In particular, nothing in the calculation is in-
herently stochastic, the probabilistic nature of correlation functions is the same as in the
ordinary quantum field theory. However, at zeroth order in all our expansion parameters,
our formalism reduces to the one famously introduced by Starobinsky in the 1980’s [13],[14].
We comment in the next subsection on comparison with the former literature.

The main purpose of the paper is to develop such a systematic formalism. Endowed
with this, we then compute several quantities of interest. Our formalism is such that
it is workless to obtain our results for a growing number of fields, but it requires more
and more labour to have a large number of spacetime points at which these need to be
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evaluated. Therefore, first, we compute correlation functions at coincidence, 〈φ(~x, t)n〉,
including the subleading correction in

√
λ. We show that the ε-corrections consistently

cancel at this order. Then, we compute several correlation functions at non-coincidence,
such that 〈φ(~x, t1)nφ(~x, t2)m〉, for H(t2− t1)� 1, 〈φ(~x1, t)

nφ(~x2, t)
m〉, for H|~x2− ~x1| � 1,

and, finally, 〈φ(~x1, t1)nφ(~x2, t2)m〉 in various kinematic regimes. This allows us to show
that perturbation theory is well defined and that there is an equilibrium state, i.e. an
attractor, where we can check that correlation functions are de Sitter invariant, i.e. the de
Sitter symmetry is non spontaneously broken by radiative corrections.

Though for cosmological observations we are interested in correlation functions among
spacelike separated points that are many Hubble lengths far apart, it is also interesting,
from a theoretical point of view, to consider correlation functions between points in the same
Hubble patch. While in our calculations we use the so-called FRW slicing of de Sitter, such
points can be described within a so-called static-patch set of coordinates. Upon rotation to
Euclidean time, it has been known for quite some time (see for example [15]) that correlation
functions should be thermal. In particular, they should obey the KMS condition [16, 17].
We explicitly verify that our correlation functions, in this kinematical regime, do indeed
satisfy the KMS condition. This is a rather non-trivial check because, in our formalism,
the KMS condition connects terms of the answer which are of different order in

√
λ.

We conclude by presenting another, apparently unrelated, reason for why the study
we are going to develop is important. In the case of single-field inflaton, all radiative
corrections have been proven by the references above to be small as long as ζ � 1. There is
one interesting radiative phenomenon that happens when ζ ∼ 1, even in the case of single-
field inflation. Indeed, as described in [6], the same coordinate transformation that removes
the dependence on the comoving size of the universe, L, changes the mapping between
comoving coordinates and physical distances in such a way that the physical volume covered
by a certain comoving distance is larger than what would be obtained in the mapping given
by the classical manifold (this is roughly the usual Volumephysical = e3Ne∆x3

comoving, with Ne

being the number of e-foldings from horizon exit to the end of inflation). In practice, after
a certain comoving mode has exited the horizon, the many shorter modes that subsequently
exit the horizon before the end of inflation lead to an enhanced overall expansion of the
universe, even though the local expansion rate is not changed. This quantum enhancement
of the volume gives a relative correction of order ζ2 � 1 for ζ � 1. However, as we
make the inflationary potential flatter and flatter, and ζ ∼ H2/φ̇ becomes of order one,
this enhancement of the volume become non-perturbatively under control. Ref.s [18–21]
were able to study this non-perturbative regime and in particular to show that, as the
inflationary potential is flattened and ζ approaches one, the quantum enhancement of the
volume at the end of inflation grows and there is critical value beyond which the probability
to generate an infinite inflationary volume passes from being zero to non-zero. This highly
non-perturbative phenomenon where quantum effects completely change the asymptotics
of the spacetime and make the spacetime manifold stochastic on the largest distances is
what is called slow-roll eternal inflation (see for example [22]). Ref.s [18–21] provided a
first gauge-invariant, quantitative understanding of this phenomenon. For example, they
also found that, whenever the volume is finite, there is a sharp, universal, bound to the
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maximum finite volume that inflation can produce, and that this bound is related to the de
Sitter entropy. However, all of these results were obtained by using Starobinsky’s stochastic
approach to treat quantum corrections in inflationary spacetimes which was simply assumed
to be correct. Since, as we mentioned, we will derive a systematic method that, at leading
order in the coupling constants and ε, δ and ∆, reduces to the one of Starobinsky used
in [18–21], our results will also automatically provide the missing link to obtain a rigorous
establishment of slow-roll eternal inflation.

Comparison with former literature

Obviously, our work strongly relies on the former work by Starobinsky and collaborators [13,
14, 23] (see also [22]), which deserves a lot of credit. However, it is very unclear if the
problem of the IR-divergences can be declared to have been solved until we can actually
compute any corrections to the leading answers 2. In a sense, we show in which sense
Starobinsky’s original intuition was ultimately correct: Starobinsky’s equations for the
classical probability distribution represent the zeroth order truncation in the parameters
and

√
λ, ε, δ and ∆, of some more general equation (that we derive for the first time)

for the probability distribution of the fields. We establish that by iterating in
√
λ and

other parameters the answer reaches arbitrary precision (at least in the sense of asymptotic
series). The fact that the rigorously-established formalism that we develop here has, as
we will see in detail, multiple new ingredients with respect to the ‘Starobinsky’ equation
provided in [14, 23] shows that the formalism provided in [14, 23] was not complete.

For the same reasons, before our work, it was unclear, at least to us, if the stochastic
approach could provide a formalism that was not just order-one correct, but could provide
an answer to arbitrary precision. Indeed, for this to be the case, as we show in this paper, it
is necessary to include the short-wavelength component of the fields, a component which was
never not-even mentioned in the literature, as well as a careful treatment of the momentum
of the field.

However, several ingredients that appear in our formalism had already appeared in sev-
eral earlier works, see, for example, [24–27]. Ref.s [28–30] embark into a rigorous derivation
of the Stochastic approach. Though the general philosophies are similar, the resulting for-
malism does not appear to us to have been developed in any level of detail beyond the one
necessary for reproducing the leading order equation that reduces to Starobinsky’s. Wher-
ever it would be easy to compare, that is with the expressions of the subleading corrections
to correlation functions of φ, or with the explicit expressions of the equations to solve for,
in [28–30] these have not been computed, with the exception of the case of the free massive
field.

We also mention a few other approaches and results. Ref. [31, 32] considers an O(N)

symmetric model of N scalar fields, and is able to solve for the two-point function at
leading order in

√
λ and subleading in 1/N . Ref. [7, 8] develop and employ dynamical-RG

equations, which however only partially ameliorates the problem, as the authors themselves
recognize. Ref. [33] explicitly checks that the Stochastic equations of [14, 23] agree with

2We thank an anonymous appreciated colleague for words of this meaning.
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the leading-in-λHt IR-divergences, with t being time and H being the Hubble rate, that
are found in calculations from standard quantum field theory methods. Ref. [34–36] argues
that these IR-divergences are present even for heavy fields, once we go to high-enough order
in perturbation theory.

Euclidean-space approach: We conclude this section by offering a comparison with
the literature that attacks the problem of the IR-divergences in de Sitter space by computing
correlation function directly in the Euclidean rotation of de Sitter space, which is a four-
sphere. We find that none of the attempts that we are going to list below address or solve
the problem. Let us go in order. Ref. [37–39] shows that, if the field has a finite mass,
then the loop diagrams are IR-finite: they do not grow with time. In our opinion, this
does not address the main issue: even though the loop diagrams are IR-finite, they scale as
powers of λH4/m4 (see for example [8, 40]), so, for sufficiently small masses (m2 .

√
λH2),

perturbation theory is ill defined. Indeed, our results show that for masses in this range
the actual solution is non-perturbative.

An attempt to address the relevant issue of the case where the mass is small enough
so that perturbation theory breaks down in Euclidean signature has been started by [41],
which correctly emphasized that the zero-mode on the Euclidean four-sphere is strongly
coupled. Indeed, as further developed in [42], the non-perturbative treatment of the zero
mode makes Euclidean space correlation functions well behaved. However, as somewhat
anticipated already at the end of [42], and very clearly and explicitly explained in [43–45],
this treatment is not sufficient to make the correlation functions well behaved once they
are rotated back to Lorentzian space. In other words, upon rotation back to Lorentzian
space of the correlation functions obtained in Euclidean space in this way, one still has IR
(specifically secular) divergences for the same small enough masses. In order to address
these issues, Ref.s [43–45] realize that they need to resum infinite serieses of diagrams. To
proceed, they focus on an O(N) symmetric model of N scalar fields, and develop a double
expansion in

√
λ and 1/N . At each order, a new infinite series of diagrams needs to be

resummed. Though this research direction is interesting and well founded, it still needs
to be fully developed to reach results beyond the leading order. To enable comparison, in
section 11 we apply our formalism to the large-N theory and obtain explicit results for the
two-point functions at leading order in 1/N and to subleading order in

√
λ.

2 Strategy

2.1 Origin of the IR-divergences

It is useful to start by stating the problem and explaining its origin, so that we will be able
to highlight the main strategy with which we are going to address it. Consider massless,
λφ4 in dS, and restrict to the Poincaré patch, which we describe in FRW slicing 3. If one

3Of course setting the mass exactly to zero in an interacting QFT without a shift symmetry is not a
well-defined procedure. What we mean is that we set the mass to be relatively small (m � H) at energy
scales of order Hubble. Since the theory is weakly coupled at this scale this is well-defined, moreover all
our logic generalizes trivially to arbitrary potentials, in particular to those with larger masses.
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computes the in-in two-point functions with the usual quantum field theory formalism (see
for example [2]), one finds that at one-loop the result is both secular and IR-divergent:

〈φ~k(t)φ~k′(t)〉
′ ∼ H2

k3

(
1 + λlog

(
k

HeHt

)
log
(
kHeHtL2

))
, (2.1)

where 〈. . .〉′ means that we dropped the momentum conserving δ-function and where we
dropped the numerical coefficients. Here H is the de Sitter Hubble rate, t is the time of
the FRW slicing, and L is the comoving IR-cutoff. Clearly, at late enough times, or large
enough L’s, the perturbative calculation breaks down. This result has been obtained for
example by [7, 8], where however we replaced the IR cutoff there, which is fixed in physical
coordinates, with one that is fixed in comoving coordinates 4.

It is particularly enlightening to see the emergence of the secular divergence in a familiar
context. It will turn out that the IR divergence ultimately has the same physical origin.
Consider, to start, a free massive field. Its two-point function can be found exactly, and
gives:

〈φ~k(t)φ~k′(t)〉
′ =

π

4

e−3Ht

H

∣∣∣∣H(1)

ν=
√

9/4−m2/H2

(
k

aH

)∣∣∣∣2 . (2.2)

This expression is not secular divergent, and it actually goes to zero at late times. However,
this limit is very different from the same limit for a massless field, which goes to a constant:
the effect of the mass is large at late times. In fact, if we Taylor expand the above expression
in m2/H2 � 1, we obtain

〈φ~k(t)φ~k′(t)〉
′ → H2

k3

(
1 +

m2

H2
log

(
k

a(t)H

))
, (2.3)

where we dropped order one numbers. This expansion in m2/H2 � 1 loses perturbative

control at late enough times that k
a(t)H . e−

H2

m2 .
Expression (2.3) is the same one that we would have obtained if we had treated the

mass as a small perturbation. Solving perturbatively the equation of motion for a massive
scalar field, and denoting by φ(0) and φ(1) respectively the zeroth and first order solution,
we would have obtained at late times when the mode is outside the horizon (i.e. k

aH � 1):

φ̈~k(t) + 3Hφ̇~k(t) +
k2

a2
φ~k(t) = m2φ~k(t) (2.4)

⇒ φ
(1)
~k

(t) ⊃
∫ t

k
a(t)H

∼1
dt′

1

3H
m2φ

(0)
~k

(t′) ∼ φ(0)
~k

(t)
m2

H2
log

(
k

a(t)H

)
,

where in the last passage we have focussed on the contribution from when the mode is
outside the horizon, and used the fact that a massless field is time-independent in this
regime. We see that we obtain the same secular divergence as in (2.1). The divergence is
associated to the fact that the leading order wave function is time-independent outside of
the Horizon, but the mass perturbation does not shut down in this limit.

4The result is not qualitatively changed if one chooses an IR cutoff which is fixed in physical coordinates,
as in [7, 8]: one still finds logarithmic IR and secular divergences.
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Indeed, we can check that this is the same phenomenon that happens in massless λφ4.
Solving perturbatively in λ, and again focussing on the contribution from times when the
mode is outside of the Horizon, we have

φ̈~k(t) + 3Hφ̇~k(t) +
k2

a2
φ~k(t) = λφ3(~k, t) (2.5)

⇒ φ
(1)
~k

(t) ∼
∫ t

k
a(t′)H∼1

dt′
1

3H
λφ(0)3(~k, t′) .

When we compute expectation values, we have (see Fig. 1 on the left)

〈φ~k(t)φ~k′(t)〉
′ ⊃ 〈φ(1)

~k
(t)φ

(0)
~k′

(t)〉′ ∼
∫ t

k
a(t′)H∼1

dt′
1

3H

〈
λφ(0)3(~k, t′)φ

(0)
~k′

(t′)
〉′

∼
∫ t

k
a(t′)H∼1

dt′
1

3H
λ
〈
φ(0)2(~k = 0, t′)

〉′ 〈
φ

(0)
~k

(t′)φ
(0)
~k′

(t)
〉′

∼ H2

k3
λlog

(
k

HeHt

)
log
(
kHeHtL2

)
, (2.6)

where we cutoff the integral in internal momentum in
〈
φ(0)2(~k = 0, t′)

〉′
to include only

modes outside of the Horizon. We obtain the result of (2.1), and we learn the following
lesson. The origin of the secular and the IR divergences is due to the fact that there is
an accumulation of the effect of the interaction because the wave function of the massless
field is independent of time and scale invariant outside of the Horizon, and the potential
interactions do not shut down as the gradient of the modes become negligible.

Figure 1. One-loop (left) and two-loop (right) diagrams for the two-point function of φ. Lines
with crosses represent correlation functions, without crosses represent Green’s functions.

Very naively, one could interpret the result of (2.7) as due to a simple mean-field effect
(i.e. as an effective mass). However, it is not so. At two loops, one gets the following
contribution, which does not have, at least to us, a mean field interpretation (see Fig. 1 on
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the right):

〈φ~k(t)φ~k′(t)〉
′ ⊃ 〈φ(1)

~k
(t)φ

(1)
~k′

(t)〉′ (2.7)

∼
∫ t

k
a(t1)H

∼1
dt1

∫ t

k
a(t2)H

∼1
dt2

(
1

3H

)2

λ2〈φ(0)3(~k, t1)φ(0)3(~k′, t2)〉′

∼
∫ t

k
a(t1)H

∼1
dt1

∫ t

k
a(t2)H

∼1
dt2

∫ q1/a(t1)∼H

1/L
d3q1

∫ q2/a(t2)∼H

1/L
d3q2

(
1

3H

)2

λ2 ×

× 〈φ~q1(t1)φ~q1(t2)〉′〈φ~q2(t1)φ~q2(t2)〉′〈φ~k−~q1−~q2(t1)φ~k−~q1−~q2(t2)〉′

∼ H2

k3
λ2

[
log

(
k

HeHt

)
log
(
kHeHtL2

)]2

.

Clearly, given that the potential of λφ4 is unbounded at high values of φ, we expect
a saturation effect. Given that the energy scale of the problem is H, we expect that an
equilibrium state will form where all values of φ are populated such that V (φ) ∼ H4. This
means that φ ∼ H/λ1/4, which is a non-perturbative configuration. We will indeed see that
this is what happens, through a controlled derivation.

2.2 Strategy: mode splitting, locality, classicality and the wave function

Parametrics: It is evident from the former expressions that the secular and IR divergences
arise when the modes are outside of the horizon. When the modes are still inside the horizon,
in fact, their wave function oscillates and is not scale invariant, and there is no room for
secular or IR divergences. What is physically happening is that as the modes are outside of
the horizon, there is an accumulation of the field value at a given location that makes the
effect of the potential term larger and larger. Clearly, there should be a saturation effect
that is invisible in perturbation theory. A non-perturbative treatment is required.

However, the situation is not so hopeless. In fact, modes outside the horizon follow a
simplified dynamics, where the gradients are small, so the evolution is approximately local,
and they become semiclassical, as we review next. On the contrary, modes shorter than
the horizon are quantum and have an evolution where gradients are non-negligible, but
for them, perturbation theory works very well. It therefore emerges the following natural
strategy. We are going to split the mode into ‘short’ and ‘long’, according to wether their
physical wavenumber k/a(t) is respectively higher or lower than a fictitious, but useful,
energy cutoff. In comoving coordinates, therefore, this takes the form of a time-dependent
cutoff

Λ(t) = εH a(t) , (2.8)

and treat the long and short modes differently. Notice that, in FRW slicing, modes start
short and then become long after some time. For the short modes, we are going to use
perturbation theory. For the long mode, we instead are going to find a non-perturbative
formalism, which can however be handled efficiently. First the evolution is “ultra-local”,
with perturbatively small corrections of order ε2 (by analyticity and rotation invariance).
By ultra-local evolution we mean that the long fields at different spacial points, to leading
order, behave as independent degrees of freedom. Since we are interested in correlators of
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finitely many fields, in practice we will need to deal with a system of finitely many variables
(as opposed to a usual field theory), which can be solved non-perturbatively. The second
simplifying feature is that the evolution is quasi-classical, with perturbative corrections
scaling as ε3. The parameters δ and ∆ mentioned in the introduction will be introduced
below. Their physical meaning is not as important as that of ε so we will not mention them
until they become necessary.

Though the semiclassical approximation will play almost a marginal role, compared to
the role of ultra-locality, we here review why it holds. The fact that the evolution of modes
outside the Horizon becomes semiclassical is beautifully explained in the original paper by
Guth and Pi [46]. Here we mention the key facts from this reference. Let us consider a free
scalar field in de Sitter space with a small mass, as this will be the case of interest in our
study. Each Fourier mode φ~k evolves independently and its wave function Ψ(φ~k) is given
by, when the mode is outside of the Horizon,

Ψ

(
φ~k,

k

a(t)H
� 1

)
' e−

(
k3

2H2 +i
(

1
6
m2

H
e3Ht+ k2

H
eHt

))
φ2
~k , (2.9)

where we dropped subleading terms in m2/H2. The semiclassicality of a wave function is
controlled by the change in the phase of the wave function associated to the shift in φk that
it takes to change the modulus by order one. This is given by

(Semiclassicality)−1 ∼ Min

[
k3

m2Ha(t)3
,

k

Ha(t)

]
. (2.10)

While this is a well known criterion, Ref. [46] explicitly checks that in this regime, the
correlation functions of φ and its conjugate momentum, π, can be computed using a classical
distribution that satisfies the classical Boltzmann equation up to mistakes of order the above
correction in (2.10). Therefore, the quantum corrections for the long modes are peaked at
the first moment when they become ‘long’, and they scale as Min

[
H2

m2 ε
3, ε
]
.

By choosing ε � 1, we can control the quasi-local and semiclassical approximations.
However, we cannot take ε too small, as otherwise perturbation theory for the short modes
breaks down. In fact, the time ∆t a given short mode spends outside the horizon is
∼ 1

H log ε, and we need to ensure the perturbative corrections, that scale as λH∆t are
under control. In reality, as we will show later, perturbative corrections around our non-
perturbative solution scale as

√
λH∆t. We therefore can choose ε to lie in the interval

e
− 1√

λ � ε� 1 . (2.11)

This interval is parametrically large for λ � 1. Given this interval, it is natural to choose
ε� λ1/4, so that

e
− 1√

λ � ε� λ1/4 , (2.12)

which is also parametrically large for λ � 1. In fact, in this regime, the corrections
from the selfinteractions, which, as we will see, scale as

√
λ � 1, are the leading ones.

Furthermore, we will see that the potential term gives a phase to the wave function so
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that semiclassical corrections scale as those for a massive field with m2 ∼
√
λH2 (5). In

summary, using this strategy, we will find an equilibrium non-perturbative solution for
correlation functions, around which, both for the long and the short modes, we will be able
to develop a perturbative expansion in powers of ε� 1 and

√
λ� 1.

We add three more-technical comments. First: Of course, Λ = εHa(t) is an artificial
cutoff that separates where different approximations are valid. The theory does not change
as a mode moves across Λ. Therefore, as we make approximations that corresponds to
expansions in ε � 1 and

√
λ log ε � 1, the corrections in ε should cancel order by order

in perturbation theory. This cancellation will be an important consistency check of our
formalism and an algebraic one for our computations. Needless to say, this is very similar
to the role played by the renormalization scale in very-familiar flat-space quantum field
theory calculations.

Second: if we were to split the modes into longs and shorts by using a sharp cutoff
in Fourier space, the resulting long-wavelength theory would be non-local in space. While
this would result in a theory that technically is not harder to deal with than a local-in-
space one, we find it would be a less intuitive one. For this reason, we split the modes
into long and short by using a smooth cutoff in Fourier space, centered around k = Λ, but
with width of order ∆k ∼ δΛ. As we will show later by choosing e−

1√
λ � δ �

√
λ, the

resulting long-wavelength theory will be local in space, with small, local, corrections scaling
as
√
λ log δ � 1. As for the dependence in ε, any dependence on δ will automatically cancel

in a correct calculation. However, we will content ourself to check the cancellation of the
factors of ε, and we will assume that the dependence on δ to cancel similarly, leaving an
explicit check of this fact to future work.

Third and last comment: our radiative corrections will include, naturally, also the ones
from the very short modes. This leads to the requirement of renormalizing our Lagrangian,
which in particular leads to the generation of a mass term. For this reason, it is convenient
to assume that the field has a mass of order m2 . λH2. In this regime, perturbation theory
is still IR-divergent, and a non-perturbative treatment is still required. Indeed, we will
treat the physical mass as a small perturbation, assuming the bare mass has absorbed the
UV divergences.

Strategy: Having stated the general ideas and simplifications that allow us to control
this non perturbative system, we now move on to give some additional information on the
steps by which we will address this problem. In this way one can get the general picture of
the derivation of the results without having to follow the details.

We will start by studying the wave functional of the theory in a particular state, the
Bunch-Davies (BD) vacuum, according to which each mode is in the Minkowski vacuum in

5As we will see in section 12, strictly speaking the quantum corrections scale as ε3/λ1/4. Since,
from (2.12), we can naturally take ε exponentially smaller than λ, we neglect to mention these power-
law corrections to the expansion parameter, as they have a small influence for small λ’s. Similarly, as we
will see next, if we take ε ∼ e

− 1

λ1/n , with n large but sufficiently small that (2.12) is not violated, we will
find that the self-interactions of the short modes scale as corrections

√
λ log ε ∼ λ

1
2
− 1
n . Notice that as

λ→ 0, n can be made arbitrarily large. We will simply mention these corrections as
√
λ.
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the infinite past once it is deep inside the horizon 6. We will prove that such a wave function
is not affected by IR-divergence and can be reliably computed in perturbation theory as a
formal expansion in powers of φ. We stress that this fact does not imply that correlation
functions can be extracted from the wave function in any straightforward manner since
the functional integral which has to be evaluated in order to do so is strongly coupled in
the IR. In this sense the wave function is strongly non-gaussian. In particular, in order
to compute the leading long-distance contribution to a correlator, one needs to take into
account infinitely many terms in the wave function. This is why we need to develop a
non-perturbative formalism.

Nevertheless, the perturbative expression for the wave function can be reliably used for
the three operations that we will actually need: first, to express the action of the momentum
operator Π̂ on the wave function ΨBD[φ, t] (7); second: to evaluate expectation values of
the short modes with the long modes kept fixed; third: to compute the wave function at
one time with the insertion at an earlier time of an operator (this will be mostly needed
for the quantum corrections). The reliability of such perturbative calculations can only be
proven a-posteriori after one is able to estimate the typical size of the φ fluctuations, i.e.
after computing φ-correlation functions.

We will then consider the probability distribution of the field values,

P [φ, t] = Ψ∗BD[φ, t]ΨBD[φ, t] , (2.13)

and its evolution equation, which is controlled by the quantum-mechanical functional con-
tinuity equation. From this, we will derive an equation for the analogous quantity but
restricted to the long modes. Such an equation will have a ‘diffusion’ term that originates
from the contribution of short modes becoming long, and a ‘drift’ term, associated to the
term that was already present in the equation for the probability distribution for the full
field.

The evolution equation for the probability distribution, either for the full field or for the
long field, is not a closed equation: it in fact involves directly the wave function, since there
is a term where the momentum of the field acts on the wave function, in such a way that
one cannot combine the two wave functions into a probability distribution. Schematically,
there is a term of the form Ψ∗[φ] Π̂ Ψ[φ]. The continuity equation therefore cannot be
solved directly for P [φ] unless one is able to express the momentum operator in terms of
fields, allowing one to combine Ψ∗[φ] and Ψ[φ] back into P [φ]. At this point we use the
knowledge of the wave function. The evaluation of various terms in the equation for the
long distribution also requires the calculation of the short modes expectation values for
which again the wave function is needed.

At this point, the continuity equation for the the long fields probability distribution
is a closed equation, and, using the simplifications we mentioned at the beginning of this

6 We are using the BD vacuum with a slight abuse of notation. In the original reference, the BD vacuum
is referred to a free theory. Here we refer to it for an interacting theory in the sense in which we just
described.

7We will use square brackets for objects that are functionals of three- or four-dimensional field config-
urations to distinguish them from functions of a finite number of variables. We will also keep explicit the
time dependence of the operators.
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section, can be solved non-perturbatively. The solution allows us to compute correlation
functions of φ’s, determining the typical size of the field fluctuations and, as mentioned,
proving a-posteriori the consistency of the whole calculation. We stress that we do not
neglect finite, although small, momenta of the long modes, as effects associated with it give
corrections that are perturbative in

√
λ. Since we will work mostly in position space for

the long modes, keeping track of this momentum leads to several technical complications,
which we overcome.

We end this section by addressing a possible limitation of our approach. To develop
our formalism we need to specify a wave function, i.e. a particular state. Though the state
we use, the BD vacuum, is a particularly-well physically motivated one, our approach is
more general than that. Our procedure, in particular, allows us to compute correlation
functions of fields inserted at different times. Then by computing correlation functions
with an arbitrary large number of fields inserted in the past, one can compute equal time
correlation functions in a state prepared by these insertions. This already gives a rather
large set of states. In order to further shed light on the state independence of our results,
in section 7 we show that small deformations of the long-modes-part of the wave function
decay on time scales of order Hubble. Additionally, in App. A, we will develop a formalism
that is naturally more state-independent, valid in the vicinity of any state whose correlation
functions are close to the one of the BD vacuum. These results convincingly show that the
BD state is an attractor, that the correlation functions computed in the main part of the
paper are universal and that the state-dependent corrections decay at late times.

2.3 Reader’s guide

We must admit that the resolution of the problem of IR and or secular divergences in de
Sitter turned out rather complicated, and, consequently, our paper is somewhat technical.
To guide the reader, we briefly mention where the benchmarks of the implementation of
the above strategy, as well as the main results, appear. Throughout the paper we work
with the expanding part of dS. In section 3, we discuss the calculation of the wave function
in perturbation theory, presenting the general form it will takes in eq. (3.14). In section
4 we introduce the probability distribution of the long modes and derive the functional
equation which governs its time evolution, eq. (4.20). In section 5 we study the distribu-
tion marginalized over the fields at all but one space-time point. Making several controlled
approximations in both λ and ε we derive the partial differential equation which this ditri-
bution satisfies to leading order, Eq. (5.5). This is, in fact, the only equation that needs to
be solved non-perturbatively. In section 6 we study the leading equation for the distribution
of the long fields at two space-time points. It requires the analysis of the time dependence of
the single-point distribution in states that differ from BD, and the application of “sudden”
perturbation theory. The solution for the equal-time case is given in (6.26) in coordinate
space, and in (6.30) in momentum space. In subsection 6.2.1 we compute the three-point
function at leading order and sketch the calculation of higher-point functions. In section
8.1 we study subleading, i.e. order O(

√
λ), corrections to the single-point distribution.

The equation governing the field distribution at subleading order is given in (8.13) and the
associated subleading correlation functions are computed in Eq. (8.18). In section 8.2 we
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compute the subleading corrections to the exponents controlling the two-point distribution
at large separations. In section 9 we study the probability distribution for two generic
spacetime points, checking in Eq. (9.16) that the two-point function is de-Sitter invariant.
These results allow us to compute correlators of arbitrary bi-local operators to subleading
order in

√
λ. In section 10 we focus on the static patch and check that the two-point func-

tion satisfies the KMS condition as expected from thermality. In section 11 we study the
system at large number of fields. In section 12 we study the corrections due to non-classical
behavior of the long modes and, in particular, confirm that they are suppressed by powers
of ε. Last, in section 13, we show how to compute corrections from gradients, showing they
are of order ε2. The most technical parts are relegated to the Appendices referred to in the
main text.

3 Perturbative calculation of the wave function

We are now going to compute the wave function using perturbation theory. What we
will find is that the wave function is not affected by IR divergences, however, it contains
particular growing secular terms that are potentially large for low momenta. We will bound
these secular terms from above and show that given our scaling of the fields at low momenta
the secular terms do not invalidate our expansion. To streamline the presentation we focus
on the λφ4 potential, restoring general V (φ) where it is obvious to do so.

