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ABSTRACT

This monograph provides an exposition of recently developed
reinforcement learning-based techniques for decision and con-
trol in human-engineered cognitive systems. The developed
methods learn the solution to optimal control, zero-sum, non
zero-sum, and graphical game problems completely online
by using measured data along the system trajectories and
have proved stability, optimality, and robustness. It is true
that games have been shown to be important in robust con-
trol for disturbance rejection, and in coordinating activities
among multiple agents in networked teams. We also consider
cases with intermittent (an analogous to triggered control)
instead of continuous learning and apply those techniques
for optimal regulation and optimal tracking. We also intro-
duce a bounded rational model to quantify the cognitive
skills of a reinforcement learning agent. In order to do that,
we leverage ideas from behavioral psychology to formulate
differential games where the interacting learning agents have
different intelligence skills, and we introduce an iterative
method of optimal responses that determine the policy of
an agent in adversarial environments. Finally, we present ap-
plications of reinforcement learning to motion planning and
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collaborative target tracking of bounded rational unmanned
aerial vehicles.
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Introduction

1.1 A Unified Approach

This monograph describes the use of principles of reinforcement learning
(RL) to design feedback policies for continuous-time dynamical systems
that combine features of adaptive control and optimal control. Adaptive

control (Ioannou and Fidan, 2006) and optimal control (Lewis et al.,
2012a) represent different philosophies for designing feedback controllers.
These methods have been developed by the control systems community.

Optimal controllers minimize user-prescribed performance functions
and are normally designed offline, i.e., performing all the calculations
before being implemented into a system, by solving Hamilton–Jacobi–
Bellman (HJB) equations, for example, the Riccati equation, using
complete knowledge of the system dynamics. Determining optimal
control policies for nonlinear systems requires the offline solution of
nonlinear HJB equations.

Adaptive controllers learn online, i.e., process data and decide in
real-time, to control unknown systems using data measured along the
system trajectories. In fact, adaptive control is a powerful tool that
uses online tuning of parameters to provide effective controllers for non-
linear or linear systems with modeling uncertainties and disturbances.

3



4 Introduction

Closed-loop stability while learning the parameters is guaranteed, often
by using Lyapunov design techniques. Parameter convergence, however,
often requires that the measured signals carry sufficient information
about the unknown parameters known as a persistence of excitation
(PE) condition, that is similar to exploration and exploitation in the
learning terminology. Nevertheless, adaptive controllers are not usu-
ally designed to be optimal in the sense of minimizing user-prescribed
performance functions. Indirect adaptive controllers use system iden-
tification techniques to first identify the system parameters and then
use the obtained model to solve optimal design equations (Ioannou and
Fidan, 2006). Adaptive controllers may satisfy certain inverse optimality
conditions (Li and Krstic, 1997).

Several machine learning techniques have been employed for en-
abling adaptive autonomy (Vamvoudakis et al., 2015). Machine learning
is grouped, in supervised, unsupervised or RL, depending on the amount
and quality of feedback about the system or task. In supervised learning,
the feedback information provided to learning algorithms is a labeled
training data set, and the objective is to build the system model rep-
resenting the learned relation between the input, output and system
parameters. In unsupervised learning, no feedback information is pro-
vided to the algorithm and the objective is to classify the sample sets
to different groups based on the similarity between the input samples.
Finally, RL, that is the subject of this monograph, is a goal-oriented
learning tool wherein the agent, decision maker or controller learns a
policy to optimize a long-term reward by interacting with the environ-
ment. At each step, an RL agent gets evaluative feedback about the
performance of its action, allowing it to improve the performance of
subsequent actions (Bertsekas and Tsitsiklis, 1996; Cao, 2007; Liu et al.,
2017; Sutton and Barto, 2018; Wiering and Van Otterlo, 2012).

In a control engineering context, RL bridges the gap between tra-
ditional optimal control and adaptive control algorithms (Bertsekas,
2019; Hovakimyan and Cao, 2010; Ioannou and Fidan, 2006; Jiang and
Jiang, 2013; Kamalapurkar et al., 2018; Krstić and Kanellakopoulos,
1995; Lewis et al., 2012a,b; Tao, 2003; Zhang et al., 2020). In our frame-
work the goal is to learn the optimal policy and value function for a
potentially uncertain physical system. Nevertheless, it is worth pointing
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out that the application of RL to the control discipline is not restricted
solely in learning the optimal strategy and value function, but rather
it is applicable in diverse applications such as system identification,
adaptive control and even to the coordination of multi-agent systems
(Hunt et al., 1992; Mannor and Shamma, 2007; Poveda et al., 2019;
Sontag, 1993; Sontag and Sussmann, 1997; Wang and Hill, 2009). Unlike
traditional optimal control, RL finds the solution to the HJB equation
online. On the other hand, unlike traditional adaptive controllers, that
are not usually designed to be optimal in the sense of minimizing cost
functionals, RL algorithms are optimal. This has motivated control
system researchers to enable adaptive and cognitive autonomy in an
optimal manner by developing RL-based controllers. In continuous-time
(CT) linear systems with multiple decision makers and quadratic costs,
one has to rely on solving complicated matrix Riccati equations that
require complete knowledge of the system matrices and need to be
solved offline and then implemented online in the controller. In the era
of complex and big data systems, modeling the processes exactly is most
of the time infeasible and offline solutions make the systems vulnerable
to parameter changes (drift).

Q-learning is a model-free action-dependent RL technique, i.e., does
not require information about the environment, developed primarily for
discrete-time systems (Watkins, 1989). It learns an action-dependent
value function that ultimately gives the expected utility of taking a
given action in a given state and following the optimal policy thereafter.
When such an action-dependent value function is learned, the optimal
policy can be computed easily. The biggest strength of Q-learning is
that it is model-free. It has been proven in Watkins (1989) that for any
finite Markov Decision Process, Q-learning eventually finds an optimal
policy. In complex-systems Q-learning needs to store massive amounts of
data, which makes the algorithm infeasible. This problem can be solved
effectively by using adaptation techniques. Specifically, Q-learning can
be improved by using the universal function approximation property
that allow us to solve difficult optimization problems online and forward
in time. This makes it possible to apply the algorithm to larger problems,
even when the state space is continuous, and infinitely large.
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Synchronous RL arises from a combination of techniques based
on model-free and model-based RL. Specifically, RL techniques are
used to design adaptive systems with novel structures that learn the
solutions to optimization-based problems by observing data along the
system trajectories. We term these as optimal adaptive controllers.
These adaptive controllers are learned online and the policies converge
to the optimal ones by tuning all parameters in all loops simultaneously,
giving rise to synchronous RL. This is accomplished by developing
two learning networks that interact with each other as they learn, and
so mutually tune their parameters together simultaneously without
any iterations. This learning mechanism is composed of an actor/critic
structure, wherein there are two networks in two control loops – critic-
network that evaluates the performance of current control policies and
an actor-network that computes those current policies.

Game theory develops mathematical models allowing us to capture
the strategic interaction among rational decision-makers/players (Başar
and Olsder, 1999; Myerson, 2013). A rational agent can be thought of
as an agent that has clear preferences, models uncertainty via expected
values, and always chooses to perform the policy with the optimal
expected outcome for itself from among all feasible actions. The solutions
of several types of non-cooperative games (the cooperation among the
agents is not allowed), namely the equilibrium strategies of the game,
rely on the assumption of perfect rationality (Myerson, 2013). However,
in real-world problems, the assumption of perfect rationality turns out
to be quite strong and incapable of interpreting the actual behavior of
the players (Crawford and Iriberri, 2007), thereby giving rise in bounded
rationality (Simon, 1984) wherein the agents are bounded rational in the
sense that the intelligence of the agents is limited by the information they
have, the cognitive limitations of their minds, and the finite amount of
time they have to make a decision. In the framework of RL, game theory
is regraded as a bounded-rational interpretation of how equilibrium
may result. Finally, based on the above, it follows that the synchronous

RL can constitute a means for enabling online gaming by allowing the
agents to learn their optimal policies online by measuring data along
the players’ trajectories, even when the environment is unknown or
subject to changes.
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1.2 RL and Cognitive Autonomy

Autonomy means having the freedom to act or function independently,
i.e., self-government. Concerning the terminology of this term, it origi-
nally came from the Greek word “autonomia,” which is a combination
of the Greek words “auto” (self) and “nomy” (a system of rules). In
the discipline of control engineering, this means that the agents can
make a decision, namely to select a control policy, without involving a
supervisor. Systems featuring these properties are the so-termed “In-
telligent Autonomous Systems” (IAS), examples include Unmanned
Aerial Vehicles (UAVs), Autonomous Underwater Vehicles (AUVs), of-
fice and residential buildings that regulate their energy consumption
while adapting to the needs of their inhabitants (smart buildings), safety
systems and environmentally friendly energy systems in automobiles
(smart cars, smart highways) (Antsaklis et al., 1991; Asama et al., 2013;
Vamvoudakis et al., 2015). However, the IAS should be designed so that
they are capable of dealing with the endogenous uncertainty imposing
by the environment involving the presence of modeling uncertainties,
the unavailability of the model, the possibility of cooperative along with
non-cooperative goals, and malicious attacks compromising the security
of teams of complex systems (Lamnabhi-Lagarrigue et al., 2017). Never-
theless, it is evident that the Synchronous RL with the flexibility that
it offers in tackling uncertainty, it has facilitated the evolution of cogni-
tive autonomy aiming towards building fully autonomous IAS that are
highly cognitive, reflective, multitask-able, and effective in knowledge
discovery without external intervention. Ideally, moving towards full
autonomy, the control engineering community desires to construct IAS,
which should perhaps have the ability to perform even hardware repair
if any of their components fails.

In general, there is a need for approaches that respond to situations
not programmed or anticipated in the design. Therefore, by leveraging
ideas from the recent advances of Synchronous RL and game theory, we
bring together and combine interdisciplinary ideas from different fields
as pictorially illustrated in Figure 1.1, i.e., computational intelligence,
game theory, control theory, and information theory to endow IAS with
novel cognitive learning algorithms intending to ensuring full autonomy
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Figure 1.1: The Synchronous RL-based framework for enabling cognitive autonomy
arises from the intersection of several diverse fields including, optimization-based
control, adaptive learning, game theory, and RL.

and secure operation. Exploiting the adaptive nature of Synchronous

RL, we apply the ideas of synchronous RL to kinodynamic motion
planning algorithms that enable IAS to navigate securely and explore
an unknown, challenging, environment with obstacles while guaranteeing
the avoidance of collision with them. Furthermore, in the aerospace
community is of profound importance to develop algorithms that will
enable the coordination of autonomous swarms of UAVs to apprehend
malicious vehicles that enter a protected zone, a phenomenon that has
already been observed. To address that problem, we enforce “geofencing”
protocols by constructing cognitive hierarchy-based algorithms inspired
by the human brain, to coordinate a team of bounded rational UAVs
for tracking an intelligent invading moving target. Finally, from the
aforementioned, it is obvious that the Synchronous RL-based algorithms
are featured by strong abilities of learning, and thus, the complex
systems will be fully autonomous and tolerant to failures.
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In this monograph we present a family of model-free, and model-
based online adaptive learning algorithms for single and multi-agent
systems using measurements along the system trajectories with continu-
ous and intermittent feedback. The algorithms developed here are based
on Synchronous RL principles, and rely on actor/critic-network schemes
involving simultaneous tuning of the actor/critic neural networks (NNs)
while providing online solutions to complex Hamilton–Jacobi (HJ) equa-
tions. However, it is worth mentioning that several of these techniques
can be implemented without knowing the complete system dynamics,
enabling cognitive autonomy.

1.3 Organization

The remainder of this monograph is structured as follows. Section 2
presents an adaptive method based on actor/critic RL for solving online
the optimal control problem for deterministic CT input-affine nonlinear
systems with known or partially unknown dynamics as well as with
saturating and non-saturating actuators. In Section 3, under the as-
sumption of perfect rationality, we develop adaptive controllers that
learn optimal solutions for several differential game theory problems,
including zero-sum, multi-player non-zero-sum, as well as graphical
games. In the sequel, Section 4 proposes online Q-learning algorithms
for solving the optimal control problem of a system with completely
uncertain/unknown dynamics and shows its applications to differential
game theory. Model-free and model-based intermittent control algo-
rithms are displayed in Section 5 using ideas from RL. Next, by relaxing
the assumption of perfect rationality, Section 6 introduces the non-
equilibrium differential game theory and demonstrates its applications
to cyber-physical systems security (CPS). Section 7 applies synchronous
RL-based decision-making algorithms to motion planning in robotics as
well as to coordinated target tracking using a team of bounded rational
UAVs. Finally, Section 8 provides concluding remarks and potential fu-
ture research perspectives on the area of synchronous RL-based control
for cognitive autonomy.

Moreover, it is worth mentioning that throughout the monograph,
we omit to include the proofs of the theorems as well as simulation
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results to avoid breaking the flow of the document. Nevertheless, we
refer the reader to particular references wherein there are complete
proofs, and simulation results verifying the efficiency of the presented
control algorithms. Last but not least, note that instead of having
a “centralized” literature review in this introductory section, and in
following with the spirit of this monograph, we adopt a “distributed”
literature review approach, where each section itself contains a review
of the references that are relevant to the particular section content.

1.4 Notation

The notation used here is standard. R` is the set of positive real
numbers. } ¨ } denotes the Euclidean norm of a vector. The superscript
‹ is used to denote the optimal solution of an optimization problem,
λpAq is the minimum eigenvalue of a matrix A, λ̄pAq is the maximum
eigenvalue of a matrix A, trpAq is the trace of a matrix A, and 1m is the
column vector with m ones. The gradient of a scalar-valued function
with respect to a vector-valued variable x is defined as a column vector,
and is denoted by ∇ – B{Bx. The vecpAq and the vechpAq denote the
vectorization and the half-vectorization of a symmetric n ˆ n matrix
A, respectively. The notations K, |K|, and BK denote the closure, the
cardinality, and the limit points of the set K, respectively. The U b V

denotes the Kronecker product of two vectors. The ‘ is the Minkowski
sum of two sets.
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Optimal Regulation

This section is concerned with the presentation of an online approximate
solution method, based on policy iteration (PI), for the infinite-horizon
optimal control problem for CT non-linear systems with known or
partially unknown dynamics. In Subsection 2.2, we present an online
adaptive algorithm whose structure is based on the actor/critic structure
of PI in RL. However, in PI, the critic and actor-networks are tuned
sequentially, that is, the actor network parameters are held constant
while the critic-network is tuned. By contrast, the algorithm presented
in this section involves simultaneous tuning of both actor and critic
NNs (i.e., the parameters in both networks are tuned at the same time).
We term this algorithm as synchronous RL. This approach results in a
CT controller that operates more along the lines of standard adaptive
controllers, still converges to an optimal solution. Next, in Subsection 2.3,
we present an online adaptive learning algorithm based on Integral RL
(IRL) principles which exploits the advantages of the synchronous RL
to solve the infinite-horizon optimal control problem for non-linear
systems, where the drift term is considered as unknown. Finally, in
Subsection 2.4, we propose an RL algorithm with asymptotically stable
equilibrium point to solve the infinite-horizon optimal control problem

11



12 Optimal Regulation

for known deterministic nonlinear systems with saturating actuators
and non-quadratic cost functional, where the requirement of PE is
relaxed by using previously stored data concurrently with current data
in the update of the critic NN. Asymptotic stability of the equilibrium
point of the closed-loop system is achieved by adding a robustifying
term to the controller to eliminate the effect of residual errors.

2.1 Introduction and Motivation

RL describes a family of learning systems that operates based on prin-
ciples used in animals, social groups and naturally occurring systems.
RL was used by Ivan Pavlov in the 1860s to train his dogs (Pavlov
and Gantt, 1928; Sutton and Barto, 2018). Methods of RL have been
developed by the Computational Intelligence Community in computer
science engineering. RL allows the learning of optimal actions without
knowing a dynamical model of the system or the environment. RL meth-
ods have not been extensively used in the feedback control community
until recently.

RL is a sub-area of machine learning concerned with how to me-
thodically modify the actions of an agent (player) based on observed
responses from its environment (Barto, 1998; Kaelbling et al., 1996;
Sutton et al., 1992). Hence, it brings together optimal and adaptive
control in a new setting that we should call adaptive-optimal control
(Kamalapurkar et al., 2018; Kiumarsi et al., 2017; Lewis and Liu, 2013;
Lewis et al., 2012b; Vrabie et al., 2013). Every decision-making organism
interacts with its environment and uses those interactions to improve
its own actions in order to maximize the positive effect of its limited
available resources; this, in turn, leads to better survival chances. RL is
a means of learning optimal behaviors by observing the response from
the environment to non-optimal control policies. In engineering terms,
RL refers to the learning approach of an actor or agent that modifies
its actions, or control policies, based on stimuli received in response
to its interaction with its environment. This learning can be extended
along two dimensions: (a) nature of the interaction (competitive or
collaborative) and (b) the number of decision-makers (single or multi-
agent). RL methods have allowed control systems researchers to develop
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algorithms to learn online, the solutions to optimal control problems for
dynamic systems that are described by difference or ordinary differential
equations. These involve a computational intelligence technique known
as Policy Iteration (PI) (Sutton et al., 1992). PI provides effective means
of learning solutions to HJ equations online. In control theoretic terms,
the PI algorithm amounts to learning the solution of the HJ equation,
then updating the policy by minimizing a Hamiltonian function. PI
techniques have been developed for CT systems in Doya (2000). RL
methods have been applied to learn online the solutions for optimal
control problems for dynamic systems and differential games in Vrabie
et al. (2013), Doya (2000), and Vamvoudakis et al. (2017a).

PI refers to a class of algorithms built as a two-step iteration: policy
evaluation and policy improvement. Instead of trying a direct approach
to solving the HJ equations, the PI algorithm starts by evaluating the
cost of a given initial admissible (stabilizing and with a finite cost)
control policy. The key to solving practically the HJ equations was in
the use of approximators (Werbos, 1992, 2007), which can be trained
to become approximate solutions of these equations. In fact, the PI
algorithm for CT systems can be built on actor/critic structures that
involve the use of approximating networks: the critic-networks are
trained to become approximations of the Lyapunov equations solution
at the policy evaluation step, whereas the actor-networks are trained to
approximate improving policies at the policy improving step.

Optimal feedback control design has been responsible for much of
the successful performance of engineered systems in aerospace, indus-
trial processes, vehicles, ships, robotics. Traditional optimal feedback
control design is performed offline by solving optimal design equations
including the algebraic Riccati equation (ARE) for linear systems and
HJ equations for nonlinear systems. However, it is usually difficult to
solve the HJB equation for nonlinear systems except for special cases.
Thus, this gives rise to the development of a new family of optimal
adaptive controllers based on RL techniques, i.e., actor/critic mecha-
nisms that converge online, to optimal control solutions by using data
measured along the system trajectories. In particular, an RL controller
is composed of two NNs, one for value function approximation (VFA)
and one to approximate the control law, which could be called the critic
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NN and actor NN, respectively. The two NNs are tuned simultaneously,
that is, synchronously in time.

2.2 Bellman-Based RL

Consider the nonlinear CT system given by,

9xptq “ fpxptqq ` gpxptqquptq, xp0q – x0, t ě 0, (2.1)

where xptq P R
n is the state vector, uptq P U Ď R

m is the control
input, f : R

n Ñ R
n and g: R

n Ñ R
nˆm are known functions such that

x ÞÑ fpxq ` gpxqupxq is locally Lipschitz continuous in x for fixed u so
that the solution xptq exists and is unique for any initial condition x0

and piece-wise continuous feedback control upxq P U . We assume that
the xptq is available for full state feedback.

It is desired to minimize the following infinite horizon cost functional,

V pxp0qq “
ż 8

0

rpxpτq, upτqqdτ, @xp0q, (2.2)

with rpx, uq “ Qpxq ` Rspuq, @x, u, where Qpxq is a positive definite
function and Rspuq :“ uTRu non-negative (with R ą 0), @u P U .

The optimal control problem is to find an admissible (stabilizing
policy that produces a finite value) control u‹ptq such that the equilib-
rium point of the closed-loop system (2.1) is asymptotically stable on
R

n with the value V pxp0qq finite.
The Hamiltonian of the problem is defined as,

H

ˆ

x, u,
BV

Bx

˙

“ rpx, uq ` BV

Bx

T

pfpxptqq ` gpxptqquptqq, @x, u,

where the dependence of V on x has been omitted for brevity and the
optimal cost is given as,

V ‹pxp0qq “ min
u

ż 8

0

r pxpτq, upτqq dτ, @xp0q. (2.3)

The optimal cost (2.3) is also called value function and should satisfy
the HJB equation,

H

ˆ

x, u‹,
BV ‹

Bx

˙

“ 0, @x, (2.4)
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with,

u‹ “ arg min
u

H

ˆ

x, u,
BV ‹

Bx

˙

:“ ´1

2
R´1gpxqT BV ‹

Bx
, @x. (2.5)

Substituting the optimal control policy (2.5) we obtain the HJB
equation in terms of BV ‹

Bx
. For the linear system case, considering a

quadratic cost functional (i.e., V ‹pxp0qq “ xp0qTPxp0q, @xp0q), the
equivalent of this HJB equation is the ARE. In order to find the optimal
control solution for the problem, one shall need to solve the HJB
Equation (2.4) for the value function and then substitute the solution
in (2.5) to obtain the optimal control.

2.2.1 Approximate Solution

The structure used for our approximate solution is motivated by the
Policy Iteration Algorithm that follows, where ǫac is a small number
used to terminate the algorithm when two consecutive value functions
differ by less than ǫac. In the linear case, this algorithm reduces to
Kleinman’s algorithm (Kleinman, 1968).

Algorithm 1: Policy Iteration for Nonlinear Systems

1: procedure

2: Given admissible policies µp0q.
3: while }V µpiq ´ V µpi´1q } ě ǫac do

4: Solve for the value V piqpxq using Bellman’s equation

Qpxq ` ∇V µpiq T

pfpxq ` gpxqµpiqq ` µpiqT
Rµpiq “ 0, V µpiq p0q “ 0.

5: Update the control policy µpi`1q using

µpi`1q “ ´1

2
R´1gpxqT∇V µpiq

.