The wave function, Ψ[φ, t], satisfies a functional Schroedinger equation

i
∂

∂t
Ψ[φ, t] = H

[
−i δ
δφ
, φ, t

]
Ψ[φ, t] , (3.1)

where the momentum operator is represented as Π̂(~x) = −i δ
δφ(~x) and where H is the Hamil-

tonian. As familiar from non-relativistic quantum mechanics, the solution to this equation
is offered by a path integral, where the choice of the boundary conditions specifies the spe-
cific state we are dealing with. In the context of de Sitter space, the formalism to compute
the wafecuntion has been well developed originally and generically by [47], and by [48] for
massless λφ4. In this work, we will be mainly interested in the BD vacuum, which, as we
specified above, is the vacuum that corresponds to imposing that, at early enough times,
when a given mode is well inside the horizon, it is in the Minkowski vacuum. For this
calculation let us switch to conformal time η. Then we have

ΨBD[φ, η] =

∫
Dϕ eiS[ϕ] , (3.2)

in which we integrate over field configurations that, at the final time, satisfy the boundary
condition ϕ(~k, η′ = η) = φ(~k), and, in the past, go as ϕ(~k, η′) ∼ eikη

′ , with a η′-contour
deformed in such a way that, at early times, the oscillation is damped. This choice of the iε
prescription guarantees that we are describing the state corresponding to the interacting
vacuum. For example, the wave function for the BD vacuum of a free massless field is the
following Gaussian [46]

ΨBD[φ, η] =
∏
~k

(
2k3

π

)1/4

Exp

(
i

2H2

(
k2

η (1− ikη)
φ(~k)φ(−~k)

))
e−ikη/2√
1− ikη

. (3.3)

– 14 –



We notice, in passing, that the imaginary part is much larger than the real part once
the modes are outside of the horizon, a well known fact that leads to the modes being
semiclassical once outside of the horizon [46].

With interactions, the perturbative evaluation of (3.2) can be organized in terms of
Feynman diagrams that involve two propagators (see [48] for a review of these aspects):
the bulk-to-bulk propagator G(η1, η2, k; η), which connects vertices at time η1 and η2, while
the wave function is evaluated at time η, and whose expression is given by

G(η1, η2, k; η) = Θ(η2 − η1)× (3.4)

× H2

2k3
(1− ikη2)

(
−(1 + ikη)(1− iη1k)

(1− ikη)
e−ik(2η−η1−η2) + (1 + ikη1)e−ik(η1−η2)

)
+

+{η1 ↔ η2} ;

and the bulk-to-boundary propagator, K(η1, k; η), which connects a vertex at time η1 to
the final time η:

K(η1, k; η) =
(1− ikη1)

(1− ikη)
e−ik(η−η1) . (3.5)

For a wave function at time η, the term in the exponent of order φn is obtained by computing
all connected diagrams in which n points at time η are connected with vertices by bulk-to-
boundary propagators, and vertices among themselves with bulk-to-bulk propagators. The
iε prescription is implemented by writing ηi = η̃i+e−iε∆ηi, with ∆ηi ∈ [−∞, 0], π > ε > 0,
and η̃i being the end-point of the integration in ηi (typically the final time or the time of
insertion of another vertex). Notice also that each vertex carries a factor of i.

Readers familiar with AdS/CFT will recognize in these Feynman rules something very
similar to the Witten diagrams that are used to compute the partition function in AdS.
Indeed, ΨBD[φ, η] = ZEAdS [φ, z = −iη] (with L = −i/H), where ZEAdS is the partition
function in Euclidean AdS, z is the usual radial coordinate in Poincare slicing, and L is the
AdS length [47], [49]. In fact, Ref. [48] explicitly shows that the two calculations are the
same for the λφ4 theory we study here.

The first few contributions to the wave function were computed in [48][30]. We can
organize them in terms of number of fields appearing in the exponent of the wave function.
With four-φ’s, the tree-level diagram of Fig. 2 gives the following contribution in the regime
kiη � 1 we are mainly interested in

log (ΨBD[φ, η]) ⊃ λ

12

∫  ∏
i=1,...,4

d3ki
(2π)3

 (2π)3δ(3)

 ∑
i=1,...,4

~ki

 × (3.6)

×
(

i

H4η3
+
kΣ3

H4
log(−kΣη) + . . .

)
φ(~k1)φ(~k2)φ(~k3)φ(~k4) ,

where
kΣ =

∑
i=1,...,4

ki , kΣ3 =
∑

i=1,...,4

k3
i , (3.7)

and the . . . represent subleading terms in the kiη � 1 limit. More explicitly, the imaginary
part contains a subleading term in two powers in kiη, while the real part has a subleading
part suppressed by 1/ log(kiη).
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Figure 2. Tree-level Witten diagram contributing to the λφ4 term in the exponent of the wave
function.

There are several observations to make about te result in (3.6). First, we notice that
the momentum operator applied to the wave function gives:

Π̂[φ, ~x] ΨBD[φ, η] =

(
−a3λφ(~x)3

3H
+O

(
kη,
√
λ
))

ΨBD[φ, η] , (3.8)

where O(kη) means subleading corrections when all the modes are long. This result is
nothing but the familiar, classic and classical, value of the momentum of φ on the slow-roll
solution with potential λφ4.

Next, notice that the real part of the wave function contains logarithmic secular terms.
This is important, because, once we compute correlation functions of φ, the imaginary
part of the wave function does not contribute, and since the real quadratic part of the wave
function goes to a constant, then the interacting part becomes the leading contribution, and
perturbation theory for correlation functions breaks down. This is a manifestation in the
wave function formalism of how the secular divergences of the more familiar perturbative
calculation we described earlier shows up when we compute the same quantities using the
wave function. We will see later how the infrared divergences manifest themselves.

Leading late-time behavior of the wave function: We can derive some general
properties of the form of the wave function by studying the degree of secular growth of
the diagrams. The argument is slightly lengthy, however the result is quite intuitive. The
uninterested reader can skip directly to eq. (3.14), the justification of which is what we are
going to prove in the following. Arguments similar to what we present below were used in
[50] and [49], however they do not prove exactly the statement we need here. The latter
reference also emphasized the qualitative difference between the path integrals computing
the wave function and correlation functions in dS.

First, it is possible to show that the exponent of the wave function grows at most as
1/η3. To do this, let us consider a generic connected diagram with V vertices, such as the
one represented in Fig. 3. We are interested in the behavior of this diagram as the final
time is taken to be late. Generically, the diagram will have UV divergences that need to
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Figure 3. Generic Witten diagram contributing to the wave function.

be regulated, and ultimately renormalized by adding other diagrams with just less vertices
that have a similar form to the one we consider here. The regulator must preserve diff.
invariance, and one can therefore, for example, use dimensional regularization, which, in
dS, must be done with care [2]. One can take this path, but the same result is obtained
perhaps more intuitively if one cuts off the loop integrals at a fixed physical momentum
qj/a(ηV ) = ΛUV

ph , where qj ’s are the loop momenta (see again [2]). Since different vertices
are inserted at different times, with this regulating scheme there is the peculiarity that for
a vertex that occurs at late time, modes that were above the cutoff at some earlier time
are now below the cutoff. Clearly, in this diagram these modes cannot contribute, therefore
one should regulate the theory by defining the physical momentum using the scale factor
of the earliest-occurring vertex, that we label by ηV : qph,i = qi/a(ηV ) = −HqiηV .

Each vertex in our diagram carries a factor of 1/η4
i , and an integral in

∫ η
dηi. Let us

consider a contribution with some particular time ordering of vertices. We then label the
time integration variables so that

ηV ≤ ηV−1 ≤ . . . ≤ η1 < 0 . (3.9)

Now, by changing variables of integration from qi to qph, i, we have that each loop carries a

factor of
∫ ΛUV

ph

ηV /L
d3qph, i/η

3
V , where L is some comoving IR cutoff that we have introduced to

regulate potentially-present IR divergences.
Let us first quickly establish that there are no IR-divergences. The internal momenta

integrals are only associated to the bulk-to-bulk propagators (3.4), which, in the limit
qph → 0, go to a constant in qph (8). This is the key technical difference between the
perturbative calculations of the wave function and of correlation functions. Therefore, since
each integral carries a factor of

∫
ηV /L

d3qph, i, there are no IR-divergences in the calculation
of the wave function, and in particular we can safely take the limit L→∞.

8Here for simplicity we assumed that qph is the total momenta flowing through the leg. This is the
same behavior in the usual in-in formalism for correlation functions of the retarded Green’s function, it is
however not the same behavior of the free-field correlation functions, that scales as 1/q3

ph and also enters
in the in-in diagrams for correlation functions.
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Now, all integrals in qph, i are integrated from zero up to the same, time-independent
cutoff ΛUV

ph . This means that we can evaluate all the time integrals prior than doing the
momentum integral. In this case, the late time behavior of the diagram is determined by
taking the late time limit of all the integrals, since, as we will see momentarily, all diagrams
are late-time-dominated. Moreover, doing momenta integrals will not introduce any new
secular divergences, since those integrals are both UV and IR finite.

Let us explore the time integrals. The external fields are connected to vertices by the
bulk-to-boundary propagators (3.5). We can bound the bulk-to-boundary propagators by
one, K(kj , ηi) ≤ 1, while we can take into account of the exponential suppression induced
by these terms at early times by restricting the integration region of the time integrals to be
ηi < 1/kj (9). Now, it is useful to notice that the bulk-to-bulk propagator, G, is bounded
by

|G(ηm, ηn, qph, j, ki; η)| ≤ −cH2 η3
m , (3.10)

where ηm is the latest of the two times ηm and ηn, qph, j and ki are some loop and exter-
nal momenta flowing through the propagator, and c is a positive constant. The proof of this
bound follows by simply, though tediously, checking that the function G(ηm, ηn, qph, j, ki; η)/η3

m

is bounded in the whole region of integration, and so it attains a maximum in the region.
Let us now go back to the generic diagram, and take the integrals in chronological order.
Dropping factors of H, the time integral are bounded by the following expression:

λV c
∑
i Ii

∫ η

−∞

dη1

η4
1

η3I1
1 . . .

∫ ηV−2

−∞

dηV−1

η4
V−1

η
3IV−1

V−1

∫ ηV−1

−∞

dηV

η4+3L
V

, (3.11)

where L is the number of loops and Ii is the number of internal lines for which ηi is the later
of their endpoint vertices. Consider the first V − j integrals, associated to the earliest V − j
vertices. This defines a subdiagram with ĪV−j total internal lines, i.e. internal lines for
which both endpoints are attached to any of the vertices VV−j . . . VV , and LV−j associated
loops. Because of the topological constraint (V −j)+LV−j− ĪV−j = 1, it is straightforward
to establish that the j-th integral behaves as 1/η

4+3(L−LV−j)
j . Since L ≥ LV−j , we therefore

learn that each integral is therefore dominated by the latest time, and the full integral goes
at most as 1/η3. Furthermore, never at each step we encounter a logarithmic divergence.
The smallest negative power an integral can take is dηi/η4

i . So, there is no logarithmic
enhancement on top of the 1/η3 factor.

We notice explicitly that the bound on the growth of the diagram as 1/η3 applies in
particular to the limiting case kiη → 0, which is therefore a non-singular limit. In this
limit, the contribution to the wave function is local 10. Of course this is a well-known result
in the AdS/CFT context. A conceptual difference though is that we do not disregard this

9At this point it is important that the mass, if any, is treated as a perturbation. Of course a finite mass
included in the propagators would only make the late-time behavior of the wave function better, but it
would alter some of the intermediate steps of our argument.

10 This is consistent from scaling invariance η → ∆ · η, x→ ∆ · x. In the local limit, these diagrams give
rise to a term that in the wave function goes as

∫
d3x φ(~x)Ef(η), with E being the number of external legs

of the diagram, and f(η) a function of η. Scaling invariance tells us that f(η) ∼ 1/η3.
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“divergent” piece, instead it will play a major role in our computations. By keeping track
of the powers of i one also easily sees that the leading piece is purely imaginary.

Indeed it is now possible to show that the maximum degree of divergence of the real
part is (λ log(−kη))V , i.e. there is no 1/η3 factor. This comes from unitarity, that imposes
that the wave function satisfies the following equation, which directly derives from the
Schroedinger equation and which will be of great use for us later:

∂

∂t
(Ψ?[φ, t]Ψ[φ, t]) = − i

2a3

∫
d3x

δ

δφ(~x)

(
Ψ[φ, t]∗

δ

δφ(~x)
Ψ[φ, t]−Ψ[φ, t]

δ

δφ(~x)
Ψ∗[φ, t]

)
.

(3.12)

Writing Ψ[φ] as an exponential of a real part and the imaginary part of the exponent, it
very simply follows that for this equation to be true, if the imaginary part goes as 1/η3,
the real part can go at most logarithmically in log(−kη), without any power of 1/η. In our
exemplifying theory with an interaction of the form λφ4, it holds the following topological
relation between the number of external legs, E, the number of vertices, V , and the one of
internal legs, I: 4V = E + 2I. Since, in the calculation of the wave function, each external
leg corresponds to a factor of φ, and since the maximum number of logarithmic factors and
λ’s is (λ log(−kη))V , we conclude that the real part of the exponent of the wave function
goes at most as

Re [log(Ψ)] ∼ λ
E−2

2 φEk3 (log(−kη))
E−2

2 (λ log(−kη))L , (3.13)

where k represents a general combination of momenta. This expression teaches us also
that each loop insertion carries potentially a factor of λ log(−kη). The factor of k3 can be
derived by scaling invariance η → ∆ · η, k → k/∆.

We have established that the leading term in the Taylor expansion of the wave function
in the external momenta is analytic. We already know that subleading terms in this Taylor
expansion in kiη � 1 can contain logarithms. For example such log is present in eq. (3.6).
Our next goal is to understand the structure of these logarithmic terms. From (3.11) we
see that to get a log-divergence one needs to bring three powers of η’s in the numerator.
Then the integral stops being IR (late time) dominated and is divergent if all momenta are
formally set to zero. Said in other words, if we differentiate our integral with respect to k’s
three times, we can no longer simply take the kiη → 0 limit because the time integral will
diverge. In practice, for finite ki, some time integral dηj , sensitive to the momentum ki,
will be cutoff by the exponential factors in the propagators at ηj = −1/ki leading to a
term that goes as log (kiηj). We then learn an important lesson: for any long momentum
ki, each log of the form log (kiη) in the final expression for the wave function is suppressed
at least by the third power of the same momentum ki. Indeed, if it were multiplied by
powers of some larger momentum kl � ki, the corresponding time integrals would be cutoff
at times ηj = −1/kl, thus replacing log (kiη) with log (klη).

This concludes the derivation of the general properties of the wave function that we
wished to establish. It is now possible to see that, in computing correlation function of
φ, there will be IR-divergences proportional at most to powers log[kiL]. Indeed, if we

– 19 –



use the wave function ΨBD[φ, η] to compute correlation functions of φ in a perturbative
manner, we end up Taylor expanding the wave function around the Gaussian part, using the
additional terms in φ as ‘vertices’, and perform Wick contractions using a ‘final-propagator’
that goes as δ(3)(~k + ~k′)/k3. Then, consider a generic connected diagram and cut out of it
a generic subdiagram, which, in general, will have some external legs, some loops, vertices
and internal legs. We are interested in the case where some momenta become soft, while
others are hard. Each loop carries a factor of

∫
d3k, and each vertex carries a factor of the

hard momenta cubed, unless all momenta are soft, in which case it is a factor of the soft
momenta cubed. For a generic configuration of the external momenta, only one internal
leg for each loop will be soft, in which case we obtain at most a logarithmic IR-divergence.
Additional internal legs can become soft, but at the cost of forcing particular configurations
for external momenta, and so of imposing to be soft the phase space either of the other
loops in the subdiagram, or of the external legs of the sub-diagram, that are going to
be, in-their turn, integrated in

∫
d3k as they are either part of another loop, or, if they

are connected to the external points of the n-point function, because physically relevant
correlation functions are computed for fields in real space. Therefore, we introduce a term
cubic in the soft momenta from

∫
d3k for each additional internal line becoming soft, so

that, again, we obtain at most logarithmic divergences. As we will see in a moment, such
logarithmic divergences are indeed present if one attempts to compute the correlators from
the wave function directly.

Perturbativity of the wave function: We are now in the position to discuss the
sense in which the perturbative expression for the wave function can be used. From the
discussion above, it emerges that the perturbatively-computed wave function takes the
following schematic form:

log ΨBD[φ, η] ∼
∑
L

∫ {
φ(~k)2

H2

[
im̃2

η3
+
ik2

η
+
∑

k3
i (λ log (−kjη))L

]
(3.14)

+λ
φ(~k)4

H4

[
i

η3
+ (1 + i)

∑
k3
i log (−kiη) (λ log (−kjη))L

]
+λ2 φ(~k)6

H6

[
i

η3
+ (1 + i)

∑
k3
i (log (−kiη))2 (λ log (−kjη))L

]
+

+ . . .+ λ
E−2

2
φ(~k)E

HE

[
i

η3
+ (1 + i)

∑
k3
i (log (−kiη))

E−2
2 (λ log (−kjη))L

]
+ . . .

}
,

where we dropped all numerical coefficients and did not keep track of the various wavenum-
bers. We focused on the long-wavenumbers contribution and just highlighted in this ex-
pression several important features: the leading part goes as 1/η3 and is purely imaginary;
the largest number of fields for a given number of factors of the coupling constant comes
from the tree-level contribution and goes as λnφ2n+2; the real part starts with terms that
are not larger than k3

i log(−ηki)V and we stress again that each log is protected by the
third power of the same momentum; m̃2 is the “mass” term appearing in the wave function.
It is neither the bare mass in the Lagrangian, nor the “physical” mass that we denote m̄2
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and that we assume is small (m̄2 �
√
λH2) in order to simplify the counting.11

In order to compare the various terms in (3.14), and to determine which ones one needs
in order to compute correlation functions of φ to a given order, which are affected by IR
and secular divergences, one needs to know the typical value of φ. In order to address
this apparent problem, we will next establish a non-perturbative formalism that will allow
us to compute correlation functions of φ upon assuming that the wave function above is
controlled by a perturbative expansion. Within such an assumption, we will find that the
typical value of φ in position space is λ−1/4 and that each momentum mode φ~k for small
k decays in time as (kη)c

√
λ, where c is some constant. This implies, in particular, that

the secular logarithms saturate at most to an O(1/
√
λ) number. Now, by inspection of

(3.14), we find that the imaginary part of the exponent is dominated by the quartic term,
with some other terms contributing by corrections of order

√
λ or (kη)2. The real terms,

as well as the additional subleading imaginary terms, are instead more complicated to
estimate, as they involve logarithms. Let us take the leading logarithmic terms that scale
as k3

i

(
λφ2 log(kiη)

)n. It turns out that weather they are hierarchically organized or not
depends on the actual calculation one uses the wave function for. If one were to compute
correlation functions of φ’s in a perturbative manner, only the real part would matter, and
IR divergences would reappear. Moreover, if IR divergences are regulated by a cutoff or
by a small mass, one would also see that the factors of k3

i protecting the secular log’s
are cancelled by the propagators, and these log’s become IR-dominated. This recovers
the secular divergences observed in in-in perturbation theory for correlators. One can also
see that even if one uses the physical distribution of the long modes which we will prove
to be true and which has a faster decay at low k than the free theory one, so that each
log divergence is effectively replaced by λ−1/2, infinitely many terms in the wave function
contribute at the same order and ordinary perturbation theory is not saved.

Even though, in our formalism, we still need to compute various contributions from
terms involving logarithms 12, the factor of k3

i always remains protecting the logs, hence the
corresponding d3k integrals are UV dominated and the logs only give O(log ε) not O(1/

√
λ)

contributions. Thus for us, in order to compute correlators to any finite order in λ, as well
as in our other parameters such as ε, we only need finitely many terms in the wave function.
We show this more explicitly in section 8.3, once we have our non-perturbative probability
distributions and correlators computed.

11We would like to point out that the wave function potentially contains pieces that explicitly depend on
positive powers of the UV cutoff. Indeed, the renormalization procedure should be carried out in a way that
keeps the correlation functions finite. The path integral that computes correlators from the wave function
may have some UV divergences and hence the wave function should explicitly contain the counter terms to
render those finite. This observation will not play any role in what follows.

12In fact, this only becomes necessary when one computes corrections of higher order in λ than what we
do in this paper, however, nothing precludes us from computing these corrections in principle.
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4 EFT for long modes

4.1 Continuity equation

As explained above, we expect it to be possible to derive a closed set of equations that
describes the dynamics of the long modes. Even though these modes are strongly coupled,
their evolution is ultra-local which leads to a major simplification. Using the Shroedinger
equation as well as knowledge of the wave function of the BD state we are going to derive
the equation the probability distributions for field values in this state satisfy. We first focus
on distributions of fields on the same time slice, generalization to the case of several times
will be considered in section 5.3 and 9. We would also like to stress that it is possible to
develop a formalism which is state-independent (within some class of states) however, at
the cost of a significant increase in complexity. Some outline of this formalism is provided
in appendix A. We also discuss the universality of our result with respect to variations of
the state in section 7.

As we already pointed out several times, knowledge of the wave function still does not
allow us to compute the n-point probability distributions directly. Instead, we are going to
go back to the Shroedinger equation and use the wave function only to compute some of
the terms in the equation. For simplicity let us specify to the theories with the Hamiltonian
of the form

H[π, φ, t] =

∫
d3x

(
− 1

2a(t)3

(
δ

δφ(~x)

)2

+
a(t)3

2
V (φ(~x)) +

a(t)3

2

(∇φ)2

a(t)2

)
, (4.1)

where for now we will keep a general V (φ), assuming that it has some perturbative param-
eter like λ in λφ4. Theories with higher powers of momentum in the Hamiltonian can be
treated identically, as long as these higher terms are suppressed by some high UV scale.
Then the full functional probability distribution P [φ, t] satisfies the continuity equation
which was already used above in (3.12) to bound the real part of the wave function. We
repeat this equation here:

∂P [φ, t]

∂t
= − i

2a3

∫
d3x

δ

δφ(~x)

(
Ψ[φ, t]∗

δ

δφ(~x)
Ψ[φ, t]−Ψ[φ, t]

δ

δφ(~x)
Ψ∗[φ, t]

)
. (4.2)

This is not yet a closed equation for P [φ, t], however, for a given Ψ[φ, t] we can define and
compute 13:

Π[φ, ~x, t] = − 1

a3

δ

δφ(~x)
Im log Ψ[φ, t] . (4.3)

For a semiclassical wave function a3Π[φ, ~x, t] is just the value of the momentum as a function
of the field value on the classical equations of motion. We will often call Π and related
quantities just “momentum” for shortness. For a general wave function, up to a factor
of a3, it is the real part of the momentum operator, Π̂, evaluated on the wave function
in question. What is important for us is that for a given state this is some known-to-us

13Notice that we have included a factor of 1/a3 in this definition, for later convenience
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functional of fields. This is the main application of the fact that the wave function can be
computed in perturbation theory, and consequently in practice is known to us. Now we can
write a closed form equation for the distribution:

∂P [φ, t]

∂t
= −

∫
d3x

δ

δφ(~x)
(Π[φ, ~x, t]P [φ, t]) . (4.4)

4.2 Functional equation for long modes

Our next step is to separate the field into ‘long’ and ‘short’ components by introducing a
splitting in Fourier space at a fixed physical wavenumber. We therefore define

φ(~x) =

∫ Λ(t)

0

d3k

(2π)3
ei
~k·~xφ(~k) +

∫ ∞
Λ(t)

d3k

(2π)3
ei
~k·~xφ(~k) ≡ φ`(~x) + φs(~x) , (4.5)

where the integration limits are implied for the absolute value of the momentum and

Λ(t) = εa(t)H . (4.6)

In what follows we will often work in the coordinate representation for the long modes and
in momentum space for the short modes. In this case, by φs, where ‘s’ stays for ‘short’, we
will mean the collection of all modes φk with |k| ≥ Λ(t).

Not so surprisingly, the sharp momentum cutoff introduced above can lead to violation
of locality in coordinate space. To circumvent related complications (see Appendix B.3
for discussion) we also define a smooth window function ΩΛ(t)(k) with a smooth transition
around the time-dependent comoving momentum Λ(t), and with a width of order δΛ(t),

with e
− 1√

λ

ε � δ �
√
λ, such that (see Fig. 4)

ΩΛ(t)(k) =

{
1 for k ≤ Λ(t),

0 for k ≥ (1 + δ)Λ(t) .
(4.7)

and smoothly transitions between 1 and 0 for Λ(t) ≤ k ≤ (1 + δ)Λ(t). In the limit δ → 0,
the window function must converge to a unit-step function. An example of such a function
is the one defined at eq. (29) of [51], though its explicit form will not be needed here. We
then define the smoothly cutoff long field as

φΩ(~x) =

∫
d3k

(2π)3
ΩΛ(t)(k) ei

~k·~xφ(~k) .

Now we can define the probability distribution of these smoothly cutoff long modes:

PΩ[φΩ, t] =

∫
Dφ δ

[
φΩ(~x)−

∫
d3k

(2π)3
ΩΛ(t)(k) ei

~k·~x φ(~k)

]
P [φ, t] . (4.8)

Notice the square brackets indicating the functional δ-function. Let us derive an equation
which describes the time evolution of the long distribution. Clearly, when we take the time
derivative of PΩ[φΩ, t], there will be two terms: one, which we will call the ‘Drift’, is when
the time derivative acts on the probability distribution inside the integral and the other,
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Figure 4. Pictorial representation of the window function that splits the long and the short modes.

Figure 5. Pictorial representation to the two contributions to the long-wavelength dynamics. The
diffusion due to the short modes becoming long, and the drift from the evolution of the long modes.
It is expected that an equilibrium value with the typical values, for V = λφ4, of order φ ∼ H/λ1/4
is reached. We will make this picture rigorous.

the ‘Diffusion’ term, when it acts on the δ-functions (see Fig. 5). Thus, schematically, we
can write:

∂

∂t
PΩ[φΩ, t] = Diffusion + Drift . (4.9)

Let us derive explicitly these terms, and let us start with the drift term:

Drift =

∫
Dφ δ

[
φΩ(~x)−

∫
d3k

(2π)3
ΩΛ(t)(k) ei

~k·~x φ(~k)

]
∂

∂t
P [φ, t] = (4.10)

= −
∫
Dφ δ

[
φΩ(~x)−

∫
d3k

(2π)3
ΩΛ(t)(k) ei

~k·~x φ(~k)

] ∫
d3x

δ

δφ(~x)
(Π[φ, ~x, t]P [φ, t]) ,

where Π[φ, ~x, t] is given in (4.3). At this point, it is convenient to approximate the window
function as a unit step function at k = Λ(t), which is correct up to O(δ) corrections. To do
this we define the long distribution of the sharply cutoff long modes

P`[φ`, t] =

∫
Dφ δ

[
φ`(~x)−

∫ Λ(t) d3k

(2π)3
ei
~k·~x φ(~k)

]
P [φ, t] . (4.11)
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In fact, up to corrections of order δ, smooth and sharp distributions coincide:

P`[φ`, t] = PΩ[φ`, t] (1 +O(δ)) . (4.12)

We will discuss such corrections in δ later on in Appendix B. Then we can explicitly use the
momentum representation and separate the variational derivatives into those with respect
to short and long modes. Derivatives with respect to short modes are total derivatives and
get integrated to zero. Derivatives with respect to long modes can be integrated by parts
to act on the δ-function and then pulled out of the integral. Consequently, we get

Drift = −
∫
d3x

∫ Λ(t)

0

d3k′

(2π)3
ei
~k′·~x × (4.13)

× δ

δφ`(~x)

∫
Dφ δ

[
φ`(~y)−

∫ Λ(t)

0

d3k

(2π)3
ei
~k·~yφ(~k)

]
Π[φ,~k′, t]P [φ, t] (1 +O (δ)) .

Now we can take integrals over ~k′. We are doing it so pedantically because there is actually
a subtlety:∫ Λ(t)

0

d3k′

(2π)3
ei
~k′·~xΠ[φ,~k′, t] =

∫ Λ(t)

0

d3k′

(2π)3
ei
~k′·~x

∫
d3~x′ e−i

~k′·~x′Π[φ, ~x′, t] ≡
[
Π[φ, ~x, t]

]
Λ(t)

.

(4.14)

Indeed, the real-space expressions appearing in the equation for the long modes has to be
transformed to momentum space and transformed back in real space by using only the
modes up to |k| = Λ(t). This is what we mean by the definition [. . . ]Λ(t). This is one of
the effects related to the fact that long modes have small but non-vanishing momentum:
several long modes can source a short mode in the equation. Keeping this in mind, the
drift term reads:

Drift = −
∫
d3x

δ

δφ`(~x)

(〈[
Π[φ, ~x, t]

]
Λ(t)

〉
φ`

P`[φ`, t]

)
(1 +O (δ))

Here we defined the ‘expectation values in the long background’ 〈O[φ]〉φ` in the following
way

〈O[φ]〉φ` P`[φ`, t] ≡
∫
Dφs O[φ]P [φ, t] . (4.15)

It is intuitively clear that this object can be computed in perturbation theory in a way that
does not suffer from IR divergences since the long modes are kept fixed and not integrated
over. Showing this is a simple application of the proof on the maximum degree of IR
divergence that we discussed in section 3. We will check that it is indeed the case by
explicit calculations.

It is tempting to connect the drift term in (4.15) with the Coleman-Weinberg effective
potential that accounts for the renormalization of the potential. Indeed, it is true that
the corrections in (4.15) contain the renormalization to the Hamiltonian as due to the
short modes. In practice, though, these are different in form with respect to the ones in
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Minkowski space because the propagators for modes longer than the Horizon are different.
Maybe more importantly, while the Coleman-Weinberg effective potential indeed controls
part of the dynamics, this does not exhausts it. In fact, as we will see, the long modes
move in this effective potential, but are also influenced by what we call the ‘diffusion’ term,
which also receives radiative corrections. In a sense, the dynamics controlled in Minkowski
by the Coleman-Weinberg potential is here generalized to a dynamics controlled by a non-
Hamiltonian equation, a Fokker-Planck-like equation, that we are constructing, and for
which one can include radiative corrections, as we will see.

Next, we turn to analyzing the diffusion term in (4.9),

Diffus. =

∫
Dφ ∂

∂t

(
δ

[
φ`(~x)−

∫
d3k

(2π)3
ΩΛ(t)(k) ei

~k·~x φ(~k)

] )
P [φ, t] . (4.16)

Here it is so far important to keep the smooth window function. The time derivative acts
on ΩΛ(t)(k), and therefore affects only the intermediate modes in the momentum shell of
modulus in [Λ(t), (1+δ)Λ(t)]. By carefully Taylor expanding the δ-function for these modes,
we show in App. B.1 that the diffusion term takes the form:

Diffus. =

(∫
Dφ

(∫
d3x

δ

δφ`(~x)
δ

[
φ`(~y)−

∫ Λ(t)

0

d3k

(2π)3
ei
~k·~yφ(~k)

]
× (4.17)

× (−∆̇φ(~x)) P [φ, t] +

+

∫
d3x

∫
d3x′

δ2

δφ`(~x)δφ`(~x′)
δ

[
φ`(~y)−

∫ Λ(t)

0

d3k

(2π)3
ei
~k·~yφ(~k)

]
×

×
(

∆̇φ(~x)∆φ(~x′)
)
P [φ, t]

))
× (1 +O(δ)) ,

where

∆φ(~x) =

∫ (1+δ)Λ(t)

Λ(t)

d3k

(2π)3
ΩΛ(t)(k) ei

~k·~xφ(~k) , (4.18)

∆̇φ(~x) =

∫ (1+δ)Λ(t)

Λ(t)

d3k

(2π)3

∂

∂t

(
ΩΛ(t)(k)

)
ei
~k·~xφ(~k) .

We show in App. B.1 in explicit computations in perturbation theory that both the terms
that are linear and quadratic in ∆φ produce finite contributions in the limit δ → 0, while
terms of order (∆φ)3 and higher give vanishing contributions in the limit δ → 0, due
to more than one phase space integrations over the momentum shell with thickness ∼ δ.
Consequently the Taylor expansion of the δ-functions leads to a perturbative structure in δ.

Now we can perform manipulations similar to those we did for the drift term. We pull
the derivatives with respect to φ` out of the integral, and evaluate the expectation values
of ∆φ’s in perturbation theory, using the perturbative wave function and keeping the long
modes fixed in the path integral for correlation functions. Perturbation theory is still valid
for modes comprising ∆φ’s, and, even though they belong to the support of the window
function ΩΛ(t), we will treat them as short modes since the δ-functions were now Taylor
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expanded. After these manipulations, the diffusion term reads:

Diffus. =

(∫
d3x

δ

δφ`(~x)

(〈
−∆̇φ(~x)

〉
φ`
P`[φ`, t]

)
+

+

∫
d3x

∫
d3x′

δ2

δφ`(~x)δφ`(~x′)

(〈
∆̇φ(~x)∆φ(~x′)

〉
φ`
P`[φ`, t]

))
×

× (1 +O(δ)) . (4.19)

Let us finally put together the drift (4.15) and diffusion terms to get the full equation
for the long-modes functional probability distribution:

∂

∂t
P`[φ`, t] =

[
−
∫
d3x

δ

δφ`(~x)

(〈[
Π[φ, ~x, t]

]
Λ(t)

〉
φ`

P`[φ`, t]

)
+

+

∫
d3x

δ

δφ`(~x)

(〈
−∆̇φ(~x)

〉
φ`
P`[φ`, t]

)
+ (4.20)

+

∫
d3x

∫
d3x′

δ2

δφ`(~x)δφ`(~x′)

(〈
∆̇φ(~x)∆φ(~x′)

〉
φ`
P`[φ`, t]

)]
(1 +O (δ)) ,

where on the left hand side we also used (4.12).

4.3 Structure of the perturbative expansion: λ, ~, ∇, and δ

Let us summarize the structure of the functional equation we just derived. We would
like to stress that so far we neglected only the corrections from the finite width of the
window function, which are of order δ �

√
λ. So (4.20) is formally all orders in λ and

gradients or, equivalently, ε. This is a functional equation with a similar structure to the
renowned Fokker-Planck equation, with a drift and a diffusion term. However, there are a
few important differences. For example the diffusion terms contains a term which is first
order in field-derivatives of the long modes and the expectation values are, in principle,
complicated functionals of the long field.

So far, equation (4.20) is still too complicated to be solved even to leading order in
λ, because of its functional nature. Most importantly, even if we were able to solve it, in
order to compute correlation functions of φ’s, we would still need to compute a strongly
non-Gaussian path integral over φ`, which would be practically impossible. At this point
we can drop the gradients of long modes in the Hamiltonian, keeping in mind that they
give corrections of order ε2 only. After this is done, as we will see, the long modes equation
becomes ultra-local, i.e. different spatial points affect each other in a perturbative expansion
in powers of

√
λ, and we can consider distributions for the values of long fields localized at

a finite number of spacial points. In fact the theory admits an expansion in the number
of locations, which is in some sense opposite to the derivative expansion employed in usual
effective field theories. Physically, this originates from the presence of the horizon in de
Sitter space.14 More concretely, we define the distribution for fields in n spacial locations,

14It is an interesting question what are the conditions under which such an expansion becomes useful.
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the “n-locations” distribution: 15

Pn (φ`(~x1) = φ1, t;φ`(~x2) = φ2, t; . . . ;φ`(~xn) = φn, t) = (4.21)

=

∫
Dφ`

n∏
i=1

δ (φ`(~xi)− φi)P`[φ`, t].

These objects are functions of finitely many variables and satisfy partial differential equa-
tions, as opposed to functional ones. We will see below that for low n’s, these equations
can be easily solved perturbatively in λ. In fact, at a given order in λ, the evaluation of
some n-point distribution requires knowledge of the distributions with different number of
points, but only finitely many of them, so that one always gets a closed system of equations.

To compute non-equal time correlators we need an object more general than (4.21).
For short modes non-equal time correlators can be computed, as usual, with the help of
perturbation theory, for example, by inserting extra operators in the path integral that
defines the wave-functional. If we treat long modes as classical, non-equal time correlators
are also computed straight-forwardly. In particular, we can define a joint-probability of
the form P

[n]
` [φ`, t;φ`,2, t2; . . . ;φ`,n, tn], which is the probability to have φ`,n at time tn,

φ`,n−1 at tn−1, . . . . Its t-derivative satisfies the same equation as P`[φ`, t] and the initial
conditions are given by

P
[n]
` [φ`, t;φ`,2, t2; . . . ;φ`,n, tn]

∣∣∣
t→t2

= δ [φ`(~x)− φ`,2(~x)]P
[n−1]
` [φ`2, t2; . . . ;φ`,n, tn] . (4.22)

From the functional P [n] one can proceed to define arbitrary multiple-point distributions
which keep track of fields at several space-time points. Then partial differential equations
that these objects satisfy can be derived following our methodology. Examples are given in
sections 6 and 9. If we would like to include quantum mechanical corrections for long modes,
suppressed at least by ~ε3, the definition of P [n]

` requires some extra care. Corresponding
subtleties are discussed in section 12.

At last, there are the corrections in δ, which are conceptually straightforward. They
simply come from taking into account of the form of window function ΩΛ(t)(k) in the
diffusion and drift terms. We discuss these in App. B. In summary, we have anticipated
how to express the exact solution in a perturbative expansion in three small parameters, ε,√
λ and δ. In the rest of the paper, we are going to make this construction more explicit,

and, in such a process, we will include an additional expansion parameter, ∆, which controls
time-dependent perturbation theory used for solving the differential equation for the n ≥ 2

n-point distributions..

5 Single-point distribution

5.1 Equation for P1(φ1, t)

Let us start with studying the one-point distribution P1(φ`(~x1) = φ1, t), or, for shortness
P1(φ1, t). The equation for P1 can be obtained by taking the time derivative of the defini-

15To avoid proliferation of lower indices we denote long modes localized at the spacial location ~xi by φi
with the index ` dropped.
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tion (4.21) and using the equation for P`, (4.20). We can integrate by parts the functional
derivatives and trade them for derivatives with respect to φ1, after which we get:

∂

∂t
P1(φ1, t) =

[
− ∂

∂φ1

∫
Dφ` δ (φ`(~x1)− φ1)

〈[
Π[φ, ~x1, t]

]
Λ(t)

〉
φ`

P`[φ`, t] +

+

(
∂

∂φ1

∫
Dφ` δ (φ`(~x1)− φ1)

〈
− ∂

∂t
∆φ(~x1)

〉
φ`

P`[φ`, t] + (5.1)

+
∂2

∂φ2
1

∫
Dφ` δ (φ`(~x1)− φ1)

〈
∆̇φ(~x1)∆φ(~x1)

〉
φ`

P`[φ`, t]

)]
×

× (1 +O (δ)) .

Notice that, with respect to (4.20), the functional δ-functions have been replaced by or-
dinary ones. Note also the reason why we did not get a closed equation for P1 yet: the
expectation values present in the equation depend on the long field at different spacial lo-
cations. For example, as we will see, the truncation in momentum space present in the drift
term in the first line of the equation requires knowledge of the long field at least at two
locations, or, equivalently, of the distribution P2 (φ`(~x1) = φ1, t;φ`(~x2) = φ2, t). Similarly,
the tadpole terms in the third line are in general non-vanishing due to the fact that the
long-modes background is not exactly spatially homogeneous and knowledge of the equal-
time two-location distribution is also necessary to carefully account for this effect. We will
see in section 8.3, however, that all these effects are suppressed at least by a full power
of λ, and consequently even at the subleading order in

√
λ can be dropped 16, while at

arbitrary order in λ one can use perturbation theory in
√
λ to obtain a solvable closed set

of equations.
After these simplifications, (5.1) reads

∂

∂t
P1(φ1, t) =

[
− ∂

∂φ1

(
〈Π1(φ1, φs(~x1), t)〉φ1

P1(φ1, t)
)

+

+
1

2

∂2

∂φ2
1

(〈
∆̇φ(~x1)∆φ(~x1)

〉
φ1

P1(φ1, t)

)]
×
(
1 +O

(
λ, ε2, δ

))
, (5.2)

where by Π1 we denoted the long part of the momentum at x1, which only depends on the
fields at x1. We stress that in the above equation we have, for the first time, dropped terms
that provide a relative correction of order λ, such as, for example, the tadpole term for φ,
see section 8.3 for a explicit estimates. At this order it only matters the dependence on the
field at one spacial location.

5.2 Leading equation

It is now time to evaluate the expectation values of the short modes. In order to simplify the
study of our equation, we will have to make some assumptions about the leading solution

16We note that if we did not use a smooth window function, but rather took δ → 0, the tadpole term
would only be suppressed by

√
λ. We explain this in Appendix D.
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around which we are going to expand the equation. We will assume that the potential is
such that there exists an equilibrium configuration and that the state of the field is close to
this equilibrium. In particular, if one is interested in a state that is far from the equilibrium
one, the contribution of various terms in the equation may be different than the one we will
assume next.

Let us do the counting for V ∼ λφ4 for simplicity, however, a similar counting can
be performed for any potential. We expect, as anticipated earlier on, φ` ∼ Hλ−1/4 and
localized at very long wavelengths. On the other hand, for long modes with momenta
k ∼ Λ(t)/few, we do not expect any enhancement by inverse powers of λ, as the mode has
not been outside of the horizon for long enough time, so that the amplitude of those modes
is just of order H. Equivalently short modes all have amplitudes of order H. In these
estimates we ignore powers of log ε due to the hierarchy discussed in section 2.

This counting implies that, up to corrections of order
√
λ the fields with momentum

of order k ∼ Λ(t) can be treated as free massless fields and that Π1(φ1, φs(~x1), t) depends
only on the long part of the field. The leading expression for Π1 can be easily inferred
from (3.8), giving Π1(φ1) = −λφ3

1/(3H).
This gives us the drift term, and now we move to compute the diffusion term. The

two-point function of a free massless scalar in momentum space is given by

〈φ(~k, t)φ(~k′, t)〉 = (2π)3δ(~k + ~k′)
H2

2k3

(
1 +O

(√
λ
))

, (5.3)

We thus get〈
∆̇φ(~x1)∆φ(~x1)

〉
=

1

2

∫
d3k

(2π)3

∫
d3k′

d

dt

(
ΩΛ(t)(k)ΩΛ(t)(k

′)
)
δ(~k + ~k′)

H2

2k3
=

=
1

2

∫
d3k

(2π)3

d

dt

(
ΩΛ(t)(k)

)2 H2

2k3
= (5.4)

=
1

2

(∫
d3k

(2π)3
δ(k − Λ(t))

H2

2Λ(t)3

)(
−
∫
dk Λ̇(t)

d

dk

(
ΩΛ(t)(k)

)2)
(1 +O(δ)) =

=
H3

8π2
(1 +O(δ)) ,

where in going from the second to the third lines in the equation we used the fact that 1/k3

is a smooth function of k, as compared to the window function, and consequently it can be
replaced with 1/Λ(t)3 ignoring corrections of order δ. Substituting this into (5.2) gives

∂

∂t
P1(φ1, t) = Γφ1P1(φ1, t)

(
1 +O(ε2, δ, λ

1
2 )
)
, (5.5)

where the differential operator Γφ is defined as

Γφ =
∂

∂φ

V ′(φ)

3H
+
H3

8π2

∂2

∂φ2
. (5.6)

This equation agrees with the one obtained by Starobinsky [14, 23]. However, now we have
derived this equation rigorously with control over all the approximations that were made.
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It is intuitively clear that the state we study at the moment corresponds to the equi-
librium solution of this equation, although, we would like to stress that formally we have
not proven it yet. We have only shown that the one-point distribution of our state evolves
in time according to equation (5.5). One way to see that the BD wave functional indeed
corresponds to a P1 independent of time is to note that time dependence in it enters only
through k/a(t), or equivalently through a(t)x. But since P1 is x−independent, it should
also be time-independent.

Hence, let us first study the equilibrium solution which satisfies

Γφ1P
eq
1 (φ1) = 0 . (5.7)

To fix it uniquely we pick the boundary conditions for which all the moments of the distribu-
tion are finite, so that P eq1 (φ1) decays at infinity faster than any power. It is straightforward
to check that the corresponding solution is

P eq1 (φ1) = Ne−
8π2V (φ1)

3H4 , (5.8)

where N is a constant normalization factor. Now that we obtained the solution, we can
confirm the validity of our assumption, i.e. the characteristic value of φ1, and more generally
of the long field φ`(~x), is of order λ−1/4 (see Fig. 6). In the next section we will see that
the equilibrium solution we just found is also an attractor.

Figure 6. Pictorial representation of the distribution the long-wavelength field at a single location
for the BD state. The typical values of the field, for V = λφ4, are of order φ ∼ H/λ1/4.

The one-location equilibrium distribution allows us to compute the leading order ex-
pectation values of the operators φ̂2n(~x), to which the long modes give the leading contri-
bution.17 For the the λφ4/4 potential they are given by

〈φ̂2n(~x1)〉 = 〈φ2n
1 〉
(

1 +O(
√
λ)
)

=

(
3

2π2

)n
2

λ−
n
2H2nΓ

(
n
2 + 1

4

)
Γ
(

1
4

) . (5.9)

17We sometimes use the φ̂ notation if we want to stress that we are computing expectation values of
operators.
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5.3 Non-equilibrium one-point distribution

Eq. (5.5) has been derived using the BD wave function to express the action of the momen-
tum, Π̂, on the wave function, Ψ[φ], in terms of a multiplication by a function of φ times
Ψ: Π̂Ψ[φ] ∼ λφ3Ψ[φ]. Therefore, this equation will hold unchanged for all the states for
which the momentum is the same function of φ as for the BD vacuum. This is expected to
be a large class of states. In fact, since modes are long, we can use our classical intuition to
notice that the expression of the momentum in terms of φ that we are using is nothing but
the functional form that the momentum has on the attractor solution that exist in de Sitter
for slow rolling scalar fields. To support this intuition in section 7 we will show directly that
small variations in Π as a function of φ decay in times of order H−1 and that Π approaches
the BD value. With this in mind, let us now turn to analyzing the time-dependence of the
one-point distribution of the field in states where the probability distribution of the long
field is different. In particular, we will see that the equilibrium distribution is an attractor
of this time evolution, which means that there is a class of states in dS space that after
some time all have the same one-point distribution as the state we study. It will also allow
us to introduce some objects that will be useful for studying the higher-point correlation
functions.

It is convenient to decompose the probability distribution into a basis of Eigenfunc-
tions, P1(φ1, t) =

∑
n cn(t)Φn(φ1), where Φn(φ1) are the Eigenfunctions of the differential

operator Γφ1 , defined by:
Γφ1Φn(φ1) = −λnΦn(φ1) . (5.10)

If the potential is smooth and grows fast enough at infinity the spectrum will be discrete,
the Eigenfunctions will decay exponentially at infinity and form a complete orthonormal
set of functions with the inner product given by∫

dφΦn(φ)Φm(φ)µ(φ) = δmn, (5.11)

where the measure µ is 18

µ(φ) = N−1e
8π2V (φ)

3H4 . (5.12)

These conditions are satisfied, in particular, by the λφ4 potential. More general potentials,
for example those that do not have a ground state, can be studied in a similar way but with
corresponding modifications.

For most potentials it is impossible to find all the Eigenvalues and Eigenfunctions
analytically, however, it is relatively simple to do this numerically. Few general results
still hold due to the special form of the operator Γφ [23]. First, all the Eigenvalues are
non-negative. Second, the smallest Eigenvalue, λ0, is equal to zero and the corresponding
Eigenfunction corresponds to the equilibrium solution given in (5.8):

Φ0(φ) = P eq1 (φ) , (5.13)

consequently, at late times the probability distribution of φ1 will tend to the equilibrium one
which means that the latter is an attractor. At late times the time-dependence is controlled

18The normalization constant N is included in the measure for some future convenience.
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by the leading non-zero Eigenvalue λ1, which for the λφ4/4 potential is approximately equal
to [23]

λ1 ≈ 1.37

√
λ

24π2
H . (5.14)

In general the n-th Eigenvalue scales as λn ≈ nα
√
λH at large n, where α is some positive

power, e.g. α = 3/2 for the quartic potential. This shows that the characteristic timescale
of the evolution of the distribution is of order λ−1/2H−1.

6 Two-point distribution

Our aim in this section is to compute the correlation functions of bi-local operators of the
form 〈

φ̂(xµ1 )nφ̂(xµ2 )m
〉
. (6.1)

According to our general logic, each operator is split into long and short parts φ̂(xµ) =

φ̂`(x
µ) + φ̂s(x

µ) and the contribution of long modes is enhanced by the powers of λ. To
compute the correlators of long modes, we need the two-point probability distribution.
So we start by computing that. In this section we treat equal x (two-times) and equal t
(two-locations) cases, postponing the general case to section 9.

6.1 Two-times distribution

Our goal will be to compute the joint probability distribution of two long fields at the same
spacial position ~x1 but at different times, P2(φ1, t;φ

′
1, t
′). Here we treat the long modes at

classical level. We already encountered a similar, but more general, functional distribution
in section 4.3 and noted that its derivative with respect to the latest time satisfies the same
equation as the single-time distribution, while the boundary conditions are given by (4.22).
Consequently, assuming t > t′,

∂

∂t
P2(φ1, t;φ

′
1, t
′) = Γφ1P2(φ1, t;φ

′
1, t
′) , (6.2)

where Γφ is given in (5.6), while the boundary condition reads

P2(φ1, t
′;φ′1, t

′) = δ(φ1 − φ′1)P1(φ′1, t
′) . (6.3)

The δ-function can be decomposed into the Eigenfunctions of Γφ1 , defined in (5.10), as

δ(φ− φ′) =
∞∑
n=0

Φn(φ)Φn(φ′)µ(φ′) , (6.4)

which allows us to find the two-point distribution immediately:

P2(φ1, t;φ
′
1, t
′) = P1

(
φ′1, t

′) ∞∑
n=0

e−λn(t−t′)Φn(φ)Φn(φ′)µ(φ′) . (6.5)
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As an application of this result let us compute the connected two-point function of the
field operator at large time-separation in the equilibrium state. We have〈

φ̂(~x, t)φ̂(~x, t′)
〉

=
〈
φ̂`(~x, t)φ̂`(~x, t

′)
〉(

1 +O
(√

λ
))

=

=

∫
dφ1dφ

′
1 P

eq
2 (φ1, t;φ

′
1, t
′)φ1φ

′
1

(
1 +O

(√
λ, ε3~

))
= (6.6)

= C1e
−λ1(t−t′)

∫
dφ′1 P

eq
1 (φ′1)µ(φ′)Φ1(φ′)φ′1

(
1 +O

(√
λ, ε3~

))
=

= C2
1e
−λ1(t−t′)

(
1 +O

(√
λ, e(λ1−λ2)(t−t′), ε3~

))
,

where C1 =
∫
dφΦ1(φ)φ ∼ λ−1/4. In the first equality in (6.6) we dropped the short modes

contribution, and in the second equality we expressed the correlator of long modes with
the help of the two-times distribution and took the least-decaying contribution. Since we
focus on the connected part, we dropped the contribution from the λ0 = 0 Eigenvalue (for
symmetric potentials, this contribution automatically vanish). We added O

(
ε3~
)
at this

stage to stress that we did not yet show how to compute non-equal-time correlators of long
modes at quantum level (see section 12). In the last transition we used that µ(φ)P eq1 (φ) =

1. Note also that if the potential is symmetric, the even-n Eigenfunctions will be even,
consequently, the subleading contribution to this correlator will come from λ3, not λ2.

This is maybe a good place to show, again, that the non-perturbative solution for mass-
less λφ4 in de Sitter that we are finding cannot be interpreted as the dynamical generation
of a mass term, such that, after taking that into account, the resulting massive theory is
weakly coupled. For example, this is what happens in massless λφ4 at finite temperatures
in Minkowski space, see for example [52]. If the same situation where to happen here,
the long time behavior of the same-location n-point functions would be the same, upon a
suitable mapping between λ and m2/H2. The fact that this is not the case can be easily
checked by inspection of the Eigenvalues of the operators Γφ1 . For massless λφ4 theory,
we can straightforwardly find the leading Eigenvalues:

√
λH · {0, 0.089, 0.289, 0.537, . . .}.

Instead, for a free massive theory, the Eigenvalues are 1
3
m2

H2H{0, 1, 2, . . . }. We clearly see
that the set of Eigenvalues cannot be made compatible with any choice of m.

6.2 Two-locations distribution, sudden perturbation theory

Let us now turn to the more complicated and interesting case of the equal time two-point
distribution for the fields located at two different spacial locations ~x1 and ~x2, P2(φ`(~x1) =

φ1, t;φ`(~x2) = φ2, t), that we denote by P2(φ1, t;φ2, t; ~x12) for shortness. The equation for
this distribution can be derived analogously to the single point case just with the insertion
of two δ-functions instead of one, see equations (5.1) and (5.2). The only new term that
appears in the case of two points is related to the mixed correlators〈

∆̇φ(~x1)∆φ(~x2)
〉
φ`

(6.7)

between the modes at different locations. All the simplifications arising at the leading order
that appeared in the single point case continue to apply, and these correlators can be easily
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computed. Using (5.3) and the same manipulations as in (5.4), we get〈
∂

∂t
(∆φ(~x1)∆φ(~x2))

〉
=

∫
d3k

(2π)3

dΛ(t)

dt
δ(k − Λ(t))ei

~k·~x12
H2

2k3

(
1 +O

(√
λ, δ
))

=

=
H3

4π2
j0(εaHx12)

(
1 +O(

√
λ, δ)

)
, (6.8)

where j0(z) = sin(z)/z. We thus arrive to the following equation

∂

∂t
P2(φ1, t;φ2, t; ~x12) = (6.9)

=

(
Γφ1 + Γφ2 +

H3

4π2
j0(εaHx12)

∂2

∂φ1∂φ2

)
P2(φ1, t;φ2, t; ~x12)

(
1 +O(

√
λ, ε2, δ)

)
.

This agrees with the equation for the two-location distribution given in [14, 23]. We
presented here a more careful derivation of this result so that we can analyze this equation
systematically, as well as compute perturbative corrections.

To develop some intuition about this equation it is useful to consider two limits,
εax12H → 0 and εax12H →∞. In the first case j0(εax12H) approaches one and the diffu-
sion part of the operator in the right hand side of (6.9) becomes identical to the diffusion
part of the one-location operator but with respect to the variable (φ1 +φ2)/2. Additionally,
as εax12H → 0, φ1 must be equal to φ2, as, in this limit, they represent the field at the same
point so the distribution should be proportional to δ(φ1−φ2) in this limit. It is easy to see
that , as εax12H → 0, it exists a solution that can be written as P1((φ1+φ2)/2, t) δ(φ1−φ2),
where P1 satisfies the equation for the one-point distribution. On the other hand, for
large εax12H, the mixed term goes to zero and the differential operator becomes equal to
Γφ1 + Γφ2 . Therefore the variables φ1 and φ2 separate, and the distribution factorizes into
the product of two one-point distributions P2(φ1, t;φ2, t; ~x12) → P1(φ1, t)P1(φ2, t), each
satisfying (5.5). The behavior of the two-location distribution that we just described is of
course just the manifestation of the fact that fields are perfectly correlated while they are
separated by distances much shorter that the averaging scale 1/(aεH), and are completely
uncorrelated when they are separated by distances that are much longer.

The exact solution of equation (6.9) seems to be rather complicated. However, the
timescale during which j0 changes form from being very close to 1 to being very close to 0
is of order H−1, which is much shorter than the characteristic timescale of the evolution of
the distribution which we estimated to be of orderH−1λ−1/2. This allows us to approach the
problem with techniques very similar to the sudden approximation in Quantum Mechanics.
To stress the analogy let us formulate the problem in the corresponding language. For a
moment we keep x12 fixed, and think about the time evolution of P2 given by (6.9), which
we will rewrite in the following form, inspired by Quantum Mechanics:

∂

∂t
P2(φ1, t;φ2, t; ~x12) = −(H1 + j0(εaHx12)H ′)P2(φ1, t;φ2, t; ~x12) , (6.10)

where

H1 = −Γφ1 − Γφ2 , H ′ = −H
3

4π2

∂2

∂φ1∂φ2
. (6.11)
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It is convenient to decompose P̄2 into the Eigenfunctions of the late-time “Hamiltonian”
H1:

P2(φ1, t;φ2, t; ~x12) =
∑
n,m

Anm(t)Φn(φ1)Φm(φ2) . (6.12)

Here Φn(φ) are the Eigenfunctions of the operator Γφ introduced in (5.10).
Let us also assume that the field is in the equilibrium state, and call the associated

two-location distribution as P̄ eq2 (φ1, t;φ2, t; ~x12). The initial conditions for P2 are given by

P eq2 (φ1, t;φ2, t; ~x12)
∣∣∣
t=−∞

= δ(φ1 − φ2)P eq1

(
φ1 + φ2

2

)
. (6.13)

Consequently, at t = −∞, the coefficients Anm(−∞) ≡ A(0)
nm are given by

A(0)
nm =

∫
dφ1dφ2 µ(φ1)µ(φ2) Φn(φ1)Φm(φ2)Φ0

(
φ1 + φ2

2

)
δ(φ1 − φ2) = (6.14)

=

∫
dφ1 µ(φ1)2 Φn(φ1)Φm(φ1)Φ0(φ1) = δnm ,

where in the last transition we used orthonormality of the wave functions and the fact that
µ(φ) = Φ0(φ)−1 and Φ0(φ) = P eq1 (φ). At this point the leading sudden approximation
is straightforward to obtain. One simply determines the coefficients Anm from the initial
conditions and finds that they stay constant until the instant of time

t0 = −H−1 log (εHx12) , (6.15)

when the "interaction" H ′ is "suddenly switched off". Then, in the leading approximation,
the distribution does not have time to change in the process of switching off of the inter-
action, and after that the evolution is given by (6.12) with Anm(t) = A

(0)
nme−(λn+λm)(t−t0).

This approximation is enough if one is interested, for example, only in the large distance
behavior of the distribution at leading order in λ. The x12-dependence comes uniquely
through t0 and, for large x12, it reads:

P eq2 (φ1, t;φ2, t;x12) = Φ0(φ1)Φ0(φ2) + Φ1(φ1)Φ1(φ2)(aHx12)−2λ1/H + . . . . (6.16)

Note that we removed the ε dependence from the second term since it contributes at the
relative order O(

√
λ log ε) and consequently we should not keep it at this order. In fact

the next order calculation should cancel the ε dependent contribution. The first term
corresponds to the disconnected contributions to the two-location n-point functions, while
the second term produces the leading connected contribution. For example, for symmetric
potentials, the large distance behavior of the two-point function is controlled by this term.
At large x12 we get

〈φ̂(~x1, t)φ̂(~x2, t)〉 = 〈φ1φ2〉
(

1 +O(
√
λ)
)

=

= C2
1 (aHx12)−2λ1/H

(
1 +O

(√
λ, (aHx12)2(λ1−λ2)/H

))
, (6.17)

where C1 is the same as in (6.6). Again, for an even potential one can replace λ2 with λ3 in
the error estimate. Notice that, since we are focussing on the perturbation theory in

√
λ,
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we neglected to stress that there are order ε2 and δ corrections. We leave this implicit below
unless it is unclear from the context.

The expression in (6.17) allows us to compute the leading contribution at small k’s to
the momentum-space two-point function. Fourier transforming (6.17) we get19

〈φ̂(~k, t)φ̂(−~k, t)〉′ = λ1

H
C2

14π2 k−3+2λ1/H(aH)−2λ1/H
(

1 +O
(√

λ, (k/aH)2(λ2−λ1)/H
))

.