6: i – i ` 1.
7: end while

8: end procedure

We should use a critic-network to approximate the cost and an
actor-network to approximate the control. The critic-network is based
on VFA.
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In the following, it is desired to determine a rigorously justifiable
form for the critic. We are interested in the approximation of the value
V pxq as well as its gradient. We assume that there exist weights Wc

such that the value function V pxq is approximated as,

V pxq “ W T
c φcpxq ` ǫpxq, @x.

Then, φcpxq: R
n Ñ R

N is called the basis function vector, N the
number of neurons in the hidden layer, and ǫpxq the approximation
error.

But since we do not know the optimal weights Wc, we shall use
current critic weights as,

V̂ pxq “ Ŵ T
c φcpxq, @x, (2.6)

where Ŵc are the current estimated values of the ideal critic weights Wc.
Now, the approximate HJB equation is given as,

Ĥp¨q :“ Ŵ T
c ∇φcpf ` gûq ` Qpxq ` ûTRû “ e1,

where e1 P R
n is the residual error after using current critic weights and

û is given by,

ûpxq “ ´1

2
R´1gpxqT∇φcpxqTŴu, @x, (2.7)

that is an approximation of the optimal control policy, estimated by
the actor NN whose weights are denoted as Ŵu.

The following definition is required for the analysis below.

Definition 2.1 (PE). A vector signal Φptq is PE over the interval
rt, t ` T s , with T P R

` if there exists β1, β2 P R
` such that β1I ď

şt`T

t
ΦpτqΦTpτqdτ ď β2I, t ě 0, with I an identity matrix of appropri-

ate dimensions. l

As we shall find out in the analysis below, the PE property of the
regressor vector is required for establishing exponential convergence of
the estimation error to the origin when the adaptive laws that generate
the online estimate of the unknown parameters are derived through the
gradient descent of a convex function of the estimation error (Ioannou
and Fidan, 2006).



2.2. Bellman-Based RL 17

Given an approximation of the optimal control policy ûpxq, we define
the squared residual error,

E1 “ 1

2
eT

1 e1.

Now it is desired to select Ŵc such that e1 Ñ 0 in order for the
weights Ŵc Ñ Wc. Hence by using a normalized gradient descent, one
has,

9̂
Wc “ ´a

BE1

BŴc

“ ´α
σ

pσTσ ` 1q2
pσTŴc ` Qpxq ` ûTRûq, (2.8)

where α P R` is a tuning gain that determines the speed of convergence
and σ “ ∇φcpf `gûq. To guarantee convergence of Ŵc to Wc, the signal
σ̄ :“ σ{pσTσ ` 1q has to be PE.

In general, the PE assumption is needed in adaptive control if one
desires to perform system identification (Ioannou and Fidan, 2006; Tao,
2003). It is needed here because one effectively desires to perform value
function identification, namely, to identify the critic parameters to
approximate V pxq.

The weights for the actor Ŵu need to be picked appropriately in
order to guarantee closed-loop stability. Hence one has,

9̂
Wu “ ´αu

ˆ

pF1Ŵu ´ 1
Tσ̄TŴcq ´ 1

4
p∇φcpxqgpxqR´1gpxqT∇φT

c pxqqŴu

ˆ
ˆ

σ

pσTσ ` 1q2

˙T

Ŵc

˙

, (2.9)

where αu P R` is a tuning gain that determines the speed of convergence
and F1 ą 0 is a matrix picked appropriately to guarantee stability and
1 is a row vector of ones with appropriate dimensions.

At this point, before proceeding in the presentation of our main
results, we need to state the next definition along with some standard
assumptions in neuro-inspired control.

Definition 2.2 (Uniform Ultimate Boundedness). A time signal ζptq is
said to be uniformly ultimately bounded (UUB) if there exists a compact
set S Ă Rn so that for all ζp0q P S there exists a bound B and a time
T pB, ζp0qq such that }ζptq} ď B for all t ě t0 ` T . l
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Assumption 2.1. For a given compact set Ω Ď R
n:

(a) fp¨q is Lipschitz so that }fpxq} ď bf }x}.

(b) gp¨q is bounded by a constant }gpxq} ă bg.

(c) The NN approximation error and its gradient are bounded so that

}ǫpxq} ă bǫ, }∇ǫpxq} ă bǫx .

(d) The NN activation function and its gradients are bounded so that

}φ1pxq} ă bφ, }∇φ1pxq} ă bφx
. l

Assumption 2.1(d) is satisfied, by sigmoids, tanh, and other standard
NN activation functions.

We will now present the main theorem, which provides simultaneous
tuning laws for the actor and critic NNs that guarantee convergence
online to the optimal policy while ensuring closed-loop stability.

Theorem 2.2 (Vamvoudakis and Lewis, 2010, Thm. 2). Let the critic NN
be given by (2.6) and the control input be given by actor NN (2.7). Let
tuning for the critic NN be provided by (2.8), and assume that σ̄ is PE.
Let the actor NN be tuned as (2.9). Let Assumption 2.1 hold, and the
tuning parameter for the critic being sufficiently larger than the actor.
Then there exists an N0 such that, for the number of hidden-layer units
N ą N0 the closed-loop signals are UUB.

Remark 2.1. The theorem shows that PE is needed for proper identifi-
cation of the value function by the critic NN, and that a non-standard
tuning algorithm is required for the actor NN to guarantee stability.
The second term in (2.9) is a cross-product term that involves both
the critic weights and the actor weights. It is needed to guarantee good
behavior of the Lyapunov function, that is, that the energy decreases
to a bounded compact region. l

Remark 2.2. It is important to note that the Theorem 2.2 does not
rely at all on convergence of the PI Algorithm. PI, a RL method, is
used to obtain the structure of the policy, whereas its performance is
carried out using adaptive control Lyapunov techniques. l
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Remark 2.3. The PI must be initialized with a stabilizing control policy.
The convergence proof requires this, because the Bellman equation has
a positive definite solution only if the policy is admissible. A stabilizing
policy can be difficult to find for non-linear systems. By contrast, the
online synchronous RL does not require an initial stabilizing policy. It
converges to the optimal control solution as long as the initial weight
estimation errors are not large. l

On the basis of the above, a pseudocode that describes the proposed
RL algorithm has the following form,

Algorithm 2: RL Algorithm for Optimal Regulation

1: procedure

2: Start with initial state xp0q and random initial weights Ŵcp0q, Ŵup0q.
3: Propagate t, xptq.
4: Propagate Ŵcptq, Ŵuptq Ź 9̂

Wc as in (2.8) and 9̂
Wu as in (2.9).

5: Compute (2.6), and (2.7).
6: end procedure

2.2.2 Further Reading

The interested reader is directed to Lewis et al. (2012b), Vamvoudakis
and Lewis (2010), and Vrabie et al. (2013) for detailed theorems and
proofs of the above statements and algorithms and to Bhasin et al.

(2013) wherein an RL-based solution is developed for the infinite-horizon
optimal control problem for CT uncertain nonlinear systems. Finally,
the works of Grondman et al. (2012) and Wang et al. (2017a) provide a
survey of several standard and natural actor-critic algorithms.

2.3 RL Based on an Integral Bellman Form

In this subsection, we present a partially model-free online optimal
control algorithm with integral RL. The PI algorithm given previously
requires full system dynamics, because both fpxq and gpxq appear in
the Bellman Equation (2.4). To find an equivalent formulation of the
Bellman equation that does not involve the dynamics, we note that
for any time t0 and time interval T P R` the value function (2.2)
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satisfies @xt0
,

V pxt0´T q “
ż t0

t0´T

rpxpτq, upxpτqqqdτ ` V pxt0
q . (2.10)

In Vrabie et al. (2009) it is shown that (2.10) and (2.4) are equivalent,
that is, they both have the same solution. Therefore, (2.10) can be
viewed as a Bellman equation for CT systems. Note that this form
does not involve the system dynamics. We call this the IRL form of
the Bellman equation. Therefore, by using a critic NN for VFA, the
Bellman error based on (2.10) becomes,

ż T

t´T

ˆ

Qpxq ` uT R

T
u

˙

dτ ` W T
1 φpxptqq ´ W T

1 φpxpt ´ T qq ” εB,

(2.11)
where the parameter in the control weighting term is selected as the
time T P R` of the integral. This has two objectives, first, to determine
the control input effort, that is, the smaller the T is, the less control
effort is required to steer the state space trajectory to the origin, and
second, T is used for stability guarantees in the Lyapunov proof. We
define the integral reinforcement as,

pptq “
ż T

t´T

ˆ

Qpxq ` uT R

T
u

˙

dτ, t ě 0. (2.12)

Now (2.11) can be written as,

εB ´ p “ W T
1 ∆φpxptqq,

where
∆φpxptqq ” φpxptqq ´ φpxpt ´ T qq, t ě 0.

Under the Lipschitz assumption on the dynamics, the residual error εB

is bounded on a compact set.

Remark 2.4. Note that, as N Ñ 8, the εB Ñ 0 uniformly (Abu-Khalaf
and Lewis, 2005). l

2.3.1 Approximate Solution

Standard PI algorithms for CT systems are off-line methods that require
complete knowledge on the system dynamics to obtain the solution
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(i.e., the functions fpxq and gpxq in Bellman (2.4) need to be known).
It is desired to change the off-line character of PI for CT systems and
implement it online as in adaptive control mechanisms. Therefore, we
present an adaptive learning algorithm that uses simultaneous CT tuning
for the actor and critic NN and does not need the drift term fpxq in the
dynamics. We term this an online IRL algorithm. The online IRL can be
computed by introducing an integrator and is equivalent to the Bellman
equation (Vrabie et al., 2009). It is added as an extra continuous-time
state that functions as the memory or controller dynamics. Therefore,
the policy is piecewise constant in time.

The weights of the critic NN, W1 that solve (2.11) are unknown.
The output of the critic NN is,

V̂ pxq “ Ŵ T
1 φpxq, @x,

where Ŵ1 are the current estimated values of the critic NN weights.
Recall that φpxq: R

n Ñ R
N is the activation functions vector, with N

the number of neurons in the hidden layer. The approximate Bellman
error @x is then,

ż T

t´T

ˆ

Qpxq ` uT R

T
u

˙

dτ ` Ŵ T
1 φpxptqq ´ Ŵ T

1 φpxpt ´ T qq “ e1,

which according to (2.12) can be written as,

Ŵ T
1 ∆φpxptqq “ e1 ´ p. (2.13)

It is desired to select Ŵ1 to minimize the squared residual error,

E1 “ 1

2
eT

1 e1.

We select the tuning law for the critic weights as the normalized gradient
descent algorithm,

9̂
W1 “ ´a1

∆φ2ptq
p∆φ2ptqT∆φ2ptq ` 1q2

ˆ
ˆ

∆φ2ptqTŴ1 `
ż T

t´T

ˆ

Qpxq ` 1

4
Ŵ T

2 D̄1Ŵ2

˙

dτ

˙

, (2.14)

where a1 P R` is a tuning parameter that determines the speed of
learning, D̄1pxq :“ T∇φpxqgpxqR´1gpxqT∇φTpxq, and u2pxq is the ap-
proximated control policy computed by an action NN in the structured
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form by,

u2pxq “ ´1

2
R´1gTpxq∇φTŴ2, @x,

where Ŵ2 denotes the current known values of the actor NN weights.
Note that the data required in this tuning algorithm at each time

are p∆φptq, pptqq. The system dynamics fpxq and gpxq are not needed.
Although it is traditional to use critic tuning algorithms of the

form (2.14), it is not generally understood when convergence of the
critic weights can be guaranteed. In this subsection, we address this
issue in a formal manner. To guarantee convergence of Ŵ1 to W1,

the PE assumption is required. According to (2.13) the signal vector
∆̄φptq :“ ∆φptq{p∆φptqT∆φptq ` 1q, must be PE to solve for W1 in a
least squares sense.

Moreover, the actor NN be tuned as,

9̂
W2 “ ´a2

"

pF2Ŵ2 ´ 1
TT ∆̄φTŴ1q ´ 1

4ms
D̄1pxqŴ2∆̄φTŴ1

*

,

(2.15)
where a2 P R` is a tuning parameter that determines the speed of
learning, ms :“

`

∆φptqT∆φptq ` 1
˘

, and F2 ą 0 is chosen appropriately.
We now present the main result, which provides the synchronous

tuning laws for the actor and critic NN that guarantee convergence to
the optimal policy along with closed-loop stability.

Theorem 2.3 (Vamvoudakis et al., 2014, Thm. 1). Let the tuning
for the critic NN be provided by (2.14) and assume that ∆̄φptq :“
∆φptq{p∆φptqT∆φptq ` 1q is PE. Let the actor NN be tuned as (2.15).
Let Assumption 2.1 hold. Then, there exists a N0 and a time T0 such
that, for the number of hidden layer units N ą N0 and the time interval
T ă T0, the closed-loop signals are UUB.

Remark 2.5. The theorem shows that PE is needed for proper identi-
fication of the value function by the critic NN, and that nonstandard
tuning algorithm is required for the actor NN to guarantee stabil-
ity while learning the optimal control solution. The PE condition in
Theorem 2.3 is equivalent to the exploration paradigm in RL, which
ensures sufficient sampling of the state space and convergence to the
optimal policy. Nevertheless, a limitation of this approach is that we
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cannot guarantee the PE condition for all present and future time, and
also the PE condition can be even unfeasible for certain applications.
Thus, in the next subsection, we relax the PE condition by utilizing
current and recorded data. l

2.3.2 Further Reading

We refer the reader to Vamvoudakis et al. (2014), Vrabie et al. (2013),
and Lewis et al. (2012b), for additional information in terms of the proofs
of the theorems presented in this subsection. The works of Modares
and Lewis (2014), Modares et al. (2013), and Bhasin et al. (2013),
developed model-based algorithms with identifying structures. An off-
policy iteration algorithm for optimal regulation without requiring the
dynamics was presented in Jiang and Jiang (2012).

2.4 Saturating Actuators and Relaxed PE

In industrial applications, physical inputs to devices (such as voltages,
currents, flows, and torques) are subject to saturations, which must be
considered in the optimal control problem. This subsection develops a
framework based on adaptive dynamic programming to solve the infinite-
horizon optimal control problem for known deterministic nonlinear
systems with saturating actuators and non-quadratic cost functionals.

The proposed algorithm is based on an actor/critic framework,
where a critic NN is used to learn the optimal cost, and an actor NN is
used to learn the optimal control policy. In the previous subsections,
we figured out that owing to the adaptive control nature of the PI
algorithm is required a PE condition to be a priori validated, but this
can be relaxed using previously-stored data concurrently with current
data in the update of the critic NN. A robustifying control term is
added to the controller to eliminate the effect of residual errors, leading
to the asymptotically stability of the closed-loop system.

To force bounded inputs in the algorithm derived in Subsection 2.2,
(e.g., |ui| ď ū, @i P t1, . . . , mu) we follow the approach in Lyshevski
(1996, 1998) and Abu-Khalaf and Lewis (2005) and use a non-quadratic
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penalty function in (2.2) of the form,

Rspuq “ 2

m
ÿ

i“1

ż ui

0

pθ´1pviqqT̺idvi, @u,

with weighting factor ̺i P R`, i “ t1, . . . , mu and with abuse of notation
we can write the component-wise operations in compact form as,

Rspuq “ 2

ż u

0

pθ´1pvqqTRdv, @u,

where R is a diagonal positive definite matrix consisting of the ̺i ą 0, i “
t1, . . . , mu terms, v P R

m, and θp¨q is a continuous, one-to-one real-
analytic integrable function of class Cµ, µ ě 1, used to map R onto the
interval p´ū, ūq satisfying θp0q “ 0. Also note that Rspuq is positive
definite because θ´1pvq is monotonic odd, e.g., one could select,

Rspuq “ 2

ż u

0

pθ´1pvqqTRdv – 2

ż u

0

pū tanh´1pv{ūqqTRdv ą 0, @u.

(2.16)

The optimal value function is defined as,

V ‹pxptqq “ min
uPU

ż 8

t

rpx, uqdτ, @x, t ě 0, (2.17)

subject to the state dynamics in (2.1). The Hamiltonian of (2.1) associ-
ated with the cost function (2.2), can be written as,

Hpx, u, ∇V q “ BV

Bx

T

pfpxq ` gpxqupxqq ` Qpxq ` Rspuq, @x, u.

(2.18)

The constrained optimal control input for the system (2.1), with cost
(2.16), (2.17), can be obtained using the stationarity condition in the
Hamiltonian (2.18):

u‹pxq “ ´θ

ˆ

1

2
R´1gpxqT BV

Bx

‹˙

, @x. (2.19)

By substituting (2.19) into (2.18) one gets the HJB equation with
bounded (saturated) control inputs as follows,

H

ˆ

x, u‹,
BV ‹

Bx

˙

“ 0, @x. (2.20)
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2.4.1 Approximate Solution

The structure used for our approximate solution is motivated by the
Policy Iteration Algorithm that follows, where ǫac is a small number
used to terminate the algorithm when two consecutive value functions
differ by less than ǫac. In the linear case, this algorithm reduces to
Kleinman’s algorithm (Kleinman, 1968).

Algorithm 3: Policy Iteration for Nonlinear Systems with Saturating
Actuators

1: procedure

2: Given admissible policies µp0q and i “ 1.
3: while }V µpiq ´ V µpi´1q } ě ǫac do

4: Solve for the value V piqpxq using Bellman’s equation

Qpxq ` BV ‹

Bx

µpiq T

pfpxq ` gpxqµpiqq ` Rspµpiqq “ 0, V µpiq p0q “ 0.

5: Update the control policy µpi`1q using

µpi`1q “ ´θ

ˆ

1

2
R´1gpxqT BV ‹

Bx

µpiq ˙

.

6: i – i ` 1.
7: end while

8: end procedure

We should use a critic to approximate the cost and an actor to
approximate the control. The first step to solve the HJB Equation (2.20)
is locally to approximate the value function V ‹pxq in (2.17) with a critic,
within a set Ω Ď R

n that contains the origin, as follows,

V ‹pxq “ W ‹Tφpxq ` ǫpxq, @x P Ω, (2.21)

where W ‹ P R
N is an ideal weight vector satisfying }W ‹} ď Wm;

φpxq: Ω Ñ R
N , φpxq “ rϕ1pxq ϕ2pxq . . . ϕN pxqsT are the basis functions

such that ϕip0q “ 0 and ∇ϕip0q “ 0, @i “ 1, . . . , N ; N is the number
of neurons in the hidden layer; and ǫpxq is the approximation error.
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One should pick the basis functions ϕipxq, @i P t1, 2, . . . , Nu as
quadratic, radial basis or sigmoidal functions so that they define a com-
plete independent basis set for V ‹. In this case, V ‹ and its derivatives,

BV ‹

Bx
“

„ B
Bx

φpxq
T

W ‹ ` B
Bx

ǫpxq — ∇φpxqTW ‹ ` ∇ǫpxq, @x P Ω,

can be uniformly approximated on any given compact set Ω. According
to the Weierstrass Higher Order Approximation Theorem (Abu-Khalaf
and Lewis, 2005; Hornik et al., 1989), as the number of basis sets N

increases, the approximation error on a compact set Ω goes to zero, i.e.,
ǫpxq Ñ 0 as N Ñ 8. Since the ideal weights W ‹ for the (approximate)
value function V ‹pxq that appear in (2.21) are unknown, one must
consider the critic weight estimates Ŵ P R

N , associated with the
approximate value function:

V̂ pxq “ Ŵ Tφpxq, @x.

Our objective is to find an update law for the weight estimates Ŵ so
that they converge to the ideal values W ‹, and thus provide a good
estimate,

Ĥpx, u, Ŵ T∇φq – Ŵ T∇φpxqpf ` guq ` Qpxq ` Rspuq, @x, u,

(2.22)

for the (approximate) Hamiltonian where we have substituted the
approximate value function in the Hamiltonian, see Vamvoudakis and
Lewis (2010). To achieve convergence of (2.22) to the (approximate)
Hamiltonian along the closed-loop trajectories, one would typically need
PE for the vector ωptq defined by,

ωptq – ∇φpxptqq pfpxptqq ` gpxptqquptqq,
along the closed-loop trajectories (Ioannou and Fidan, 2006).

To weaken the need to guarantee a-priori, a PE condition for infinite-
time, we follow the approach proposed in Chowdhary and Johnson
(2010) that uses past recorded data, concurrently with current data. To
this effect, we define the Hamiltonian error corresponding to the data
collected at the current time t,

eptq :“ Ĥpxptq, uptq, Ŵ ptqT∇φpxptqqq ´ H‹px, u‹pxq, ∇V ‹q
“ Ĥpxptq, uptq, Ŵ ptqT∇φpxptqqq, @x, u,
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where this is due to (2.20), and the error corresponding to the previously
collected data at times t0, t1, . . . , tk ă t,

ebuffi
pti, tq :“ Ĥpxptiq, uptiq, Ŵ ptqT∇φpxptiqqq

:“ Ŵ ptqT∇φpxptiqpfpxptiqq ` gpxptiqquptiqq.
` Qpxptiqq ` RSpuptiqq.

We draw attention to the reader that, while the error ebuffi
pti, tq

uses past state and input data xptiq and uptiq, respectively, it is defined
based on the current weight estimates Ŵ ptq.

The current and previous errors defined above can be combined into
the following (normalized) global error:

Eptq “ 1

2

˜

eptq2

pωptqTωptq ` 1q2
`

k
ÿ

i“1

e2
buffi

pti, tq
pωptiqTωptiq ` 1q2

¸

, t ě 0,

where ωptiq :“ ∇φpxptiqqpfpxptiqq ` gpxptiqquptiqq.
The tuning for the critic is obtained by a gradient-descent-like rule

as follows:

9̂
W “ ´α

BE

BŴ

“ ´α
ωptqeptq

pωptqTωptq ` 1q2
´ α

k
ÿ

i“1

ωptiqebuffi
pti, tq

pωptiqTωptiq ` 1q2

“ ´α
ωptqpωptqTŴ ptq ` Rspuptqq ` Qpxptqqq

pωptqTωptq ` 1q2

´ α

k
ÿ

i“1

ωptiqpωptiqTŴ ptq ` Qpxptiqq ` Rspuptiqqq
pωptiqTωptiq ` 1q2

, (2.23)

@t ą ti ě 0, where α P R` is a constant gain that determines the speed
of convergence. We define the weight estimation error of the critic by,

W̃ – W ‹ ´ Ŵ P R
N .

Remark 2.6. Typical RL control algorithms (Vamvoudakis and Lewis,
2010) do not have the extra past-data terms,

Λ :“
k

ÿ

i“1

ˆ

ωptiqωptiqT

pωptiqTωptiq ` 1q2

˙

,
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in the tuning law of the critic (2.23) and, thus, need a PE condition
on ωptq{pωptqTωptq ` 1q. This is equivalent to requiring that the matrix
şt`T

t
pωptqωptqT{pωptqTωptq ` 1q2qdτ P R

nˆn is positive definite over
any finite interval, which in turn, is equivalent to requiring that the
signal ωptq contains at least n spectral lines. This condition cannot be
verified during learning, especially for nonlinear systems. The relaxed PE
condition comes through the requirement that at least N of the vectors
tωpt1q, . . . , ωptkqu must be linearly independent, which is equivalent to
the matrix Λ being positive definite. In practice, as one collects each
additional vector ωptiq, one adds a new term to the matrix Λ, and
one can stop recording points as soon as this matrix becomes full rank
(i.e., tk time has been reached). From that point forward, one does
not need to record new data, regardless of whether or not future data
provide additional excitation. Notice, that the selection of the times ti

is somewhat arbitrary. l

The optimal control policy (2.19) can be approximated by an actor
as follows,

u‹pxq “ W ‹
u

Tφupxq ` ǫupxq, @x, (2.24)

where W ‹
u P R

N2ˆm is an ideal weight matrix, φupxq are the actor basis
functions defined similarly to the critic, N2 is the number of basis, and
ǫu is the actor approximation error. As before, the basis functions must
define a complete independent basis set so that u‹pxq can be uniformly
approximated on Ω.

Since the ideal weighs W ‹
u are not known, we introduce actor estimate

weights Ŵu P R
N2ˆm to approximate the optimal control in (2.24) by

the following estimate:

ûpxq “ Ŵ T
u φupxq, @x.

The tuning for the actor is obtained by a gradient-descent-like rule as
follows:

9̂
Wu “ ´αuφu

ˆ

Ŵ T
u φu ` θ

ˆ

1

2
R´1gpxqT∇φTŴ

˙˙T

, (2.25)

where αu P R` is a constant gain that determines the speed of conver-
gence. We define the weight estimation error for the actor by,

W̃u :“ W ‹
u ´ Ŵu P R

N2ˆm.
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A pseudocode that describes the proposed RL control algorithm has
the following form,

Algorithm 4: RL Control Algorithm with Saturating Actuators and
Relaxed PE
1: procedure

2: Start with initial state xp0q, random initial weights Ŵup0q, Ŵ p0q and
i “ 1.

3: Propagate t, xptq.
4: Propagate Ŵ ptq, Ŵuptq Ź 9̂

W as in (2.23) and 9̂
Wu as in (2.25).

5: Compute V̂ pxq “ Ŵ Tφpxq Ź output of the Critic, and
ûpxq “ Ŵ T

u φupxq Ź output of the Actor.
6: while i ‰ k do Ź Until tωpt1q, ωpt2q, . . . , ωptkqu has N linearly

independent elements.
7: Select arbitrary data points to be included in the history stack.
8: i – i ` 1.
9: end while

10: end procedure

However, aiming at removing the effect of the NN approximation
errors and obtaining a closed loop system with an asymptotically stable
equilibrium point, one needs to add a robustifying term to the control
law and use:

ûpxq “ Ŵ T
u φupxq ` η, @x,

where

η :“ ´B̄}x}2 1m

pĀ ` xTxq
, @x,

with Ā, B̄ P R
` exhibiting some particular properties shown in

Vamvoudakis et al. (2016).
We now present the main result which guarantees the asymptotic

stability of the learning algorithm of the resulting closed-loop dynamics,

9x “ fpxq ` gpxqppW ‹
u ´ W̃uqTφupxq ` ηq, t ě 0. (2.26)

Assumption 2.4. The actor activation functions in φu, and the actor
residual error ǫu are all uniformly bounded on a set Ω Ď R

n in the sense
that there exist finite constant φum, ǫum P R`, such that |φupxq| ď φum

and |ǫupxq| ď ǫum, @x P Ω. In order to get ǫu small, we also assume
that we have a large number of basis sets. l
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Theorem 2.5 (Vamvoudakis et al., 2016, Thm. 3). Consider the closed-
loop dynamics given by (2.26) together with the tuning laws for the critic
and actor NNs given by (2.23) and (2.25), respectively. Suppose that
the HJB Equation (2.20) has a positive definite and smooth solution,
Assumption 2.1 hold, and that tω pt1q , ω pt2q , . . . , ω ptkqu has N linearly
independent elements. Then, there exists a triple pΩx ˆ ΩW ˆ ΩWuq Ă Ω

with Ω compact, such that the solution Z̃ :“
`

xptq, W̃ ptq, W̃uptq
˘

P
pΩx ˆ ΩW ˆ ΩWuq exists globally and converges asymptotically to zero
for all the NN weights W p0q inside ΩW , W̃up0q inside ΩWu , and state
xp0q inside Ωx, provided that the following inequalities are satisfied:

α ą
g

f

f

e

1

8λmin

´

řk
i“1

ωptiqωptiqT

pωptiqTωptiq`1q2

¯ ; φum ą 1 `
?

65

8
.

When the set Ω that appears in Assumption 2.1 is the whole R
n, the

triple ΩW ˆ ΩWu ˆ Ωx can also be the whole R
n.

2.4.2 Further Reading

The interested reader is directed to Vamvoudakis et al. (2016) for
detailed theorems and proofs. The authors in Modares et al. (2014)
develop an IRL algorithm on an actor–critic structure to learn online the
solution to the HJB equation for partially-unknown constrained-input
systems by using the technique of experience replay, i.e., storing the
agent’s experiences at each time step in a data set called the replay
memory, to update the critic weights to solve an IRL Bellman equation.
The work of Benosman (2018) presents an overview of adaptive control
by contrasting model-based approaches with data-driven approaches.
The author classifies adaptive controllers into two main sub-fields,
namely, model-based adaptive control and data-driven adaptive control.
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In this section, we develop learning policies based on the synchronous
RL algorithm that learns optimal solutions online for several differential
game theory problems, including zero-sum (Subsection 3.2); multi-
player non-zero-sum (Subsection 3.3); Stackelberg (Subsection 3.4) as
well as graphical games (Subsection 3.5). The design procedure is to
first formulate policy iteration algorithms for these problems, then use
the structure of policy iteration to motivate the structure of multi-loop
RL structures. The tuning laws for these novel adaptive policies are
given, and the result is a family of online adaptive policies that converge
to optimal game-theoretic solutions online using data generated along
the system trajectories.

3.1 Introduction and Motivation

Complex human-engineered systems involve an interconnection of mul-
tiple decision makers (or agents) whose collective behavior depends on
a compilation of local decisions that are based on partial information
about each other and the state of the environment (Lewis et al., 2014;
Marden and Shamma, 2015, 2018a,b; Rantzer, 2008; Semsar-Kazerooni
and Khorasani, 2009). Strategic interactions among agents in these

31
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systems can be modeled as a multi-player simultaneous-move game
(Arthur, 2018; Başar and Bernhard, 2008; Camerer, 2011; Engwerda,
2005). The agents involved can have conflicting objectives, and it is
natural to make decisions based upon optimizing individual payoffs or
costs.

Game theory has been mostly pioneered in the field of economics;
(Rabin, 1957) considered a finite win-loss game with perfect information
between two players, and this classic example of computable economics
stands in the long and distinguished tradition of game theory that goes
back to Schwalbe and Walker (2001) and Euwe et al. (1982). Refer-
ence Velupillai (2011) discusses game theory in algorithmic modes but
not in what is today referred to as algorithmic game theory after real-
izing the futility of “algorithmizing” the uncompromisingly subjective
von Neumann and Nash approach (Morgenstern and Von Neumann,
1953; Nash, 1951).

Study in the control systems community (Cao, 2020; Marden and
Shamma, 2018a; Ungureanu, 2018) has primarily focused on noncoop-
erative (Hespanha, 2017) zero-sum games arising in the form of H8

robust control of single-agent systems. Non-zero-sum multi-player game-
theoretic control methods have also been employed to provide a basis
for the study of coordination, conflict, and control for a single dynam-
ical system with multiple players or control inputs. Graphical games
(Kearns, 2007) are also used for the case where players communicate
using a graph network topology and can only receive information along
the graph edges. Multi-player games arise in real-world scenarios to
find ways, for example, to optimally allocate the resources of optical
networks (Pavel, 2006), design optimal motion planning for multiple
robots with different goals (LaValle and Hutchinson, 1998), study the
coalition formation of robots for detecting intrusion (Liang and Xiao,
2009), coordinate the charging of autonomous plug-in electric vehi-
cles (Ma et al., 2011), design cooperative policies across the electricity
network to find new transmission routes when a power line is broken
(MacKenzie and Wicker, 2001; Saad et al., 2012), to protect a network
from adversaries (Alpcan and Başar, 2010; Roy et al., 2010), and pro-
vide behavioral decision-making models for planning and operating
transportation systems (Fisk, 1984). Additionally, aggregative games
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provide a rich abstraction to model strategic multi-agent interactions
and can be applied to electricity markets (Paccagnan et al., 2016a,b;
2019).

Strategies for team decision problems, including N-player games
(both non-zero-sum and zero-sum), are normally solved offline by solving
the coupled Hamilton–Jacobi (HJ) equations for nonlinear systems or
coupled Riccati equations for linear systems. For example, max-plus
basis methods have been widely used to solve the HJ equations (Fleming
and McEneaney, 2000; McEneaney, 2006). This method employs grid-
based methods, such as finite-difference or finite-element methods, to
approximate the solution to the HJ equations. Although elegant, this
approach is offline, requires complete knowledge of the system dynamics,
and the computational time grows exponentially with the state-space
dimension. Moreover, using these offline approaches, players cannot
change their objectives online without calling for a completely new
offline solution for the new strategies. However, given the nature of
cooperation (or conflict) and that the environment is highly uncertain
and dynamic, enabling autonomous agents to gracefully adapt their
decision-making strategies to changes in the environment and in the
behavior of the other agents is of paramount importance. As a learning
technique that does not require a model of the environment and can be
used online, RL is well suited for multi-player games, where each agent
knows little about other agents and the environment. Using RL, the
agents can learn new behaviors online, such that the performance of
the individual or all players gradually improves.

In game theory, RL is considered to be a bounded-rational interpre-
tation of how equilibrium may arise. As we witnessed in Section 2, RL
methods allow the development of Synchronous RL-based algorithms
leading to optimal feedback decision-makers (Kiumarsi et al., 2017;
Lewis et al., 2012b; Vrabie et al., 2013). In particular, we saw that PI
offers an effective means to learn solutions to HJ equations. In general,
every decision-maker tries to optimize its own objective defined in terms
of the system dynamics. The actions by one decision-maker will influ-
ence the actions of the other decision-makers and will eventually lead
to some kind of “negotiation.”
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The purpose of this section is to show how to solve multiplayer
games online using Synchronous RL, namely by adaptive learning using
data measured along the trajectories of the players. The full dynamics of
the players need to be known for these online solution techniques. These
methods implicitly solve the required game design equations without
ever explicitly solving them. The algorithms are based on an actor/critic
framework where the critic approximators are used to learn the optimal
costs and the actor approximators are used to learn the optimal control
policies. This section provides a truly dynamic framework for team
decision making, since players or teams can change their objectives or
optimality criteria on the fly, and the new strategies for all players,
appropriate to the new situation, are then recomputed in real time. This
online gaming approach also allows for time-varying team dynamics. It
will be evident in networked systems that an agent affects the agents
who are close enough to her. The team does better in terms of achieving
its goals by using a distributed machine-learning approach that enables
agents to exchange what they have learned.

3.2 Zero-Sum Games

The H8 control problem is a mini-max optimization problem, and
hence a zero-sum (ZS) game where the controller is a minimizing player
and the disturbance a maximizing one. Since the work of Zames and
Francis (1983) in the early 1980s, H8 techniques have been used in
control systems, for sensitivity reduction and disturbance rejection. This
subsection is concerned with two-player ZS games that are related to the
H8 control problem, as formulated by Başar and Olsder (1999), Başar
and Bernhard (2008), and Schaft (1992). In essence, ZS two-player game
theory and H8 solutions rely on solving the Hamilton–Jacobi–Isaacs
(HJI) equations, a generalized version of the Hamilton–Jacobi–Bellman
equations appearing in optimal control problems.

In this subsection, we provide methods for online gaming, that is for
solution of two-player ZS infinite-horizon games online, through learning
the saddle-point strategies. The dynamics may be nonlinear in CT and
are assumed known. A novel neural-network adaptive control technique
is given here that is based on RL techniques, whereby the control and
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disturbance policies are tuned online using data generated along the
system trajectories. Also, it is tuned a “critic” approximator structure
whose function is to identify the value or outcome of the current control
and disturbance policies. Based on this value estimate, the policies
are continuously updated. All three loops are tuned simultaneously, or
synchronously. This is a sort of indirect adaptive control algorithm, still,
due to the direct form dependence of the policies on the learned value,
it is affected online as “direct” optimal adaptive control.

3.2.1 Problem Formulation

Consider the nonlinear time-invariant system given by,

9xptq “ fpxptqq ` gpxptqquptq ` kpxptqqdptq, t ě 0, (3.1)

where x P R
n is a measurable state vector, uptq P R

m is the control
input, dptq P R

q is the disturbance, f : R
n Ñ R

n is the drift dynamics,
and g: R

n Ñ R
nˆm is the input dynamics. It is assumed that fp0q “ 0

and x ÞÑ fpxq ` gpxqupxq ` kpxqdpxq is locally Lipschitz and that the
system is stabilizable.

Now we shall define the performance index as,

Jpxp0q, u, dq “
ż 8

0

prpx, u, dqqdt ”
ż 8

0

pQpxq ` uTRu ´ γ2}d}2qdt,

@xp0q, u, d,

where Qpxq is a positive definite function, R “ RT ą 0 and γ ě γ‹ ě 0

with γ‹ the smallest γ such that the system is stabilized. The value
function with feedback control and disturbance policies can be defined as,

V pxptq, u, dq “
ż 8

t

prpx, u, dqqdτ ”
ż 8

t

pQpxq ` uTRu ´ γ2}d}2qdτ,

@x, u, d.

Given that, the value is finite, a differential equivalent to this is the
Bellman equation,

rpx, u, dq ` ∇V Tpfpxq ` gpxqu ` kpxqdq, V p0q “ 0,
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and the Hamiltonian is given by,

Hp¨q “ rpx, u, dq ` ∇V Tpfpxq ` gpxqu ` kpxqdq, @x, u, d.

Define the two-player ZS differential game as,

V ‹pxp0qq “ min
u

max
d

Jpxp0q, u, dq, @xp0q,

subject to (3.1). It is worth noting that u is the minimizing player, while
d is the maximizing one.

This two-player optimal control problem has a unique solution if a
game theoretic saddle point exists, that is, if the Nash condition holds,

min
u

max
d

Jpxp0q, u, dq “ max
d

min
u

Jpxp0q, u, dq, @xp0q.

In order to solve this ZS game we need to solve the following HJ–
Isaacs (HJI) equation,

rpx, u‹, d‹q ` ∇V ‹Tpfpxq ` gpxqu‹ ` kpxqd‹q “ 0, @x,

given a solution V ‹: R
n Ñ R` to this equation and

u‹ “ arg min
u

H

ˆ

x,
BV ‹

Bx
, u, d‹

˙

“ ´1

2
R´1gpxqT∇V ‹, @x,

d‹ “ arg max
d

H

ˆ

x,
BV ‹

Bx
, u‹, d

˙

“ 1

2γ2
kpxqT∇V ‹, @x.

3.2.2 Approximate Solution

The structure used for our approximate solution is motivated by the
Policy Iteration Algorithm that follows, where it terminates when two
consecutive value functions do not differ (regarding a corresponding
suitable norm error).

We should use a critic to approximate the cost and two actors to
approximate the optimal control and the worst case disturbance. The
critic is based on VFA. In what follows, we shall approximate the value
V pxq as well as its gradient. It is justified to assume there exist weights
W1 such that the value function V pxq is approximated as,

V pxq “ W T
c φcpxq ` ǫpxq, @x.
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Algorithm 5: Policy Iteration for H8 Control (Zero-Sum Games)

1: procedure

2: Given admissible policies up0q

3: for j “ 0, 1, . . . given uj

4: for i “ 0, 1, . . . set d0 “ 0 solve for the value V
piq

j pxq using Bellman’s
equation

Qpxq`∇V iT
j pxqpfpxq`gpxquj`kpxqdiq`uT

j Ruj´γ2
›

›d2
›

›

2 “ 0, V i
j p0q “ 0,

di`1 “ 1

2γ2
kpxqT∇V i

j pxq

on convergence, set Vj`1pxq “ V i
j pxq.

5: Update the control policy uj`1 using

uj`1 “ ´1

2
R´1gpxqT∇Vj`1pxq

6: go to 3

7: end procedure

Then, φcpxq: R
n Ñ R

N is called the basis function vector, N the
number of neurons in the hidden layer, and ǫpxq the approximation
error.

But since we do not know the optimal weights Wc, we shall use
current critic weights as,

V̂ pxq “ Ŵ T
c φcpxq, @x, (3.2)

where Ŵc are the current estimated values of the ideal critic weights Wc.
Now, the approximate HJI equation is given as,

Ĥp¨q :“ Ŵ T
c ∇φcpf ` gû ` kd̂q ` Qpxq ` ûTRû ´ γ2 }d}2 “ e1,

where e1 P R
n is the approximation (residual) error after using current

critic weights and û, d̂ are given by,

ûpxq “ ´1

2
R´1gpxqT∇φcpxqTŴu, (3.3)

and

d̂pxq “ 1

2γ2
kpxqT∇φcpxqTŴd, (3.4)

respectively.



38 Game-Theoretic Learning

Now it is desired to select Ŵc such that the squared residual error
E1 “ 1

2
eT

1 e1 is minimized. Hence by using a normalized gradient descent,
one has,

9̂
Wc “ ´a1

BE1

BŴ1

“ ´α
∇φcpf ` gû ` kd̂q

pp∇φcpf ` gû ` kd̂qqT∇φcpf ` gû ` kd̂q ` 1q2

ˆ pp∇φcpf ` gû ` kd̂qqTŴc ` Qpxq ` ûTRû ´ γ2}d̂}2q, (3.5)

where α P R` is a tuning gain that determines the speed of convergence.
The weights for the actor Ŵu need to be picked in order to guarantee

closed-loop stability. Hence one has,

9̂
Wu “ ´αu

˜

pF2Ŵu ´ 1
Tp∇φcpf ` gû ` kd̂qqTŴcq

´ 1

4
p∇φcpxqgpxqR´1gpxqT∇φT

c pxqqŴu

ˆ
˜

∇φcpf ` gû ` kd̂q
pp∇φcpf ` gû ` kd̂qqT∇φcpf ` gû ` kd̂q ` 1q2

¸T

Ŵc

¸

,

(3.6)

where αu P R` is a tuning gain that determines the speed of convergence
and F2 ą 0 is a user defined positive definite matrix picked appropriately
for stability. Similarly the weights for the disturbance Ŵd are given by,

9̂
Wd “ ´αd

˜

pF4Ŵd ´ 1
Tp∇φcpf ` gû ` kd̂qqTŴcq

` 1

4γ2
p∇φcpxqkpxqkpxqT∇φT

c pxqqŴd

ˆ
˜

∇φcpf ` gû ` kd̂q
pp∇φcpf ` gû ` kd̂qqT∇φcpf ` gû ` kd̂q ` 1q2

¸T

Ŵc

¸

,

(3.7)

where αd P R` is a tuning gain that determines the speed of conver-
gence and F3, F4 ą 0 are user defined positive definite matrices picked
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appropriately for establishing stability by using the Lyapunov’s direct
method.

The main theorem is now given and guarantees convergence to the
ZS game Nash equilibrium solution while also guaranteeing closed-loop
stability. The practical notion of UUB is used.

Theorem 3.1 (Vamvoudakis and Lewis, 2012, Thm. 2). Let the dynamics
be given by (3.1), the critic NN be given by (3.2), the control input
be given by actor NN (3.3) and the disturbance input be given by
disturbance NN (3.4). Let the tuning for the critic NN be provided
by (3.5), let the actor NN be tuned as (3.6), and the disturbance NN
be tuned as (3.7). Let Qpxq a positive definite function. Suppose that

∇φcpf`gû`kd̂q

pp∇φcpf`gû`kd̂qqT∇φcpf`gû`kd̂q`1q
is PE. Let the tuning parameters F3, F4

in (3.6), and (3.7) be selected appropriately. Then there exists an N0

such that, for the number of hidden-layer units N ą N0 the closed-loop
signals are UUB.

Remark 3.1. The theorem shows that PE is needed for proper identi-
fication of the value function by the critic NN, and that nonstandard
tuning algorithms are required for the actor and the disturbance NN to
guarantee stability. l

A pseudocode that describes the proposed adaptive H8 control
algorithm has the following form,

Algorithm 6: Adaptive H8 Control Algorithm

1: procedure

2: Start with initial state xp0q and, random initial weights
3: Ŵup0q, Ŵdp0q, Ŵcp0q.
4: Propagate t, xptq.
5: Propagate Ŵcptq, Ŵuptq, Ŵdptq Ź 9̂

Wc as in (3.5), 9̂
Wu as in (3.6) and

9̂
Wd as in (3.7).

6: Compute (3.2), (3.3) and (3.4).
7: end procedure
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3.2.3 Further Reading

The interested reader is directed to Vamvoudakis and Lewis (2012),
Vamvoudakis et al. (2011), Vrabie et al. (2013) and Vamvoudakis et al.

(2017a) for detailed proofs, theorems and simulation examples. The
authors in Luo et al. (2014), Modares et al. (2015), Zhang et al. (2014b),
Wu and Luo (2012), Liu et al. (2013), Wei et al. (2015), and Luo et al.

(2014) base their works on the results shown in this subsection to develop
adaptive learning H8 control schemes.

3.3 Non-Zero-Sum Games

Multi-player cooperative games rely on solving coupled HJ equations,
which in the linear quadratic case reduce to the coupled AREs (Başar
and Olsder, 1999). Solution methods are generally offline and generate
fixed control policies that are then implemented in online controllers.
These coupled equations are difficult to solve.