(6.18)
Note an extra factor of λ1, and hence

√
λ, as opposed to the coordinate-space expression.

For our purposes we have to do slightly better than (6.16). First, we would like to make
sure we have a controlled approximation and estimate the corrections to the leading result.
Second, we will be interested in the Fourier transform of the distribution at k ∼ εaH in
order to estimate various terms in equation (5.1) related to the background inhomogeneities.
The absolute magnitude of the distribution at these k’s is suppressed by

√
λ which implies

that it can get a relative order one contribution from the subleading sudden approximation.
Indeed, the ratio of timescales that controls the sudden approximation is of order

√
λ and,

consequently, one expects corrections to the leading sudden approximation to contribute at
this order. Moreover, these corrections are localized mostly around xεaH ∼ 1 so they are
important for k ∼ εaH . Additionally, for k very close to εaH , the corrections from late
times also give contributions of order

√
λ as we discuss them below.

Let us now carefully setup the systematic sudden approximation expansion. Substitut-
ing (6.12) into (6.10) we get the following equation for Anm(t):

Ȧnm(t) = −(λn + λm)Anm(t)−
∑
p,q

j0(εaHx12)H ′nm,pqApq(t) , (6.19)

where H ′nm,pq is the matrix element of H ′ between the Eigenfunctions of H1. We separate
the time evolution of P2 in three regions: t < ti, ti < t < tf and tf < t, where

ti = t0 −∆ H−1, tf = t0 + ∆ H−1 , (6.20)

and t0 is given in (6.15). See figure 7 for a visualization. We introduce three time intervals in
order to take into account that the interaction is being switched off not completely suddenly
but during the period of time from ti to tf . We would like to take ∆ as large as possible,
so that j0 is very close to 1 and 0 in regions I and III respectively; however, we must take
∆ � λ−1/2 so that the intermediate time interval is short enough, which is necessary for
the sudden perturbation theory to work. In this sense ∆ is a parameter similar to ε: no
physical quantity can depend on it and we are free to chose its value to render perturbation
theory maximally efficient. Since the residual size of the H ′ interaction in regions I and
III is of order e−∆, it is possible to choose ∆ in such a way that corrections coming from
those regions are smaller than any power of λ. Consequently, we can assume that Anm’s
evolve in these regions with the Hamiltonians H0 = H ′+H1 and H1. Interesting power-law
corrections in λ come from region II.

19Since the integral in the Fourier transform is divergent at large x12 it should be understood in the sense
of distributions, see Appendix C for more details.
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Figure 7. Anm(t), regions I, II, III.

In region II we solve (6.19) perturbatively. That is we write Anm(t) = A
(0)
nm + A

(1)
nm(t),

where A(0)
nm is given by (6.14), and A(1)

nm(t)/A
(0)
nm ∼

√
λ. For A(1)

nm(t) we get:

A(1)
nm(t) = −(λn + λm)

∫ t

ti

dt′ A(0)
nm −

∑
p,q

∫ t

ti

d t′j0
(
εa(t′)Hx12

)
H ′nm,pqA

(0)
pq . (6.21)

Now let us use the fact that the initial state
∑

p,q A
(0)
pq Φp(φ1)Φq(φ2) was annihilated by

H0 +H ′:
(H0 +H ′)

∑
p,q

A(0)
pq Φp(φ1)Φq(φ2) = 0 . (6.22)

We can multiply this expression by µ(φ1)Φn(φ1)µ(φ2)Φm(φ2) on the left and integrate over
φ’s to get

(λn + λm)A(0)
nm +

∑
p,q

H ′nm,pqA
(0)
pq = 0 . (6.23)

Substituting this into (6.21) we see that the evolutions of different coefficients decouple:

A(1)
nm(t) = (λn + λm)

∫ t

ti

d t′
[
j0
(
εa(t′)Hx12

)
− 1
]
A(0)
nm . (6.24)

In particular, at this order they stay diagonal in m,n due to (6.14). The last expression
also makes it manifest that A(1)

nm(t) is of relative order
√
λ.

Finally, in the region III we get at subleading order

Anm(t) =
(
A(0)
nm +A(1)

nm(tf )
)
e−(λn+λm)(t−tf )(1 +O(λ)) . (6.25)

TheO(λ) in this expression has to be understood in a sense that we have included the O(
√
λ)

corrections coming from sudden perturbation theory. There are also other perturbative
corrections, still of order

√
λ, to the Eigenvalues λn that are coming from the corrections

to the operator Γφ, as we will compute in section 8.2. Expressions (6.24) and (6.25) are
valid independently of the order to which the Eigenvalues are computed.

– 38 –



To summarize, we get the following expression for the two-point distribution in the
equilibrium state which is also plotted on figure 7:

P eq2 (φ1, t;φ2, t; ~x12) = (6.26)

δ(φ1 − φ2)P eq1

(
φ1 + φ2

2

)
, t < ti (I)

∑
n

Φn(φ1)Φn(φ2)

(
1 + 2λn

∫ t

ti

d t′
[
j0
(
εa(t′)Hx12

)
− 1
])

, ti < t < tf (II)

∑
n

Φn(φ1)Φn(φ2)

(
1 + 2λn

∫ tf

ti

d t′
[
j0
(
εa(t′)Hx12

)
− 1
])

e−2λn(t−tf ), tf < t (III)

Until now we have been treating the distribution as a function of t at fixed x12, how-
ever, (6.26) is valid for any t and x12 so we can equivalently treat it as a function of x12

at fixed t, which is what we need to compute the Fourier transform. Note that ti and
tf depend on x12 through t0, see equations (6.20) and (6.15). As a function of x12, P

eq
2

is also given piecewise on three intervals: x12 < xi, xi < x12 < xf and xf < x12, with
xi = e−∆(a(t)εH)−1 and xf = e∆(a(t)εH)−1. When x12 belongs to each of those intervals,
t correspondingly belongs to region I, II or III defined above. It is again convenient to
study the contribution of each Eigenfunction independently, however, now we will keep the
dependence of the coefficients Ann(t, x12) on x12 explicit.20 We are interested in computing
the Fourier transform Ãnn(k) =

∫
d3x e−i

~k·~x12Ann(x12) with Ann(x12) given by

Ann(x12) = (6.27)

1, x12 < xi

1 + 2λn

∫ t

ti(x12)
d t′
[
j0
(
εa(t′)Hx12

)
− 1
]
, xi < x12 < xf(

1 + 2λn

∫ tf (x12)

ti(x12)
d t′
[
j0
(
εa(t′)Hx12

)
− 1
])

e−2λn(t−tf (x12)), xf < x12

Consequently, the Fourier transform of Ann(x12) will split into three integrals:

Ãnn(k) =

(∫ xi

0
d3x12 +

∫ xf

xi

d3x12 +

∫ ∞
xf

d3x12

)
e−i

~k·~x12 Ann(x12) = II + III + IIII .

(6.28)

This expression allows us to compute several
√
λ corrections to the spectrum at small

k � εa(t)H , more precisely, to the prefactor in Eq. (6.18). However, the most interesting
corrections in this regime come from the corrections to the Eigenvalues, which we compute in
section 8.2. We, therefore, will not compute the corrections to the prefactor in this regime.
Importantly, we have shown that the corrections coming from the sudden perturbation
theory are small and consequently the result in (6.18) is a reliable approximation.

Instead, the corrections from sudden perturbation theory play the most significant role
at k ∼ εaH for which III gives the main physical contribution. We thus focus on this

20As we showed above, at the order we are computing only Anm with n = m contribute.
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case. The computation of the integrals is straightforward but rather tedious and hence
is relegated to the Appendix C. Notice that, for modes that are very close to the cutoff,
|k/Λ − 1| ∼ e−∆, the corrections to time evolution at late times in region III are also
important. They can be computed by simply integrating perturbatively equation (6.10)
at late times. Details are also presented in Appendix C. Keeping the leading contribution
when λ→ 0, ∆→∞ and

√
λ∆→ 0, we get

Ãnn(k) =
4π2λn
H

k−3θ∆(εa(t)H − k)
(

1 +O
(√

λ∆, e−∆
))

. (6.29)

Even though we indicated a potential O
(√

λ∆
)
correction coming from a naive estimate

of the next term in the sudden perturbation theory, similarly to what happens for the
dependence on ε and δ, all the ∆ dependence will get cancelled at the next order and the
actual correction to the result is of the relative order O

(√
λ
)
. θ∆ in (6.29) represents

θ-function smeared on a scale k/Λ− 1 ∼ e−∆, which is given explicitly in App. C.
From (6.29), (6.12) and (6.16) the Fourier transform of the two-locations equilibrium

distribution, P̃ eq(φ1, t;φ2, t;~k) at all wavenumbers can be easily derived:

P̃ eq(φ1, t;φ2, t;~k) = θ∆(Λ(t)− k)
4π2

Hk3

∞∑
n=1

(
k

aH

)2λn/H

Φn(φ1)Φn(φ2)λn

(
1 +O

(√
λ
))

.

(6.30)
Note that we have dropped the contribution coming from n = 0 since it corresponds to
the disconnected piece and is proportional to δ(3)(~k). This expression allows us to compute
correlation functions of the form 〈φ̂n` (~k, t)φ̂m` (−~k, t)〉. We see that at the leading non-
trivial order all of these correlation functions are proportional to the smeared theta-function
θ∆(Λ(t)−k). Of course this will not be true to higher orders, for example, it is evident that
the correlator 〈φ̂2

` (
~k, t)φ̂2

` (−~k, t)〉 has some support at Λ . k . 2Λ. What we observe here
is that, as we had anticipated earlier, in order to see this effect one needs to pay additional
powers of

√
λ. One could arrive at this conclusion by analyzing the perturbation theory

of short modes, however, it is an important, and somewhat non-trivial, consistency check
that we were able to derive the θ-function by studying the differential equation for the
distribution of the long modes.

6.2.1 n-location distribution

In this section, we have focussed on the perturbative computation of two-locations n-point
functions. It is quite clear how to generalize it to an higher number of locations. The
main idea is that, at very early times, all points start completely correlated, and then,
generically one at the time, and in the same sudden way as we used in this section, each
point becomes uncorrelated from the rest and starts evolving independently. It is quite clear
at this point how in this way one can generalize the calculation to an arbitrary number of
locations. See [18] for an early example of this computation in the context of slow-roll
eternal inflation. We are now going to explain this in some more detail.

Imagine that we wish to compute the equal-time n-location distribution Pn(φ1, ~x1, t ; . . . ; φn, ~xn, t),
which in this section, for shortness, we will denote as Pn(φ1, . . . φn; t, {~xij}). For simplicity,
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let us focus on the regime where the distances between the two nearest points are hierarchi-
cally organized, i.e., up to relabeling of the points, we have xij � xjk, for any i, j, k such
that i < j and i < k. As before, we fix all ~xi’s and study evolution of Pn with time. In this
situation, let t0,i be the point when the long field at ~xi, φi, begins to behave independently
from the other ones (out of which, the field values φ1, . . . , φi−1 behave all independently,
while the field values φi+1, . . . , φn are still completely correlated). We will work at leading
order in sudden perturbation theory and, as before, take t0,i = −H−1 log(εHxii+1).

Other hierarchical kinematical configurations, where, for example, points first separate
into groups, can be studied in an analogous way. In case when distances between some
pairs of points are comparable, in order to be sensitive to the ratio of these distances, one
needs to include subleading sudden perturbation theory corrections, similarly to what was
done in the previous section for P2.

As anticipated in section 4.3, up to quantum corrections, the n-location probability
distribution satisfies a straightforward generalization of (6.10):

∂

∂t
Pn(φ1, . . . φn; t, {~xij}) = (6.31)

= −

H(3)
1 +

1

2

∑
i6=j

j0(εaHxij)H
′
ab

Pn(φ1, . . . φn; t, {~xij}) ,

where

H
(n)
1 = −Γφ1 − . . .− Γφn , H ′ij = −H

3

4π2

∂2

∂φi∂φj
. (6.32)

At leading order in sudden perturbation theory, at each time, eq. (6.31) can be simply
recast as the independent evolution of some field values: the ones that are already fully
decoupled from the others, and the ones that are still fully correlated among them, and
that are treated as one single field value. Let us start by considering the evolution at
times earlier than t0,1. Clearly, in this regime all field values are fully correlated, and the
distribution is the equilibrium one

Pn(φ1, . . . , φn; t < t0,1, {~xij}) =

 n∏
q=2

δ(1)(φ1 − φq)

P eq1 (φ1) . (6.33)

Next, let us consider the evolution in the interval t ∈ [t0,1, t0,2], where the evolution of the
point φ1 is uncorrelated to all the other one. The boundary condition at t = t0,1 is such that
also the field φ1 is fully correlated with the others. We therefore have the same solution as
in the two-location case we just studied:

Pn(φ1, . . . , φn; t0,1 < t < t0,2, {~xij}) =
∑
p

e−2λp(t−t0,1)Φp(φ1)Φp(φ2)

 n∏
q=3

δ(1)(φ2 − φq)


=
∑
p

(εa(t)Hx12)−2λp/H Φp(φ1)Φp(φ2)

 n∏
q=3

δ(1)(φ2 − φq)

 . (6.34)
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In the subsequent interval , t0,2 < t < t0,3, the field φ2 begins to evolve in an independent
way from the other field values. The general solution in the interval takes the form

Pn(φ1, . . . , φn; t0,2 < t < t0,3, {~xij}) = (6.35)

=
∑

p1,p2,p3

Ap1,p2,p3(t0,1, t0,2)e−(λp1+λp2+λp3 )(t−t0,2) Φp1(φ1)Φp2(φ2)Φp3(φ3)

 n∏
q=4

δ(1)(φ3 − φq)

 ,

with Ap1,p2,p3(t0,1, t0,2) is fixed by imposing this expression to be equal to (6.34) evalu-
ated at t = t0,2. By using the orthonormality of the Eigenfunctions, we can solve for
Ap1,p2,p3(t0,1, t0,2) and write

Pn(φ1, . . . , φn; t0,2 < t < t0,3, {~xij}) =

 n∏
q=4

δ(1)(φ3 − φq)

 × (6.36)

×
∑

p1,p2,p3

Ĉp1,p2,p3 e
−2λp1 (t0,2−t0,1)e−(λp1+λp2+λp3 )(t−t0,2) Φp1(φ1)Φp2(φ2)Φp3(φ3) ,

where
Ĉp1,p2,p3 ≡

∫
dφµ2(φ) Φp1(φ)Φp2(φ)Φp3(φ) (6.37)

is typically an order one number. If n = 3, we would be done. Intuitively, we see that the
decay of the correlation function between time t0,2 and t0,1, associated to the decay of the
correlation between φ1 and the other field values, is now multiplied by another exponential
decay in the time interval t− t0,2, now associated to the fields φ1 and φ2 being independent
from the others. Also, as for the two-location distribution, all the x dependence comes from
the crossing times t0,i’s. Notice, importantly, that this results shows that the three-point
function will be unsuppressed with respect to the two-point function, again confirming that
our non-perturbative solution cannot be interpreted as the dynamical generation of a mass
term.

Before we proceed with the general case, let us study the result for the three-point
distribution in slightly more detail. It is of particular interest the late-time limit when the
three points are already separated. In this case, the expression (6.36) with n = 3 is the
relevant one. Substituting for t0,1 and t0,2 we can recover the explicit x-dependence to get

P3(φ1, φ2, φ3; t, ~x12, ~x23) =
∑

p1,p2,p3

Ĉp1,p2,p3Φp1(φ1)Φp2(φ2)Φp3(φ3)

(aHx12)
2λp1
H (aHx23)

λp2+λp3−λp1
H

. (6.38)

Note that in our approximation we cannot distinguish between x12 and x13, as subleading
O(
√
λ) corrections are necessary to do this. We thus can conclude that our three point

function is consistent with the one that we expect from dS invariance, namely

P3(φ1, φ2, φ3; t, ~x12, ~x23) =
∑

p1,p2,p3

Ĉp1,p2,p3Φp1(φ1)Φp2(φ2)Φp3(φ3)

(aHx13)
λp1+λp3−λp2

H (aHx12)
λp1+λp2−λp3

H (aHx23)
λp2+λp3−λp1

H

.

(6.39)
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In principle, it is possible to compute the subleading corrections and check the above ex-
pression, but we leave this for the future. Instead, in section 9 we will check explicitly
dS-invariance of the two-point function.

Let us proceed with the higher-point functions. Iterating, in the generic interval
[t0,j−1, t0,j ], with 1 ≤ j ≤ n, with t0,n =∞, we have

Pn(φ1, . . . , φn; t0,j−1 < t < t0,j , {~xij}) = (6.40)

=
∑

p1,...,pj

Ap1,...,pj (t0,1, . . . , t0,j−1)e−
∑j
i=1 λpi (t−t0,j−1)

(
j∏
i=1

Φpi(φi)

) n∏
q=j+1

δ(1)(φj − φq)

 ,

where Ap1,...,pj (t0,1, . . . , t0,j−1) can be expressed recursively through integrals of Eigenfunc-
tions similarly to (6.37), multiplied by some exponentials of time intervals. Each time t0,i,
with i < j, appears in the exponents as e−(

∑
i′≤i λi′)(t0,i−t0,i−1), where λi’s are some of the

Eigenvalues. This time dependence corresponds to the decay of the correlation function
as more and more points begin to evolve independently. We do not expect any further
suppression than this, showing that the theory is completely non-Gaussian.

7 Stability of rigid dS space and attractiveness of the Bunch Davies
vacuum

In this section we discuss the implications of our results for states that are different than
the BD vacuum and also for the stability of de Sitter space in the rigid limit. As already
mentioned at the beginning of section 5.3, the Fokker-Planck-like equation that we have
derived requires some knowledge of the wave function in order to be able to express the
action of Π̂ on Ψ[φ] as the multiplication of Ψ by a function of φ. Our Fokker-Planck-like
equation applies therefore only to those states that have the same expression for Π̂ Ψ[φ].
Within this class of states, we have shown in section 5.3 how the BD solution is an attractor.
Since correlation functions in the BD state decay, this tells us that rigid de Sitter space,
with the BD vacuum, is stable. It is now interesting to consider more general states.

There are several ways to consider different states than the BD vacuum. Perhaps a
rather general one is to realize that there is a large family of states in the vicinity of the
BD ones whose wave function can be obtained by performing a path integral with the BD
boundary conditions in the infinite past, and with appropriate insertions of operators along
the path. Schematically, we can define such a state as

ψO1,...,n = N−1
Ψ

∫
Dφ O(xµs,1, x

µ
s,2, . . .) e

iS , (7.1)

where O(xµs,1, x
µ
s,2, . . .) is made of products of φ fields at spacetime points xµs,1, x

µ
s,2, . . .,

and NΨ is a normalization constant. Therefore, correlation functions in such a state can be
constructed out of correlation functions in the BD vacuum. This teaches us two important
points. First is that the decay of connected correlation functions in the BD vacuum with
time that we derived earlier on implies that the connected correlation functions will decay
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in this additional state as well 21. We take the fact that correlation functions decay in time
as the statement that de Sitter space is stable in the rigid limit, which is the limit we are
working in in this paper.

The second point is that if wee keep the physical (i.e. the de Sitter-invariant) distance
between the points of the correlation function constant, while we send the distance between
the insertion points of the operator that define the states, xµs,i and the points of evaluation
of the correlation function to infinity, then correlation functions converge to the same ones
as the BD vacuum. This shows that the BD vacuum is a late-time attractor, at least for
the states that can be obtained by (7.1). Additionally, since, as we will show in section 9,
correlation functions in the BD vacuum linearly realize the de Sitter symmetry, we also
conclude that this symmetry is not spontaneously broken in the same limit.

It is instructive to show that the BD vacuum is an attractor for some state in its
vicinity by considering the following alternative construction. As we have seen, though
correlation functions cannot be computed perturbatively, the result of acting with Π̂ on
Ψ[φ] and write it as a multiplication of Ψ by a function of φ can be computed from a
perturbatively-computed wave function. Since this relation is what specified our Fokker-
Planck equation to the BD vacuum, one could consider to construct a similar equation
for a different state. However, for states ‘sufficiently close’ to the BD vacuum, we can see
that the answer quickly converges to the one obtained with the BD vacuum. Here, by
‘sufficiently close’ we mean states where correlation functions preserve the same scaling as
the BD vacuum; in particular, the typical size of φ` is of order λ−1/4. To show this, let
us consider a general modification to the wave function of the BD vacuum valid for long
wavelength modes, as these are the ones that become non-perturbative:

Ψ[φ] = ΨBD[φ] Exp

(
i

∫
d3x

ε̃(λ, φ`(~x), η)

η3

)
, (7.2)

where we neglected gradients of the field, as they are suppressed. At late times, the leading
component of the BD wave function is the potential term ∼ iλφ4

`/η
3, which, in λ counting,

scales as i/η3. So, in order to preserve the same scaling for φ`, we assume that ε̃(λ, φ`(~x), η)

is at most of order one.
Let us consider the Schrodinger equation for this wave function, eq. (3.1). Given that

the BD vacuum is a solution, each single term of this equation will vanish if ε̃ vanishes.
Therefore, we obtain, schematically,

i
∂

∂η
Ψ[φ] =

{∫
d3k

[
− η2

2H2

δ2

δφ~kδφ−~k
+
H2

2η2
k2φ~kφ−~k

]
+

∫
d3x

H4

η4

λφ(~x)4

4

}
Ψ[φ]

⇒ −∂η ε̃(λ, φ`(~x), η)

η3
+ 3

ε̃(λ, φ`(~x), η)

η4
= O(

√
λ) × ε̃(λ, φ`(~x), η) +O(

√
λ) × ε̃(λ, φ`(~x), η)2 .

The right-hand size contains the results when at least one of the functional derivatives
δ/δφ acts on ε̃. Because of the scaling of φ`, these functional derivatives are suppressed

21We remind the reader that connected correlation functions decay because the space and time dependence
of connected correlation functions is dictated by the strictly positive Eigenvalues of the operator −Γφ (for
correlators of operators inserted at both different time and space see section 9).
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by a factor of
√
λ. Notice that this scaling applies only to long wavelength fields. At

leading order, the right-hand side can therefore be dropped. The solution for ε̃(λ, φ`(~x), η)

is therefore

ε̃(λ, φ`(~x), η) = ε̃(λ, φ`(~x), η0)
η3

η3
0

→ 0 , (7.3)

where η0 is time at which we perturbed the state. This is nothing but the fact the slow
rolling solution is an attractor for modes outside the horizon. This result shows that for a
significant basin of attraction, the wave function of the long modes, and therefore correlation
functions, tend to the one of the BD vacuum. The BD state is therefore an attractor, for
a class of states we just described. In Appendix A we show a slightly different formalism
that allows us to consider an even wider class of states and again find that the BD state is
an attractor.

8 Subleading-order calculations for λφ4

8.1 Subleading P1

Our next step is to derive the next-to-leading order corrections to the equation governing
the single-field distribution P1. Remember that Eq. (5.2) still contained all the terms
of relative order O(

√
λ). We, however, neglected those terms while going to (5.5). Our

goal in this section is to repeat the same steps, keeping track of the relevant subleading
terms. Naturally, there are corrections to the diffusion term, which come from the fact that
the correlator of short modes of φ, 〈φ̂(~ks, t)φ̂(−~ks, t)〉φ` with ks = Λ(t) has perturbative
corrections, and corrections to the drift term, which come from the expectation value of
the momentum operator and are due to the subleading terms in the wave function.

Let us study these corrections separately before combining them into the full equation.
To make the expressions slightly shorter in this section we work with the λφ4 potential.

8.1.1 φ -φ correlator

Let us now turn to the correlator
〈
φ̂(~ks, t)φ̂(−~ks, t)

〉′
φ`

for ks = Λ(t). At order
√
λ, the only

effect is the correction to the mass of short modes produced by the background of the long
modes. Because of the smoothness of the window function, we can take the short modes
to be local operators that depend on the long wavelength fields at the same location, up to
corrections of higher order in

√
λ and δ. We prove this intuitive fact in App. B.3. Therefore

the effective Hamiltonian of short modes contains the term
∫
dx3 1

2δm
2
sφ

2
s with

δm2
s = 3λφ2

1 . (8.1)

The result for the massive correlator is well-known (see (2.2)). Expanding to subleading
order in δm2

s and leading order in ε, we get〈
φ̂(~ks, t)φ̂(−~ks, t)

〉′
φ1

=
H2

2Λ(t)3

(
1 + (log (ε/2)− ψ (3/2))

2δm2
s

3H2

)
+O(λ) . (8.2)

Our notation stresses that at this order the correlator depends only on φ1.
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8.1.2 Subleading momentum

From (4.3), in order to compute the subleading contribution from the momentum, we need
to compute the subleading part of the imaginary part of exponent of the wave function.
There are four main contributions at the order we are concerned.

There is a tree-level contribution from the diagram on the left of Fig. 8. The resulting
expression reads

(Fig. 8, left) = i2
λ2

42

(
4 · 4

2

)
(−i)2

∫ 0

−∞
d∆η1

∫ 0

−∞
d∆η2 (8.3)(− 1

Hη1

)4(
− 1

Hη2

)4
G

η1, η2,

∣∣∣∣∣∣
∑

i=1,2,3

~ki

∣∣∣∣∣∣
×

× K(η1, k1)K(η1, k2)K(η1, k3)K(η2, k4)K(η2, k5)K(η2, k6)]η2=η1−i∆η2, η1=η−i∆η1
+

+ {η1 ↔ η2}) ,

where G and K are given in (3.4) and (3.5) correspondingly. The evaluation of this diagram
is highly facilitated by the fact that with our power counting rules, we can focus on all
wavelengths being long. The integral is therefore convergent in the past even without
accounting for the exponential suppression from the iε-prescriptions, so one can take the
limit k → 0 in all the above expressions before taking the time integral. We obtain

log Ψ ⊃ −ia3 λ2

54H3

∫  ∏
i=1,...,6

d3ki
(2π)3

 (2π)3δ(3)

 ∑
i=1,...,6

~ki

 × φ~k1
. . . φ~k6

(1 +O(ε)) ,

(8.4)

which leads to the following expression for the momentum

Π1 ⊃ −
λ2φ5

1

9H3

(
1 +O(ε,

√
λ)
)
, (8.5)

where by φ1 and Π1 we, as before, denote long fields and momenta at ~x1.
Next, we evaluate the one-loop diagram shown in the center of Fig. 8 that contributes

to the φ2-term in the exponential of the wave function. It reads

(Fig. 8, center) = i
λ

4
(4 · 3) (−i)

∫ 0

−∞
d∆η1

∫
d3q

(2π)3
(8.6)[(

− 1

Hη1

)4

G (η1, η1, q)K(η1, k1)K(η1, k2)

]
η1=η−i∆η1

= −ia(η)3c1 λH(1 +O(ε)) ,

where c1 is some real numerical constant.22 The last step follows from the fact that we can,
again, take the limit k1 → 0 and k2 → 0 before taking the time integral. This contributes

22This diagram is UV divergent and, consequently, c1 depends on the UV regulator. Below we will see
that it will combine with other UV-divergent contributions to contribute to the finite physical mass term.
The prescription for the UV regularization was discussed in section 3.
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Figure 8. Witten diagrams contributing to the exponent of the wave function that are needed to
evaluate the momentum operator at subleading order. Left: a tree level diagram contributing to a
term in λ2φ6; center: a one-loop diagram contributing to a term in λφ2; right: a one loop diagram
contributing to a term in λ2φ4, and which turns out to be negligible.

to the wave function as

log Ψ ⊃ −ic1a
3λH

∫ ∏
i=1,2

d3ki
(2π)3

 (2π)3δ(3)

∑
i=1,2

~ki

 × φ~k1
φ~k2

(1 +O(ε)) ,

(8.7)

which leads to the following expression for the momentum

Π1 ⊃ −2c1λHφ1

(
1 +O(

√
λ, ε)

)
. (8.8)

Another relevant diagram is associated to the same tree-level diagram that contributes
to the wave function that we considered in (3.6), in Fig. 2, and that, again, was computed
in [48]. In this case, however, we can take two modes to be long (and taken in the limit
of vanishing wavenumber, so that they are enhanced by λ−1/4), and two modes short. The
diagram reads

(Fig. 2) ≡ λ a(η)3H I(k3, k4, η) = −λ ie−iη(k3+k4)

24η3H4(ηk3 + i)(ηk4 + i)
× (8.9)

×
(

2eiη(k3+k4)
(
η2
(
k2

3 − k3k4 + k2
4

)
− iη(k3 + k4) + 1

)
−η3

(
k3

3 + k3
4

)
(2iCi((k3 + k4)η)− 2Si((k3 + k4)η) + π)

) (
1 +O(ε,

√
λ)
)
,

where Ci and Si are respectively the CosineIntegral and the SineIntegral. This contributes
to the wave function as

log Ψ ⊃ −iλa3

∫ Λ

0

∏
i=1,2

d3ki
(2π)3

∫ ∞
Λ

∏
i=3,4

d3ki
(2π)3

× (8.10)

×(2π)3δ(3)

∑
i=3,4

~ki

 H I(k3, k4, η)× φ~k1
. . . φ~k4

(
1 +O(ε,

√
λ)
)
,
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and to the momentum as

Π1 ⊃ −λHφ1

∫ ∞
Λ

d3q

(2π)3
Re [I(q, q, η)] 〈φ(~q)φ(~q)〉′

(
1 +O(ε,

√
λ)
)
. (8.11)

Notice that this particular contribution shows that in order to compute correlation func-
tions of long fields, one needs to keep in the wave function also short modes, i.e. if we
kept only the long, kη � 1, limit of the wave function, we would get an order-one-wrong
calculation of this subleading term in the momentum operator and hence an O(

√
λ) mistake

in the calculation of correlators of the long modes, even on very long distances 23.
Both terms in (8.8) and (8.11) are degenerate in form with yet a last contribution, the

one from a mass term, which indeed acts as a counterterm for the two diagrams above. It is
therefore useless to compute the explicit result of the loop integrals, and we simply define
the sum of these diagrams and of the mass counterterm to give the following result:

Π1 ⊃ −
[
m̄2

3H
− λH

4π2
(log (ε/2)− ψ (3/2))

]
φ1

(
1 +O(ε,

√
λ)
)
. (8.12)

Notice that this offers a definition of the “physical” mass, m̄, where we pulled off the factor
of λH

4π2 (log (ε/2)− ψ (3/2)) because it will simplify some forthcoming results. We stress that
we take m̄2 to be much smaller than

√
λH2, but potentially larger or equal than λH2 (24),

which justifies keeping this contribution.
Finally, another diagram that naively could contribute at the order we are concerned is

represented on the right of Fig. 8. Given the discussion in section 3 we expect this diagram
to be further subleading. We show it explicitly in section 8.3.

8.1.3 Subleading equation for the single-point distribution

We are now in a position to combine together the pieces computed above and write down
the full equation governing the subleading time evolution of the one-point distribution:

∂

∂t
P1(φ, t) =

[
H3

8π2

∂2

∂φ2

(
1 + aφ2

)
+

∂

∂φ

(
λφ3

3H
+ bφ+ cφ5

)]
P1(φ, t)

(
1 +O(ε2, δ, λ)

)
,

(8.13)
where we defined for shortness

a =
2λ

H2
(log (ε/2)− ψ (3/2)) , c =

λ2

9H3
, b =

m̄2

3H
− λH

4π2
(log (ε/2)− ψ (3/2)) .

(8.14)

Naturally, the leading order pieces in the equation agree with (5.7). Let us find the
equilibrium solution of the subleading equation. Using the leading solution given in (5.8),

23 Of course, this is just a manifestation of the fact that if one computes of a physical quantity by
regularizing the theory with a given physical cutoff ΛUV

ph (not to be confused with Λ), one should consistently
keep all modes up to ΛUV

ph until the final physical observables is computed, because sensitivity to short modes
can occur at several different stages of the calculation.

24We see explicitly the mass generation, as anticipated in section 2.
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it is straightforward to get it:

P eq1 (φ1) = Ne−
2π2λφ4

1
3H4

(
1− λ φ

2
1

H2

(
log (ε/2)− ψ (3/2) +

4π2

3

m̄2

λH2

)
+

+
8π2

9

λ2φ6
1

H6

(
log (ε/2)− ψ (3/2)− 1

6

)
+O(λ)

)
, (8.15)

where N is, again, a normalization constant, given by

N−1 = λ−
1
4H

6
√

2πΓ
(

1
4

)
+
√

3
√
λ
(

1− 8π2 m̄2

λH2

)
Γ
(

3
4

)
4 (6π2)

3
4

. (8.16)

Note that the subleading terms depend on log ε. This is natural to expect because the
correlation functions of the long modes only are supposed to have this dependence, however,
it should cancel out once we compute the correlators of the full operator φ = φ`+φs. Indeed,
let us compute the correlator of φ(xµ1 )2n in the equilibrium state. At the subleading order
a term with two short modes contributes. Their correlator can be easily computed given
the known wave function and, to leading order, that is in the free massless approximation
reads: 〈

φs(x
µ)2
〉

= −H
2

4π2
(log (ε/2)− ψ (3/2)) +H2V2 , (8.17)

where V2 is a UV divergent piece that depends on the UV cutoff, but not on ε. We also
separated the digamma function, ψ, from it in order to shorten some future formulas since
the separation between finite and infinite pieces is arbitrary anyway. What is important is
that the coefficient of log ε in (8.17) is controlled by the IR part of the integral and hence
is calculable. Using this result we get

〈
φ(xµ1 )2n

〉
=
〈
φ2n

1

〉
+

2n(2n− 1)

2

〈
φ2n−2

1

〉 〈
φs(x

µ)2
〉

+O
(
λ−n/2+1

)
=

= λ−
n
2H2n

(
3

2

)n/2 [π−nΓ
(
n
2 + 1

4

)
Γ
(

1
4

) +

+
√
λ

6−3/2π−n−1

Γ
(

1
4

)2
((

3− 24π2 m̄
2

λH2
− n

(
2− 48π2V2

))
Γ

(
1

4

)
Γ

(
n

2
+

3

4

)
−

+

(
3− 24π2 m̄

2

λH2

)
Γ

(
3

4

)
Γ

(
n

2
+

1

4

))
+O(λ)

]
. (8.18)

The leading piece is of course equal to (5.9). The subleading piece is, to the best of
our knowledge, computed here for the first time. As we have expected, the ε dependence
cancelled between the leading short mode and the subleading long mode contributions. This
is an important consistency check of our procedure. Note also that the cutoff-dependent
part of the operator φ2

s, defined in (8.17) and denoted by V2, appears in the answer. This
is related to the renormalisation of the composite operator, or in other words, we should
add the contribution of the operator φ2n−2 with an infinite prefactor, whose finite part
is arbitrary and, in principle, n dependent. This is the only type of mixing that can be
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important at this order in
√
λ. The UV-sensitivity makes this result somewhat formal,

however, we still feel it is an important exercise which demonstrates the technology we
developed to deal with the IR issues. In section 8.2 we will compute the two-location
correlation functions at large-distances at subleading order in

√
λ using basically the same

equation. The connected part of those correlators is free from the UV ambiguities and
depends only on λ and m̄2.

8.2 Corrections to the Eigenvalues and large-distance correlators

In this section we will study subleading in
√
λ corrections to the large-distance and late-

time behavior of the correlation functions. As discussed in section 6, this is controlled by
the Eigenvalues of the evolution operator that governs the time dependence of the single-
field distribution. This time evolution at subleading order is given in equation (8.13).
Consequently, we need to solve the following Eigenvalue equation:[

H2

8π2

∂2

∂φ2

(
1 + aφ2

)
+

∂

∂φ

(
λφ3

3H
+ bφ+ cφ5

)]
Φn(φ) = − (λn + δλn) Φn(φ) , (8.19)

The terms proportional to a, b and c, as well as δλn, are of relative order O(
√
λ), and we

work to linear order in these parameters. It is convenient to bring the differential operator
to a more canonical form. We first make the change of variable, φ = φ′ + aφ′3/6, after
which the equation becomes[

H3

8π2

∂2

∂φ′2
+

(
λφ′3

3H
+

3aH3φ′

8π2
+ bφ′ + cφ′5

)
∂

∂φ′
+

+

(
λφ′2

H
+
aH3

4π2
+
aλφ′4

3H
+ b+ 5cφ′4

)]
Φn(φ′) = − (λn + δλn) Φn(φ′) .

(8.20)

The coefficient of the two-derivative term is now a constant. In order to get rid of the
first-derivative term we define

Φ̃n(φ′) = e
π2λφ′4

3H4 + 3aφ′2
4

+ 2π2bφ′2

H3 + 2π2cφ′6

3H3 Φn(φ′) , (8.21)

For which the equation takes its final form:[
H3

8π2

∂2

∂φ′2
+

(
aH3

16π2
− aλφ′4

6H
− 4π2bλφ′4

3H4
+
b

2
− 4π2cλφ′8

3H4
+

5cφ′4

2
− 2π2λ2φ′6

9H5
+
λφ′2

2H

)]
×

×Φ̃n(φ′) = − (λn + δλn) Φ̃n(φ′) . (8.22)

Substituting (8.14) we get[
−H

3

8π2

∂2

∂φ′2
+W0(φ′) +W1(φ′)

]
Φ̃n(φ′) = (λn + δλn) Φ̃n(φ′) ,

W0(φ′) ≡ 2π2λ2φ′6

9H5
− λφ′2

2H
, (8.23)

W1(φ′) ≡ 4π2λ3φ′8

27H7
+

4π2λm̄2φ′4

9H5
− 5λ2φ′4

18H3
− m̄2

6H
.
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Here W0 ∼
√
λH is the leading potential term. The bound states in this potential have

energies corresponding to the leading Eigenvalues λn. W1 ∼ λH (assuming m̄2 ∼ λH2) is
instead a small perturbation. Before we proceed, note that all dependence on ε cancelled
out after our manipulations. This means that the Eigenvalues are independent of it, as
they should be, since at large distances the contribution of short modes can be neglected.

Corrections to the Eigenvalues can be computed using the usual formulas of perturba-
tion theory for the Schrodinger equation:

δλn =

∫
dφ Φ̃2

n(φ)W1(φ) =

∫
dφµ(φ)Φ2

n(φ)W1(φ) , (8.24)

where in the last step we went back to the original Eigenfunctions of the operator Γφ defined
in (5.10). Consequently, δλn ∼ Hλ.

The correction to the n = 0 Eigenvalue vanishes, as can be easily checked analytically:
therefore there is still an equilibrium state at this order. Since we do not know the an-
alytic expressions for any higher Eigenfunctions, corrections to other Eigenvalues can be
only computed numerically, which is, nevertheless, straightforward. As we anticipated, the
Eigenvalues only depend on λ and on the value of the physical mass, m̄, but not on any
UV-cutoff or ε-dependent quantities. As an example, the equal time two-point function at
large distances behaves as〈

φ̂(~x1, t)φ̂(~x2, t)
〉
∼ (aHx12)−

2
H

(λ1+δλ1) . (8.25)

We end this subsection by emphasizing one reason for why in our formalism we en-
counter no more secular divergences from the subleading terms we have added to our equa-
tion, for example in (8.19). Indeed, if we were to naively solve (8.19) perturbatively in
these corrections, we would encounter new secular divergences. This would be the same
phenomenon that we observe when we solve perturbatively in the mass of a free field. This
is also evident from (8.25), where the Taylor expansion at late times in δλ1 would break
after O(H/δλ1) Hubble times. Instead, what we do in our formalism is to find the new
Eigenvalues and Eigenfunctions and keep the latter in the exponents, similar to what one
does in time-independent perturbation theory in Quantum Mechanics. In particular, the
corrected Eigenvalues stay positive due to the smallness of

√
λ. It is easy to see that the

equations for higher-n point functions are amenable to a similar perturbative analysis safe
from secular divergences. In particular, at late times all n-point distributions are con-
trolled by the same Eigenvalues, guaranteeing control of all the correlation functions at
large spacetime separations.

8.3 Estimates of neglected corrections

In the former sections, several contributions were assumed to be small. We now have the
formalism to estimate, and, if need be, to compute them. This is what we are going to do in
this section, thus additionally confirming that further subleading corrections are organized
in a hierarchical perturbative manner.
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k3 log k terms: We start by estimating the size of the contribution to the momentum
Π that appear in the wave function and that are proportional to k3, see (3.14). In fact,
due to the presence of additional logarithms, one might be worried that these terms are
enhanced by additional powers of 1/

√
λ with respect to the naive scaling, and so ultimately

could not be computed perturbatively (although the overall size of these corrections is of
order ε3). In section 3 we already anticipated that this is not the case and now we are going
to confirm this anticipation.

Let us focus on the quartic-in-fields term for definiteness and start with analyz-
ing its contribution to Π. Since details of the momenta dependence are not important
for our power-counting argument, let us assume that there is a contribution of the form
λk3

1 log (k1η)φ~k1
φ~k2

φ~k3
φ−(~k1+~k2+~k3)

. After Fourier transform, and neglecting numerical co-
efficients, it contributes to Π schemetically as

Π[φ, ~x] ⊃ λ

H4a(t)3
φ(~x)2

∫
d3∆x φ(~x+ ~∆x)

∫ Λ(t)

d3k1 e
i~k· ~∆x k3

1 log (k1η) (8.26)

∼ λ

H4a(t)3
φ(~x)2

∫
1/Λ(t)

d3∆x φ(~x+ ~∆x)
log (∆x a(t)H)

∆x6
,

where the second passage holds only for ∆x & 1/Λ(t), as this contribution originates from
the wave function expanded in kη . 1.

To see how large is this contribution, let us compute the correlation with φ`(~x) (as the
expectation value of Π vanishes by symmetry). We obtain, restricting to the long modes
inside the momentum,

〈φ`(~x1)Π[φ`, ~x1]〉 ⊃ λ

H4a(t)3

∫
dφ1 dφ2 φ

3
1φ2

∫
1/Λ(t)

d3∆x
log (∆x a(t)H)

∆x6
P2(φ1, t;φ2, t; ∆~x)

∼ λ

H4a(t)3

∫
dφ1 dφ2 φ

3
1φ2

∫
1/Λ(t)

d3∆x
log (∆x a(t)H)

∆x6
× (8.27)

×
(

Φ0(φ1)Φ0(φ2) + Φ1(φ1)Φ1(φ2) (∆xΛ(t))−λ1/H + . . .
)

∼ λ

H
ε3 log(ε) 〈φ4

1〉,

where in the last passage we used that fact that the integral in ∆x is dominated at short
distances, where P2 is ∆x-independent to leading order and equal to δ(φ1−φ2)P eq1 (φ1) (25).
With respect to the leading term, 〈λφ`(~x)3φ`(~x)〉 ∼ 1, this contribution is suppressed by a
factor of ε3 log(ε). Notice in particular that the fact that the integral in ∆x is peaked at
the shortest distances makes the logarithm not enhanced by a factor of 1/

√
λ: we obtain,

instead, log ε � 1/
√
λ. The same conclusion trivially holds if we consider other contribu-

tions proportional to k3, but with an higher number of fields. Each successive term adds
a factor of λφkiφkj log(kη) where the log is always protected by the factor of k3 present in
the corresponding vertex, which results in a relative suppression of order

√
λ log ε� 1 with

respect to the former one.
25Note that this is one example of a contribution of the two-location distribution P2 to the evolution

equation for P1.
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Let us make some general comments on the perturbative structure of our formalism.
The convolutions of products of fields with two- and higher-point distributions that appear
in our expressions are similar to computing Feynman diagrams with some sort of dressed
propagators that at low momenta behave as ∼ k−3+2λn/H ∼ k−3+

√
λ. Note that if, as it

happens for computation of correlation functions from the wave function in usual pertur-
bation theory, some logarithms were not protected by powers of k, those logarithms would
become IR-dominated and invalidate the perturbative expansion. However, the diagram-
matic structure of our expansion is different and the logarithms do remain protected by
factors of k’s, so that the resulting integrals are dominated by the UV where the loga-
rithms are not enhanced. For our purposes, we use perturbation theory, originating from
Taylor expanding Ψ∗Ψ in the powers of short modes around the Gaussian, only to com-
pute short modes expectation values. Consequently, we might encounter terms of the form
k3
` log(k`η)/k3

s ≤ k3
` log(k`η)/ε3, which still maintain the required property when integrals

over k` are taken, similarly to what happens in (8.27). Of course some integrals over the
long momenta are indeed IR dominated but then they do not have log-enhancements and
simply reproduce the negative powers of λ responsible for the φ`(~x) ∼ λ−1/4 behavior of
the long field, which is already taken into account in our power-counting.

In case the reader finds the above argument for suppression of the k3 log k corrections
too much dependent on the subtle properties of the wave function, (s)he might want to
study the formalism of Appendix A, in which the wave function is used only to estimate
approximate expectation values of fields and momenta in the equilibrium state, thus per-
turbativity may be more manifest by construction.

Effect of [. . .]Λ: In eq. (5.1), the drift term appears in the form [Π [φ, ~x, t]]Λ(t), where
the parenthesis represent the effect of going to Fourier space and back to real space in-
cluding only the modes up to Λ(t). In the main text, we have neglected this effect and
simply used directly the field at the same location, because it was assumed the difference
to be subleading. Let us indeed now check that the correct implementation of this Fourier
transform gives a correction of order λ, and therefore it can be neglected at the order we are
computing. For example, let us focus on the leading drift term of (5.1). For the neglected
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correction to the leading drift, we have

∆Drift. ⊃
∫
Dφ` δ(φ`(~x1)− φ1)

([
φ3
` (~x1)

]
Λ
− φ3

` (~x1)
)
P`[φ`, t] = (8.28)

=

∫
Dφ` δ(φ`(~x1)− φ1)

((∫ Λ d3k

(2π)3

∫
d3x2 e

i~k·(~x1−~x2)φ3
` (~x2)

)
−
(∫

d3k

(2π)3

∫
d3x2 e

i~k·(~x1−~x2)φ3
` (~x2)

))
P`[φ`, t] =

=

∫
dφ2

((∫ Λ d3k

(2π)3

∫
d3x2 e

i~k·(~x1−~x2)φ3
2

)
+

−
(∫

d3k

(2π)3

∫
d3x2 e

i~k·(~x1−~x2)φ3
2

))
P2(φ1, t;φ2, t; ~x12) =

=

∫
dφ2

((∫ Λ d3k

(2π)3
φ3

2 P2(φ1, t;φ2, t;~k)

)
−
(∫

d3k

(2π)3
φ3

2 P2(φ1, t;φ2, t;~k)

))
=

=

∫
dφ2

∫ ∞
Λ

d3k

(2π)3
φ3

2 P2(φ1, t;φ2, t;~k) = φ3
1P1(φ1, t) × O(λ, e−∆) ,

where in the second step we used the Fourier-space representation of δ(3)(~x1 − ~x2) in writ-
ing φ3

` (~x1) =
∫
d3x2 δ

(3)(~x1 − ~x2) φ3
` (~x2), and where in the last step we used the fact that

P2[φ1, t;φ2, t;~k] ∝ θ∆(k − Λ(t)) up to terms of order O(λ), as derived in Appendix C. We
therefore see that the corrections due to the Fourier transform enter at the O(λ) subleading
order. Therefore, though we have provided a formalism to compute them, they can be
neglected at the order at which we work in this paper.

Tadpole Diffusion: So far, we have neglected to include the tadpole term from the
diffusion term. The reason is that, in the case of a smooth widow function, it gives a
correction that is subleading by a full factor of λ, and so negligible for the order at which
we work in this paper. In App. D, we show the tadpole term that enters in the diffusion
term is bounded by

〈∆φ〉φ1P
eq
1 (φ1) . λ

5
4P eq1 (φ1) +O

(
e−∆

)
,

consequently its contribution to the time evolution operator is at most of order

∂

∂φ1
(〈∆φ〉φ1P1(φ1, t)) ∼ λ

3
2P1(φ1, t) , (8.29)

which means that indeed we could consistently neglect it. In App. D we also show that if a
sharp window function is used, the strong breaking of locality that is induced implies that
the tadpole term is enhanced by a factor of 1/

√
λ with respect to what we have in (8.29),

and so it contributes at the first subleading order.

Loop corrections to the momentum: Finally, yet another term that could con-
tribute is the one-loop diagram that corrects the λφ4/η3 term of the exponent of the
wave function, represented on the right of Fig. 8. This terms could in principle go as
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λφ4
` (λ log(kη))/η3, and so be suppressed just by

√
λ with respect to the leading term. As

we discussed in section 3, the logarithms must actually be protected by a prefactor of k3,
and so this contribution it has either suppressed by ε3 or it has no logarithmic enhancement.
Below we verify this explicitly for this specific case. The diagram reads

(Fig. 8, right) ≡ 9λ2

∫ η

−∞

dη1

(−Hη1)4

∫ η1

−∞

dη2

(−Hη2)4
K(η1, k1)K(η1, k2)K(η2, k3)K(η2, k4) ×

×
∫

d3q

(2π)3
G (η1, η2, q)G

(
η1, η2, |~k1 + ~k2 − ~q|

)
. (8.30)

We are only interested in the limit kiη � 1 when all the fields are long, and the only poten-
tially relevant contribution has a log(kη). Since the momentum integral is IR convergent,
the lower limit of integration of the momentum integral can be set to zero, while the upper
limit is given by some Lorentz-invariant regulator, which is time dependent in comoving
momenta. It is simpler to change variables to ‘physical’ momenta: from q → qph = q a(η2).
At this point, the boundaries of the momentum integral are time independent and so one
can perform the time integrals first. In the limit of qph/H � 1, the integrand takes a simple
form

∝ 9λ2

∫
d3qph

∫ η

dη1

∫ η1

dη2

(
η3

1 − η3
)2

η6
1η

7
2

∼ λ2

∫
d3qph

1

η3
, (8.31)

and the result of the integration has no logarithmic enhancement. For generic qph/H, one
can change variables to η̃2 = η2/η1 and η̃1 = η1/η. Now the limits of integration for
η1 and η2 are equal to one at late times. In the limit kiηj → 0, the integrand is just a
factor of 1/η3 times a function that is ki and η independent. The integrals in η̃1 and η̃2

are convergent, and so we conclude that there is no logarithmic factor in this limit. If we
expand in kiηj � 1, and extract three factors of ki from the propagators, the integrand in
η̃1 gets additional factors of η̃1, and becomes logarithmically divergent at early times, up to
the time 1/(kη) where the propagator cuts it off, giving rise to a k3

i log(kiη) contribution.
We therefore confirm that this diagram contributes only at subleading order O(ε3) or O(λ)

and so is negligible.

9 Generic 2-point function and dS-invariance

We now proceed to the calculation of general two-point functions for which the two points
are neither at the same spatial location nor at equal time. The latter two cases were
treated in section 6. The goal of this section is to demonstrate a method suitable for the
computation in this kinematical regime, and also to check that the two-point function of
the field is de Sitter invariant, that is it depends only on the interval

z2 =
2

H2
(coshH(t1 − t2)− 1)− eH(t1+t2)(~x1 − ~x2)2 . (9.1)

This will be a confirmation that de Sitter invariance is preserved by the BD vacuum.
We will thus focus on the kinematical regime where this check is the most non-trivial

for as low order in perturbation theory as possible. Note that, since in our approach space
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and time are treated very asymmetrically, the fact that the leading order two-locations and
two-times distributions at large separations are controlled by the same exponent is already
an indication of dS invariance [23], although it is a very weak one, as this condition is not
even, a priori, a necessary one. Let us first identify this simplest but non-trivial kinematical
regime. For convenience let us fix x12 = |~x1 − ~x2|. Then t1 and t2 can belong to one of the
three regions defined by equation (6.20), see figure 9. Without loss of generality we pick
t2 > t1. We also want to focus on the regime where long modes dominate. In this case
it is the simplest to go to large separations at time t2, so that the leading Eigenvalue, λ1,
dominates the connected correlator. This requires t2 to belong to the region III. We thus
expect the correlators to behave as (z2)−λ1/H ≈ e−(t2−t1)λ1

(
1− e2Ht1x2

12

)−λ1/H . In order
for the nontrivial dependence on both x12 and t2 − t1 to be visible at subleading order in√
λ, we should pick e2Ht1x2

12 ∼ 1. This requirement fixes t1 to belong to the region I. Then
we get

(z2)−λ1/H ≈ e−(t2−t1)λ1
(
1− λ1H

−1 log
(
1− e2Ht1x2

12

)
+O(λ)

)
. (9.2)

Our goal in the rest of this section will be to reproduce the second, O
(√

λ
)
, term in this

expression.

Figure 9. Kinematic regimes for a generic two-point function

Let us now outline the method we are going to use for this computation. We focus on
the two-point function 〈φ̂(~x1, t1)φ̂(~x2, t2)〉 in the BD state. There are contributions from
fields that are long at both locations, but also contributions from fields that are short at
time t1 but become long at time t2, and finally, at least in principle, also from fields that
are short at both locations.

As far as the contribution of long modes is concerned, up to corrections of order
ε3 we can treat them classically and consequently their probability distribution satis-
fies the equations presented in section 4.3. Quantum corrections will be discussed in
section 12. To compute the long-long component we will need the generic two-point
equilibrium distribution. We are going to first use an auxiliary three-point distribution,
P eq3 (φ1, t1, ~x1;φ′2, t1, ~x2;φ2, t2, ~x2), and integrate it over φ′2 to get the distribution
P eq2 (φ1, t1, ~x1;φ2, t2, ~x2) that we are interested in, see figure 10 for illustration. This allows
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us to use exactly the same logic as in section 6. Namely, P eq3 satisfies the following equation
at leading order:

∂

∂t2
P eq3 (φ1, t1, ~x1;φ′2, t1, ~x2;φ2, t2, ~x2) = Γφ2P

eq
3 (φ1, t1, ~x1;φ′2, t1, ~x2;φ2, t2, ~x2) , (9.3)

and the following initial conditions

P eq3 (φ1, t1, ~x1;φ′2, t1, ~x2;φ2, t1, ~x2) = δ(φ2 − φ′2)P eq2 (φ1, t1;φ′2, t1;x12) . (9.4)

We will also need to compute the long-short component. This is present due to the
modes that are short at time t1 and that become long at some time earlier than t2. In
the kinematic regime we specified the short-short contribution can be neglected, as they
contribute as (εa(t2)x)−1, whose relative contribution is smaller than e−∆ and therefore, as
discussed in section 6.2, smaller than any power of

√
λ.

Figure 10. Locations of the auxiliary three-point distribution.

We start with the long-long contribution. Since t1 is in the region I, P eq2 (φ1, t1;φ′2, t1;x12) =

δ(φ1 − φ′2)P eq1 (φ1). We can now decompose the dependence on φ2 of the initial conditions
in equation (9.4) into Eigenstates of Γφ2 :

δ(φ2 − φ′2)δ(φ1 − φ′2)P eq1 (φ1) = δ(φ2 − φ1)δ(φ1 − φ′2)P eq1 (φ1) =
∑
n

Φn(φ2)Φn(φ1)δ(φ1 − φ′2) ,

(9.5)

where we used the expression for the δ-function given in (6.4) as well as the fact that
P eq1 (φ) = µ−1(φ). In this form it is manifest that the time evolution is the same as for the
one location two-times distribution, and we get

P eq2 (φ1, t1, ~x1;φ2, t2, ~x2) =

∫
dφ′2 P

eq
3 (φ1, t1, ~x1;φ′2, t1, ~x2;φ2, t2, ~x2) = (9.6)∫

dφ′2
∑
n

Φn(φ2)Φn(φ1)δ(φ1 − φ′2)e−λn(t2−t1) =
∑
n

Φn(φ2)Φn(φ1)e−λn(t2−t1) .
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As we see, this result is independent of x12. We thus switch to the short-long contribution
that is supposed to introduce the correct x12 dependence anticipated in (9.2) from de Sitter
invariance.

The logic of this part of the calculation is the following: we decompose the short field
operator at time t1 into Fourier modes. For each mode, φ(~k), there is a moment of time,
that we call tk, when the mode passes from being ‘short’ to ‘long’, that is

k = Λ(tk) = εa(tk)H . (9.7)

If tk < t2, this long mode is correlated with the long field at time t2, as it is part of the
Fourier modes that constitute it. We need therefore to include the contribution to the
correlation from all these modes. This can be computed using the Fourier transform of the
long-modes two-point distribution. Let us implement these steps. As we said, the short-
long contribution will receive contribution only from the short modes that become long by
the time t2:

〈φs(~x1, t1)φ`(~x2, t2)〉 =

∫ Λ(t2)

Λ(t1)

d3k

(2π)3
ei
~k·~x1〈φ(~k, t1)φ`(~x2, t2)〉 , (9.8)

where, as usual, the limits of integration are imposed on the absolute value of the mo-
mentum. We now relate the short mode at t1 to the corresponding mode at tk using the
free field evolution, neglecting perturbative-in-λ corrections, since we are interested in the
leading-order result stemming from this term. Using the bulk-to-boundary propagator K,
we get:

φ(~k, t1) =
e

ik
a(t1)H

(
i+ k

a(t1)H

)
e

ik
a(tk)H

(
i+ k

a(tk)H

) φ(~k, tk) = e
ik

a(t1)H

(
1− i k

a(t1)H

)
φ(~k, tk) +O(ε) . (9.9)

On the other hand, treating φ(~k, tk) as a Fourier transform of the long field at time tk, we
get

〈φ(~k, tk)φ`(~x2, t2)〉 =

∫
dφkdφ2

∫
d3xk e

−i~k·~xk φkφ2 P2(φk, ~xk, tk;φ2, ~x2, t2) . (9.10)

Naturally, this Fourier transform will be dominated by |~xk − ~x2| ∼ 1/Λ(tk). We thus
need to compute the two-point distribution in the kinematic region II-III of figure 9, where
we replace t1 with tk on the x-axis. The computation is similar to the one we just did
for the long-long contribution. Again we introduce an auxiliary three-point distribution,
P eq3 (φk, tk, ~xk;φ

′
2, tk, ~x2;φ2, ~x2, t2), however now at the initial time t2 = tk we match it to

the two-locations distribution in region (II) given in (6.26). We get

P eq2 (φk, ~xk, tk;φ2, ~x2, tk) =

∫
dφ′2 P

eq
3 (φk, tk, ~xk;φ

′
2, tk, ~x2;φ2, ~x2, tk) = (9.11)

=

∫
dφ′2

∑
n

Φn(φk)Φn(φ′2)Ann(tk, xk2)δ(φ2 − φ′2) =
∑
n

Φn(φk)Φn(φ2)Ann(tk, xk2) ,

– 58 –



where Ann is given in the second line (6.27). We now need to time evolve it up to the time
t2 with Γφ2 , which leads to

P eq2 (φk, ~xk, tk;φ2, ~x2, t2) =
∑
n

Ann(tk, xk2)e−λn(t2−tk)Φn(φk)Φn(φ2) . (9.12)

Consequently, the x-dependence is exactly the same as in the two-location distribution.
Substituting (9.9), (9.10) and (9.12) into (9.8) we finally get

〈φs(~x1, t1)φ`(~x2, t2)〉 = C2
1

∫ Λ(t2)

Λ(t1)

d3k

(2π)3
ei
~k·~x12e

ik
a(t1)H

(
1− i k

a(t1)H

)
Ã11(tk, k)e−λ1(t2−tk) ,

(9.13)

where we kept only the contribution from the leading Eigenvalue and C1 is given below (6.6).
This expression involves the Fourier transform of Ann, which is given in (6.29). If we look
back at (6.29), we notice that it contains the smeared θ-function with the step exactly at
the position where we are evaluating it. This is not surprising because we are studying the
mode that just became long. By physical reasoning we set θ∆(0) = 1 in this case 26. The
angular integration is straightforward and gives

〈φs(~x1, t1)φ`(~x2, t2)〉 = λ1C
2
1e
−t2λ1

∫ Λ(t2)

Λ(t1)

dk

Hk

2 sin kx12

kx12
e

ik
a(t1)H

(
1− i k

a(t1)H

)(
k

H

)λ1/H

,

(9.14)

where we substituted tk in terms on k using (9.7) and dropped terms of order
√
λ log ε

as they are higher order. This integral is bounded in the UV and from the upper limit
of integration we get a contribution ∼ (εa(t2)x12)−1, which is much smaller than any
power of

√
λ according to our choice of kinematics, as discussed earlier for the short-short

contribution. From the IR limit of integration to leading order in λ we get what is the
leading contribution

〈φs(~x1, t1)φ`(~x2, t2)〉 = −λ1H
−1C2

1e
−(t2−t1)λ1

(
log
(
−1 + a2(t1)x2

12

)
+ 2(−1 + γE + log ε)

)
,

(9.15)
where γE is the Euler constant and we assumed that a2(t1)x2

12 ∼ 1 when doing the λ
expansion. The x-dependence is exactly the one that we anticipated, while the constant
piece is unimportant for us since it can be absorbed into the many-other O(

√
λ) corrections

to the x-independent part of the two-point function that we do not compute 27. Combining
this result with the leading long-long contribution obtained from (9.6) we get

〈φ(~x1, t1)φ(~x2, t2)〉 = C2
1e
−(t2−t1)λ1

(
1− λ1H

−1 log
(
−1 + a2(t1)x2

12

))
×

×
(

1 +O
(√

λ, e−(t2−t1)(λ2−λ1)
))

, (9.16)

26More in detail, we can evolve the short modes to a time (1+ε)tk, taking 1� ε� e−∆, which is slightly
after it became long. This is ok because perturbation theory does not break down suddenly. This justifies
replacing θ∆(0) with 1 to a very high precision. Alternatively, one can directly use the formulas in App. C
and do a more careful matching between long and short modes, which leads to the same answer for the
correlator.