This subsection shows how to solve multi-player non-zero-sum (NZS)
games online using novel adaptive control structures based on RL. For
the most part, interest in the control systems community has been in
the (non-cooperative) ZS games, which provide the solution of the H8

robust control problem (Başar and Olsder, 1999). However, dynamic
team games may have some cooperative objectives and some selfish
objectives among the players. This cooperative/non-cooperative balance
is captured in the NZS games, as detailed herein.

In particular, in this subsection we are interested in feedback policies
with full state information. We provide methods for online gaming, that
is for solution of infinite-horizon NZS games online, through learning the
Nash equilibrium. The dynamics are non-linear in CT and are assumed
known. A novel adaptive control structure is given that is based on
RL techniques, whereby each player’s control policies are tuned online
using data generated along the system trajectories. Also tuned by each
player are “critic” approximator structures whose function is to identify
the values of the current control policies for each player. Based on these
value estimates, the players’ policies are continuously updated. This is a
sort of indirect adaptive control algorithm, still, due to the simple form
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dependence of the control policies on the learned value, it is affected
online as direct (“optimal”) adaptive control.

Furthermore, this subsection proposes an algorithm for non-linear
CT systems with known dynamics to solve the N-player NZS game
problem where each player wants to optimize his own performance index
(Başar and Olsder, 1999; Hespanha, 2017). The number of parametric
approximator structures that are used is 2N. Each player maintains a
critic approximator NN to learn his optimal value and a control actor
NN to learn his optimal control policy. Parameter update laws are given
to tune the N-critic and N-actor NNs simultaneously online to converge
to the solution to the coupled HJ equations while also guaranteeing
closed-loop stability.

3.3.1 Problem Formulation

Consider the N -player nonlinear time-invariant differential game,

9xptq “ fpxptqq `
N
ÿ

j“1

gjpxptqqujptq, t ě 0, (3.8)

where x P R
n is a measurable state vector, ujptq P R

mj are the control
inputs, f : R

n Ñ R
n is the drift dynamics, gj : R

n Ñ R
nˆmj is the input

dynamics. It is assumed that fp0q “ 0 and x ÞÑ fpxq ` řN
j“1 gjpxqujpxq

is locally Lipschitz with ujpxq the feedback control, and that the system
is stabilizable.

The cost functionals associated with each player are given by,

Jipxp0q; u1, u2, . . . , uN q “
ż 8

0

pripx, u1, . . . , uN qqdt

”
ż 8

0

˜

Qipxq `
N
ÿ

j“1

uT
j Rijuj

¸

dt, @i P N ,

where Qipxq is a generally nonlinear positive definite function and
Rii ą 0, @i P N , Rij ľ 0, @j ‰ i P N are symmetric matrices and
N :“ t1, 2, . . . , Nu.
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The value can be defined as,

Vipx, u1, u2, . . . , uN q “
ż 8

t

pripx, u1, . . . , uN qqdτ,

@i P N , x, u1, u2, . . . , uN .

Now we are ready to define the N -player game as,

V ‹
i px, u1, u2, . . . , uN q “ min

ui

ż 8

t

pripx, u1, . . . , uN qqdτ, @i P N .

By assuming that all the players have the same hierarchical level, we
focus on the so-called Nash equilibrium that is given by the following
definition adopted from Başar and Olsder (1999), Hespanha (2017).

Definition 3.1. An N -tuple of strategies tu‹
1, u‹

2, . . . , u‹
N u is said to

constitute a Nash equilibrium solution for an N -player finite game
in extensive form if the following N inequalities are satisfied for all
u‹

i , i P N ,

J‹
i ” Jipu‹

1, u‹
2, . . . , u‹

i , . . . , u‹
N q ď Jipu‹

1, u‹
2, . . . , ui, . . . , u‹

N q, @i P N .

The N -tuple of quantities tJ‹
1 , J‹

2 , . . . , J‹
N u is known as a Nash equilib-

rium outcome of the N -player game. l

Differential equivalents to each value function are given by the
following Bellman equations,

ripx, u1, . . . , uN q ` ∇V T
i pxq

˜

fpxq `
N
ÿ

j“1

gjpxquj

¸

“ 0,

Vip0q “ 0, @i P N .

We shall define the Hamiltonian functions as,

Hip¨q “ ripx, u1, . . . , uN q ` ∇V T
i pxq

˜

fpxq `
N
ÿ

j“1

gjpxquj

¸

, @i P N .

According to the stationarity conditions, associated feedback control
policies are given by,

ui “ arg min
ui

Hip¨q “ ´1

2
R´1

ii gT
i pxq∇Vipxq, @x, @i P N .
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After substituting the feedback control policies into the Hamiltonian
one has the coupled HJ equations,

0 “ Qipxq ` 1

4

N
ÿ

j“1

∇V T
j pxqgjpxqR´1

jj

T
RijR´1

jj gT
j pxq∇Vjpxq

` ∇V T
i pxq

˜

fpxq ´ 1

2

N
ÿ

j“1

gjpxqR´1
jj gT

j pxq∇Vjpxq
¸

, @i P N .

In linear systems of the form 9x “ Ax ` řN
j“1 Bjuj with Qi ľ 0, the N

coupled HJ equations become the N coupled generalized AREs,

0 “ Pi

˜

A ´ 1

2

N
ÿ

j“1

BiR
´1
ii BT

i Pi

¸

`
˜

A ´ 1

2

N
ÿ

j“1

BiR
´1
ii BT

i Pi

¸T

Pi ` Qi

` 1

4

N
ÿ

j“1

PjBjR´1
jj

T
RijR´1

jj BT
j Pj , @i P N ,

where the pair pA ´ 1
2

řN
j“1,j‰i BjR´1

jj BT
j Pj , Biq is stabilizable and the

pair pA ´ 1
2

řN
j“1,j‰i BjR´1

jj BT
j Pj , Qi ` 1

4

řN
j“1,j‰i PjBjR´1

jj

T
RijR´1

jj ¨
BT

j Pjq is detectable, then the stationary feedback policies form a Nash
equilibrium solution for the linear quadratic N -player differential game
among feedback policies with full state information. Furthermore, the
resulting system dynamics, have an asymptotically stable equilibrium
point.

3.3.2 Approximate Solution

The structure used for our approximate solution is motivated by the
Policy Iteration Algorithm that follows, where ǫiac P R`, @i P N , is a
small number used to terminate the algorithm when two consecutive
value functions differ by less than ǫiac, @i P N .

We should use N critics to approximate the costs and N actors to ap-
proximate the optimal controls. This work uses nonlinear approximator
structures for VFA to solve the coupled HJ equations. Therefore, assume
there exist constant weights Wi and such that the value functions Vi

are approximated on a compact set Ω as,

Vipxq “ W T
i φipxq ` ǫipxq, @x, @i P N ,
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Algorithm 7: Policy Iteration for Non-Zero-Sum Games

1: procedure

2: Given N -tuple of admissible policies µk
i p0q, @i P N and k “ 1.

3: while }V
µpkq

i ´ V
µpk´1q

i } ě ǫiac, @i P N do

4: Solve for the N -tuple of costs V k
i pxq using the coupled Bellman

equations

Qipxq ` ∇V k
i

T

˜

fpxq `
N
ÿ

i“1

gipxqµk
i

¸

` µk
i

T
Riiµ

k
i `

N
ÿ

j“1

µk
j

T
Rijµk

j “ 0,

V µk
i p0q “ 0.

5: Update the N -tuple of control policies µk`1

i , @i P N using

µk`1

i “ ´1

2
R´1

ii gT
i pxq∇V k

i .

6: k – k ` 1.
7: end while

8: end procedure

where φipxq: R
n Ñ R

Ki , @i P N are the activation function basis set
vectors, Ki, @i P N is the number of neurons in the hidden layer and
ǫipxq the approximation error. From the approximation literature, the
basis functions can be selected as sigmoids, tanh, polynomials, etc.

Assuming current weight estimates Ŵic, @i P N , the outputs of the
critics are given by,

V̂ipxq “ Ŵ T
ic φipxq, @i P N . (3.9)

Using the current weight estimates, the approximate Lyapunov-like
equations are given by,

Ĥip¨q “ ripx, û1, . . . , ûN q ` ∇V T
i pxq

˜

fpxq `
N
ÿ

j“1

gjpxqûj

¸

“ ei,

@i P N ,

where ei P R, @i P N are the residual errors due to approximation and

ûi “ ´1

2
R´1

ii gT
i pxq∇φT

i pxqŴiu, @i P N , (3.10)

where Ŵiu denote the current estimated values of the ideal weights Wi.
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Now, it is desired to pick the tuning for the critic in order to minimize
the square residual errors ei in order to guarantee that Ŵic Ñ Wi,

@i P N . Hence the tuning law for the critic is given as,

9Wic “ ´αi

∇φipf ` řN
j“1 gj ûjq

pp∇φipf ` řN
j“1 gj ûjqqT∇φipf ` řN

j“1 gj ûjq ` 1q2

ˆ
˜˜

∇φi

˜

f `
N
ÿ

j“1

gj ûj

¸¸T

Ŵic

` Qipxq ` ûT
i Riiûi `

N
ÿ

j“1

ûT
j Rij û

˙

, @i P N , (3.11)

where αi P R` is a tuning gain that determines the speed of convergence,
and for the actor is given as,

9̂
Wiu “ ´αiu

ˆˆ

FiŴiu ´ 1
T

ˆ

∇φi

ˆ

f `
N
ÿ

j“1

gj ûj

˙˙T

Ŵic

˙

´ 1

4

N
ÿ

j“1

p∇φipxqgipxqR´1
ii

T
RijR´1

ii gjpxqT∇φT
i pxqqŴiu

ˆ
˜

∇φipf ` řN
j“1 gj ûjq

pp∇φipf ` řN
j“1 gj ûjqqT∇φipf ` řN

j“1 gj ûjq ` 1q2

¸T

Ŵjc

˙

,

@i P N , (3.12)

where αiu P R` is a tuning gain that determines the speed of conver-
gence, and Fi ą 0 are matrices that guarantee stability of the system.

Theorem 3.2 (Vamvoudakis and Lewis, 2011, Thm. 2). Consider the
dynamics be given by (3.8). Let the critic-networks be given by (3.9) and
the control inputs be given by action networks (3.10). Let tuning for the
critic NNs be provided by (3.11) and for the actor NNs be given by (3.12)
where Fi ą 0 are tuning parameters. Assume positive definite functions

Q1pxq and Q2pxq. Suppose that
∇φipf`

řN
j“1 gj ûjq

pp∇φipf`
řN

j“1 gj ûjqqT∇φipf`
řN

j“1 gj ûjq`1q
,

@i P N , are persistently exciting. Let the tuning parameter for the
critic selected sufficiently larger than the actor. Then there exists a K0

such that, for the number of hidden-layer units K ą K0 the closed-loop
signals are UUB.
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A pseudocode that describes the proposed adaptive NZS game
algorithm has the following form,

Algorithm 8: Adaptive Non-Zero-Sum Game Algorithm

1: procedure

2: Start with initial state xp0q and random initial weights
Ŵiup0q, Ŵicp0q, @i P N .

3: Propagate t, xptq.
4: Propagate Ŵiuptq, Ŵicptq, @i P N Ź 9̂

Wic as in (3.11), and 9̂
Wiu as in

(3.12).
5: Compute (3.9) and (3.10).
6: end procedure

3.3.3 Further Reading

The interested reader is directed to Vamvoudakis and Lewis (2011),
Vrabie et al. (2013), and Vamvoudakis et al. (2017a) for detailed proofs,
theorems and simulation examples. Still, the authors of this article
(Yang et al., 2020a) develop a novel actor-critic-barrier structure for
the multiplayer safety-critical systems. Finally, we refer the reader to
Liu et al. (2014) and Zhang et al. (2012) wherein online synchronous
approximate optimal learning algorithms for multi-player non-zero-sum
games are developed. An overview of the state of the art is presented in
the magazine article (Vamvoudakis et al., 2017a).

3.4 Stackelberg Games

This subsection considers non-cooperative non-zero-sum games, called
Stackelberg games, named after Heinrich von Stackelberg in recogni-
tion of his pioneering work (Von Stackelberg, 2010) Stackelberg games
provide a framework to analyze and design hierarchical interactions
among self-interested players, where the objectives are no longer in-
dependent. In Stackelberg games, one needs to differentiate between
open-loop, closed-loop, and feedback strategies. Specifically, open loop
refers to a decision by each player based on the initial condition, and
closed loop refers to the ability of the players to change their decisions
based on current information. Feedback strategies correspond to the
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ability of the leader to further change her strategy in reaction to the
follower’s closed-loop strategy. In this subsection, we consider open-loop
Stackelberg strategies.

These hierarchical games consist of two groups of players: leaders
who have complete information about other players’ strategies and
followers who lack such information. Each leader selects her action
by solving a 2-level optimization problem that seeks to minimize her
utility subject to the followers’ actions as estimated by that leader.
The followers then select their actions, according to their observations
from the aggregate impact of other users. Applications of Stackelberg
strategies include military intelligence, social behaviors, marketing,
network communications, and multilevel optimization for power systems
(He et al., 2007). Two applications of Stackelberg games are the ARMOR
program at LAX airport (Pita et al., 2008), where police are able to set
up checkpoints on roads leading to particular terminals and the IRIS
program used by the US Federal Air Marshals (Tsai et al., 2009), where
armed Marshals are assigned to commercial flights to defeat terrorist
attacks. Generally, the information structure in a Stackelberg game is
the set of all available information for the players to make their decisions.
When an open-loop information structure is considered, no measurement
of the state of the system is available, and the players are committed to
follow a predetermined strategy based on their knowledge of the initial
state, the system’s model, and the cost functional to be minimized.
Two possible approaches describe interactions in a Stackelberg game.
In the first approach, the follower asks the leader to choose a reaction
to specify the leader’s best response to the follower’s optimal behavior
during the game. In the second approach, one may assume that the
leader announces the policy to the follower.

Finally, on the basis of the above, it turns out that the Stackelberg
games constitute class of NZS games where the strategies are announced
sequentially is called. Thus, Stackelberg or hierarchical equilibria refer
to non-cooperative solutions, where one or more of the players act
as leaders. Because the players have different hierarchical levels, it
is natural to focus on Stackelberg equilibrium, which is given by the
following definition.
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Definition 3.2. The leader knows the cost function mapping of the
follower, but the follower may not know the cost function mapping
of the leader. The follower knows the control strategy of the leader and
the follower takes this into account when computing its strategy within
the set of those strategies that minimize J1 according to definition,

J1pu‹
1, u2q ď J1pu1, u2q, for a fixed policy u2.

If there exists a pair u‹
1, u‹

2 on the reaction set of Player 1 such that,

J2pu‹
1, u‹

2q ď J2pu‹
1, u2q,

for any pair u1, u2 on the reaction set of Player 1, the pair u‹
1, u‹

2

is defined as a Stackelberg equilibrium strategy with Player 2 as the
leader. l

3.4.1 Open-Loop Stackelberg Learning Solution for Hierarchical

Control Problems

In what follows, we shall present a novel framework based on adaptive
learning techniques to solve the CT open-loop Stackelberg games. The
method yields approximations of the game value and convergence of
the policies to the open-loop Stackelberg-equilibrium solution while also
guaranteeing asymptotic stability of the equilibrium point of the closed-
loop system. It is implemented as a separate actor/critic parametric
network approximator structure for every player and involves simul-
taneous CT adaptation. To introduce and implement the hierarchical
structure to the coupled optimization problem, we adjoin to the leader
the controller dynamics of the follower. A PE condition guarantees
convergence of both critics to the actual game values that eventually
solve the hierarchical optimization problem.

3.4.2 Problem Formulation

Consider the two-player differential game,

9xptq “ Axptq ` B1u1ptq ` B2u2ptq, xp0q – x0, t ě 0, (3.13)

where xptq P R
n is the state available for feedback; u1 P R

m, u2 P R
q

are the control inputs (i.e., players); and A, B1, and B2 are plant and
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input matrices of appropriate dimensions. The control inputs or players
have different hierarchical levels, i.e., u1 is the follower, and u2 is the
leader.

Each player has the following cost functionals:

J1 “ 1

2
xT

f P1f xf ` 1

2

ż tf

0

pxTQ1x ` uT
1 R11u1 ` uT

2 R12u2qdt

” 1

2
xT

f P1f xf ` 1

2

ż tf

0

r1px, u1, u2qdt,

J2 “ 1

2
xT

f P2f xf ` 1

2

ż tf

0

pxTQ2x ` uT
1 R21u1 ` uT

2 R22u2qdt

” 1

2
xT

f P2f xf ` 1

2

ż tf

0

r2px, u1, u2qdt,

where tf P R`, a terminal time that can be fixed or variable, P1f ,
P2f P R

nxn ą 0, Qi ľ 0, Rii ą 0, and Rij ľ 0 @i, j “ 1, 2, i ‰ j are
symmetric matrices. To solve such a problem, we seek optimal controls
among the set of control policies with complete state information.
However, because the players have a different hierarchical level, we focus
on an open-loop Stackelberg equilibrium that is given by the following
definition adopted from the works of Simaan and Cruz (1973a,b).

Note that we focus on an open-loop information structure where
the players in the Stackelberg game are committed to following a
predetermined strategy. We are thus interested in finding the following
value:

J‹
1 “ min

u1

ˆ

1

2
xT

f P1f xf ` 1

2

ż tf

t

r1 px, u1, u2q dτ

˙

, t ě 0, (3.14)

for all policies u2 as functions of the state with the following associated
Hamiltonian for the follower (Abou-Kandil and Bertrand, 1985; Fleming
and McEneaney, 2000; Johnson et al., 2010):

H1 px, λ1, u1, u2q “ 1

2
r1 px, u1, u2q ` λT

1 pAx ` B1u1 ` B2u2q , (3.15)
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where the necessary conditions (see the work of Chen and Cruz, 1972)
for optimality are (3.13), and

BH1

Bu1
“ 0 ñ u‹

1 “ ´R´1
11 BT

1 λ1, (3.16)

9λ1 “ ´
ˆBH1

Bx

˙T

“ ´ATλ1 ´ Q1x, λ1 ptf q “ P1f xf . (3.17)

For the leader, we are interested in computing the following optimal
value:

J‹
2 “ min

u2

ˆ

1

2
xT

f P1f xf ` 1

2

ż tf

t

r2 px, u‹
1, u2q dτ

˙

,

with constraints (3.13) and (3.17). This extra constraint shall quantify
how good the follower does after choosing (3.14).

3.4.3 Stackelberg Game and Leader-Follower Riccati Equations

The Hamiltonian associated with the leader with constraints (3.13) and
(3.17) is,

H2 “ 1

2
r2 px, u‹

1, u2q ` λT
2 pAx ` B1u‹

1 ` B2u2q ` yT 9λ1, (3.18)

with u‹
1 given by (3.16) and y, a Lagrangian multiplier to adjoin con-

straint (3.17). The necessary conditions for optimality of the leader
are,

BH2

Bu2
“ 0 ñ u‹

2 “ ´R´1
22 BT

2 λ2, (3.19)

9λ2 “ ´
ˆBH2

Bx

˙T

“ ´ATλ2 ´ Q2x ` Q1y,

λ2 ptf q “ P2f xf ´ P1f y ptf q ,

and

9y “ ´
ˆBH2

Bλ1

˙

“ Ay ´ B1R´1
11

T
R21R´1

11 BT
1 λ1

` B1R´1
11

T
BT

1 λ2, yp0q “ 0. (3.20)

Remark 3.2. Note that y of Equation (3.20) will adjoin the constraint
(3.17) to the optimization problem of the leader. This will actually solve
the difference in hierarchies of the two players in the game. l
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Since this subsection shall consider the linear quadratic case, the
costate variables shall have the form (Abou-Kandil and Bertrand, 1985;
Johnson et al., 2015),

λ1 “ P1ptqx, λ2 “ P2ptqx, y “ P3ptqx, @x,

where P1ptq, P2ptq, P3ptq P R
nˆn ą 0 are time varying and block

diagonal matrices.

Remark 3.3. Note that y “ P3x describes a linear transformation
T : R

n Ñ R
n, i.e., y “ T pxq. l

We are ready to state the following lemma adopted from previous
studies (Freiling et al., 1996, 2003; Simaan and Cruz, 1973a).

Lemma 3.3 (Vamvoudakis et al., 2019, Lemma 1). Assume that x0 ‰ 0,

the matrix B2 is full rank, the pair pQ1, Aq is observable, and at
least one of the pairs pA, B1q and pA, B2q is controllable. Let R11 ą 0,

R21 ľ 0, R21 ľ 0, Q1 ľ 0, and Q2 ľ 0 and the linear open-loop control
inputs issued from an open-loop Stackelberg strategy be given by Equa-
tion (3.16) and P1, P2, and P3 satisfy the coupled differential Riccati
equations @t ě 0,

9P1 “ ´P1A ´ ATP1 ` P1B1R´1
11 BT

1 P1 ` P1B2R´1
22 BT

2 P2 ´ Q1,

9P2 “ ´P2A ´ ATP2 ` P2B1R´1
11 BT

1 P1 ` P2B2R´1
22 BT

2 P2 ´ Q2

` Q1P3,

9P3 “ ´P3A ` AP3 ` P3B1R´1
11 BT

1 P1 ` P3B2R´1
22 BT

2 P2

´ B1R´1
11

T
R21R´1

11 BT
1 P1 ` B1R´1

11

T
BT

1 P2,

and the closed-loop dynamical equation is,

9x “ pA ´ B1R´1
11 BT

1 P1 ´ B2R´1
22 BT

2 P2qx, t ě 0.

Finally, given that the coupled Riccati equations have a unique
solution

»

–

P1

P2

P3

fi

fl,
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satisfying the boundary conditions P1p0q “ 0, P2 ptf q “ P2f , P3 ptf q “
P3f ´ P2f P1 ptf q, and P3f “ 0 with tf a sufficient large horizon, then
Equations (3.16) and (3.19) form a Stackelberg equilibrium.

Remark 3.4. The existence of unique Stackelberg equilibria was shown
to be tied to the existence of solutions to certain non-symmetric Riccati
equations, which are difficult to solve. In the work of Bagchi and Başar
(1981) and Freiling et al. (2003), a connection between solutions of a
standard ARE and a non-symmetric ARE were given. In a similar man-
ner, sufficient conditions for existence of a unique open-loop Stackelberg
equilibrium by constructing appropriate potential functions was given
in the work of Freiling et al. (2001). l

Using the variation of parameters formula, we have,

xptq “ ϕ pt, t0q x0 `
ż T

t0

ϕpt, τqB1pτqu1pτqdτ `
ż T

t0

ϕpt, τqB2pτqu2pτqdτ,

where ϕ pt, t0q “ Aϕ pt, t0q and ϕpt, tq “ I.
The following algorithmic framework will be the basis for our

approach.

3.4.4 Open-Loop Stackelberg Games

We need to define the following potential functions with gradients that
provide the λ1 and λ2, respectively,

F ‹
1 pxq “ xTλ1 “ vec pP1qT φpxq, @x,

and
F ‹

2 pxq “ xTλ2 “ vec pP2qT φpxq, @x,

where vecp¨q is a vectorization of the matrix Pi, i “ 1, 2, and φpxq
denotes a bounded continuously differentiable basis function. Note that
one can pick φpxq as radial basis or sigmoid functions so that they define
a complete independent basis set for F ‹

1 and F ‹
2 .
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Algorithm 9: Algorithmic iteration for open-loop Stackelberg games

1: procedure

2: Given stabilizing policies u
p0q
1

, u
p0q
2

.

3: for k “ 0, 1, . . . given u
pkq
1

and u
pkq
2

solve for the costate λ
pkq
1

and λ
pkq
2

using,

λ
pkq
1

“
ştf

t
ϕTpσ, tqQ1xpσqdσ ` ϕTptf , tqP1f xf

λ
pkq
2

“
ştf

t
ϕTpσ, tqrQ2xpσq ´ Q1ypkqsdσ ` ϕTptf , tqrP2f ´ P1f P3f sxf

ypkq “
şt

t0

ϕpt, τqB1R´1

11
rBT

1
λ

pkq
2

´ R21R´1

11
BT

1
λ

pkq
1

sdτ

on convergence, set λ
pk`1q
1

“ λ
pkq
1

and λ
pk`1q
2

“ λ
pkq
2

.
4: Update the control policies using

u
pk`1q
1

“ ´R´1

11
BT

1
λ

pkq
1

,

u
pk`1q
2

“ ´R´1

22
BT

2
λ

pkq
2

.

5: Go to 3.
6: end procedure

Since the functions F ‹
1 and F ‹

2 are not available, we shall consider
the actual outputs of the 2 approximators, namely, the critics, as,

F̂1pxq “ vecpP̂1qTφpxq, @x, (3.21)

and
F̂2pxq “ vecpP̂2qTφpxq, @x, (3.22)

where P̂1 and P̂2 are the approximation matrices of the actual matri-
ces P1 and P2. Similarly for the 2 players (3.16) and (3.19) 2-actor
approximators can be developed as,

û1pxq “ ´R´1
11 BT

1

BφpxqT

Bx
Ŵ1, @x, (3.23)

and

û2pxq “ ´R´1
22 BT

2

BφpxqT

Bx
Ŵ2, @x, (3.24)

with Ŵ1 and Ŵ2 denoting the current estimated values of vecpP̂1q and
vecpP̂2q, respectively.
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Approximate versions of Equations (3.15) and (3.18) can be written
with (3.21) and (3.22) respectively for every u1 and u2 as,

H1 px, λ1, u1, u2q “ 1

2
r1 px, u1, u2q ` λT

1 pAx ` B1u1 ` B2u2q “ e1,

H2 px, λ2, u1, u2q “ 1

2
r2 px, u1, u2q ` λT

2 pAx ` B1u1 ` B2u2q

` yT

ˆ

´AT Bφpxq
Bx

vecpP̂1q ´ Q1x

˙

“ e2,

here e1, e2 P R are the residual errors. Hence, it is desired to select
vecpP̂1q and vecpP̂2q to minimize the following summation of squared
residual errors:

Ei “ 1

2
e2

i , i “ 1, 2.

Now, we shall select the tuning laws for the critics such that
e1 Ñ 0, e2 Ñ 0, vecpP̂1q Ñ vecpP1q, and vecpP̂2q Ñ vecpP2q. For the
follower and leader critics after using the normalized gradient descent,
one has,

vecp 9̂
P1q “ ´ α1

p1 ` σTσq2

BE1

BvecpP̂1q
,

“ ´ α1σ

p1 ` σTσq2

ˆ

σTvecpP̂1q ` 1

2
r1 px, u1, u2q

˙

, (3.25)

and

vecp 9̂
P2q “ ´ α2

p1 ` σTσq2

BE2

BvecpP̂2q

“ ´ α2σ

p1 ` σTσq2

ˆ

σTvecpP̂2q ` 1

2
r2 px, u1, u2q

` yT

ˆ

´ AT BφpxqT

Bx
vecpP̂1q ´ Q1x

˙˙

, (3.26)

where α1, α2 P R` are constants that determine the learning rate
and σ :“ Bφpxq

Bx
pAx ` B1u1 ` B2u2q. Properties of the tuning laws in

Equations (3.25) and (3.26) are given in the work of Vrabie et al. (2013).
Specifically, for exponential convergence, we require a PE condition for
the signal σ̄ :“ σ

p1`σTσq
.
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Finally, we shall select the tuning laws for Ŵ1 and Ŵ2 for the actors
in Equations (3.23) and (3.24) as,

9̂
W1 “ ´α3tpŴ1 ´ vecpP̂1qqu (3.27)

and
9̂

W2 “ ´α4tpŴ2 ´ vecpP̂2qqu, (3.28)

where α3, α4 P R` are constants that determine the learning rate.
A pseudocode that describes the proposed learning algorithm has

the following form.

Algorithm 10: Algorithmic iteration for open-loop Stackelberg games

1: procedure

2: Start with initial conditions xp0q, and random initial weights
vecpP̂1qp0q, vecpP̂1qp0q, Ŵ1p0q, Ŵ2p0q for the critics, and actors.

3: Propagate t, xptq.
4: Propagate vecpP̂1qptq, vecpP̂2qptq, Ŵ1ptq, Ŵ2ptq Ź vec( 9̂

P1q as in

Equation (3.25), vecp 9̂
P2q as in Equation (3.26), 9̂

W1 as in Equation (3.27)

and 9̂
W2 as in Equation (3.28).

5: Compute the potential functions F̂1 and F̂2 from Equation (3.21) and
Equation (3.22), the optimal controls û1 and û2 from Equation (3.23) and
Equation (3.24), respectively.

6: end procedure

The main theorem is now given. This shall provide the tuning
laws for the actor and critic approximators for the leader and follower.
The resulting tuning laws will be used to prove the convergence of
the 2-player game algorithm to the open-loop Stackelberg equilibrium
solution while also guaranteeing closed-loop stability.

Fact 3.4 (Vamvoudakis et al., 2019, Fact 1). The input matrices of
(3.13) are bounded as,

}B1} ă b̄1, }B2} ă b̄2,

the desired matrices P1, P2 and P3 are bounded as,

}P1} ă ρ̄1, }P2} ă ρ̄2, }P3} ă ρ̄3,
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and finally, the basis functions (e.g., sigmoids and radial basis functions)
have bounded gradients,

›

›

›

›

Bφpxq
Bx

›

›

›

›

ă µ. l

Theorem 3.5 (Vamvoudakis et al., 2019, Thm. 1). Suppose that the
assumptions and the statements of Lemma 3.3 hold and that the game
is played for a long enough horizon. Consider the system given by Equa-
tion (3.13) and let the controller dynamics be given by Equation (3.20),
the critic approximators be given as Equations (3.21) and (3.22), the
follower control input be given by Equation (3.23) and the leader be
given by Equation (3.24). Let the tuning for the follower critic be given
by Equation (3.25) and for the leader by (3.26) and assume that the
signal σ̄ is PE. Given the follower actor in (3.23) and the leader actor in
Equation (3.24), then after picking the tuning gains and the user-defined
matrices according to the following inequalities:

λpQ1 ` Q2q ą 1

2
p2ρ̄1b̄2

1µ}R´1
11 } ` ρ̄2b̄2

2µ}R´1
22 } ` ρ̄1b̄2

2µ}R´1
22 }

` ρ̄3b̄2
1µ}R´1

11 }q,
α1 ą2α3 ` 2pρ̄3b̄2

1µ}R´1
11

T
R21R´1

11 }q ` 2pρ̄2b̄2
2µ}R´1

22 }q,

one has an asymptotically stable equilibrium for the closed-loop
system.

3.4.5 Further Reading

The interested reader is directed to Vamvoudakis et al. (2019) for
detailed theorems and proofs of the above statements and algorithms.
The authors in Saleheen and Won (2019) and Mu et al. (2020) propose
adaptive learning algorithms for the Stackelberg games. Finally, the
work of Mu et al. (2020) deals with a statistical Stackelberg stochastic
differential game in which the leader optimizes the variance or the
second cumulant of the cost function.
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3.5 Graphical Games

The ability to coordinate heterogeneous agents is important in many
real-world tasks. Synchronization behavior among agents is found in
flocking of birds, schooling of fish, and other natural systems. Work
has been done to develop cooperative control methods for consensus
and synchronization (Fax and Murray, 2004; Jadbabaie et al., 2003;
Olfati-Saber and Murray, 2004; Qu, 2009, Ren and Beard, 2005, 2008;
Tsitsiklis, 1984). See Olfati-Saber et al. (2007) and Ren et al. (2005) for
surveys. Leaderless consensus results in all nodes converging to common
value that cannot generally be controlled. This is called cooperative
regulator problem. On the other hand, the problem of cooperative
tracking requires that all nodes synchronize to a leader or control node
(Chen et al., 2007; Wang and Chen, 2002). This has been called pinning
control or control with a virtual leader. Consensus has been studied for
systems on communication graphs with fixed or varying topologies and
communication delays.

Game theory provides an ideal environment to study multi-player
decision and control problems, and offers a wide range of challenging
and engaging problems. Game theory (Tijs, 2003) has been successful in
modeling strategic behavior, where the outcome for each player depends
on the actions of himself and all the other players. Every player chooses a
control to minimize in dependently from the others his own performance
objective. Multi-player cooperative games rely on solving coupled HJ
equations, which in the linear quadratic case reduce to the coupled
ARE (Başar and Olsder, 1999; Freiling et al., 2001; Gajic and Li, 1988).
Solution methods are generally offline and generate fixed control policies
that are implemented in online controllers. These coupled equations are
difficult to solve.

RL methods have been used to solve multi-player games for finite-
state systems in Busoniu et al. (2010), Busoniu et al. (2008), and Littman
(2001). RL methods have been applied to learn online the solutions for
optimal control problems for dynamic systems and differential games in
Dierks and Jagannathan (2010), Johnson et al. (2010), Vamvoudakis
and Lewis (2010) and Vamvoudakis and Lewis (2011).
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This subsection brings together cooperative control, RL, and game
theory to solve multi-player differential games on communication graph
topologies. The notion of graphical games is developed for dynamical
systems, where the dynamics and performance indices for each node
depend only on local neighbor information. It is shown that standard
definitions for Nash equilibrium are not sufficient for graphical games.
This is because, for the case of a disconnected graph, the agents can
be in Nash equilibrium, yet have no influence on each other. In such
situations, the definition of coalition-proof Nash equilibrium may also
hold, that is, no set of agents has an incentive to break away from
the Nash equilibrium and seek a new Nash solution among them. To
guarantee that all agents in a graph are involved in the same game, the
stronger definition of interactive Nash equilibrium is used.

We give a cooperative policy iteration algorithm for graphical games
that converges to the best response when the neighbors of each agent do
not update their policies, and to the cooperative Nash equilibrium when
all agents update their policies simultaneously. This is used to develop
methods for online adaptive learning solutions of graphical games.

3.5.1 Background on Networks and Graphs

In this subsection, multi-agent system interactions are modeled by a
fixed strongly connected graph G “ pVG , EGq defined by a finite set
VG “ tn1, . . . , nN u of N nodes that represent agents and a set of edges
EG Ď VG ˆVG that represent inter-agent information exchange links. The
set of neighbors of a node ni is defined as the set of nodes with edges
incoming to ni and is denoted by Ni “ tnj : pnj , niq P EGu. We assume
the graph is simple (i.e., it has not repeated edges) and has no self loops
(i.e., pni, niq R EG , @ni P VG). The connectivity matrix AG “ raijsNˆN of
the graph G is an N ˆ N matrix of the form,

aij

#

ą 0, if pnj , niq P EG ,

“ 0, otherwise,

where aij is the weight associated with the edge pnj , niq P EG . The degree

matrix of the graph G is an N ˆ N diagonal matrix whose ith entry
of the main diagonal is the weighted degree di “ ř

jPNi
aij of node i
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(i.e., ith row sum of AG). The number of the neighbors of agent i is
denoted by |Ni| that is equal to di.

3.5.2 Problem Formulation

Consider a networked-system G, consisting of N agents each modeled
@i P N :“ t1, . . . , Nu by the following dynamics,

9xiptq “ Axiptq ` Biuiptq, xip0q “ xi0, t ě 0,

where xiptq P R
n is a measurable state vector, uiptq P R

mi , i P N :“
t1, . . . , Nu is each control input (or player as we shall see later), and
A P R

nˆn, Bi P R
nˆmi , i P N are the plant and input matrices, re-

spectively, that will be considered uncertain/unknown. It is assumed
that the pairs pA, Biq, @i P N are controllable. We have a total of N

players/controllers that select values for uiptq, t ě 0, i P N . The agents
in the network seek to cooperatively asymptotically track the state of
a leader node/exosystem with dynamics 9x0 “ Ax0, i.e., xiptq Ñ x0ptq,
@i P N while simultaneously satisfying user-defined distributed perfor-

mances. Before we proceed to the design of the energy-related user-
defined distributed performances we will define the following neighbor-

hood tracking error for every agent,

δi :“
ÿ

jPNi

aijpxi ´ xjq ` gipxi ´ x0q, @i P N , (3.29)

where gi P R` is the pinning gain that shows if an agent is pinned to
the leader node (i.e., gi ‰ 0) and it is nonzero for at least one node.

The dynamics of (3.29) are given by @t ě 0,

9δi “ Aδi ` pdi ` giqBiui ´
ÿ

jPNi

aijBjuj , @i P N , (3.30)

with δi P R
n.

The cost functionals associated to each agent i P N , that depend on
the tracking error δi, the control ui and the controls in the neighborhood
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of agent i given as, uNi
:“ tuj : j P Niu, have the following form,

Jipδip0q; ui, uNi
q “ 1

2

ż 8

0

ripδi, ui, uNi
qdt, @i P N

” 1

2

ż 8

0

˜

δT
i Hiδi ` uT

i Riiui `
ÿ

jPNi

uT
j Rijuj

¸

dt,

@i P N ,

with user defined matrices Hi ľ 0, Rii ą 0, Rij ľ 0, @i, j P N of
appropriate dimensions and p

?
H i, Aq, @i P N are detectable.

Thus given a strongly connected graph G, we are interested in finding
a graphical Nash equilibrium (Vamvoudakis et al., 2012) u‹

i for all agents
i P N in the sense that,

Jipδip0q; u‹
i , u‹

Ni
q ď Jipδip0q; ui, u‹

Ni
q, @ui, i P N .

This can be expressed by the following coupled distributed mini-
mization problems,

Jipδip0q; u‹
i , u‹

Ni
q “ min

ui

Jipδip0q; ui, u‹
Ni

q, @i P N ,

with the dynamics given in (3.30).
Hence, the ultimate goal is to find the distributed optimal value

functions V ‹
i , @i P N defined by,

V ‹
i pδiptqq :“ min

ui

ż 8

t

1

2
pδT

i Hiδi ` uT
i Riiui `

ÿ

jPNi

uT
j Rijujqdt,

@δi, i P N , t ě 0. (3.31)

One can define the Hamiltonians associated with each agent’s neighbor-
hood tracking error (3.30) and each V ‹

i given in (3.31) as follows,

Hi

ˆ

δi, ui, uNi
,

BV ‹
i

Bδi

˙

“ BV ‹
i

Bδi

T
ˆ

Aδi ` pdi ` giqBiui ´
ÿ

jPNi

aijBjuj

˙

` 1

2
δT

i Hiδi ` 1

2
uT

i Riiui

` 1

2

ÿ

jPNi

uT
j Rijuj , @δi, ui, i P N .
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After employing the stationarity condition, in the Hamiltonian, i.e.,
BHip¨q

Bui
“ 0, the optimal control for each i P N can be found to be,

u‹
i pδiq “ arg min

ui

Hi

ˆ

δi, ui, uNi
,

BV ‹
i

Bδi

˙

“ ´pdi ` giqR´1
ii BT

i

BV ‹
i

Bδi
, @δi, (3.32)

that should satisfy the appropriate coupled HJ equations,

Hi

ˆ

δi, u‹
i , u‹

Ni
,

BV ‹
i

Bδi

˙

“ 0, @δi, i P N .

One could represent the value functions as quadratic in the neigh-
borhood tracking error, i.e., V ‹

i pδiq: R
n Ñ R,

V ‹
i pδiq “ 1

2
δT

i Piδi, @δi, i P N , (3.33)

where Pi P R
nˆn, @i P N are the unique symmetric positive definite ma-

trices that solve the following complicated distributed coupled equations
(Vamvoudakis et al., 2012),

δT
i Pi

˜

Aδi ´ pdi ` giq2BiR
´1
ii BT

i Piδi `
ÿ

jPN

aijpdj ` gjqBjR´1
jj BT

j Pjδj

¸

`
˜

Aδi´pdi`giq2BiR
´1
ii BT

i Piδi`
ÿ

jPN

aijpdj ` gjqBjR´1
jj BT

j Pjδj

¸T

Piδi

`
ÿ

jPNi

pdj ` gjq2δT
j PjBjR´1

jj

T
RijR´1

jj BT
j Pjδj

` pdi ` giq2δT
i PiBiRiiB

T
i Piδi ` δT

i Hiδi “ 0, @δi, P N .

By using (3.33), the optimal control (3.32) for every player i P N can
be written as,

u‹
i pδiq “ ´pdi ` giqR´1

ii BT
i Piδi, @δi.

3.5.3 Approximate Solution

The structure used for our approximate solution is motivated by the
Policy Iteration Algorithm that follows, where ǫac is a small number
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Algorithm 11: Policy Iteration for graphical games

1: procedure

2: Given N -tuple of admissible policies µk
i p0q, @i P N and k “ 1.

3: while }V
µpkq

i pδiq ´ V
µpk´1q

i pδiq} ě ǫiac, @i P N do

4: Solve for the N -tuple of costs V k
i pxq using the coupled Bellman

equations

δT
i Qiiδi ` BV k

i

Bδi

T
˜

Aδi ` pdi ` giqBiµ
k
i ´

ÿ

jPNi

αijBjµk
j

¸

` µk
i

T
Riiµ

k
i

`
ÿ

jPNi

µk
j

T
Rijµk

j “ 0, V µk
i p0q “ 0.

5: Update the N -tuple of control policies µk`1
i , @i P N using

µk`1
i “ ´pdi ` giqR´1

ii BT
i

BV k
i

Bδi
.

6: k – k ` 1.
7: end while

8: end procedure

used to terminate the algorithm when two consecutive value functions
differ by less than ǫiac, @i P N .

We should use N critic-networks to approximate the costs and
N actor-networks to approximate the control inputs by using only
distributed information. We assume there exist constant weights Wi

such that the value functions Vi are approximated on a compact set
Ω as,

Vipδiq “ W T
i φipδiq ` ǫipδiq, @δi, @i P N ,

where φipδiq: R
n Ñ R

Ki , @i P N are the activation function basis set
vectors, Ki is the number of neurons in the hidden layer and ǫipδiq
the approximation error. From the approximation literature, the basis
functions can be selected as sigmoids, tanh, polynomials, etc.

Assuming current weight estimates Ŵic, @i P N , the outputs of the
critics are given by,

V̂ipδiq “ Ŵ T
ic φipδiq, @δi, @i P N . (3.34)

iac,

ǫǫiac,
k
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Using the current weight estimates, the approximate Lyapunov-like
equations are given by,

Ĥip¨q “ ripδi, ûi, ûNi
q ` ∇V T

i pδiq
ˆ

Aδi ` pdi ` giqBiûi

´
ÿ

jNi

αijBj ûj

˙

“ ei, @δi, @ûi, @i P N ,

where ei P R, @δi, @i P N are the residual errors due to approximation
and,

ûi “ ´pdi ` giqR´1
ii BT

i ∇φT
i pδiqŴiu, @δi, @i P N , (3.35)

where Ŵiu denote the current estimated values of the ideal
weights Wi.

Now it is desired to pick the tuning for the critic in order to minimize
the square residual errors ei in order to guarantee that Ŵic Ñ Wi,

@i P N . Hence the tuning law for the critic is given as,

9̂
Wic “ ´αi

υi

pυT
i υi ` 1q2

ˆ

υT
i Ŵic ` 1

2
δT

i Qiδi ` ûT
i Riiûi

`
ÿ

jPNi

ûT
j Rij û

˙

, @i P N , (3.36)

where υi “ ∇φipAδi ` pdi ` giqBiûi ´ ř

jPNi
αijBj ûjq and αi P R` is a

tuning gain that determines the speed of convergence. The tuning law
for the actor is given as,

9̂
Wiu “´αiu

˜

pFiŴiu ´ 1
TυT

i Ŵicq ´ 1

4

ÿ

jPNi

p∇φiBiR
´1
ii

T
RijR´1

ii BT
j ∇φT

i q

ˆ Ŵiu
υT

i

pυT
i υi ` 1q2

Ŵjc

¸

, @i P N , (3.37)

where αiu P R` is a tuning gain that determines the speed of conver-
gence, and Fi ą 0 is a matrix that guarantees stability of the system.

Theorem 3.6 (Vamvoudakis et al., 2012, Thm. 6). Let the error dynamics
be given by (3.30), and consider the cooperative game formulation in
(3.31). Let the critic NN at each node be given by (3.34) and the control
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input be given for each node by actor NN (3.35). Let the tuning law for
the i-th critic NN be provided by (3.36) and the tuning law for the i-th
actor NN be provided by (3.37). Assume ῡi “ υi{pυT

i υiq is persistently
exciting. Then the closed-loop signals are UUB.

A pseudocode that describes the proposed adaptive multi-agent
game algorithm has the following form,

Algorithm 12: Multi-Agent Game Algorithm with Distributed
Information
1: procedure

2: Start with initial state δip0q, @i P N and random initial weights
Ŵiup0q, Ŵicp0q, @i P N .