27For example, they include the ones from the corrections to the Eigenfunctions.
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where the O(
√
λ) corrections do not involve coordinate dependence. This result is consistent

with (9.2) and hence de Sitter invariance.

10 Implications of thermality in the static patch

Figure 11. Penrose diagram exhibiting global (full square), Poincare (upper-right triangle), and
static (darkened triangle) patches of dS space.

It is often said that the equilibrium state of a quantum field theory in de Sitter space
should be thermal. As applied to the full spacial slice in the FRW coordinates we consider
here this statement cannot be literally correct. Indeed, the state that we are studying
is a pure state and is described by a wave function which we succeeded to find order by
order in perturbation theory. Instead, a more precise statement is that physical observables
localized within a single static patch can be described with the help of a thermal density
matrix [15] (see Fig. 11). A simple way to understand this is to note that the static patch
of de Sitter space, upon the Wick rotation, becomes a sphere with a periodic Euclidean
time coordinate which signals the thermal behavior.28 In this regard, global and static
patches of de Sitter space are similar to the full Minkowski space and its Rindler patch, as
nicely explained in [53]. Thermality of de Sitter space is the basis for its most fundamental
properties. In particular, a gravitational theory in de Sitter space is supposed to have a finite
entropy. One of the more basic consequences of the existence of the thermal description,
visible even in the Mpl →∞ limit that we study, is that the correlation functions restricted
to the static patch should obey the KMS condition [16, 17]. This condition is a certain
form of periodicity in the imaginary time, which for the two-point function of fields in flat
space takes the following form:〈

φ̂(~x1, t1)φ̂(~x2, t2 + iβ)
〉

=
〈
φ̂(~x1, t1)φ̂(~x2, t2)

〉†
, (10.1)

where β is the inverse temperature. De Sitter space is “thermal” with temperature given by

β = 2πH−1 . (10.2)
28The global de Sitter space also becomes a sphere upon the Wick rotation, however, Euclidean time in

this case is not periodic as it goes from one pole of the sphere to the other.
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Our approach allows us to compute correlation functions inside the static patch in par-
ticular, and, consequently, we expect the KMS condition to hold. Let us check that it is
indeed the case. For general two-point functions in de Sitter, periodicity is in the direction
of the time-like Killing vector field, which exists everywhere within a single static patch.
As usual, we work in FRW slicing. For simplicity, we set ~x1 = ~x2 = 0 . Then arbitrary t1
and t2 belong to the static patch of an observer located at ~x = 0, and the KMS condition
takes the same form as in flat space, since the killing vector is just translation in time. This
static patch is also fully localized within the expanding patch of de Sitter that we consider.
Next, we take the limit of large t2− t1, so that the correlators of long modes are dominated
by the leading Eigenvalue. This simplifies the calculation and also makes the interesting
non-perturbative dynamics most manifest. The calculation is similar to the one of section
9, but there are several additional subtleties. The long-long contribution, as before, reads

〈φ̂`(0, t1)φ̂`(0, t2)〉 = C2
1e
−(t2−t1)λ1 , (10.3)

where, as usual, we focused on the leading Eigenvalue. This expression on its own violates
the KMS conditions by terms of order O(λ1). But indeed we still need to add the short-long
contribution. This is, analogously to (9.14),

〈φ̂s(0, t1)φ̂`(0, t2)〉 =
∑
n

λnC
2
1,ne

−t2λn
∫ Λ(t2)

Λ(t1)

dk

Hk
2e

ik
a(t1)H

(
1− i k

a(t1)H

)(
k

H

)λn/H
,

(10.4)

where C1,n =
∫
dφφΦn(φ). The lower limit of integration gives

H−1
∑
n

λnC
2
1,ne

−(t2−t1)λn (iπ + 2(1− γE − log ε)) , (10.5)

where only the imaginary part is important for us. What is different to the situation in
section 9, is that now the upper limit of integration gives an unsuppressed contribution:

I(Λ2) = −2H−1
∑
n

λnC
2
1,ne

i
εa(t2)
a(t1) . (10.6)

This contribution is due to the modes that become long right before the moment of time t2
and, consequently, we expect it to cancel against the short-short contribution. Let us check
that this is indeed the case. First we massage I(Λ2):

I(Λ2) = −2H−1e
i
εa(t2)
a(t1)

∑
n

λn

∫
dφ dφ′ φφ′Φn(φ)Φn(φ′) =

= 2H−1e
i
εa(t2)
a(t1)

∑
n

∫
dφ dφ′φφ′ΓφΦn(φ)Φn(φ′) =

= 2H−1e
i
εa(t2)
a(t1)

∫
dφ dφ′φφ′Γφδ(φ− φ′)P eq1 (φ′) = 2H−1e

i
εa(t2)
a(t1)

∫
dφφΓφ (φP eq1 (φ)) =

= 2H−1e
i
εa(t2)
a(t1)

∫
dφφ

H3

8π2

∂

∂φ
Ne−

8π2V (φ1)

3H4 = −ei
εa(t2)
a(t1)

H2

4π2
, (10.7)
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where we used (5.8), (5.6) and some properties of the Eigenfunctions.
Now we switch to the contribution of the short modes, which reads 29∫

Λ(t2)

d3k

(2π)3

H2

2k3
e

ik
a(t1)H

(
−i k

a(t1)H

)(
1 + i

k

a(t2)H

)
e
− ik
a(t2)H = (10.8)

= e
i
εa(t2)
a(t1)

H2

4π2

(
1 +O

(
a(t1)

ε a(t2)
, ε

))
.

The cancellation occurs as expected. Now, at large time separations, we can keep just the
leading Eigenvalue contribution in (10.4) (or rather directly in (10.5)) and check explicitly
that our two-point function indeed satisfies the KMS condition, at least at the order that
we computed:

〈φ̂(0, t1)φ̂(0, t2 + 2πiH−1)〉 = C2
1e
−(t2+2πiH−1−t1)λ1(1 + πiλ1H

−1) + . . . =

= C2
1e
−(t2−t1)λ1(1− πiλ1H

−1) + . . . = 〈φ̂(0, t1)φ̂(0, t2)〉† , (10.9)

where dots stand for the subleading terms and irrelevant real pieces.
The KMS condition is obviously not the only consequence of thermality. In particular,

the Eigenvalues of the operator Γφ should be related to the equilibration time of the thermal
system corresponding to the static patch. We leave further exploration of these relations
for future work.

11 large-N

All the techniques developed in this paper can be trivially generalized to an arbitrary
number of fields. A particularly useful generalization is the O(N) symmetric model with
a large number of fields N . In this section we consider the corresponding model. One
advantage of the large-N approximation is that the Eigenvalue problem which determines
the behavior of correlation functions can be solved analytically by semi-classical methods.
Namely, we consider the potential

V (φi) =
λ

4N
(φiφi)

2 +
m2

2
φiφi i = 1 . . . N , (11.1)

where we chose the usual large-N scaling of the coupling constant to ensure a proper
1/N expansion. The prime purpose of this section is to enable a comparison with other
approaches to perturbation theory in dS space which might become available in the future,
see e.g. [43–45] for existing results. Since large-N calculations are often done in space-
time dimensions other than 4, to facilitate the comparison with the other approaches we
also work in an arbitrary number of dimensions. We will denote the number of spacial
dimensions by d. In the remainder of this section, we work at leading order in 1/N and at
subleading order in

√
λ; in this section we also set H = 1.

29Short modes are deep inside horizon at time t1: since we assumed e−
√
λH(t2−t1) � 1, it follows that

H(t2 − t1) � 1/
√
λ � | log ε|, consequently, k > εa(t2)H implies k � a(t1)H. We neglect subleading

corrections in a(t1)/(εa(t2))� 1 as in the rest of this section.
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Let us focus on the N -field analog of the subleading equation for the single-point
distribution, (8.13). Needless to say, the derivation proceeds in exactly the same way as in
the single-field case so we will not repeat the individual steps here. The whole equation for
the time-evolution of the one-point distribution is given by

∂

∂t
P1(~φ1, t) = Γ(N)P1(~φ1, t) =

∂

∂φ1i

(
1

d

∂

∂φ1i
Veff

(
~φ1

)
P1(~φ1, t)

)
+

∂2

∂φ2
1i

(
DP1(~φ1, t)

)
+

+O(λ
3
2 ) · P1(~φ1, t) = 0 , (11.2)

here ~φ1 is a collection of N long fields at some space-time point and

D =
Γ
(
d+2

2

)
2 dπ

d+2
2

, Veff

(
~φ
)

=
λ

4N
(φiφi)

2 +
m̄2

2
φiφi +

λ2

2d2N2
(φiφi)

3 , (11.3)

and m̄2 �
√
λ is the effective physical mass squared of the long modes.30 We dropped the

log ε terms in this equation since they will cancel in all physical observables analogously to
the single-field case for which we checked it explicitly.

The operator Γ(N) controls the equilibrium one-point functions, and its Eigenvalues
determine the late-time and large-distance behavior of the two-point functions. The next
step is, by means of variable redefinitions analogous to those done in section 8.2, to bring
this operator to the canonical form. The corresponding canonical operator (with the same
Eigenvalues) reads:

Γ(N)
c = −2D

(
−1

2

∂2

∂φ1i∂φ1i
+NW

(
φ1iφ1i

N

))
, (11.4)

W (ρ) =
λ2ρ3

8d2D2
− λρ

4dD
− m̄2

4dD
+

λm̄2

4d2D2
ρ2 +

3λ3ρ4

4d4D2
.

Now the Eigenvalues can be read off using the same semiclassical techniques as used in
large-N quantum mechanics [54], section IV (31). First, one determines the vev of ρ by
solving the equation

8ρ2
0W
′(ρ0) = 1 , (11.5)

which gives

ρ0 =

(
dD

λ

)1/2

− 3D

d
− m̄2

2λ
+O(
√
λ) . (11.6)

Naturally, the characteristic value of ρ is of order λ−1/2: the same power of λ as we get for
φ2
` in the single-field case. The leading part has been computed in various different ways,

see e.g. [42, 43]. For the ground state and the smallest Eigenvalues in the vector and singlet

30As before we chose m̄2 �
√
λ to simplify our power-counting. It is straightforward to repeat all the

calculations for an arbitrary value of the mass, and moreover for an arbitrary weakly coupled large-N
potential.

31The same expressions can be obtained by treating the problem as a 1-dimensional large-N QFT and
using more traditional methods, described, for example, in [55].
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channels we get, correspondingly,

λ0 = 2DN
(
ρ0W

′(ρ0) +W (ρ0)
)

= 0 , (11.7)

λv =
D

ρ0
=

(
Dλ

d

)1/2

+
6Dλ+ dm̄2

2d2
, (11.8)

λs = 2D
(
8W ′(ρ0) + 4ρ0W

′′(ρ0)
)1/2

= 4

(
Dλ

d

)1/2

+
12Dλ

d2
. (11.9)

The "ground state" energy calculation is merely a cross-check of our equations. It is sup-
posed to be zero to all orders since it corresponds to the equilibrium distribution. The
smallest vector-channel Eigenvalue controls the large-distance behavior of the two point
function 〈φi(x)φj(y)〉 ∼ δijz−2λv , where z is the dS-invariant distance between x and y. Its
leading piece matches the result of [43–45] who computed it to leading order in both 1/N

and
√
λ. The subleading in

√
λ piece is scheme-dependent, in a sense that it depends on

the renormalized value of the mass. Consequently, when comparing with other methods,
one should exercise caution and preferably use the same scheme. The same applies to the
expectation value 〈φi(x)2〉. It is important to remember that, at subleading order, the
short modes contribute and hence this one-point function is given by Nρ0 + 〈φs,i(x)2〉, see
section 8.1.3 for a discussion in the single-field case. The short modes contribution to the
one-point function is also divergent.

Interestingly, the smallest singlet Eigenvalue, λs is UV-insensitive even at subleading or-
der. It contributes to the large-distance behavior of correlators like 〈φi(x)φi(x)φj(y)φj(y)〉.
Thus it provides a very concrete and robust consequence of the subleading terms in our
equation. It would be very interesting to compute the corresponding correlator with some
other techniques and compare the results, see [56].

Often, large-N calculations can be performed for a finite value of the coupling λ and
using only the 1/N expansion. It seems that this can also be done in our approach, since
all what is needed is to have some perturbative control over the short modes for which the
large-N expansion should suffice.

12 Outline of ~ corrections

As far as the single-time probability distributions and correlation functions are concerned,
our treatment has been fully quantum mechanical. However, as stressed in sections 4.3
and 6.1, we used an intuitive classical approximation for computing distributions of long
fields involving multiple times. In this section we will show how to implement a complete
quantum-mechanical treatment of these objects and justify more rigorously the classical
approximation. Let us focus on the time-ordered two-point function of some operators
O1(t1) and O2(t) for t1 < t (32). It is useful to start with the path-integral representation

32We will assume that O’s are made only of long modes, as it was already shown how to treat short
modes and short modes becoming long at some time between t1 and t in section 9.
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for the wave functions and the correlator given by

〈O1(t1)O2(t)〉 =

∫
Dφ Ψ∗O1

[φ, t; t1]Ψ[φ, t] O2(t) , (12.1)

Ψ∗O1
[φ, t; t1] =

∫ φ,t

D{φ′} e−iS O1(t1) , Ψ[φ, t] =

∫ φ,t

D{φ} eiS .

Here the notation D{φ} is introduced to distinguish path integrals over four dimensional
‘histories’ of the field versus three-dimensional path integrals over fields at some given
time.33 Other than that, (12.1) is the usual representation, in which the path integral over
D{φ} computes the ‘ket’ state at time t, integral over D{φ′} computes the ‘bra’ state with
the insertion of an operator O1(t1), after which we insert O2(t) and ‘glue’ the path integrals
at time t by doing the Dφ integral 34. Let us now introduce the following distribution

PO1 [φ, t; t1] = Ψ∗O1
[φ, t; t1]Ψ[φ, t] . (12.2)

For O1 = 1, this simply reduces to (2.13), while for a non-trivial O1, PO1 is the quantum
mechanical analog of the two-times distribution P [2] defined above in (4.22), multiplied by
O1(φ′) and integrated over φ′:

PO1 [φ, t; t1] =

∫
Dφ′ P [2]

[
φ, t;φ′, t1

]
O1[φ′] (1 +O(~)) . (12.3)

Importantly, in the same way as the wave functional, and as it will become more clear
shortly, the distribution PO1 , can be computed in perturbation theory without encountering
dangerous IR divergences. These are, of course, still present in (12.1), but only when
we take the final integral over Dφ. For the two-times correlators, we thus can employ
the same strategy as we did for the single-time ones. Instead of trying to evaluate the
strongly-coupled path integral, we derive the equation that PO1 satisfies, and solve it using
perturbation theory in all our parameters.

For t < t1 the operator insertion does not matter so PO1 = P . For t > t1 instead, in
direct analogy with (4.2), we get

∂

∂t
PO1 [φ, t; t1] = − i

2a3

∫
d3x

δ

δφ(~x)

(
Ψ∗O1

[φ, t; t1]
δ

δφ(~x)
Ψ[φ, t]−Ψ[φ, t]

δ

δφ(~x)
Ψ∗O1

[φ, t; t1]

)
.

(12.4)

Let us now envisage how the calculation of Ψ∗O1
in perturbation theory looks like. It helps

the intuition to realize that the evaluation of the path integral defining Ψ∗O1
in (12.2) is

identical to the one of the wave function Ψ∗ of a different action than the one we study here,
where we add to our action a ‘fake’ translation-breaking vertex of the form δ(t−t1)O1. The
Feynman rules to compute Ψ∗O1

are therefore the same as the ones for the calculation of the
wave function, with the additional condition that the vertex in O1 must be used once and

33We assume the same iε prescription as in the rest of the paper, which projects the initial state at
t = −∞ on the BD vacuum.

34Notice that, as conventional, if the O’s involve the momentum, one should use the path integral for-
mulation that involves both conjugate variables.
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Figure 12. Path integral representation of 〈O1(t1)O2(t)〉.

only once in every diagram. This makes it evident that that the same reasons that allows
us to compute the wave function perturbatively in an expansion in

√
λ and ε, allows us to

compute Ψ∗O1
.

To be specific, let us take, for example, O1(t1) = φ`(~x1)
∣∣∣
t1
, so that it contains only

fields with momentum k < Λ(t1). To leading order in
√
λ, the evolution of O1 is just that

of a free massless field which evolves according to (3.5), so, up to corrections of order ε, it
is constant in time. Thus we can write

Ψ∗O1
[φ, t; t1] = O1[φ]Ψ∗[t, φ]

(
1 +O

(√
λ, ε
))

, (12.5)

where the O
(√

λ, ε
)

terms can be computed in perturbation theory. Consequently, the
leading correction to the evolution of the probability distribution, as compared to the
classical treatment of the long modes distribution, comes from the variational derivative in
(12.4) acting on O1:

∂

∂t
PO1 [φ, t; t1] = −

∫
d3x

δ

δφ(~x)

(
Π[φ, ~x, t]PO1 [φ, t; t1]− i

2a3

δ log (O1[φ])

δφ(~x)
PO1 [φ, t; t1]

)
.

(12.6)

It is now clear that the new term is suppressed by powers of ε because of the factor of a−3.
Indeed, the leading term in the equation does not have this suppression because the phase
of Ψ is large and of order a3, which is also the reason for the semiclassical approximation
to apply. We can now define the long distribution

PO1,` [φ`, t; t1] =

∫
Dφ δ

[
φ`(~x)−

∫ Λ(t) d3k

(2π)3
ei
~k·~x φ(~k)

]
PO1 [φ, t; t1] , (12.7)

take the derivative of PO1,` [φ`, t; t1] with respect to t, and, using equation (12.6), repeat
all the manipulations of sections 4 and 5.2. Let us focus on the simplest case of the one-
location distribution, which will be enough to compute, for example, the correlation function
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〈φ`(~x1, t1)φ`(~x1, t)〉. The new term will go through all our manipulations straightforwardly
and will produce the following correction in the evolution equation

∂PO1,1 (φ1, t; t1)

∂t
⊃ i

2a(t)3

∂

∂φ1

δφ`(~x1)
∣∣∣
t1

δφ`(~x1)
P1(φ1, t)

 =
∂

∂φ1

((∫ Λ(t1)

d3k

)
i

2a(t)3
P1(φ1, t)

)
∼

∼ ε3e−3H(t−t1) ∂

∂φ1
P1(φ1, t) , (12.8)

where we used momentum space to compute the functional derivative: δφ`(~x2)
δφ`(~x1) = δ(3)(~x2 −

~x1) =
∫ Λ(t) d3k

(2π)3 e
i~k·(~x2−~x1). As expected, the correction is suppressed at least by ε3, and is

even further suppressed at large time separations.
Finally, let us discuss the boundary conditions for PO1 [φ, t; t1] at t = t1. Since the

evolution of PO1 for t < t1 is the same as for P , they simply read

PO1 [φ, t; t1]
∣∣∣
t→t1

= O1[φ]P [φ, t], (12.9)

which is what would be implied on PO1 from (4.22), without any quantum mechanical
corrections. The generalization of PO1 to the case of several times is straightforward, at
least when all operators are time-ordered.

13 Outline of gradient corrections

Similarly to what we did in the former section for the quantum corrections, here we give the
essential steps that allow us to include the gradient corrections. There are two places where
we neglected them. The simplest is when we computed the expectation value of the short
modes in the background of the long, and we neglected to gradients of order ε. Since these
expectation values are computed using ordinary perturbation theory, it does not contain
any conceptual challenge to include them.

The conceptually most interesting gradient correction occurs in the drift term, which
is sensitive to the laplacian of φ:

∂

∂t
P`[φ`, t] ⊃ −

∫
d3x

δ

δφ`(~x)

(〈[
Π[φ, ~x, t]

]
Λ(t)

〉
φ`

P`[φ`, t]

)

⊃ −
∫
d3x

δ

δφ`(~x)

((
1

3H

∂2
i

a(t)2
φ`(~x)

)
P`[φ`, t]

)
. (13.1)

Indeed, since in our procedure we eventually keep track of long fields only at finitely many
spacial points, it may not be obvious how to systematically compute their gradients.

It is now useful to write the laplacian of φ as

∂2
i φ`(~x) = lim

∆x→0

1

∆x2

3∑
i=1

(
φ`(~x+ ∆x x̂i) + φ`(~x−∆x x̂i)− 2φ`(~x)

)
. (13.2)
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We then obtain

∂

∂t
P`[φ`, t] ⊃

1

3H
× (13.3)

×−
3∑
i=1

lim
∆x→0

1

a(t)2∆x2

∫
d3x

δ

δφ`(~x)

((
φ`(~x+ ∆x x̂i) + φ`(~x−∆x x̂i)− 2φ`(~x)

)
P`[φ`, t]

)
.

Let us now derive the equation for the one-location probability distribution. Applying
the definition (4.21), we obtain

∂

∂t
P1(φ1, t) ⊃ − 1

3H

3∑
i=1

lim
∆x→0

1

a(t)2∆x2

∫
Dφ` δ(1) (φ`(~x1)− φ1) × (13.4)

×
∫
d3x

δ

δφ`(~x)

((
φ`(~x+ ∆x x̂i) + φ`(~x−∆x x̂i)− 2φ`(~x)

)
P`(φ`, t)

)
.

We can now perform the integral over the values of φ` at all locations except at the lo-
cations ~x1 ± ∆x x̂i. For this term, we obtain the following expression in terms of the
three-locations probability distribution:

∂

∂t
P1(φ1, t) ⊃

1

3H

δ

δφ1

3∑
i=1

lim
∆x→0

1

a2∆x2

∫
dφ+dφ− (13.5)(

(φ+ + φ− − 2φ1) P3(φ1, ~x1, t ; φ+, ~x1 + ∆x x̂i, t ; φ−, ~x1 −∆x x̂i, t)
)
.

We have now obtained an expression that is prone to a perturbative expansion. In fact, once
we compute, at zeroth-order in the gradients, the three-location distribution P3(φ1, ~x1, t ; φ+, ~x1+

∆x x̂i, t ; φ−, ~x1−∆x x̂i, t), then we can plug it in (13.5) and compute the O(ε2) corrections
from the gradients for the one-location distribution P1.

Since only the coincidence limit of P3 matters, in practice the solution can be found
more easily than solving for P3 in all kinematical regimes. In fact, P3 solves the equation
given in (6.31) for n = 3. Similarly to the case of P2, at coincidence j0 goes to one and,
assuming for simplicity the BD state , we have that it exists a solution for P3 of the form

P3(φ1, ~x1, t ; φ+, ~x2, t ; φ+, ~x3, t)
∣∣∣
∆x→0

= (13.6)

= δ(φ1 − φ2) δ(φ2 − φ3) P eq1

(
φ1 + φ2 + φ3

3

)
+O(∆x2) .

This part of the solution gives a vanishing contribution when plugged in (13.5). The part
of the solution of order ∆x2 is obtained by the correction in H ′ from Taylor expanding:
j0(εaH∆xab) ' 1 − (εaH∆xab)

2/4. One can solve for this part by using ordinary per-
turbation theory for the differential equation (6.31), as the interaction is small for all the
kinematical regime of interest. By plugging this perturbed solution in (13.5), one obtains a
term that goes as ∼ ε2H3 ∂

3(φ1P
eq
1 )

∂φ3
1

, to be compared with H3 ∂
2P eq1

∂φ2
1
. Therefore the correction

from gradients can be computed and is of order ε2, as expected. This procedure can be
iterated up to desired precision. We further see that, in order to compute the gradient
corrections, we have a perturbative structure that, order by order, involves higher-locations
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probability distributions, evaluated at a lower perturbative order. This is reminiscent of
the perturbative structure we have in

√
λ when we account for finite momenta of the long

modes.

14 Summary and Outlook

Perturbatively-computed correlation functions of light fields with a potential in de Sitter
space are IR-divergent, and therefore ordinary perturbation theory cannot be trusted. In
this paper, we have developed a formalism that allows us to compute correlation functions
for this class of theories in the limit of rigid de Sitter space in a controlled way. For
simplicity we focus on the λφ4 + m2φ2 potential with a small mass m2 �

√
λH2, hence

the title. Other stable potentials, as well as inclusion of heavier fields, is a straightforward
generalization.

Main ideas: Several conceptual ingredients needed to be introduced in order to de-
velop our approach. Maybe the main one has been to introduce an artificial cutoff at
physical scales longer than the Hubble scale, εH, and divide the modes in shorter and
longer than this scale. For ‘short’ modes, perturbation theory holds, while for ‘long’ modes
a non-perturbative treatment is required. This non-perturbative treatment is obtained by
deriving an evolution equation for the probability distribution of these modes. Since modes
evolve from ‘short’ to ‘long’, this functional equation takes the form of a Fokker-Planck-like
equation, with a drift term and diffusion term that in turn contains a tadpole contribution
as well. The coefficients of this equation are determined by computing expectation values of
operators involving long and short modes, for fixed configuration of the long modes. Since
short modes are perturbative, these expectation values can be computed using perturbation
theory. This initially-obtained Fokker-Planck-like equation is not closed, because it involves
not just the probability distribution of the field, but also the momentum operator. In order
for it to become closed, we need to be able to express the action of the momentum operator
on the wave function in terms of a multiplication of the wave function by a known function
of φ. This can be easily done if the wave function is in turn known. We then show that the
wave function is not affected by neither IR nor dangerous secular divergences, and so can be
computed using perturbation theory, which we do by specializing to the Bunch-Davies (BD)
vacuum or to a state close to that. This resulting functional equation for the probability
distribution is still impossible to solve directly. A crucial simplification then comes from
the fact that the de Sitter horizon makes the gradients irrelevant over long distance scales.
Out of the probability distribution for the field, we therefore define probability distribu-
tions for the field value at a fixed number of spacial points. Their time evolution follows
a system of linear partial differential equations with finitely many variables. This system
has a form roughly similar to the one of the Boltzmann hierarchy, as, order by order in
perturbation theory, the equations for the lower-point distributions decouple from those for
the higher-point ones. At this stage, the problem is conceptually solved, since a system of
finitely-many partial differential equations can in principle be solved numerically. Never-
theless, we proceed to study the system analytically. First, we formally solve the leading
equation for the single-point distribution in terms of Eigenvalues and Eigenfunctions of a
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certain differential operator. We then identify several expansion parameters that allow us
to set up a perturbation theory around the leading solution. The parameters we expand
in are the square root of the coupling constant,

√
λ, as well some exponentially small pa-

rameters that we introduce to control our approximations, the most important of which
being ε, the scale of the cutoff between ‘long’ and ‘short’ modes. This parameter ε � 1

controls the corrections from gradient terms and from quantum mechanical effects. We also
introduce two other ‘control’ parameters. One is e−

1√
λ � δ � 1, that imposes that the

cutoff between short and long modes is not too sharp, so that the long-wavelength dynam-
ics is kept quasi local in space. The other is e−

1√
λ � e−∆ � 1, that controls how we can

solve the Fokker-Planck equation using sudden perturbation theory. We have explained, in
a rather explicit way, how to compute corrections in all of the expansion parameters. At
leading order in all of these parameters, our formalism reduces to the one of Starobinsky
and collaborators [14, 23]. Our construction can be thought as a rigorous derivation of those
findings, plus the derivation of a more general formalism that allows us to find arbitrary
accurate results, at least in principle.