3: Propagate t, δiptq, @i P N .

4: Propagate Ŵicptq, Ŵiuptq, @i P N Ź 9̂
Wic as in (3.36), and 9̂

Wiu as in
(3.37).

5: Compute (3.34) and (3.35).
6: end procedure

3.5.4 Further Reading

The interested reader is directed to Vamvoudakis et al. (2012, 2017a)
for detailed proofs, theorems and simulation examples. In the work
of Zhang et al. (2014c), an online scheme is presented to design the
optimal coordination control for the consensus problem of multiagent
differential games by fuzzy adaptive dynamic programming. In the
paper of Zhang et al. (2014a), the inverse optimal approach is employed
to design distributed consensus protocols that guarantee consensus and
global optimality with respect to some quadratic performance indexes
for identical linear systems on a directed graph. Finally, the authors
in Abouheaf et al. (2014) and Ye and Hu (2017) develop RL-based
solutions for graphical games.
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Model-Free RL with Q-Learning

Unlike the foregoing sections wherein we primarily demonstrated model-
based RL algorithmic schemes, this section discusses model-free RL
algorithms based on a CT Q-learning framework. The presented schemes
solve infinite-horizon optimization problems of linear time-invariant
systems with completely unknown dynamics and single or multiple
players/controllers. We first formulate the appropriate Q-functions
(action-dependent value functions) and the tuning laws based on ac-
tor/critic structures for several cases including, optimal regulation
(Subsection 4.2), Nash games (Subsection 4.3), and multi-agent systems
(Subsection 4.4).

4.1 Introduction and Motivation

Q-learning was the first provably convergent direct optimal adaptive
control algorithm and is a model-free reinforcement learning technique
developed primarily for discrete-time systems, namely Markov Decision
Processes (Watkins and Dayan, 1992). Specifically, Q-learning can be
used to find an optimal action-selection policy based on measurements of
previous state and action observations controlled using a “non-optimal
policy.” It learns an action-dependent value function that ultimately

65
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gives the expected utility of taking a given action in a given state and
following the optimal policy thereafter. When such an action-dependent
value function is learned, the optimal policy can be computed easily.
The biggest strength of Q-learning is that it does not require a model
of the environment. It has been proven in Watkins and Dayan (1992)
that for any finite Markov Decision Process, Q-learning eventually finds
an optimal policy. Q-learning at its simplest uses tables to store data.
This very quickly loses viability with increasing levels of complexity and
dimensionality of the systems. This problem can be solved effectively
by using adapted networks as universal approximators. Specifically,
Q-learning can be improved by using the universal function approxi-
mation property of NNs and especially in the context of approximate
dynamic programming (Werbos, 1992) or neuro-dynamic programming
(Bertsekas and Tsitsiklis, 1995) that allow us to solve difficult optimiza-
tion problems online and forward in time. The work of Melo et al. (2008)
analyzed how reinforcement learning can be combined with function
approximation techniques to find the optimal Q-function in Markov
Decision Processes with infinite state-spaces.

Recently, many research efforts after the work of Watkins and Dayan
(1992) on Q-learning and model-free approaches have focused on dis-
crete time systems and use sequential multi-step algorithms that are not
applicable to feedback control systems. The authors in Al-Tamimi et al.

(2008), have proposed a sequential update Q-learning approach to solve
ZS games in systems with discrete dynamics. Similarly with Al-Tamimi
et al. (2008) the work of Kiumarsi et al. (2014) proposes a Q-learning
framework to solve the optimal tracking problem of discrete time sys-
tems. An output feedback Q-learning approach for partially observable
dynamics processes has been presented in Lewis and Vamvoudakis
(2010). Following the work of Watkins and Dayan (1992) the authors in
Tsitsiklis (1994) proved convergence for undiscounted problems without
assuming that all policies must lead to a zero-cost absorbing state by
allowing the next action to depend on past experiences by considering
asynchronous stochastic approximation. Motivated by the convergence
results of Tsitsiklis (1994) the authors in Beck and Srikant (2012) pro-
vided a bound on the first moment of the error in the constant step-size
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Q-learning for the synchronous and the asynchronous case given dis-
counted reward, infinite-horizon problem, where the system is a discrete,
finite state-space Markov chain with a finite number of available con-
trol actions in each state. The authors in Xu et al. (2012) have used
Q-learning to solve the infinite horizon optimal regulation problem of
unknown networked control systems with time-varying system matrices.

However, in CT systems, things are harder since the Hamiltonian
functions depend on the system dynamics. Till now to apply to CT
systems one has to use discretization of the state and the action space
to apply such techniques, and as such lose important information. The
authors in Mehta and Meyn (2009) have established connections between
Q-learning and nonlinear control of CT models with general state and
action space by observing that the Q-function developed in Watkins
and Dayan (1992) is an extension of the Hamiltonian that appears
in the minimum principle. A variant of Q-learning that provides a
model-free off-policy approach for CT systems has been proposed in
Jiang and Jiang (2012) where the authors solve the ARE iteratively
using system state and input information collected online, without
knowing the system matrices. The aforementioned algorithm is a two-
step algorithm that requires an initial stabilizing policy to start with.
Our algorithm will be simultaneous and will not require such a policy
for initialization. An ǫ-integral Q function has been used to propose an
ǫ-approximate Q-learning framework for solving the linear quadratic
regulator problem of CT systems in Lee et al. (2012) but the authors
can guarantee convergence and UUB only when the initial policy is
stabilizing. The work of Lee et al. (2012) was based mostly on the work
of Vrabie et al. (2009) and Abu-Khalaf et al. (2006) where the authors
propose a sequential algorithm with the necessity of an initial stabilizing
policy to solve the optimal control problem without the drift dynamics.
Our work overcomes these limitations by providing asymptotic stability
of the closed-loop system without any initial stabilizing policy. The
work of Xu et al. (2014) proposes a Q-learning approach to solve the
finite-horizon optimal control problem which eventually reduces to solve
the differential Riccati equation without any proofs of convergence. The
authors of Palanisamy et al. (2014) propose a Q-learning approach
to solve the CT infinite-horizon optimal control problem by writing
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the Q-function with respect to the state, the control input and the
derivatives of the control input. The algorithm proposed in Palanisamy
et al. (2014) uses iterations as in Lee et al. (2012) on the value function
to solve the problem.

4.2 Q-Learning for Optimal Regulation

In this subsection, the infinite horizon optimal control problem is for-
mulated as a Q-learning (model-free) problem by using a quadratic
in the state and control parametrization. An IRL approach will be
used to design and derive tuning formulas for a critic approximator
estimating the action-dependent value of the Q-function and for an
actor approximator estimating the optimal control. The actor and the
critic approximators are tuned simultaneously by measuring informa-
tion along the state and the control trajectories without the need of an

initial admissible (i.e., stabilizing) policy, this is in contrast to existing
Q-learning approaches that use sequential policy iteration algorithms
which delay the convergence, and require admissibility of the initial
policy.

4.2.1 Problem Formulation

Consider the following linear time-invariant CT system,

9xptq “ Axptq ` Buptq, xp0q “ x0, t ě 0, (4.1)

where xptq P R
n is a measurable state vector, uptq P R

m is the control
input and A P R

nˆn, B P R
nˆm are the plant and input matrices,

respectively, that will be considered uncertain/unknown. It is assumed
that the pair pA, Bq is controllable. Our goal is to find a controller u

that minimizes a cost functional of the form,

Jpxp0q; uq “ 1

2

ż 8

0

pxTMx ` uTRuqdt,

with user defined matrices M ľ 0, R ą 0 of appropriate dimensions
and p

?
M, Aq detectable.
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Remark 4.1. Note that the assumptions that the pair pA, Bq is control-
lable and the pair p

?
M, Aq is detectable, will guarantee that the ARE

will have a unique non-negative solution. l

The ultimate goal is to find the optimal value function V ‹ defined by,

V ‹pxptqq :“ min
u

ż 8

t

1

2
pxTMx ` uTRuqdτ, @x, t ě 0, (4.2)

given (4.1) but without any information of the system dynamics.
Before we proceed to the model-free Q-learning approach with the

use of an actor/critic adaptive structure, we shall talk briefly about the
of the infinite-horizon, CT linear quadratic optimal control problem.

One can define the Hamiltonian associated with (4.1) and (4.2) as
follows,

H

ˆ

x, u,
BV ‹

Bx

˙

“ BV ‹T

Bx
pAx`Buq` 1

2
xTMx` 1

2
uTRu, @x, u. (4.3)

After employing the stationarity condition, in the Hamiltonian (4.3),
i.e., BHp¨q

Bu
“ 0, the optimal control can be found to be,

u‹pxq “ arg min
u

H

ˆ

x, u,
BV ‹

Bx

˙

“ ´R´1BT BV ‹

Bx
, @x. (4.4)

Since the system (4.1) is linear we can represent the value function as
quadratic in the state, i.e., V ‹pxq: R

n Ñ R,

V ‹pxq “ 1

2
xTPx, @x,

where P P R
nˆn is the unique symmetric positive definite matrix that

solves the following Riccati equation (Lewis et al., 2012a),

ATP ` PA ´ PBR-1BTP ` M “ 0, (4.5)

and the optimal control (4.4) is given by,

u‹pxq “ ´R´1BTPx, @x. (4.6)

It is important to note that Eqs. (4.5) and (4.6) require complete
knowledge of the system dynamics, i.e., the system and input matrices
A, B. In what follows, we shall develop a Q-learning based approach to
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solve the optimal control problem without an information of the system
dynamics, by adjusting parameters in a adaptive way. To this end, the
value function needs to be parametrized as a function of the state x

and the control u to represent the Q-function. The optimal value given
by (4.2) after adding the Hamiltonian can be written as the following
Q-function or action-dependent value, Qpx, uq: R

n`m Ñ R,

Qpx, uq :“ V ‹pxq ` 1

2
xTP pAx ` Buq ` 1

2
pAx ` BuqTPx

` 1

2
uTRu ` 1

2
xTMx, @x, u, (4.7)

where the optimal cost is V ‹pxq “ 1
2
xTPx with P ą 0. The Q-function

(4.7) can be written in a compact quadratic in the state x and control
u form as follows,

Qpx, uq “ 1

2
UT

„

P ` M ` PA ` ATP PB

BTP R



U

:“ 1

2
UT

„

Qxx Qxu

Qux Quu



U :“ 1

2
UTQ̄U, @x, u,

where U :“
“

xT uT
‰T

, Qxx “ P ` M ` PA ` ATP, Qxu “ PB,

Qux “ QT
xu “ BTP, Quu “ R and Q̄ “

„

Qxx Qxu

Qux Quu



P R
pn`mqˆpn`mq.

A model-free optimal control formulation, can be found by solving
BQpx,uq

Bu
“ 0.

Since the ideal weights for computing Q‹ and u‹ are unknown, one
must consider the following weight estimates. The critic approximator

with Ŵc :“ vechp ˆ̄Qq can be written as,

Q̂px, uq “ Ŵ T
c pU b Uq, @x, u, (4.8)

where Ŵc P R
1
2

pn`mqpn`m`1q are the estimated weights and U :“
“

xT uT
‰T

. Similarly the actor approximator can be expressed as,

ûpxq “ Ŵ T
a x, @x, (4.9)

where Ŵa P R
nˆm are the weight estimates, note also that the state x

is serving as an activation function for the action approximator.
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Remark 4.2. It is worth noting that the critic and the actor approxima-
tors given by (4.8) and (4.9), respectively, do not have any approximation
errors since we have a complete basis representation with respect to
the state x and the control u in the form pU b Uq. For that reason,
we do not employ approximation in a compact set but in the whole
space. l

We have showed in Vrabie et al. (2013) that by using IRL we can
write the value function (4.2) as the following Bellman equation,

V ‹pxptqq “ V ‹pxpt ´ T qq ´ 1

2

ż T

t´T

pxTMx ` uTRuqdτ, (4.10)

where T P R
` is a small fixed time interval. Because the value of (4.10)

is the same with the action-dependent value of Q‹px, u‹q, we can write
(4.10) @x as,

Q‹pxptq, u‹ptqq “ Q‹pxpt ´ T q, u‹pt ´ T qq

´ 1

2

ż T

t´T

pxTMx ` uTRuqdτ. (4.11)

We shall define an error e P R that we would like to eventually drive
to zero by picking appropriately the tuning law for Ŵc. In order to do
that, we shall take into consideration the Bellman Equation (4.11) and
using actual values for the Q-function, (4.11) can be rewritten as,

e : “ Q̂pxptq, uptqq ´ Q̂pxpt ´ T q, upt ´ T qq

` 1

2

ż T

t´T

pxTMx ` uTRuqdτ

“ Ŵ T
c pUptq b Uptqq ` 1

2

ż T

t´T

pxTMx ` uTRuqdτ

´ Ŵ T
c pUpt ´ T q b Upt ´ T qq.

Now for the actor approximator, we can define the error ea P R
m as

follows, ea :“ Ŵ T
a x ` Q̂´1

uu Q̂uxx, where the values of Q̂´1
uu and Q̂ux are

going to be extracted from the vector Ŵc. Now we shall find tuning
updates for Ŵc and Ŵa such that the errors e and ea go to zero. By
following adaptive control techniques Ioannou and Fidan (2006) we can
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define the squared-norm of errors e and ea as,

K1 “ 1

2
}e}2, (4.12)

K2 “ 1

2
}ea}2 . (4.13)

4.2.2 Learning Algorithm

The estimate of Ŵc (in order to guarantee that e Ñ 0 and Ŵc Ñ Wc)
for the critic weights can be constructed by applying gradient descent
in (4.12), using the chain rule and normalizing (following adaptive
control theory Ioannou and Fidan, 2006) as,

9̂
Wc “ ´αc

BK1

BŴc

“ ´αc
σ

p1 ` σTσq2
eT, (4.14)

where σ :“ UptqbUptq´Upt´T qbUpt´T q, and αc P R
` is a constant

gain that determines the speed of convergence.
Similarly, the gradient descent estimate of Ŵa for the actor weights

can be constructed by applying gradient descent in (4.13),

9̂
Wa “ ´αa

BK2

BŴa

“ ´αaxeT
a , (4.15)

where αa P R
` is a constant gain that determines the speed of

convergence.
We now present the main result which guarantees the asymptotic

stability of the learning algorithm of the resulting closed-loop dynamics

Theorem 4.1 (Vamvoudakis, 2017, Thm. 2). Consider the system dy-
namics given by (4.1), the critic approximator given by (4.8) and the
optimal control given by (4.9). The tuning law for the weights of the
critic is given by (4.14) and for the weights of the actor is given by
(4.15). Then the equilibrium point (i.e., origin) of the closed-loop system
is asymptotically stable given a tuning gain for the critic αc sufficiently
larger than the tuning gain for the actor αa and,

1 ă αa ă 1

δλ̄pR´1q
p2λpM ` QxuR´1QT

xuq ´ λ̄pQxuQT
xuqq, (4.16)

where δ is a constant of unity order.
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Remark 4.3. Note that condition (4.16) can be satisfied by picking
appropriately the user defined matrices M , Quu “ R without needing
the exact values of the submatrices Qi

j , where j P txx, xu, ux, uuu. The
condition αc " αa is because in the actor tuning law (4.15), we need
to copy the appropriate weights from the critic tuning law (4.14) (see
error ea). l

A pseudocode that describes the algorithm has the following form,

Algorithm 13: Q-learning for Optimal Regulation

1: procedure

2: Start with initial conditions xp0q, and random initial weights
Ŵcp0q, Ŵap0q, for the critic, and the actor.

3: Propagate t, xptq.
4: Propagate Ŵcptq, Ŵaptq.
5: Compute the Q-function Q̂, and the optimal control û.
6: end procedure

4.2.3 Further Reading

More details about model-free optimal regulation are given in
Vamvoudakis (2017). In the work of Li et al. (2018), a novel off-policy
interleaved Q-learning algorithm is presented for solving the optimal con-
trol problem of an affine nonlinear discrete-time system, using only the
measured data along the system trajectories. Additionally, the authors
in Sahoo and Vamvoudakis (2020) extend the results proposed here to
construct an “on–off” learning-based scheme, while optimally stabilizing
an unknown system. The authors of Devraj et al. (2019) present Zap
Q-learning that is a recent class of RL algorithms, motivated primarily
as a means to accelerate convergence. Finally, the article of Recht (2019)
surveys reinforcement learning from the perspective of optimization and
control, with a focus on continuous control applications.

4.3 Q-Learning for Nash Games

This subsection will consider N players playing in a Nash game. The
N agent/decision makers can be non-cooperative and also can cooperate
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in teams. Each of the agents has access to the full state of the system.
Since solving Nash game requires complete knowledge of the centralized
system dynamics and complicated offline computation, this subsection
presents a completely model-free algorithm to solve the coupled Riccati
equations arising in multi-player NZS Nash games in deterministic
systems. A parametrized Q-function is derived for every of the N -players
in the game that depends on the state and the control inputs of all the
players. Then, we derive model-free controllers based on the Q-functions
parametrization, and then we use 2N -universal approximators such to
approximate the cost and the control of every player, by using namely
a critic and an actor-network.

4.3.1 Problem Formulation

Consider the following linear time-invariant CT system,

9xptq “ Axptq `
N
ÿ

j“1

Bjujptq, xp0q “ x0, t ě 0, (4.17)

where xptq P R
n is a measurable state vector, ujptq P R

mj , j P N :“
t1, . . . , Nu is each control input (or player), and A P R

nˆn, Bj P
R

nˆmj , j P N , are the plant and input matrices, respectively, that
will be considered uncertain/unknown. It is assumed that the unknown
pairs pA, Bjq, @j P N are controllable. The ultimate goal is to find the
optimal value functions V ‹

i , @i P N defined by,

V ‹
i pxptqq :“ min

ui

ż 8

t

1

2

˜

xTHix `
N
ÿ

j“1

uT
j Rijuj

¸

dτ, t ě 0, (4.18)

with user defined matrices Hi ľ 0, Rij ą 0, @i, j P N of appropriate
dimensions and p

?
H i, Aq, @i P N are detectable, and without any

information of the system matrices A and Bi, @i P N that appear
in (4.17).

The value functions need to be parametrized as a function of the
state x and the controls ui, @i P N to represent the Q-function for
each player in the game. The optimal value given by (4.18) after adding
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the Hamiltonian can be written as the following Q-function or action-

dependent value Qipx, ui, u´iq: R
n`

řN
j“1 mj Ñ R,

Qipx, ui, u´iq :“ V ‹
i pxq ` 1

2
xTPi

˜

Ax `
N
ÿ

j“1

Bjuj

¸

` 1

2

˜

Ax `
N
ÿ

j“1

Bjuj

¸T

Pix ` 1

2

N
ÿ

j“1

uT
j Rijuj

` 1

2
xTHix, @x, ui, u´i, @i P N ,

where the optimal cost is V ‹
i pxq “ xTPix with Pi ą 0. A model-free

optimal control formulation, can be found by solving BQip¨q
Bui

“ 0.
Since we do not know the optimal values, we should estimate Q‹

i and

u‹
i with the following actual values for the critic with Ŵic :“ 1

2
vechp ˆ̄Qiq,

Q̂ipx, ui, u´iq “ Ŵ T
ic pUi b Uiq, @i P N , (4.19)

where Ŵic P R
1
2

pn`
řN

j“1 mjqpn`
řN

j“1 mj`1q are the estimated critic weights

and Ui :“
“

xT uT
i uT

1 ¨ ¨ ¨ uT
i´1 uT

i`1 ¨ ¨ ¨ uT
N

‰T
, and for the actor

ûipxq “ Ŵ T
iax, @i P N , (4.20)

where Ŵia P R
nˆmi are the estimated actor weights, note also that the

state x is serving as an activation function for the action network.

Remark 4.4. It is worth noting that the critic and the actor NNs given
by (4.19) and (4.20), respectively, for every player, do not have any
approximation errors since we have a complete basis representation with
respect to the state x and the controls ui, @i P N in the form pUi b Uiq .

For that reason, we do not employ approximation in a compact set but
in the whole space. l

The work of Vrabie et al. (2013) showed that by using integral RL
we can write, the value function (4.18) for each player i P N as the
following Bellman equation,

V ‹
i pxptqq “ V ‹

i pxpt ´ T qq ´ 1

2

ż T

t´T

˜

xTHix `
N
ÿ

j“1

uT
j Rijuj

¸

dτ,

(4.21)
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where T P R
` a small fixed-time sampling interval. It holds that

the value of (4.21) is the same with the action-dependent value of
Q‹

i

`

x, u‹
i , u‹

´i

˘

, thus we can write (4.21) as,

Q‹
i pxptq, u‹

i ptq, u‹
´iptqq “ Q‹pxpt ´ T q, u‹

i pt ´ T q, u‹
´ipt ´ T qq

´ 1

2

ż T

t´T

˜

xTHix `
N
ÿ

j“1

uT
j Rijuj

¸

dτ,

@i P N , (4.22)

where we have substituted the value functions V ‹
i pxptqq and V ‹

i pxpt´T qq
from (4.21) with the action-dependent Q-functions Q‹

i pxptq, u‹
i ptq, u‹

´iptqq
and Q‹

i pxpt ´ T q, u‹
i pt ´ T q, u‹

´ipt ´ T qq respectively, see Vamvoudakis
(2015). In order to find the update law for the critic of each player i P N

we shall define the following error ei P R by rewriting (4.22) after using
actual values for each player’s Q-function as,

ei “ Q̂i pxptq, ûiptq, û´iptqq ´ Q̂i pxpt ´ T q, ûipt ´ T q, û´ipt ´ T qq

` 1

2

ż T

t´T

˜

xTHix `
N
ÿ

j“1

ûT
j Rij ûj

¸

dτ

“ Ŵ T
ic pUiptq b Uiptqq ` 1

2

ż T

t´T

˜

xTHix `
N
ÿ

j“1

ûT
j Rij ûj

¸

dτ

´ Ŵ T
ic pUipt ´ T q b Uipt ´ T qq , @i P N ,

that we would like to eventually drive to zero by picking appropriately
Ŵic, @i P N . Now for each player’s actor NN we can define the error
eia P R

mi as eia :“ Ŵ T
iax ` pQ̂i

uiui
q´1Q̂i

uix
x, @i P N , where the values of

pQ̂i
uiui

q´1 and Q̂i
uix

are going to be extracted from the vector Ŵic. Now
we shall find tuning updates for Ŵic and Ŵia such that ei and eia go to
zero asymptotically @i P N . By following adaptive control techniques
(Ioannou and Fidan, 2006) we can define the squared-norm of errors of
each player i P N , ei and eia as,

Ki1 “ 1

2
}ei}2 , @i P N , (4.23)

and
Ki2 “ 1

2
}eia}2 , @i P N . (4.24)

Quiui
Qi

uix
x,

Quiui
Quix
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4.3.2 Learning Algorithm

The gradient descent estimate of Ŵic for the critic weights of each player
can be constructed by differentiating (4.23) to yield,

9̂
Wic “ ´αic

BKi1

BŴic

“ ´αic
vi

`

1 ` vT
i vi

˘2
eT

i , @i P N , (4.25)

where vi :“ pUiptq b Uiptq ´ Uipt ´ T q b Uipt ´ T qq and αic P R
` is a

constant gain that determines the speed of convergence. The gradient
descent estimate of Ŵa for the actor weights can be constructed by
differentiating (4.24) as,

9̂
Wia “ ´αia

BKi2

BŴia

“ ´αiaxeT
ia, @i P N , (4.26)

where αia P R
` is a constant gain that determines the speed of

convergence.