Main results: Using this formalism, we find that there exists a non-perturbative equi-
librium distribution for the density of fields at n-points, whose properties can be computed
from the Fokker-Planck-like equation in a perturbative expansion in powers of

√
λ, ε, δ and

e−∆. We find that the correlation functions are absolutely non-Gaussian. The nature of
the formalism is such that all correlation functions involving a general number of fields, but
involving only a given number of spacetime locations, can be essentially evaluated with the
same formula. A consistency check of our calculation is that the dependence on the control
parameters ε, δ and e−∆ should cancel order by order in perturbation theory. We have
quite extensively checked that this is the case for ε, and, to a less exhaustive degree, for δ,
while the same check for e−∆ was left to future work. For these cancellations to happen, it
is important to include the contribution of the short modes in physical observables.

We find the following main results:

1. Equilibrium: Correlation functions at a single spacetime point, 〈φ(~x, t)n〉, tend to a
steady state, associated to an equilibrium distribution of the form P eq1 (φ) ∼ e−V (φ)/H4 ,
where the typical magnitude of the field value is H/λ1/4, for V = λφ4. Let us call
this as 〈φ(~x)n〉eq.

2. Stability: Correlation functions at different spacetime points decay towards the one
obtained from equilibrium at all points: 〈φ(~x1, t1)n1 . . . φ(~xn, tn)nn〉 → 〈φ(~x1)n1〉eq ·
. . . · 〈φ(~xn)nn〉eq, when all ti → ∞ but xi kept fixed. We argue that this shows that
the BD vacuum is a stable vacuum for de Sitter space, in the rigid limit.

3. State-independence: A related but stronger statement is true. Consider a state
which is a small perturbation of the BD state at some time t0, than for all ti −
t0 → ∞, and physical distances zjk fixed, even though arbitrarily large, correla-
tion functions in this state approach those in BD: 〈φ(~x1, t1)n1 . . . φ(~xn, tn)nn〉 →
〈φ(~x1, t1)n1 . . . φ(~xn, tn)nn〉eq. This shows that the BD vacuum is also an attractor.
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4. de Sitter invariance: For the two-point function, the decay of correlation functions
at long distances is approximately given by z−c

√
λ, where z is the de Sitter invariant

distance between the two points and c is some constant dependent on the details of the
potential. Therefore the de Sitter symmetry is linearly realized and not spontaneously
broken in the BD vacuum.

5. Thermality: If we restrict to the static patch, we have checked that our correlation
functions satisfy the KMS condition [16, 17] that must be obeyed by thermal ensem-
bles, confirming a behavior that is expected to hold on general grounds.

6. Large-N: We extend our formalism to include the case of a O(N) symmetric λ/N(~φ ·
~φ)2 theory, finding that in the large-N limit, some results lead to simpler analytical
expressions.

7. Subleading corrections: we explicitly compute the O(
√
λ) corrections to the single-

point distribution and to the large-distance behavior of the two-point functions for
the λφ4 potential.

Outlook: We now briefly mention some future avenues that are opened by our findings.

• A clear limitation of our analysis is that we work in the rigid limit where Mpl → ∞
and H is kept constant. We believe, however, that our formalism is equally applicable
to dynamical gravity, coupled to matter fields. Of course, in the presence of gravity,
in order to make correlation functions in dS, or approximately dS, space well defined,
one needs a preferred choice of time slicing. This can be provided, for example, by
an inflaton. Then, our formalism is suitable for studying the dynamics of another
light scalar field φ during inflation. Since we already understand how to deal with the
self-interactions of a field, as far as coupling to gravity is concerned, there does not
seem to be much difference between λφ4 theory and a free particle with m2 ∼

√
λH2

coupled to gravity. In both cases it is clear that for
√
λ � H2/M2

pl, the effects of
gravity on correlators are perturbative. On the other hand, for

√
λ . H2/M2

pl, the
situation is more subtle and the non-perturbative nature of our formalism may become
relevant. We thus believe that this corresponding development of our formalism is a
natural next step. In addition, it would be interesting to compare the results with
other approaches to gravity in dS, e.g. [57, 58].

Another natural application of the formalism is in the regime where the backreaction
of the inflaton on the expansion of the universe is significant as, for example, in the
case of ‘slow roll eternal inflation’ studied in [18–21].

• At a more technical level, it would be instructive to do explicit higher-order calcula-
tions using our formalism. At the sub-sub-leading order in

√
λ, we expect interesting

effects, related to interactions between long fields at different spacial points, to con-
tribute to physical observables. The same is true about corrections proportional to
our auxiliary parameters, which we only outlined but did not compute since they can
be made exponentially small in the coupling.
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• It would be interesting to study some more phenomenological applications of the
formalism, for example in relation with spontaneous symmetry breaking in dS (which
formally does not exist) and with (pseudo-) Goldstone bosons. In particular, in some
models of axionic dark matter, the details of the distribution of the axion field during
inflation can have important consequences for the abundance and substructure of dark
matter, as studied in the recent works [59, 60] and [61].

• We also hope that our conceptually simple results may eventually assist in under-
standing deeper questions akin to holography for cosmological spacetimes. In fact,
in our non-gravitational case, the long-distance limit of correlators that we compute
does define some non-local and non-unitary Euclidean conformal theory in three di-
mensions. We also emphasized and made explicit a very non-perturbative relation
between these correlators and the wave function of the BD state, which in turn, in
the late time limit, can be associated with another, different, CFT.

We leave this, and more, to future work.
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A Wigner distribution and the phase space description of long modes

A.1 Phase space formalism

The formalism for calculation of the correlation functions of long modes presented in the
main text consisted roughly of two steps: the first is the perturbative calculation of the wave
function and the second is the derivation of the equations for the probability distributions
of the long modes. Consequently, strictly speaking, it resulted in calculation of correlation
functions in the particular state in which wave function was computed. In practice we
focused on the BD state and since, as we showed, correlators in this state decay at large
space-like and time-like separations, our results remain intact for all states that differ from
BD by insertion of some local operators in the distant past. Moreover, in section 7 we
showed that the deformation of the leading imaginary long-modes part of the BD wave
function relaxes back to the BD state in times of order H−1. In this Appendix we would
like to present a different formalism which appears to be more state-independent. Another
nice feature of this formalism is that it is manifestly IR finite since one never needs to take
the path integral over the long modes. The drawback of this formalism, however, is that it
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is significantly more complicated. In fact, in order to simplify the logic somewhat, we will
still refer to some results obtained above and with the use of the BD wave function.35

The formalism discussed here crucially relies on the semiclassical nature of the state of
long modes, the feature not-so-obviously necessary in the previous calculations. To benefit
from semiclassicality we need to choose a description of the system in which the classical
limit is most transparent. Importantly, the classical background in our case is not close
to any particular classical solution of the equations of motion, rather it corresponds to
a distribution over the classical phase space of the system. In general, the information
about this distribution is contained in the density matrix of the system. In the ordinary
quantum treatment, this is for example given in the φ-representation by a functional of
two field variables: 〈φ(~x)|ρ̂(t)|φ′(~x)〉 = ρ[φ, φ′, t]. The classical phase space, however, is
rather parametrized by the field and its conjugate momentum, (φ(~x), π(~x)), which we will
for convenience denote by γa(~x), a = 1, 2, or sometimes simply γ(~x) when we refer to both.
Consequently, it is tempting to perform some sort of Fourier transform on the density matrix
in order to introduce the momentum variable. A convenient (and clearly clever) choice of
the Fourier transform is known as the Wigner transform, and has the following form:

P (w)[γ, t] =

∫
Dχe2i

∫
d3x

π(~x)χ(~x)
~ ρ[φ− χ, φ+ χ, t] . (A.1)

P (w) is usually called the Wigner distribution. Let us briefly review some of its important
properties. The von Neumann equation for the density matrix (which is of course equivalent
to the Shroedinger equation in the case of a pure state) under the Wigner transform maps
into the following evolution equation for P (w):

∂

∂t
P (w)[γ, t] = −

{{
P (w)[γ, t],H(w)[γ, t]

}}
, (A.2)

where the double curly bracket denotes the Moyal bracket, given by

{{A[γ, t], B[γ, t]}} = A[γ, t] · 2
~ sin

(
~
2

∫
d3x

(
←
∂ φ(~x)

→
∂ π(~x) −

←
∂ π(~x)

→
∂ φ(~x)

))
·B[γ, t] =

= {A[γ, t], B[γ, t]}+O(~2) (A.3)

and, as usual, the Poisson brackets are given by

{A[γ, t], B[γ, t]} =

∫
d3x

(
∂A[γ, t]

∂φ(~x)

∂B[γ, t]

∂π(~x)
− ∂A[γ, t]

∂π(~x)

∂B[γ, t]

∂φ(~x)

)
. (A.4)

We stress that the equation (A.2) contains the full information about evolution of any
quantum system. In the classical limit, where we can formally take ~ to zero, the Moyal
bracket reduces to the Poisson bracket, and we get simply the Liouville equation which
describes the evolution of the classical distribution on phase space. This is one way to see
that in the classical limit the Wigner distribution coincides with the classical probability
distribution. This is the main advantage of working with the Wigner transform.

35Of course we always assume the Minkowski vacuum in the deep UV.
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The Hamiltonian in (A.2) is in fact the Wigner transform of the Hamiltonian operator,
which is defined as

H(w)[γ, t] =

∫
Dχ e2i

∫
d3x

π(~x)χ(~x)
~ 〈φ− χ|Ĥ(t)|φ+ χ〉. (A.5)

Analogously the Wigner transform can be defined for any operator, and then expectation
values can be computed as 36

〈Ô(t)〉 =

∫
Dγ P (w)[γ, t] O(w)[γ, t] . (A.6)

For simplicity of notation, we will drop the superscript (w) in O(w) in what follows, and
we will simply write 〈O〉 for expectation values. Note also that the integral of P (w) over
momenta gives just the probability distribution for the fields used throughout the main
text: ∫

Dπ P (w) [γ, t] = P [φ, t] . (A.7)

A.2 Wigner distribution for long modes

The following discussion largely parallels that in section 4.2, 4.3, and 5, so we will drop
some of the details. We proceed by defining the long-fields Wigner distribution:

P
(w)
` [γ`, t] =

∫
Dγ δ(2)

[
γ`(~x)−

∫ Λ(t)

0

d3k

(2π)3
ei
~k·~x γ(~k)

]
P (w)[γ, t] , (A.8)

and derive the time evolution equation for it. As before, it consists of two term:

∂

∂t
P

(w)
` [γ`, t] = Diffusion + Drift . (A.9)

The diffusion term now has additional contributions from the expectation values of the
momenta as well as the mixed contributions:

Diffus. =

(∫
d3x

∂

∂γ`,a(~x)

(〈
−∆̇γa(~x)

〉
γ`
P

(w)
` [γ`, t]

)
+ (A.10)

+

∫
d3x

∫
d3x′

∂2

∂γ`,a(~x)∂γ`,b(~x′)

(〈
∆̇γa(~x)∆γb(~x

′)
〉
γ`
P

(w)
` [γ`, t]

))
×

× (1 +O(δ)) .

The drift term is now derived from the Moyal evolution (A.2). Brackets containing
short modes all turn out to be total derivatives and consequently do not contribute. Since

36The Wigner transform of φ̂ and π̂ is simply φ and π. The Wigner transform of an operator which
consists of a product of φ̂ and π̂ is a polynom in φ and π, which actually corresponds to the original
operator defined with some specific ordering of φ̂ and π̂. Since ordering ambiguity in quantum field theory
corresponds to a specific choice of counterterms, and since in our formalism we will add all counterterms,
we can simply assume that the operators that we Wigner-transform are already ordered in the ordering
chosen by the Wigner transformation.
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long modes are classical, up to power law in ε corrections, we can replace the Moyal bracket
with the Poisson one. The resulting drift term reads:

Drift =

− ∫ d3x
∂

∂φ`(~x)

〈[∂H[γ, t]

∂π(~x)

]
Λ(t)

〉
γ`

P
(w)
` [γ`, t]

+

+

∫
d3x

∂

∂π`(~x)

〈[∂H[γ, t]

∂φ(~x)

]
Λ(t)

〉
γ`

P
(w)
` [γ`, t]

(1 +O(~ε3, δ)
)
. (A.11)

Next we proceed by defining the single-point Wigner distribution as37

P
(w)
1 (γ1, t) =

∫
Dγ` δ(2) (γ1 − γ`(~x1))P (w) [γ`, t] . (A.12)

We are now in a position to derive the equation which controls its time evolution. To do so
we need to compute correlation functions of φ(~k) and π(~k) for k ∼ Λ(t) in the background
of fixed long modes. For a change we can think of doing this directly in the Heisenberg
picture bypassing the wave function calculation. The reason we can do it is because all
momenta and time integrals are finite since the long modes are kept fixed and treated
simply as background fields. The leading order calculation is straightforward since short
fields are either independent of the long ones, or at worst depend on the long fields at the
same moment of time. At higher orders in

√
λ, however, correlators of short modes depend

on long modes at different times. At the technical level, this requires introduction of multi-
times Wigner distributions which appear in the equation at subleading orders. This feature
particularly complicates the formalism we are developing in this Appendix. Since for us
it serves mostly complimentary purposes, we will not dwell into these details and present
simply the leading-order equations.

In what follows we assume that the state is not to far from the state described by
the wave function (3.14). What we mean by this is that the characteristic value of the
long field is φ` ∼ λ−1/4H, and of the velocity is v` ∼ −λφ3

`/(3H). As usual, we will
assume that very short modes, k � H are in the Minkowski vacuum, and we don’t need
to make any assumptions for the modes of intermediate lengths, k & Λ(t), other than that
their amplitude is not too large. Then we can treat long modes as background fields and
compute the expectation values of the short modes using just the usual in-in perturbation
theory. Since the calculation is done with an explicit IR cutoff, these calculation is under
perturbative control. In particular, for the momentum operator at some short wavelength ~ks
we have

π̂(~ks, t) = a3 d

dt
φ̂(~ks, t) = − a3

3H
V ′(φ̂s, φ1) = − a3

3H
V ′′ (φ1) φ̂(~ks, t)

(
1 +O

(
λ

1
4

))
, (A.13)

so we can express the correlation functions of the momenta through correlation functions
of the short fields times some dependence on the long modes without an explicit use of the

37n-point Wigner distributions can be analogously defined.
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wave function. Specifying to V (φ) = λφ4/4, after some straightforward manipulations, we
get

∂

∂t
P

(w)
1 (γ1, t) =

(
−a−3π1

∂

∂φ1
P

(w)
1 (γ1, t) + a3λφ3

1

∂

∂π1
P

(w)
1 (γ1, t) + (A.14)

+
H3

4π2

(
1

2

∂2

∂φ2
1

P
(w)
1 (γ1, t)− a3 ∂2

∂φ1∂π1

[
λφ2

1

H
P

(w)
1 (γ1, t)

]
+ a6 1

2

∂2

∂π2
1

[
λ2φ4

1

H2
P

(w)
1 (γ1, t)

]))
×
(

1 +O(~ε3, ε2, λ
1
2 , δ)

)
.

To analyze this equation it is convenient to introduce the “velocity” variable v1 = π1a
−3, in

terms of which the equation simplifies a bit:

∂tP
(w)
1 (φ1, v1, t) =

[
∂

∂v1

[(
3Hv1 + λφ3

1

)
P

(w)
1 (φ1, v1, t)

]
− ∂

∂φ1
(v1P

(w)
1 (φ1, v1, t)) +

+
H3

4π2

(
1

2

∂2

∂φ2
1

[
P

(w)
1 (φ1, v1, t)

]
+

1

2

∂2

∂v2
1

[
λ2φ4

1

H2
P

(w)
1 (φ1, v1, t)

]
−

∂2

∂φ1∂v1

[
λφ2

1

H
P

(w)
1 (φ1, v1, t)

])](
1 +O(~ε3, ε2, λ

1
2 , δ)

)
. (A.15)

This is an analog of equation (5.5), however, now it describes an evolution on the classical
phase space of long modes without assuming any particular exact dependence of the long
momentum on the long field. We will see momentarily that (5.5) follows from (A.15).

The equation controlling the leading-order time evolution of the single-point Wigner
distribution is now a partial differential equation in three variables. Moreover, its second-
derivative part is degenerate, which makes the estimates of the subleading terms slightly
more subtle. To proceed, it is useful to perform the moments transform with respect to the
velocity variable:

M1,n(φ1, t) =

∫
dv1 v

n
1 P

(w)
1 (φ1, v1, t) , (A.16)

which, for a state close to BD, implies that M1,n ∼ λ3n/4P1. Of course, M1,0(φ1) is simply
P1(φ1). Multiplying (A.15) by powers of v1 and integrating over it, we get the following
equations for the moments

∂tM1,0(φ1, t) = − ∂

∂φ1
M1,1(φ1, t) +

H3

8π2

∂2

∂φ2
1

M1,0(φ1, t) +O(λ)M1,0(φ1, t) , (A.17)

∂tM1,n(φ1, t) = −3nHM1,n(φ1, t)− nλφ3
1M1,n−1(φ1, t) +O

(√
λ
)
M1,n(φ1, t), n ≥ 1 .

We separated the first equation because its right hand side is of order O
(√

λ
)
, while the

rest of the equations contain in it terms of order O(1).
It is straightforward to find the equilibrium solution of these equations. One finds

M eq
1,n(φ1) =

(
−λφ

3
1

3H

)n
M eq

1,0(φ1), Γφ1M
eq
1,0(φ1) = 0 , (A.18)
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with Γφ as in (5.6). For the Wigner distribution itself it implies

P
(w),eq
1 (φ1, v1) = P eq1 (φ1) δ

(
v1 +

λφ3
1

3H

)
, (A.19)

where P eq1 given in (5.8).

A.2.1 Time dependence of the moments

Let us now analyze the time dependence of the moments and check that they if all of
them are close to the equilibrium distribution (A.19), they will indeed converge to it. The
simplest way is to use an inductive argument. First, let us assume that all moments up to
M1,n−1(φ1, t) are slowly changing with time. M1,0 satisfies this hypothesis given the right
hand side of the first equation in (A.17) is O(

√
λ). Then we can integrate (A.17) for the

n-th moment:

M1,n(φ1, t) = cne
−3nHt − e−3nHt

∫ t

dt′ e3nHt′nλφ3
1M1,n−1(φ1, t

′) , (A.20)

where cn is an integration constant. Since, by our assumption, M1,n−1 is slowly varying, af-
ter times larger than (nH)−1,M1,n(φ1, t) will approach −λφ3

1M1,n−1(φ1, t)/(3H) and hence
will also become a slowly varying function. Finally, if M1,1(φ1, t) = −λφ3

1M1,0(φ1, t)/(3H),
then by the first equation in (A.17),

∂tM0,n(φ1, t) = Γφ1M0,n(φ1, t) , (A.21)

which is nothing but equation (5.5). Hence, following the results of section 5.3, M0,n is
slowly approaching M eq

0,n and consequently the equilibrium solution (A.19) is an attractor.
Of course this behavior of the Wigner distribution is closely related to the discussion of
section 7 about attractiveness of the BD wave function. Similar arguments can be used to
demonstrate the attractor behavior of multi-point Wigner distributions.

B Outline of finite δ corrections

B.1 Diffusion term including ΩΛ(t)

In this appendix we derive the diffusion term including the effect of the smooth window
function ΩΛ(t). We have

Diffus. =

∫
Dφ ∂

∂t

(
δ

[
φ`(~x)−

∫
d3k

(2π)3
ei
~k·~x ΩΛ(t)(k)φ(~k)

] )
P [φ, t] (B.1)

=

∫
d3xA

δ

δφ`(~x1)

∫
Dφ δ

[
φ`(~y)−

∫
d3k

(2π)3
ei
~k·~y ΩΛ(t)(k)φ(~k)

]
×

×
(
−
∫

d3kA
(2π)3

ei
~kA·~xA ∂

∂t

(
ΩΛ(t)(kA)

)
φ(~kA)

)
P [φ, t] .

By hypothesis, ΩΛ(t) is equal to 1 for k < Λ(t), vanishes for k ≥ (1 + δ)Λ(t), and smoothly
interpolates between these two values in the intermediate k’s. It is now useful to split the

– 77 –



modes in the δ-function as ‘long’ (those with k ≤ Λ(t), for which the window function is
equal to 1), ‘very short’ (those with k ≥ (1 + δ)Λ(t), and for which the window function is
vanishing), and ‘intermediate’ (those with Λ(t) < k < (1 + δ)Λ(t), and which are the only
ones for which ∂ΩΛ(t)/∂t has support):

Diffus. =

∫
d3xA

δ

δφ`(~xA)

∫
Dφ (B.2)

× δk≤Λ(t)

[
φ`(~k)− φ(~k)

]
δk≥(1+δ)Λ(t)

[
φ`(~k)

]
δΛ(t)<k<(1+δ)Λ(t)

[
φ`(~k)− ΩΛ(t)(k)φ(~k)

]
×

×
(
−
∫

d3kA
(2π)3

ei
~kA·~xA ∂

∂t

(
ΩΛ(t)(kA)

)
φ(~kA)

)
P [φ, t] .

We now Taylor expand the δ-function over the ‘intermediate’ wavenumbers around φ`(~k),
in the following way:

δΛ(t)<k<(1+δ)Λ(t)

[
φ`(k)− ΩΛ(t)(k)φ(k)

]
= (B.3)

=
+∞∑
n=0

(−1)n

n!

∫
d3x1 . . .

∫
d3xn

δ

δφ`(~x1)
. . .

δ

δφ`(~xn)
δΛ(t)<k<(1+δ)Λ(t)

[
φ`(~k)

]
×

×
∫ (1+δ)Λ(t)

Λ(t)

dk1

(2π)3
. . .

∫ (1+δ)Λ(t)

Λ(t)

dkn
(2π)3

ei(
~k1·~x1+...+~kn·~xn) ΩΛ(t)(k1)φ(~k1) . . .ΩΛ(t)(kn)φ(~kn) .

where we used that δ

δφ`(~ki)
= 1

(2π)3

∫
d3xi e

i~ki·~xi δ
δφ`(~xi)

. We can now plug back this expres-
sion into (B.2), and obtain

Diffus. =

+∞∑
n=0

(−1)n+1

n!

∫
d3xA

∫
d3x1 . . .

∫
d3xn

δ

δφ`(~xA)

δ

δφ`(~x1)
. . .

δ

δφ`(~xn)

×
∫ (1+δ)Λ(t)

Λ(t)

d3kA
(2π)3

d3k1

(2π)3
. . .

d3kn
(2π)3

ei(
~kA·~xA+~k1·~x1+...+~kn·~xn) ∂

∂t

(
ΩΛ(t)(kA)

)
ΩΛ(t)(k1) . . .ΩΛ(t)(kn)

×
∫
Dφ δk≤Λ(t)

[
φ`(~k)− φ(~k)

]
δk≥Λ(t)

[
φ`(~k)

]
P [φ, t] φ(~kA)φ(~k1) . . . φ(~kn) . (B.4)

The path integral in the last line is nothing but the expectation value of φ(~kA)φ(~k1) . . . φ(~kn)

for a given value of the long modes φ`. Increasing number of phase space integrals gives
increasing powers of δ by which higher n terms are suppressed. Notice that what, at the
beginning of this Appendix, we called the ‘intermediate’ modes are being integrated out as
well, and so are part of the ‘short’ modes. We therefore obtain

Diffus. =
+∞∑
n=0

(−1)n+1

n!

∫
d3xA

∫
d3x1 . . .

∫
d3xn

δ

δφ`(~xA)

δ

δφ`(~x1)
. . .

δ

δφ`(~xn)

×
∫ (1+δ)Λ(t)

Λ(t)

d3kA
(2π)3

d3k1

(2π)3
. . .

d3kn
(2π)3

ei(
~kA·~xA+~k1·~x1+...+~kn·~xn) ∂

∂t

(
ΩΛ(t)(kA)

)
ΩΛ(t)(k1) . . .ΩΛ(t)(kn)

× P`[φ`, t] 〈φ(~kA)φ(~k1) . . . φ(~kn)〉φ` . (B.5)

This is the final expression for the diffusion term including the effect of the window
function. With respect to the expression that we gave in (4.19), the differences are minor.

– 78 –



In fact, the n = 0 and n = 1 case give respectively the one-derivative and the two-derivative
terms of (4.19). With respect to (4.19), we notice the presence of higher-derivative diffusion
terms. It is easy to realize that only the one- and two-derivative terms are not suppressed
by positive powers of δ. Indeed momentum conservation makes these absent in the two-
derivative term. Therefore, with respect to (4.19), the main difference is the presence of
positive δ-corrections that we neglect, and that we could explicitly compute if we wished.

B.2 Remaining O(δ) corrections

Let us now collect the rest of perturbative-in-δ corrections. First, let us justify the formula
(4.12). Using the definition of PΩ and decomposing and Taylor expanding the delta-function
as in (B.2) and (B.4) we get

PΩ[φ`, t] =

∫
Dφ δ

[
φ`(~x)−

∫
d3k

(2π)3
ΩΛ(t)(k) ei

~k·~x φ(~k)

]
P [φ, t] =

+∞∑
n=0

(−1)n

n!

∫
d3x1 . . .

∫
d3xn

δ

δφ`(~x1)
. . .

δ

δφ`(~xn)

×
∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3
. . .

d3kn
(2π)3

ei(
~k1·~x1+...+~kn·~xn)ΩΛ(t)(k1) . . .ΩΛ(t)(kn)

×
∫
Dφ δ

[
φ`(~x)−

∫ Λ(t) d3k

(2π)3
ei
~k·~xφ(~k)

]
P [φ, t] φ(~k1) . . . φ(~kn) =

= P`[φ`, t] +

+∞∑
n=1

(−1)n

n!

∫
d3x1 . . .

∫
d3xn

δ

δφ`(~x1)
. . .

δ

δφ`(~xn)
(B.6)

× P`[φ`, t] 〈∆φ(~x1) . . .∆φ(~xn)〉φ` ,

where in the last line we used the definition of ∆φ from (4.18) as well as (4.15). We see that
apart form the first term that we separated explicitly, all the terms involve the integrals
over the phase space, whose volume is proportional to δ, and hence are proportional to
powers of δ. Clearly, (B.6) can be inverted perturbatively in δ if needed.

Similar manipulations can be used to account for finite-δ corrections in the drift term
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in equation (4.10). For this term we get

Drift = −
∫
Dφ δ

[
φ`(~x)−

∫
d3k

(2π)3
ΩΛ(t)(k) ei

~k·~x φ(~k)

] ∫
d3x

δ

δφ(~x)
(Π[φ, ~x, t]P [φ, t])

=

+∞∑
n=0

(−1)n+1

n!

∫
d3x1 . . .

∫
d3xn

δ

δφ`(~x1)
. . .

δ

δφ`(~xn)

∫
Dφ ∆φ(~x1) . . .∆φ(~xn)

× δ

[
φ`(~x)−

∫ Λ(t) d3k

(2π)3
ei
~k·~x φ(~k)

]∫
d3x

∫ Λ(t)(1+δ)

0
d3k′e−i

~k·~x δ

δφ(~k′)
(Π[φ, ~x, t]P [φ, t])

=

+∞∑
n=0

(−1)n+1

n!

∫
d3x

∫
d3x1 . . .

∫
d3xn

δ

δφ`(~x1)
. . .

δ

δφ`(~xn)
× (B.7)(

δ

δφ`(~x)

(
〈∆φ(~x1) . . .∆φ(~xn)Π[φ, ~x, t]〉φ` P`[φ`, t]

)
−

〈∫ Λ(t)(1+δ)

Λ(t)
d3k′e−i

~k·~x δ

δφ(~k′)

(∆φ(~x1) . . .∆φ(~xn)) Π[φ, ~x, t]

〉
φ`

P`[φ`, t]

)
.

Again we see that all new (i.e. n > 0) terms contain phase space integrals over a thin
momentum shell and hence are proportional to powers of δ. Note, in particular, a new
term, in which the integrated by parts variational derivative acts on the product of the
intermediate momentum modes.

To summarize, we see that inclusion of finite-δ effects leads to lengthy, but conceptually
simple, expressions. It is thus straightforward to combine (B.5), (B.6) and (B.7) to produce
the equation describing the time evolution of the functional distribution valid to all orders
in δ.

B.3 Locality in space

We now show that if we use a smooth window function, the dependence of the correlation
functions of the short modes depends locally on the long modes. This was used throughout
the paper, starting from the subleading diffusion term computed around (8.2). Here we
prove that this assumption is justified for this term, and then assume that it holds also for
any other quantities, as it is expected. The way we will be able to prove this fact is that
the diffusion depends on the two-point function of the long-wavelength distribution, whose
behavior is well described by a decomposition in Eigenfunctions. As it will be clear, to
show that the response of the short modes to the long ones is local, we just need to show
that that all Eigenfunctions contribute equally. For this reason, we drop in the proof all
the irrelevant terms that affect equally all Eigenfunctions.

In deriving (8.2) we simply assumed that δm2
s is a space-time constant. Instead, more,

carefully, a short mode with, say, momentum ~k2 is sourced by the Fourier mode of λφ(x)3
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with the same momentum.38 We thus get for the subleading diffusion term

Diffus. ∼ ∂2

∂φ2
1

∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

d3k2

(2π)3
ei(

~k1+~k2)·~x1
∂

∂t

(
ΩΛ(t)(~k1)ΩΛ(t)(~k2)

)
×

×
∫
Dφ` δ (φ1 − φ`(~x1)) P`[φ`, t] e

i(~k1·~x1+~k2·~x2)〈φ(~k1)λφ3(~k2)〉φ` . (B.8)

Now we use that the leading contributing term from λφ(x)3 comes from taking one short
mode and two long modes. We write, for the short momenta of order Λ(t) that are of
interest here:

λφ3(~k2) = λ

∫
d3xA e

−i~k2·~x2φ`(~x2)2φs(~x2) = (B.9)

= λ

∫
d3xA

∫
d3kA
(2π)3

e−i(
~k2−~kA)·~x2φ`(x2)2φs(~kA) .