Theorem 4.2 (Vamvoudakis, 2015, Thm. 2). Consider the system dy-
namics given by (4.17), the critic NN for each player i P N given by
(4.19) and the optimal control for each player i P N given by (4.20).
Assume that the signal ∆ :“ vi

1`vT
i

vi
is PE. The tuning law for the

weights of the critic is given by (4.25) and for the weights of the actor is
given by (4.26). Then, the equilibrium point of the closed loop system
is asymptotically stable given that the tuning gain for the critic αic is
sufficiently larger than the tuning gain for the actor αia, @i P N and,

1 ă αia ă 1

δλ̄
`

R´1
ii

˘

˜

2λ

˜

Hi `
N
ÿ

j“1

Qj
xuj

R´1
jj RijR´1

jj pQj
xuj

qT

¸

´λ̄

˜

N
ÿ

j“1

Qi
xuj

pQi
xuj

qT

¸¸

, (4.27)

where δ P p0, 1q.
Remark 4.5. The necessary conditions for asymptotic stability given
in (4.27) can be satisfied by picking appropriately the user defined
matrices Hi, Rii, Rij , @i, j P N and the tuning gains αic " αia, @i P
N without needing the exact values of the sub-matrices Qi

j , where
j P txx, xu, ux, uuu. l
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A pseudocode that describes the algorithm has the following form,

Algorithm 14: Nash Q-learning

1: procedure

2: Start with initial conditions for every agent xp0q, and random initial
weights Ŵicp0q, Ŵiap0q for the critic and actor approximators.

3: Propagate t, xptq.
4: Propagate Ŵicptq, Ŵiaptq.
5: Compute the Q-function Q̂i, and the control ûi.
6: end procedure

4.3.3 Further Reading

More details about model-free Nash games are given in Vamvoudakis
(2015).

4.4 Q-Learning for Multi-Agent Systems

A cooperative Q-learning approach is now developed to enable the agents
in large networks to synchronize to the behavior of an unknown leader
by each optimizing a distributed performance criterion that depends
only on a subset of the agents in the network. The novel distributed
Q-functions are parametrized as functions of the tracking error, control
and adversarial inputs in the neighborhood. In the developed approach,
the agents coordinate with the neighbors in order to pick their min-
imizing model-free policies in such a way to guarantee convergence
to a graphical Nash equilibrium and also attenuation of maximizing
worst-case adversarial inputs. A structure of 2-actors and a single critic
approximators are used for each agent in the network. The 2-actors
are used to approximate the optimal control input and the worst-case
adversarial input, while the critic approximator is used to approximate
the optimal cost of each of the coupled optimizations. Effective tuning
laws are proposed to solve the model-free cooperative game problem
while also guaranteeing closed-loop stability of the equilibrium point.
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4.4.1 Problem Formulation

Consider a networked-system G, consisting of N agents each modeled
@i P N :“ t1, . . . , Nu by the following dynamics,

9xiptq “ Axiptq ` Biuiptq ` Diviptq, xip0q “ xi0, t ě 0,

where xiptq P R
n is a measurable state vector available for feedback by

each agent and known initial conditions xip0q, uiptq P R
mi , i P N :“

t1, . . . , Nu is each control input (or minimizing player), viptq P R
li , i P

N :“ t1, . . . , Nu is each adversarial input (or maximizing player), and
A P R

nˆn, Bi P R
nˆmi , Di P R

nˆli , i P N are the plant, control input
and adversarial input matrices, respectively, that will be considered
uncertain/unknown. It is assumed that the unknown pairs pA, Biq, @i P
N are stabilizable. We have a total of 2N players/controllers that select
values for uiptq, t ě 0, i P N and viptq, t ě 0, i P N . The agents in the
network seek to cooperatively asymptotically track the state of a leader
node/exosystem with dynamics 9xL “ AxL, i.e., xiptq´xLptq Ñ 0, @i P N

while simultaneously satisfying user-defined distributed performances.
Now we shall proceed to the design of the user-defined distributed

performances. For that reason, we shall define the following neighborhood

tracking error for every agent,

ei :“
ÿ

jPNi

aijpxi ´ xjq ` gipxi ´ xLq, @i P N , (4.28)

where gi P R` is the pinning gain that shows if an agent is pinned to
the leader node (i.e., gi ‰ 0) and it is nonzero for at least one node.

The dynamics of (4.28) are given by,

9ei “ Aei ` pdi ` giqpBiui ` Diviq ´
ÿ

jPNi

aijpBjuj ` Djvjq, @i P N ,

(4.29)

with ei P R
n.

The cost functionals associated to each agent i P N , that depend
on the tracking error ei, the control ui, the controls in the neighbor-
hood of agent i given as, uNi

:“ tuj : j P Niu, the adversarial input
vi and the adversarial inputs in the neighborhood of agent i given as
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vNi
:“ tvj : j P Niu, have the following form:

Jipeip0q; ui, uNi
, vi, vNi

q “ 1

2

ż 8

0

peT
i Hiei ` puT

i Riiui ´ γ2
iiv

T
i viqq

`
ÿ

jPNi

puT
j Rijuj ´ γ2

ijvT
j vjqdt, @i P N ,

with matrices Hi ľ 0, Rii ą 0, Rij ľ 0, @i, j P N of appropriate dimen-
sions, γii, γij P R

`, @i P N and
`?

H i, A
˘

, @i P N are detectable.
Hence, given a strongly connected graph G, we are interested in find-

ing a graphical Nash equilibrium (Başar and Olsder, 1999; Vamvoudakis
et al., 2012), that is translated to a saddle point u‹

i , v‹
i for every agent

i P N in the sense that,

Jipeip0q; u‹
i , u‹

Ni
, vi, v‹

Ni
q ď Jipeip0q; u‹

i , u‹
Ni

, v‹
i , v‹

Ni
q

ď Jipeip0q; ui, u‹
Ni

, v‹
i , v‹

Ni
q, @ui, vi, @i P N .

This can be expressed by the following coupled distributed optimization
problems @eip0q:

Jipeip0q; u‹
i , u‹

Ni
, v‹

i , v‹
Ni

q “ min
ui

Jipeip0q; ui, u‹
Ni

, v‹
i , v‹

Ni
q

“ max
vi

Jipeip0q; u‹
i , u‹

Ni
, vi, v‹

Ni
q,

given the dynamics in (4.28).
Thus, the ultimate goal is to find the distributed optimal value

functions V ‹
i , @i P N defined by,

V ‹
i peiptqq :“ min

ui

max
vi

ż 8

t

1

2
peT

i Hiei ` puT
i Riiui ´ γ2

iiv
T
i viq

`
ÿ

jPNi

puT
j Rijuj ´ γ2

ijvT
j vjqqdτ, t ě 0, @ei, i P N , (4.30)

given (4.29), but without any information of the system matrices A, Bi,
Di, @i P N and pinning gains gi, @i P N .

Remark 4.6. Note that the assumptions that the pairs pA, Biq , @i P N

are stabilizable and the pairs
`?

H i, A
˘

, @i P N are detectable will
guarantee that the coupled AREs will have a unique non-negative
solution (Başar and Bernhard, 2008). l
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The value functions need to be parametrized as functions of the
neighborhood tracking error ei, the controls ui and uNi

and the ad-
versarial inputs vi and vNi

to represent the distributed Q-function,
i.e., sparse cooperative learning, for each agent in the game. The op-
timal value given by (4.30) after adding the Hamiltonian can be writ-
ten as the following distributed Q-function or action-dependent value

Qipei, ui, uNi
, vi, vNi

q: R
n`mi`li`

ř

jPNi
pmj`ljq Ñ R,

Qipei, ui, uNi
, vi, vNi

q :“ V ‹
i peiq ` BV ‹

i

Bei

T
ˆ

Aei ` pdi ` giqpBiui ` Diviq

´
ÿ

jPNi

aijpBjuj ` Djvjq
˙

` 1

2

ˆ

eT
i Hiei ` puT

i Riiui ´ γ2
iiv

T
i viq

`
ÿ

jPNi

puT
j Rijuj ´ γ2

ijvT
j vjq

˙

,

@ei, ui, uNi
, vi, vNi

, @i P N ,

where the optimal cost is V ‹
i peiq “ 1

2
eT

i Piei, @i P N .

A model-free formulation, can be found by solving BQip¨q
Bui

“ 0 to
write,

u‹
i peiq “ arg min

ui

Qipei, ui, uNi
, vi, vNi

q

“ ´pQi
uiui

q´1Qi
uiei

ei, @i P N , (4.31)

and BQip¨q
Bvi

“ 0 to write,

v‹
i peiq “ arg max

vi

Qi pei, ui, uNi
, vi, vNi

q

“ ´
`

Qi
vivi

˘´1
Qi

viei
ei, @i P N . (4.32)

The critic approximator is given by,

Q̂ipei, ui, uNi
, vi, vNi

q “ Ŵ T
ic pUi b Uiq, @i P N , (4.33)

where Ŵic are estimated critic weights of the optimal weights and

Ui :“
“

eT
i uT

i uT
Ni

vT
i vT

Ni

‰T
; the control actor approximator is

Quiui
Quiei

Qvivi

˘

Qviei
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given as,

ûipeiq “ Ŵ T
iaei, @i P N , (4.34)

where Ŵia P R
nˆmi are estimated actor weights of the optimal weights;

and the adversarial actor approximator is given by,

v̂ipeiq “ Ŵ T
idei, @i P N , (4.35)

where Ŵid P R
nˆli are estimated actor weights of the optimal weights.

We have showed in Vrabie et al. (2013) that the value function (4.30)
for each agent satisfies the following Bellman equation:

V ‹
i peiptqq “ V ‹

i peipt ´ T qq ´ 1

2

ż T

t´T

ˆ

eT
i Hiei ` pu‹T

i Riiu
‹
i ´ γ2

iiv
‹T
i v‹

i q

`
ÿ

jPNi

pu‹T
j Riju‹

j ´ γ2
ijv‹T

j v‹
j q

˙

dτ, @i P N , (4.36)

where T P R
` is a small fixed time interval that defines how fast the

agent measures her own state and the neighboring states.
Alternatively, we can write (4.36) in terms of the distributed Qi

function of each agent,

Q‹
i peiptq, u‹

i ptq, u‹
Ni

ptq, v‹
i ptq, v‹

Ni
ptqq

“ Q‹peipt ´ T q, u‹
i pt ´ T q, u‹

Ni
pt ´ T q, v‹

i pt ´ T q, v‹
Ni

pt ´ T qq

´ 1

2

ż T

t´T

ˆ

eT
i Hiei ` pu‹T

i Riiu
‹
i ´ γ2

iiv
‹T
i v‹

i q.

`
ÿ

jPNi

pu‹T
j Riju‹

j ´ γ2
ijv‹T

j v‹
j q

˙

dτ @i P N . (4.37)

Remark 4.7. Note that although the value of the small fixed time
interval T does not affect in any way, the convergence property of the
algorithm, it is related to the excitation condition necessary in the setup
of a numerically posed least squares problem and the least squares
solution. For more details, please see Vamvoudakis et al. (2014). l

4.4.2 Cooperative Learning Solution

To find the update law for the critic approximator of each agent i P N ,

we define the following error Ei P R that we would like to eventually



4.4. Q-Learning for Multi-Agent Systems 83

drive to zero by tuning Ŵic, @i P N appropriately. This error is defined
by the difference between the left- and the right-hand sides of (4.37)
with the actual weights replaced by Ŵic,

Ei :“ Ŵ T
ic pUiptq b Uiptqq ` 1

2

ż T

t´T

ˆ

eT
i Hiei ` pûT

i Riiûi

´ γ2
iiv̂

T
i v̂iq `

ÿ

jPNi

pûT
j Rij ûj ´ γ2

ij v̂T
j v̂jq

˙

dτ

´ Ŵ T
ic pUipt ´ T q b Uipt ´ T qq, @i P N .

For each agent’s control actor approximator, we can define the error
Eia P R

mi as the difference between the control (4.34) that uses the
estimated weights and the optimal control (4.31) with the matrices
Qi

uiui
, and Qi

uiei
replaced by the critic estimates extracted from,

Eia :“ Ŵ T
iaei ` pQ̂i

uiui
q´1Q̂i

uiei
ei, @i P N .

Similarly, for each agent’s adversarial actor approximator, we can define
the error Eid P R

li as the difference between the control (4.35) that uses
the estimated weights and the optimal control (4.32) with the matrices
Qi

vivi
, and Qi

viei
replaced by the critic estimates extracted from Ŵic,

Eid :“ Ŵ T
idei ` pQ̂i

vivi
q´1Q̂i

viei
ei, @i P N .

To find tuning updates for Ŵic, Ŵia P R
nˆmi , and Ŵid P R

nˆli such
that the errors Ei P R, Eia P R

mi and Eid P R
li
i go to zero @i P N , we

follow adaptive control techniques as in Ioannou and Fidan (2006) and
define the squared norm of errors of each agent i P N , Ei, Eia, and
Eid as,

Ki1 “ 1

2
}Ei}2 , @i P N , (4.38)

Ki2 “ 1

2
}Eia}2 , @i P N , (4.39)

and
Kie “ 1

2
}Eid}2 , @i P N . (4.40)

Quiuii
, Quiei

Quiui
Quiei

,Qvivi
Qviei

Qvivi
Qviei
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The gradient descent estimate of Ŵic for the critic weights of each
agent can be constructed by differentiating (4.38) to yield,

9̂
Wic “ ´αic

BKi1

BŴic

“ ´αic
νiEi

p1 ` pUiptq b Uipt ´ T q b Uipt ´ T qqTνiq2
, @i P N ,

(4.41)

where νi “ Uiptq b Uiptq ´ Uipt ´ T q b Uipt ´ T q and αic P R
` is a

constant gain that determines the speed of the critic approximator
convergence.

Similarly, by using (4.39), the gradient descent estimate of Ŵia for
the control actor weights can be constructed as,

9̂
Wia “ ´αia

BKi2

BŴia

“ ´αiaeiE
T
ia @i P N , (4.42)

where αia P R
` is a constant gain that determines the speed of the

actor approximator convergence, and finally by using (4.40) the gradi-
ent descent estimate of Ŵid for the adversarial actor weights can be
constructed as,

9̂
Wid “ ´αid

BKi2

BŴid

“ ´αideiE
T
id @i P N ,

where αid P R
` is a constant gain that determines the speed of the

actor approximator convergence.

Theorem 4.3 (Vamvoudakis and Hespanha, 2018, Thm. 2). Assume that
the agents are strongly connected in the networked system G. Consider
the neighborhood tracking error dynamics given by (4.29), the critic
approximator for each agent i P N given by (4.33), the optimal control
for each agent i P N given by (4.34), the worst case adversarial input
for each agent i P N given by (4.35), the tuning law for the weights
of the critic given by (4.41), for the weights of the control actor given
by (4.42), and for the weights of the adversarial actor given by (4.35).
Assume that the tuning laws for the critic are faster than the tuning
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laws for the control and adversarial actors, and

αia ą 1; αid ą 1, (4.43)

αiaλ̄pR´1
ii q ` αid

γ2
ii

ă 2

δi

ˆ

λpHi ` Qi
eiui

R´1
ii pQi

eiui
qTq

´ 1

2
λ̄

ˆ

Qi
e1ui

pQi
eiui

qT ` 2

γ2
ii

Qi
eivi

pQi
eivi

qT

˙ ˙

(4.44)

αjaλ̄pR´1
jj q ` αjd

γ2
jj

ă 2

δj
λpQj

eiuj
R´1

jj RijR´1
jj pQj

e,juj
qTq

´ 1

2
λ̄

ˆ

Qi
eiuj

pQi
eiuj

qT `
γ2

ij

γ4
jj

Qi
eivj

pQi
eivj

qT

˙

, @j P Ni, (4.45)

where δi P p0, 1q. Then, the equilibrium point of the closed loop system
is globally asymptotically stable.

Remark 4.8. In order to satisfy the conditions (4.43)–(4.45), we have to
pick the tuning gains αia, αid, @i P N , for each control and adversarial
actor such that all three inequalities are met simultaneously. l

Remark 4.9. The necessary conditions given in (4.44) and (4.45) can be
satisfied by picking appropriately the user defined matrices Hi, Rii, Rij ,
γii, γij , @i, j P N and the tuning gains αic " ´αia , αic " αid, @i P N ,
without needing to know the exact values of the submatrices Qi

p.q.
Regarding the tuning gains conditions, as noted in adaptive control
(Ioannou and Fidan, 2006), large adaptive gains can cause high-frequency
oscillations in the control signal and reduced tolerance to time-delays
that will destabilize the system. There are not any systematic approaches
to pick a satisfactory adaptation gain, hence, trial and error, intuition
or Monte Carlo simulations can serve as guidelines. l

Remark 4.10. In our algorithm, there are no offline computations, nei-
ther requirements for storage of any data in the memory, but everything
happens as in a plug-n-play framework for every agent by measuring
the system trajectories in the neighborhood. The size of the network
N increases the complexity since we will have more distributed op-
timization criteria to optimize, but on the other side the position of
leader(s) does not affect the convergence as long as the graph is strongly
connected. l

Qe1ui

Qeiui
R Qeiui

Qeiui
Qeivi

Qeivi

Qj
eiuj

Qe,jue,juj

Qeiuj
Qeiuj

Qeivj
Qeivj
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A pseudocode that describes the algorithm has the following form,

Algorithm 15: Multi-Agent Q-learning

1: procedure

2: Start with initial conditions for every agent xip0q, and random ini-
tial weights Ŵicp0q, Ŵiap0q, Ŵidp0q for the critic, actor and worst case
adversarial approximator for each agent.

3: Propagate t, xiptq and xjptq in the neighborhood to compute ei.
4: Propagate Ŵicptq, Ŵiaptq, Ŵidptq.
5: Compute the Q-function Q̂i, the control ûi, and the adversarial input

v̂i for each agent.
6: end procedure

4.4.3 Further Reading

More details about multi-agent model-free learning can be found in
Vamvoudakis and Hespanha (2018).



5

Model-Based and Model-Free Intermittent RL

Event-triggered control is an emerging control strategy suitable for
reducing the traffic of information between sensors and controllers. This
is attained by closing the control loop only when a user-designed trig-
gering condition is satisfied, and letting the system evolve in an open
loop fashion otherwise. Sparse communication and less computation
could result in decongestion of the shared network medium and energy
save for devices as long as guarantees of stability and performance are
satisfied. In this section, Subsection 5.1 provides the stimulus for devel-
oping event-triggered optimal controllers. In the sequel, we demonstrate
the state of the art intermittent RL algorithms for nonlinear systems
addressing the problems of optimal regulation to the equilibrium point
of the system as well as of the desired trajectory optimal tracking in
Subsections 5.2 and 5.3, respectively. Finally, in Subsection 5.4, we
present a model-free event-triggered optimal control algorithm for CT
linear systems.

5.1 Introduction and Motivation

Shared congestion and energy saving objectives demand that every
information through a network should be rigorously decided when to

87
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transmit. For that reason, one needs to design “bandwidth” efficient con-
trollers that can function in event-driven environments and update their
values only when needed. Bandwidth efficient policy design is a newly
developed framework that can potentially enhance the performance of
applications that have limited resources and bandwidth and offers a new
point of view, with respect to conventional time-driven strategies, on how
information could be sampled for control purposes. The bandwidth effi-
cient control algorithms (Heemels et al., 2008; Lemmon, 2010; Tabuada,
2007) are composed of a feedback controller updated based on sampled
state, and the event-triggering mechanism that determines when the
controller has to be transmitted from a stability and performance point
of view. This can reduce the computation and communication resources
significantly. All the bandwidth efficient control algorithms available in
the literature rely on a combination of offline computations, in the sense
of computing the Riccati or HJB equations, and online computations in
the sense of updating the controller. Computing and updating controller
parameters using online solutions may allow for changing dynamics, e.g.,
to handle the reduced weight of an aircraft as the fuel burns. All this
work has been mostly done for linear systems. For nonlinear systems
things are more complicated because of the infeasibility of the HJB
equation. For that reason, one needs to combine bandwidth efficient
controllers with computational intelligent ideas to solve the complicated
HJB equation online by updating the controller only when it is needed
but still guaranteeing optimal performance of the original system and
not a linearized version of it. To overcome all those limitations we shall
use machine learning techniques and specifically an actor/critic NN
framework (Lewis et al., 2012b) to find new model-free adaptive learning
techniques with formal robustness and optimality guarantees. Most of
the ground-breaking work on bandwidth efficient control algorithms (see
Donkers and Heemels, 2012; Garcia and Antsaklis, 2013; Heemels et al.,
2008; Lemmon, 2010; Tabuada, 2007; Wang and Lemmon, 2011 and
the references therein) cannot guarantee optimality, require complete
knowledge of the models, and consider mostly linear systems without
any self-learning capabilities. On the contrary, the work of Molin and
Hirche (2013) proposes two optimal event-based control design under
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lossy communication but despite of their computational benefits com-
pared to the optimal solution, it turns out that both algorithms are
sub-optimal and their algorithm relies heavily on offline optimization
schemes with complete information of the model.