Plugging back in (B.8), we can do the path integral over the long modes at all locations
but at ~x2, to obtain

Diffus. ∼ λ ∂2

∂φ2
1

∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

d3k2

(2π)3

∂

∂t

(
ΩΛ(t)(~k1)ΩΛ(t)(~k2)

)
×

×
∫
d3x2

d3kA
(2π)3

∫
dφ2 P2(φ1, t;φ2, t; ~x1 − ~x2) ei(

~k1·~x1+~k2·(~x1−~x2)+~kA·~x2)φ2
2 〈φs(~k1)φs(~kA)〉 ∼

∼ λ ∂2

∂φ2
1

∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

d3k2

(2π)3

1

k3
1

∂

∂t

(
ΩΛ(t)(~k1)ΩΛ(t)(~k2)

) ∫
dφ2 φ

2
2 ×

×
∫
d3∆x P2(φ1, t;φ2, t; ∆~x) ei(

~k1+~k2)· ~∆x . (B.10)

where in the second passage we took the expectation value and defined ∆~x = ~x1 − ~x2.
We see that we need to compute the Fourier transform of the equal time two-location

distribution P2(φ1, t;φ2, t; ∆~x). We will do this simply for the equilibrium distribution, and
assume it holds for any state. We expect the main contribution to come from |~k1 +~k2| ∼ 0

due to approximate momentum conservation. We therefore have

P̃2(φ1, t;φ2, t;~k1 + ~k2) ≡
∫
d3∆x P2(φ1, t;φ2, t; ∆~x) ei(

~k1+~k2)· ~∆x ∼ (B.11)

∼
∞∑
n=1

Φn(φ1)Φn(φ2)
λn(a(t)H)−2λn/H

|~k1 + ~k2|3−2λn/H
+ Φ0(φ1)Φ0(φ2)δ(3)(~k1 + ~k2)

where in the last passage we used (6.30) but added the n = 0 contribution. Plugging back
in (B.10), we have

Diffus. ∼ λ ∂2

∂φ2
1

∫
dφ2 φ

2
2

∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

d3k2

(2π)3

1

k3
1

∂

∂t

(
ΩΛ(t)(~k1)ΩΛ(t)(~k2)

)
×

×

( ∞∑
n=1

Φn(φ1)Φn(φ2)
4π2λn(a(t)H)−2λn/H

|~k1 + ~k2|3−2λn/H
+ Φ0(φ1)Φ0(φ2)(2π)3δ(3)(~k1 + ~k2)

)
.(B.12)

38One can see this either by studying the equations of motion, or by looking at the real part of the quartic
in fields contribution to the wave function.

– 81 –



In the positive real axis, the factor ∂
∂t

(
ΩΛ(t)(~k1)ΩΛ(t)(~k2)

)
can be interpreted as a test

function for distributions.39 We can therefore use an identity that is valid for distributions
(see for example section 4.6 of chapter I of [62] 40. For the 1-dimensional case, it is easy to
specify a choice of window function and verify the results below directly):

λn

|~k1 + ~k2|3−2λn/H
= (2π)δ(3)(~k1 + ~k2)(δΛ(t))2λn/H + (B.13)

+

∞∑
i=0

4π2i
(−λn)1+i

i!
PδΛ(t)

(
1

|~k1 + ~k2|3
(

log(|~k1 + ~k2|)
)i)

−4πΘ(δΛ(t)− |~k1 + ~k2|)
λn

|~k1 + ~k2|3−2λn/H
,

where PδΛ(t)(f) is defined in terms of distributions, in such a way that, against a test
function g, we have∫

dx g(x)PδΛ(t)(f(x)) =

∫
dx f(x)

(
g(x)−

(
g(0)− g′(0)x− . . .

)
Θ(δΛ(t)− x)

)
, (B.14)

with as many derivatives as needed to make the integral convergent. Let us now consider
the various contributions of (B.13). Let us start with the term in δ(3)(~k1 + ~k2). If we plug
this factor in (B.12), we obtain

Diffus. ⊃ λ ∂2

∂φ2
1

∫
dφ2 φ

2
2

∑
n

Φn(φ1)Φn(φ2) (εδ)λn ×

×
∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

1

k3
1

∂

∂t

(
ΩΛ(t)(~k1)

)
ΩΛ(t)(~k1) . (B.15)

Using that
∑

n Φn(φ1)Φn(φ2) = δ(1)(φ1 − φ2)P eq1 (φ1), and Taylor expanding (εδ)λn = 1 +

λn log(ε δ) + . . . , we have

Diffus. ⊃ λ ∂2

∂φ2
1

(∫
dφ2 δ(φ2 − φ1)

)
φ2

1P
eq
1 (φ1)× (B.16)

×
∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

1

k3
1

∂

∂t

(
ΩΛ(t)(~k1)

)
ΩΛ(t)(~k1) ×

(
1 +O(

√
λ log(δ ε))

)
.

This is exactly the form of the diffusion term that we guessed in the local-in-space case, up
to terms suppressed by

√
λ log(δ ε) � 1. It is clear that the overall numerical factors are

unimportant: it matters only that all Eigenfunctions contribute in the same way. Therefore,
in order to complete the proof that the smooth ΩΛ(t) gives approximate locality in space, we
need to show that the rest of the contribution from (B.13) is suppressed. Let us therefore

39This is correct as long as test functions are more smooth than the distributions.
40Notice that we are using a slight generalization of this formula where

∫ +∞
1

d3x is replaced by
∫ +∞
δΛ(t)

d3k,
as this is more appropriate for us given that our test functions have support in the interval [Λ(t), (1+δ)Λ(t)].
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first see that happens when we plug the term with P in (B.13) into (B.12). We have

Diffus. ∼ λ ∂2

∂φ2
1

∫
dφ2 φ

2
2

∑
n

Φn(φ1)Φn(φ2)×

×
∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

d3k2

(2π)3

1

k3
1

∂

∂t

(
ΩΛ(t)(~k1) ΩΛ(t)(~k2)

)
×

×
∞∑
i=0

λ1+i
n

i!
P

(
1

|~k1 + ~k2|3
(

log(|~k1 + ~k2|/(aH))
)i)

. (B.17)

Let us estimate the integral in the last two lines for a generic i. We have, by using the
definition of P and the fact that the integral is barely divergent as ~k1 + ~k2 → 0:

Inti =
1

i!

∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

d3k2

(2π)3

1

k3
1

λ1+i
n

(
1

|~k1 + ~k2|3
(

log(|~k1 + ~k2|/aH)
)i)

× (B.18)

×
(
∂

∂t

(
ΩΛ(t)(~k1) ΩΛ(t)(~k2)

)
− ∂

∂t

(
ΩΛ(t)(~k1) ΩΛ(t)(~k2)

) ∣∣∣
~k1+~k2=0

Θ(δΛ(t)− |~k1 + ~k2|)
)
.

Let us now estimate the factor containing the window function. The derivative in time
scales as 1/δ (as can be understood by noticing that upon integration over space, that goes
as δ, we get an unsuppressed contribution, or equivalently because for δ → 0, ΩΛ(t) goes
to a unit-step function.). Since the derivative in time comes through the dependence over
k/Λ(t), also the first derivative in k goes as 1/δ, times some dimensionfull factors of order
|~k1 + ~k2|. Therefore, within order one numbers, we have

|Int| .
∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

d3k2

(2π)3

1

k3
1

|~k1 + ~k2|
δ2

λ1+i
n

(
1

|~k1 + ~k2|3
(

log(|~k1 + ~k2|/aH)
)i)

. λ1+i
n (log δ)i . (B.19)

Plugging back into (B.17), we find that the contribution to Diffus. of the term in P of (B.13)
is of order

Diffus. .
∞∑

n,i=0

λλ1+i
n (log δ)i

∂2

∂φ2
1

∫
dφ2 φ

2
2

∑
n

Φn(φ1)Φn(φ2)

∼
∞∑
i=0

λ3/2+i/2 (log δ)i , (B.20)

where in the second step we have used that λn ∼
√
λ and φ` ∼ 1/λ1/4. We therefore

find that this contribution is suppressed with respect to the leading local-in-space term by
expressions of the form

√
λ(1 +

√
λ log δ + . . .. At last, the last term of (B.13) contributes

to the diffusion coefficient simply as δ2 1
δλn ∼ δ

√
λ, where the factor of δ2 comes from the

measure of integration, and the 1/δ from the time-derivative of the window function.
Overall, as expected, we find that the smoothness of the window function implies that

the short modes depend locally on the long ones, up to computable corrections of order
√
λ

and
√
λ log(δ ε). This analysis shows why it was necessary to keep δ finite, or, more precisely,
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e
− 1√

λ

ε � δ, as was anticipated in section 4.2. Otherwise the fact that all Eigenfunctions
contribute the same at the leading order would not be true and, consequently, the corrections
to short expectation values would not be simply proportional to the values of long fields at
the same spacial points. We discuss this effect in details in Appendix D.

We can also sketch the functional form of the further subleading correction in
√
λ. We

use the fact that the n dependence comes only through the factor of λn, to write, for the
equilibrium distribution, that∑

n

λnΦn(φ1)Φn(φ2) = −Γφ1

∑
n

Φn(φ1)Φn(φ2) = −Γφ1δ
(1)(φ1 − φ2)P eq1 (φ1) , (B.21)

so that the subleading contribution to Diffus., Diffus. subl., goes as

Diffus. subl. = β1
λ log(δε)

3H2

∂2

∂φ2
1

(
Γφ1 φ

2
1 P

eq
1 (φ1)

) 〈
φ(~ks, t)φ(−~ks, t)

〉′
, (B.22)

with β1 an order one number.

C Fourier transform of the two-point distribution

In this Appendix we compute some integrals appearing in the Fourier transform of the
two-location distributions.

Let us start with the Fourier transform of the leading two point function given in (6.18).
We need to compute∫

d3x e−i
~k·~xx−p = 4π

∫ ∞
0

dx
x sin(kx)

k
x−p = 4πΓ(2− p) sin

(πp
2

)
k−3+p , (C.1)

where we assumed that the integral is convergent which is true for 1 < p < 3. We are
interested, however, in p = 2λn/H � 1, for which the integral is divergent. The correct
procedure is to analytically continue in p, after which we can Taylor expand for small λn
(see, for example, [62] for a careful treatment of Fourier transforms of distributions). We
thus get

4πΓ(2− 2λn/H) sin

(
πλn
H

)
k−3+2λn/H =

4π2λn
H

k−3+2λn/H +O(
√
λ) . (C.2)

We next switch to the integrals relevant for the subleading two-location distribu-
tion (6.28). Their evaluation is straightforward but somewhat long. We thus focus on
the most relevant part, which comes from the integral over the intermediate region, namely

ĪII = 2λn

∫ xf

xi

d3x

∫ t

ti(x)
d t′
[
j0
(
Λ(t′)x

)
− 1
]
e−i

~k·~x . (C.3)

We remind the reader that

Λ(t) = εa(t)H, xi = Λ(t)−1e−∆, xf = Λ(t)−1e∆, ti(x) = (− log(εHx)−∆)/H .

(C.4)
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We are interested in the regime k ∼ Λ(t) and ∆ → ∞, however, as we discussed, ∆
√
λ

should still be small in order for sudden perturbation theory to be under control. First,
let us take the time integral in (C.3). After taking the large ∆ limit we get the following
expression:

It =

∫ t

ti(x)
d t′
[
j0
(
Λ(t′)x

)
− 1
]

=
1

H

(
1− γE + Ci(xΛ(t))− log(xΛ(t))− sin(xΛ(t))

xΛ(t)

)
+O(e−2∆) . (C.5)

By expanding this expression at large x one can readily see that the integral (C.3) has
contributions that grow with ∆. All these contributions, however, cancel against corre-
sponding growing contributions from II , IIII as well as the part of III not included in ĪII .
The relevant finite contribution, after the angular integrals in it are taken, reads

II + III + IIII = 8π
λn
H

(
π

2k3
+

∫ xf

xi

dx

(
Ci(Λx)− sin(Λx)

Λx

)
x sin(kx)

k

)
+O(e−∆, λ) .

(C.6)
Note that this integral is convergent in the xf → ∞ limit, however, it’s derivative with
respect to k is not, consequently it can give θ-function-like singularity that we are expecting.
Indeed, since the boundary terms are of O(e−∆), we can integrate by parts, and, by defining
a dimensionless integration variable y = Λx, we get a simpler-looking integral which can be
readily evaluated, again dropping some terms of order O(e−∆):

Ãnm(k) = II + III + IIII = (C.7)

=
8πλn
Hk3

(
π

2
+

∫ e∆

e−∆

dy
sin y

y2

(
ky

Λ
cos

ky

Λ
− sin

ky

Λ

))
+O(e−∆, λ) =

=
4πλn
Hk3

(
π + Si

((
1− k

Λ

)
e∆

)
− Si

((
1 +

k

Λ

)
e∆

))
+O(e−∆, λ) .

The value of the sine integral for large absolute values of the argument depends on the sign
of the argument, namely Si(±∞) = ±π/2. Consequently, for k > Λ and not too close to Λ

we get zero, while for k < Λ (and not too close to Λ), we get 4π2λn
Hk3 , as stated in (6.29).

The detailed analysis we just did shows us that the width of the θ-function is given by
k/Λ− 1 ∼ e−∆ � e−1/

√
λ. So even though it can be made more narrow than any power of

λ, it cannot be made arbitrarily narrow.
We add the following comment. The smearing of the θ-function that we just found is

of order e−∆. Since ∆ is an artificial parameter, any dependence on it will cancel order by
order in perturbation theory. It is expected that such a smearing will ultimately take the
size of the only physical parameter of the theory, which is e−1/

√
λ.

As we mentioned earlier, in section 6.2, in this range of momenta, the contribution of
the late-time perturbation to the two-point function contributes at the same order as the
subleading sudden perturbation theory terms. Let us turn to computing this contribution,
which is given by

P late
2 (φ1, t;φ2, t; ~x) = −

∫ t

tf (x)
dt′j0

(
εa(t′)Hx

)
H ′(φ1, φ2) P eq

2 (φ1, t
′;φ2, t

′; ~x) (C.8)
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where for P eq
2 it suffices to take the leading distribution (6.16), the interaction Hamiltonian

H ′ is defined in (6.11), and t > tf . After taking the time integral, the part which is relevant
in the large ∆ limit reads

P late
2 (φ1, t;φ2, t; ~x) =

cos(Λ(t)x)

HΛ(t)2x2
H ′
∑
n

Φn(φ1)Φn(φ2)

(
x

xf

)−2λn/H (
1 +O

(√
λ, e−∆

))
.

(C.9)

Since x > xf = exp ∆/Λ(t) in coordinate space this expression is exponentially small in ∆

and hence can be ignored at the leading order. However, for k = Λ(t) its Fourier transform
is divergent, at least for λn = 0, so we might expect a significant contribution in momentum
space for k ∼ Λ(t). Let us first study the n = 0 term.

P̃ late
2 (φ1, t;φ2, t;~k) ⊃

∫ ∞
xf

d3x e−i
~k·~x cos(Λ(t)x)

HΛ(t)2x2
H ′Φ0(φ1)Φ0(φ2) (C.10)

⊃ 2π

∫ ∞
xf

dx
sin ((k − Λ(t))x)

HΛ(t)2kx
H ′Φ0(φ1)Φ0(φ2) =

=
2π

HΛ(t)2k

[
π

2
Sign(k − Λ(t))− Si

((
k

Λ(t)
− 1

)
e∆

)]
H ′Φ0(φ1)Φ0(φ2)

(
1 +O

(
e−∆

))
.

Let us note several features of this result. First, as we anticipated, it is of order
√
λ (since

H ′ ∼
√
λH), that is, it is of the same order as (C.7), in the region |k/Λ − 1| ∼ e−∆. It

becomes otherwise very small outside of this interval. Second, it is nonzero for k/Λ−1 = 0+,
namely

P̃ late
2 (φ1, t;φ2, t; k = Λ(t)+) = − H2

4Λ(t)3

∂2

∂φ1∂φ2
Φ0(φ1)Φ0(φ2) . (C.11)

This feature of the distribution of long modes plays an important role for the computation
of the tadpole in the limit of the sharp window function, see discussion in Appendix D.

Finally, let us discuss briefly the contribution of nonzero Eigenvalues to (C.9). Each of
them contributes as

P̃ late
2 (φ1, t;φ2, t;~k) ⊃ 2π

∫ ∞
xf

dx
sin ((k − Λ)x)

HΛ2kx

(
x

xf

)−2λn/H

H ′Φn(φ1)Φn(φ2) .

(C.12)

This integral is convergent for any k and for k = Λ the result vanishes up to terms of
order e−∆. However, for other k’s in the range |k/Λ − 1| ∼ e−∆ it gives a non-zero
contribution which is also comparable to (C.7). Consequently, if one is interested in the
detailed functional profile of the distribution in this range of k’s, one needs to include this
contribution as well. For us this will not be important since the contribution of this thin
momentum shell to all physical observables or components of our equations is suppressed.
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D Distribution in the case of sharp window function

As we anticipated in the main text, in the case where the window function is sharp,
ΩΛ(t)(k) = Θ(Λ(t) − k), the dependence on the long-modes of the correlation functions
of the short modes, which are the building blocks of the Fokker-Planck-like equation for the
long modes, is not local in space. Here in this section we show how the calculation carries
forward in this situation, and we check how we obtain the same result for P eq1 at subleading
order in

√
λ. In passing, we will explicitly show how the tadpole of φ is negligible at the

order we work on if we use a smooth window function.
Let us first study the tadpole term in the case of the single-point distribution. At

leading order, we can compute the expectation value by Taylor expanding the wave function
in (3.6) by pulling downstairs the quartic term, to obtain〈

∆̇φ(~x1)
〉
φ1

P1(φ1, t) =

∫
Dφ` δ(1)(φ1 − φ`(~x1))P`[φ`, t]

∫ (1+δ)Λ(t)

Λ(t)

d3k

(2π)3
∂tΩΛ(t)(k) ei

~k·~x1 ×

× λ

H4

∫
d3k1

(2π)3

d3k2

(2π)3

d3k3

(2π)3

d3k4

(2π)3
(2π)3δ(3)

(
4∑
i=1

~ki

)
×

× kΣ3 fψ

(
k2

k1
,
k3

k1
,
k4

k1

)
〈φ(~k1)φ(~k2)φ(~k3)φ(~k4) φ(~k)〉 , (D.1)

where fψ
(
k2
k1
, k3
k1
, k4
k1

)
is a unitless function of the ratio of the wavenumbers. The leading

order in
√
λ contribution comes from contracting φ(~k) with φ(~k4) at free-theory level, and

considering all the remaining φ(~k1)φ(~k2)φ(~k3) as long wavelength fields. Because of the
window function, the mode k is sharply peaked at Λ(t). After the contraction, k4 will
also be forced to be close to Λ(t). The δ-function of the quartic vertex will therefore force
|
∑

i=1,2,3
~ki| ' Λ(t). At leading order in

√
λ, the leading contribution comes from taking

one of the long modes to be close to Λ(t), and the other two as long as possible. In this
kinematical regime, the expression for fψ greatly simplifies. Accounting for combinatorics,
we obtain〈

∆̇φ(~x1)
〉
φ1

P1(φ1, t) =

∫
Dφ` δ(1)(φ1 − φ`(~x1))P`[φ`, t]

∫ (1+δ)Λ(t)

Λ(t)

d3k

(2π)3
∂tΩΛ(t)(k) ei

~k·~x1 ×

× 4

3

λ

H4
(log(ε/2)− ψ(3/2)) k3

∫
d3k1

(2π)3
(2π)3δ(3)(~k + ~k1) φ3

` (
~k1)

H2

2k3
=

=

∫
Dφ` δ(1)(φ1 − φ`(~x1))P`[φ`, t]

∫ (1+δ)Λ(t)

Λ(t)

d3k

(2π)3
∂tΩΛ(t)(k) ei

~k·~x1 ×

× 2

3

λ

H2
(log(ε/2)− ψ(3/2))φ3

` (
~k) .

Now, as usual, we can write the long field at wavenumber ~k as the Fourier transform of
the field at an auxiliary location, and then perform the integral over all the locations that
do not appear in the expression, obtaining the probability distribution of the field at equal
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times at two locations:〈
∆̇φ(~x1)

〉
φ1

P1(φ1, t) =
2

3

λ

H2
(log(ε/2)− ψ(3/2))

∫ (1+δ)Λ(t)

Λ(t)

d3k

(2π)3
∂tΩΛ(t)(k)

∫
dφ2 φ

3
2 ×

×
∫
d3x12 P2(φ1, t;φ2, t; ~x12) ei

~k·~x12 =

=
2

3

λ

H2
(log(ε/2)− ψ(3/2))

∫ (1+δ)Λ(t)

Λ(t)

d3k

(2π)3
∂tΩΛ(t)(k)

∫
dφ2 φ

3
2 P2(φ1, t;φ2, t; ~x12) ,

where we used the fact that, by translation invariance, P2 depends only on the relative
separations ~x12 = ~x2 − ~x1.

We are therefore led to consider the Fourier transform of the equal-time two location
distribution, at momenta k ' Λ(t). We will specialize here on the equilibrium distribution,
though the result is expected to hold in general. As we saw in the former appendix, this
is rather delicate. There are two contribution. The first is given by using the expression
in (6.29), where instead of the smeared θ-function we use directly the expression in (C.7).
Since the window function is sharp, we can take expression (C.7) at k = Λ(t)+. This is
equivalent to taking the expression in (6.29) with the θ-function evaluated to 1/2. Then
there is a second contribution, coming from P late

2 of (C.11). We obtain〈
∆̇φ(~x1)

〉
φ1

P eq1 (φ1) =
2

3

λ

H2
(log(ε/2)− ψ(3/2))

∫ (1+δ)Λ(t)

Λ(t)

d3k

(2π)3
∂tΩΛ(t)(k)

∫
dφ2 φ

3
2 ×(∑

n

2π2

k3

(
λn
H

)
Φn(φ1)Φn(φ2)− H2

4Λ(t)3

∂2

∂φ1∂φ2
Φ0(φ1)Φ0(φ2)

)
. (D.2)

We can now use that∑
n

λnΦn(φ1)Φn(φ2) = −Γφ1

∑
n

Φn(φ1)Φn(φ2) = −Γφ1

(
δ(1)(φ1 − φ2)P eq1 (φ1)

)
, (D.3)

to write, after performing the
∫
dφ2:〈

∆̇φ(~x1)
〉
φ1

P eq1 (φ1) =
2

3

λ

H2
(log(ε/2)− ψ(3/2))

∫ (1+δ)Λ(t)

Λ(t)

d3k

(2π)3
∂tΩΛ(t)(k) ×

×
(
− 1

H

2π2

k3

[
Γφ1 , φ

3
1

]
P eq1 (φ1) +

3

4

H2

Λ(t)3
〈φ2

2〉
∂

∂φ1
P eq1 (φ1)

)
, (D.4)

where we used that Γφ1P
eq
1 (φ1) = 0. Using now that, in the limit δ → 0, ∂tΩΛ(t) =

δ(1)(Λ(t) − k)HΛ(t), we can perform the last k-integral, to finally obtain the following
expression for the tadpole in the case of a sharp window function〈

∆̇φ(~x1)
〉
φ1

P eq1 (φ1, t) =
2

3

λ

H2
(log(ε/2)− ψ(3/2))) ×

×
(
−
[
Γφ1 , φ

3
1

]
P eq1 (φ1) +

1

2π2

3

4
H3〈φ2

2〉
∂

∂φ1
P eq1 (φ1)

)
. (D.5)

We now derive the subleading form of the diffusion term. We start from (B.12), as,
until that point, we did not specify the sharpness of the window function, but now we will
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take the limit δ → 0 at the end of the calculation. Let us first establish that the contribution
from the Eigenvalues in n > 0 goes to zero in this limit. In fact, when the derivative acts
on ΩΛ(t)(k1), we obtain a δ(1)(k1 − Λ(t)) that fixes k1 = Λ(t). Then, the integral in k2 is
convergent, and will be bounded by δλn . This goes to zero as δ → 0. The contribution of
the zero mode is instead different, as the δ(3)(~k1 +~k2) removes the integration over k2. This
is the only contributing term in this limit, and reads, using that Φ0(φ1) = P eq1 (φ1):

Diffus. ⊃ lim
δ→0

λ
∂2

∂φ2
1

(∫
dφ2 φ

2
2P

eq
1 (φ2)

)
× (D.6)

× P eq1 (φ1)

∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

1

k3
1

∂

∂t

(
ΩΛ(t)(~k1)

)
ΩΛ(t)(~k1)

= lim
δ→0

λ〈φ2
2〉

∂2

∂φ2
1

P eq1 (φ1)

∫ (1+δ)Λ(t)

Λ(t)

d3k1

(2π)3

1

k3
1

∂

∂t

(
ΩΛ(t)(~k1)

)
ΩΛ(t)(~k1) .

where 〈φ2
2〉 is just the expectation value of the square of the long field at one location. We

therefore see that in the case of the sharp window function, the factors of φ2
1 in the diffusion

get replaced by 〈φ2
2〉. We therefore obtain, in the sharp-window function case, the following

equation for the one-location equilibrium probability distribution in replacement of (8.13):[
− ∂

∂φ1

〈
∆̇φ(~x1)

〉
φ1

+
H3

8π2

∂2

∂φ2
1

(
1 + a〈φ2

2〉
)

+
∂

∂φ1

(
λφ3

1

3H
+ bφ1 + cφ5

1

)]
P eq1 (φ1) (1 +O(λ)) = 0 ,

(D.7)
where a, b, c are the same as in (8.14). One can check that the same solution (8.15) that
we found using the broad window function satisfies this equation. This confirms, by facing
the most extreme case, that our results are independent of the window function.

We have just seen that in the case of the sharp window function the tadpole of ∆̇φ was
non-negligible at subleading order. This calculation allows us to show that in the case of
the broad window function such a contribution is negligible and the tadpole contributes at
one more order in

√
λ. Neglecting irrelevant factors, in the kinematical regime for the long

modes that we considered, the size of the tadpole is controlled relevantly by the following
phase-space integral:〈

∆̇φ(~x1)
〉
φ1

P eq1 (φ1) ⊃ λ
∫
dφ2 φ

3
2

∫ (1+δ)Λ(t)

Λ(t)

dk

k

∂

∂t
ΩΛ(t)(k) P̃ eq2 (φ1, t;φ2, t; k) . (D.8)

In the case of the sharp window function, the width of the window was much smaller than
the variation scale of P̃2(φ1, t;φ2, t; k), and therefore we could simply approximate the k-
dependence of P̃2 with its value at k = Λ(t)+. Instead, in the case of a broad window
function, the variation of P2 while we integrate over the wide shell of order Λδ selected by
the window function cannot be neglected, and indeed one can take the window function as
approximately constant in that interval, with size 1/δ. In detail, for k ' Λ(t)+, the relevant
expression for P̃2 is given by eq. (C.7), (C.11), and (C.12). In all cases, P̃2 is unsuppressed
only on a thin shell of order k−Λ ∼ +Λe−∆. Let us analyze just the contribution from (C.7)

– 89 –



for definiteness, as the others gives the same parametric result. We have

〈
∆̇φ
〉
φ1, broad window

P eq1 (φ1) ⊃ λ
∑
n

∫
dφ2 φ

3
2

∫ Λ(t)(1+e−∆)

Λ(t)

dk

k

∂

∂t
ΩΛ(t)(k)

λn
k3

Φn(φ1)Φn(φ2)

' λ

δ

∑
n

∫
dφ2 φ

3
2 λn log

(
1 + e−∆

)
Φn(φ1)Φn(φ2) ' −λe

−∆

δ

[
Γφ1 , φ

3
1

]
P eq1 (φ1) . (D.9)

where in the last passage we Taylor expanded log(1 + e−∆), and we have also written,
as usual,

∑
n λnΦn(φ1)Φn(φ2) = −Γφ1δ(φ1 − φ2)P eq1 (φ1). Let us now estimate the size

of this term. The parameter ∆ is the one that gives us control over sudden perturbation
theory, and the dependence on it (as for the one on ε and ∆), will cancel order by order in
perturbation theory. We expect therefore that the widening of the θ−function in P̃2 will be
saturated by e−∆ ∼ e−1/

√
λ, which is the scale associated to the problem (our perturbative

calculation, in order to achieve control, indeed gives a suboptimal estimate). Now, we see
that the size of the tadpole in the case of the broad window function is suppressed with
respect to the case of a sharp window by a factor of e−

1√
λ
−log δ

= e
− 1√

λ
(1+
√
λ log δ). Using the

bound on δ imposed by locality that we obtained below (B.16),
√
λ log δ � 1, we see that

the contribution of this tadpole term is suppressed by e−
1√
λ with respect to the case of a

sharp window function. Notice that if we saturate the bound on δ from locality (neglecting
the factor of ε), and we take δ ∼ e−1/

√
λ, then the suppression of the tadpole from the

widening of the window function disappears. This is expected because this is indeed when
the window function becomes too sharp and one loses locality.

Finally, we point out that 〈∆̇φ〉broad window is in reality only suppressed by a factor of√
λ with respect to the case of a sharp window, as we could have considered a kinematical

regime for the same perturbative diagram where we take two long modes to be close to
Λ(t) rather than just one. We would have paid an extra factor of

√
λ, but the phase-space

integrals would have been unsuppressed.
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