5.2 Optimal Control of Nonlinear Systems

This subsection develops an RL-based event-triggered control algorithm
for nonlinear CT systems. The goal is to reduce the controller updates,
by sampling the state only when an event is triggered to maintain
stability and optimality. The online algorithm is implemented based on
an actor/critic NN structure. A critic NN is used to approximate the
cost and an actor NN is used to approximate the optimal event-triggered
controller. Since in the algorithm proposed there are dynamics that
exhibit continuous evolution described by ordinary differential equations
and instantaneous jumps or impulses, we will use an impulsive system
approach.

5.2.1 Problem Formulation

Consider a nonlinear CT system given by (2.1). In order to save re-
sources, the controller will work with a sampled version of the state.
For that reason, one needs to introduce a sampled-data component that
is characterized by a monotone increasing sequence of sampling instants
(broadcast release times) trju8

j“1, where rj is the j-th consecutive sam-
pling instant. The output of the sampled-data component is a sequence
of sampled states x̂j , where x̂j “ xprjq for all t P rrj , rj`1q and j P N.
The controller maps the sampled state onto a control vector ûj , which
after using a zero-order hold (ZOH) becomes a CT input signal. For
simplicity we will assume that the sampled-data systems have zero task
delays. In order to decide when to trigger an event we will define the
gap or difference between the current state xptq and the sampled state
x̂jptq as,

ejptq :“ x̂jptq ´ xptq, @t P prj´1, rjs,
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and the dynamics of the gap are evolving according to,

9ejptq “ ´ 9xptq, t P prj´1, rjs, ejp0q “ 0.

Remark 5.1. Note that when an event is triggered at t “ rj , a new
state measurement is rendered that resets the gap ej to zero. l

We want to find a controller u of the form u “ kpx̂jptqq ” kpxptq `
ejptqq that minimizes a cost functional similar to the one with the
time-triggered controller,

Jpxp0q; uq “
ż 8

0

puTu ` Qpxqqdτ, @xp0q, (5.1)

with positive definite function Qpxq on R
n and with limited updates.

The ultimate goal is to find the optimal cost function V ‹ defined by,

V ‹pxptqq :“ min
u

ż 8

t

puTu ` Qpxqqdτ, t ě 0, (5.2)

subject to the constraint (2.1) given an aperiodic event-triggered con-
troller as will be defined in the subsequent analysis.

One can define the Hamiltonian associated with (2.1) and (5.2) for
the time-triggered case as,

H

ˆ

x, upxq, BV ‹pxq
Bx

˙

“ BV ‹pxq
Bx

T

pfpxq ` gpxqupxqq

` upxqTupxq ` Qpxq, @x, u. (5.3)

Now assume that the controller has unlimited bandwidth. Then one
needs to find the control input uptq such that the performance (5.1)
is minimized. Hence we will employ, the stationarity condition (Lewis
et al., 2012a) into the Hamiltonian Equation (5.3) and we will have,

u‹pxq “ ´1

2
gpxqT BV ‹pxq

Bx
, (5.4)

for the time-triggered case.
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The optimal cost and the optimal control satisfy the following HJB
equation,

H

ˆ

x, u‹pxq, BV ‹pxq
Bx

˙

” BV ‹pxq
Bx

Tˆ

fpxq ´ 1

2
gpxqgpxqT BV ‹pxq

Bx

˙

`Qpxq

` 1

4

BV ‹pxq
Bx

T

gpxqgpxqT BV ‹pxq
Bx

“ 0, @x.

(5.5)

From now on we will call the HJB (5.5) as time-triggered HJB
equation.

In order to reduce the communication between the controller and
the plant, one needs to use an event-triggered version of the above
HJB Equation (5.5) by introducing a sampled-data component with
aperiodic controller updates that ensure a certain condition on the
state of the plant to guarantee stability and performance as we will
see in the subsequent analysis. For that reason, the control input uses
the sampled-state information instead of the true one and hence (5.4)
becomes,

u‹px̂jq “ ´1

2
gpx̂jqT BV ‹px̂jq

Bx
, for t P prj´1, rjs and j P N. (5.6)

By using the event-triggered controller given by (5.6), the HJB
Equation (5.5) becomes @x, x̂j P R

n,

H

ˆ

x, u‹px̂jq, BV ‹pxq
Bx

˙

“ BV ‹pxq
Bx

T ˆ

fpxq ´ 1

2
gpxqgpx̂jqT BV ‹px̂jq

Bx

˙

` 1

4

BV ‹px̂jq
Bx

T

gpx̂jqgpx̂jqT BV ‹px̂jq
Bx

` Qpxq,
(5.7)

which is eventually the equation we would like to quantify and compare
it to (5.5).

Solving the event-triggered HJB Equation (5.7) for the optimal cost
for nonlinear systems is in most of the cases infeasible and has to be
done in an offline manner that does not allow the system to change its
objective while operating. For that reason, the following subsection will
provide an actor/critic NN framework to approximate the solution of
the discretely sampled state controller HJB and Riccati equations.
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5.2.2 Approximate Solution

The first step to solve the event-triggered HJB Equation (5.7) is to
approximate the value function V ‹pxq from (5.2). The value function
can be represented in a compact set Ω Ď R

n by a critic NN of the form,

V ‹pxq “ W ‹Tφpxq ` ǫcpxq, (5.8)

where the W ‹ P R
h denote the ideal weights bounded as }W ‹} ď Wmax,

and φ – rφ1 φ2 . . . φhs: R
n Ð R

h, is a bounded continuously differ-
entiable basis function (}φ} ď φmax and } Bφ

Bx
} ď φdmax) the activation

functions with h neurons, and ǫcpxq is the corresponding residual error
such that supxPΩ }ǫc} ď ǫcmax and supxPΩ } Bǫc

Bx
} ď ǫdcmax. The activation

functions φ are selected such as h Ñ 8 one has a complete independent
basis for V ‹. For causality issues and due to the online nature of our
algorithm, we will define the triggering inter execution release time to
be in t P prj´1, rjs with j P N (in the subsequent analysis, j will be in
this set).

Based on this, the optimal event-triggered controller can be re-
written as,

u‹px̂jq “ ´1

2
gpx̂jqT

˜

Bφpx̂jq
Bx

T

W ‹ ` Bǫcpx̂jq
Bx

¸

, t P prj´1, rjs. (5.9)

Remark 5.2. The control input jumps at the triggering instants and
remains constant @t P prj´1, rjs. This is in general achieved with zero-
order hold but we shall see that in our algorithm it is not necessary. l

The optimal event-triggered controller (5.9) can be approximated
by another NN which we call an actor. This has the following form for
all t P prj´1, rjs,

u‹px̂jq “ W ‹
u

Tφupx̂jq ` ǫupx̂jq, @x̂j , j P N, (5.10)

where W ‹
u P R

h2ˆm are the optimal weights and φupx̂jq are the basis
functions defined similarly to the critic and h2 is the number of basis
and ǫu is the actor approximation error. Note that in order for u‹

to be uniformly approximated the activation functions must define a
complete independent basis set. The residual error ǫu and the activation
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functions are assumed to be upper bounded by positive constants as
supx̂jPΩ }ǫu} ď ǫumax and }φu} ď φumax, respectively.

The value function (5.8) and the optimal policy (5.10) using current
estimates Ŵc and Ŵu, respectively, of the ideal weights W ‹ and W ‹

u

are given by the following critic and actor NNs,

V̂ pxptqq “ Ŵ T
c φpxptqq, @x, (5.11)

ûpx̂jq “ Ŵ T
u φupx̂jq, @x̂j . (5.12)

We define the critic error as W̃c :“ W ‹ ´ Ŵc and the actor error as
W̃u :“ W ‹

u ´ Ŵu. Our goal now should be to find the tuning laws for
the weights Ŵ and Ŵu. In order to do that, we will use adaptive control
techniques (Ioannou and Fidan, 2006).

Hence one needs to pick the weights Ŵc as,

9̂
Wc “ ´α

ω

pωTω ` 1q2
pωTŴc ` r̂q, (5.13)

where α determines the speed of convergence.
Now in order to find the tuning for the actor NN we need to define

the error eu P R
m in the following form,

eu :“ Ŵuφupx̂jq ` 1

2
gpx̂jqT Bφupx̂jq

Bx

T

Ŵc, @x̂j .

The objective is to select Ŵu such that the error eu goes to zero. For
that reason, we will select to minimize the following squared error
performance,

Eu “ 1

2
trteT

u euu.

The nature of the update law for the actors will have an aperiodic
nature and hence, it has to be updated only at the trigger instants and
held constant otherwise. This has a form of an impulsive system as
described in Haddad et al. (2006) and Hespanha et al. (2008).

We can then define the following laws,

9̂
Wuptq “ 0, for rj´1 ă t ď rj , (5.14)
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and the jump equation to compute Ŵupr`
j q given by,

Ŵ `
u “ Ŵuptq ´ αuφupxptqq

ˆ

Ŵ T
u φupxptqq ` 1

2
gpxptqqT Bφpxptqq

Bx

T

Ŵc

˙T

,

for t “ rj . (5.15)

We now present the main theorem, which establishes asymptotic stability
of the impulsive closed-loop system along with convergence to the
optimal solution.

Theorem 5.1 (Vamvoudakis, 2014a, Thm. 3). Consider the nonlinear
CT system given by (2.1) with the event-triggered control input given
by (5.12) and the critic NN given by (5.11). The tuning laws for the CT
critic and impulsive actor NNs are given by (5.13), (5.14) and (5.15),
respectively. Then there exists a quadruple

`

Ωx ˆ Ωx̂j
ˆ ΩW̃c

ˆ ΩW̃u

˘

Ă
Ω with Ω compact such that the solution of the impulsive system ψ P
`

Ωx ˆ Ωx̂j
ˆ ΩW̃c

ˆ ΩW̃u

˘

exists globally and converges asymptotically
to zero for all xp0q inside Ωx, x̂jp0q inside Ωx̂j

, Wcp0q inside ΩW̃c
and

Wup0q inside ΩW̃u
given the following triggering condition:

}ej}2 ď p1 ´ β2q
L2

λpQq}x}2 ` 1

L2
}Ŵ T

u φupx̂jq}2, (5.16)

where β P p0, 1q and the following inequalities are satisfied:

α ą
d

1

8λpMq ,

for the critic NN and,
ˆ

φ2
u max ´ 3

2
´ αu

2
φ4

u max

˙

ą 0,

for the actor NN.

Remark 5.3. As the bandwidth increases by tweaking β to be close
to 1 one approaches asymptotically the performance of the infinite
bandwidth or time-triggered controller. l

A pseudocode that describes the proposed RL algorithm has the
following form,
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Algorithm 16: Event-Triggered RL Algorithm

1: procedure

2: Start with initial state xp0q and random initial weights Ŵup0q, Ŵ p0q.
3: Propagate t, xptq.
4: Monitor ejptq using condition (5.16).

5: Propagate Ŵuptq, Ŵcptq Ź 9̂
Wu as in (5.14), and Ŵ `

u as in (5.15) and
9̂

Wc as in (5.13).
6: Compute V̂ pxptqq “ Ŵ T

c φpxptqq, @x, Ź output of the Critic, and
ûpx̂jq “ Ŵ T

u φupx̂jq, @x̂j Ź output of the Actor.
7: end procedure

5.2.3 Further Reading

For more technical details and simulations, the interested reader is
directed to Vamvoudakis (2014a,b). The work of Yang et al. (2020b) pre-
sented an intermittent framework for safe RL algorithms by leveraging
an actor/critic structure to solve the problem online while guaranteeing
optimality, stability, and safety. Finally, the authors in Zhong and He
(2016), Wang et al. (2017a), Solowjow and Trimpe (2020), Gao et al.

(2016), Zhang et al. (2016b), Zhu et al. (2016), Dong et al. (2016a),
Wang et al. (2016), Dong et al. (2016b), and Zhang et al. (2016a) in-
spired by the work demonstrated here, develop event-triggered online
adaptive learning schemes.

5.3 Optimal Tracking Control of Nonlinear Systems

The basic problems in control theory are the regulation of the system
to an equilibrium point and the tracking of the desired trajectory. In
the preceding subsection, we coped with the optimal regulation of
nonlinear systems. Now, in this subsection, we propose a novel event-
triggered optimal tracking control algorithm for nonlinear systems
with an infinite horizon discounted cost. The problem is formulated
by appropriately augmenting the system and the reference dynamics
and then using ideas from RL to provide a solution. Namely, a critic
network is used to estimate the optimal cost, while an actor-network
is used to approximate the optimal event-triggered controller. Because
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the actor-network updates only when an event occurs, we shall use a
zero-order hold along with appropriate tuning laws to encounter for
this behavior. Because we have dynamics that evolve in continuous
and discrete time, we write the closed-loop system as an impulsive
model and prove asymptotic stability of the equilibrium point and Zeno
behavior exclusion.

5.3.1 Problem Formulation

Consider the input affine nonlinear system defined by (2.1). In order
to achieve the desired output trajectory, we shall use the following
exosystem,

9zptq “ fdpzptqq, zp0q “ z0, (5.17)

where zptq P R
n denotes the bounded desired trajectory and fdpzptqq a

Lipschitz continuous function with fdp0q “ 0.
Because we would like to achieve tracking of a desired trajectory,

we shall define the following tracking error,

etrackptq :“ x ´ z,

with dynamics,

9etrack “ f petrackptq ` zptqq ` g petrackptq ` zptqq uptq ´ fdpzptqq,
t ě 0. (5.18)

One can define the augmented state xaug :“
“

eT
track zT

‰T P R
2n as in

(Modares and Lewis, 2014) and write the augmented dynamics of (5.17)
and (5.18) as,

9xaug “ faug pxaugq ` gaug pxaugq uptq, (5.19)

where

faug pxaugq :“
„

f petrackptq ` zptqq ´ fdpzptqq
fdpzptqq



and

gaug pxaugq :“
„

g petrackptq ` zptqq
0



.

In order to save resources, the controller will work with a sampled
version of the state obtained at the triggering instants, that is, the
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controller is updated only when, as we shall see later, the triggering
condition is satisfied. For that reason, one needs to introduce a sampled-
data component that is characterized by a monotone increasing sequence
of sampling instants (broadcast release times) trju8

j“1
, where rj is the

j th consecutive sampling instant (impulse times) that satisfies 0 ď t0

t1 ă ¨ ¨ ¨ ă rj ă ¨ ¨ ¨ and limjÑ8 rj “ 8. The output of the sampled-data
component is a sequence of sampled states x̂aug with x̂aug “ xaug prjq
for all t P prj , rj`1s and j P N. The controller maps the sampled state
onto a control vector u, which after using a zero-order hold becomes a
CT input signal. For simplicity, we will assume that the sampled-data
systems have zero task delays.

In order to decide when to trigger an event, we will define the gap
or difference between the current state xaugptq and the sampled state
x̂augptq as,

etrigptq :“ x̂aug ´ xaug, @t P prj , rj`1s , j P N,

where

x̂augptq “
"

xaug prjq , @t P prj , rj`1s,
xaugptq, t “ rj .

Remark 5.4. Note that when an event is triggered at t “ rj , a new
state measurement is rendered that resets the gap etrig to zero. l

We shall find a controller u of the form u “ k px̂augptq ` etrigptqq
that minimizes a cost functional similar to the one with an infinite
bandwidth controller,

Jpxaugp0q; uq “
ż 8

0

e´γτ pxT
augQaugxaug ` uTRuqdτ, @xaugp0q,

where γ P R
` is the discount factor, and with user defined matrices

R ą 0 and

Qaug :“
„

Q 0nˆn

0nˆn 0nˆn



,

where Q ľ 0 and 0nˆn a square matrix of zeros.
We are interested in finding the optimal control u‹ in the sense

that, J pxaugp0q; u‹q ď J pxaugp0q; uq , @u, which can be expressed by the
minimization problem J pxaugp0q; u‹q “ minu J pxaugp0q; uq given the
augmented dynamics in (5.19).
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The ultimate goal is to find the optimal value function V ‹ defined by,

V ‹pxaugptqq : “ min
u

1

2

ż 8

t

e´γpτ´tqpxT
augQaugxaug ` uTRuqdτ,

t ě 0, xaug, (5.20)

given an aperiodic event-triggered controller as will be defined in the
subsequent analysis.

5.3.2 Existence of Solution

This subsection shall provide a connection between the infinite band-
width optimal control and the event-triggered control. Let us assume
that the continuous sampled controller, namely, uc “ k pxaugq, has infi-
nite bandwidth, that is, continuous sampling, and hence, one can define
the Hamiltonian associated with (5.19) and (5.20) as follows:

H

ˆ

xaug, uc,
BV ‹

Bxaug

˙

“ BV ‹T

Bx
pfaugpxaugq ` gaugpxaugqucq

` 1

2
pxT

augQaugxaug ` uT
c Ruc ´ 2γV pxaugqq,

@xaug, uc. (5.21)

After employing the stationarity condition, in the Hamiltonian (5.21),
that is, BHp¨q

Buc
“ 0, the infinite bandwidth optimal control can be found

to be,

u‹
c :“ u‹

c pxaugq “ arg min
uc

H

ˆ

xaug, uc,
BV ‹

Bxaug

˙

“ ´R´1gaug pxaugqT BV ‹

Bxaug

, @xaug. (5.22)

By substituting the optimal control (5.22) into (5.21) one has the HJB
equation given as,

H

ˆ

xaug, u‹
c ,

BV ‹

Bxaug

˙

“ 0, @xaug. (5.23)

Now in order to reduce the communication between the plant and
the controller, one needs to use an event-triggered version of the previous
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HJB Equation (5.23) by introducing a sampled-data component with
sparse and aperiodic controller updates that ensure a certain condition
on the state of the plant to guarantee stability and a desired level of
performance as we shall see in the subsequent analysis. For that reason,
the control input uses the sampled-state information instead of the true
one and hence (5.22) for t P prj , rj`1s , j P N becomes,

u‹ :“ u‹ px̂augq “ ´R´1gaug px̂augqT BV ‹

Bx̂aug

, @x̂aug. (5.24)

By using the event-triggered controller given by (5.24), the HJB
Equation (5.23) becomes,

H

ˆ

xaug, u‹,
BV ‹ pxaugq

Bxaug

˙

” BV ‹ pxaugqT

Bxaug

˜

faug pxaugq ´ gaug pxaugq

ˆ R´1gaug px̂augqT BV ‹

Bx̂aug

¸

` 1

2
pxT

augQaugxaug ` uTRu‹ ´ 2γV pxaugqq,

@xaug, x̂aug. (5.25)

Notice that solving analytically the event-triggered HJB Equation (5.25)
for the optimal cost for nonlinear systems is in most of the cases
difficult. Hence, the following subsection will provide an actor/critic
NN framework to approximate the solution of the discretely sampled
state controller HJB equation.

5.3.3 Approximate Solution

The first step to solve the event-triggered HJB Equation (5.25) is
to approximate the value function V ‹ pxaugq from (5.20). The value
function can be represented in a compact set Ω Ď R

2n by a critic
approximator of the form,

V ‹ pxaugq “ W ‹T
c φc pxaugq ` ǫc pxaugq , @xaug, (5.26)

where the W ‹
c P R

h denote the ideal weights bounded as }W ‹
c } ď

Wcmax, and φc “ rφ1 φ2 . . . φhs: R
2n Ñ R

h, is a bounded continuously
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differentiable basis function p}φc} ď φcmax and } Bφc

Bx
} ď φdemax) the

basis set with h number of functions and ǫcpxaugq is the corresponding
residual error.

Assume that the residual error ǫc is upper bounded such that
supxaugPΩ }ǫc} ď ǫcmax and supxaugPΩ } Bǫc

Bxth
} ď ǫdemax. The basis set

φ are selected such as h Ñ 8 one has a complete independent basis
for V ‹.

Based on this, the optimal event-triggered controller in (5.23) can
be re-written as,

u‹ px̂augq “ ´R´1gaug px̂augqT

˜

Bφ px̂augqT

Bx̂aug

W ‹
c ` Bǫc px̂augq

Bx̂aug

¸

,

t P prj , rj ` 1s . (5.27)

The optimal event-triggered controller (5.27) can be further approx-
imated by another approximator, which we call an actor. This has the
following form @t P prj , rj`1s,

u‹ px̂augq “ W ‹T
u φu px̂augq ` ǫu px̂augq , @x̂aug, (5.28)

where W ‹
u P R

h2ˆm are the optimal weights, φu px̂augq are the basis
functions defined similarly to the critic approximator, h2 is the number
of basis, and finally, ǫu is the actor approximation error. Note that in
order for u‹ to be uniformly approximated, the basis functions must
define a complete independent basis set.

Assumption 5.2. The residual error ǫu and the basis functions are
assumed to be upper bounded by positive constants as sup x̂maxPΩ }ǫu} ď
ǫumax and }φu} ď φumax, respectively. l

The value function (5.26) and the optimal policy (5.28) using current
estimates Ŵc and Ŵu, respectively, of the ideal weights W ‹

c and W ‹
u

are given by the following critic and actor approximators:

V̂ pxaugptqq “ Ŵ T
c φc pxaugptqq , @xaug, (5.29)

û px̂augq “ Ŵ T
u φu px̂augq , @x̂aug. (5.30)
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Our goal now should be to find the tuning laws for the weights Ŵc

and Ŵu. We shall now define the error ec P R as,

ec :“ H

˜

xaug, û px̂maxq ,
BV̂ pxaugq

Bxaug

¸

´ H

ˆ

xaug, u‹
cpxaugq, BV ‹pxaugq

Bxaug

˙

“ Ŵ T
c

Bφc

Bxaug

pfaug pxaugq ` gaugpxaugqû px̂augqq ´ γŴ T
c φc ` r̂

“ Ŵ T
c ω ` r̂,

with ω :“ Bφc

Bxaug
pfaugpxaugq ` gaugpxaugqûpx̂augqq ´ γφc, r̂ :“ 1

2
ûpx̂augqT ¨

Rûpx̂augq ` 1
2
xT

augQaugxaug, and Hpxaug, u‹
cpxaugq, BV ‹pxusgq

Bxaug
q “ 0 from

(5.23), and for simplicity, we have written φc instead of φc pxaugq.
In order to drive the error ec to zero, one has to pick appropriately

the critic weights. By defining the squared-norm error as Ec “ 1
2
e2

c , we
can apply the gradient descent method to obtain the,

9̂
Wc “ ´α

1

pωTω ` 1q2

BEc

BŴc

“ ´α
ω

pωTω ` 1q2
ec, (5.31)

where α P R
` determines the speed of convergence.

Now in order to find the tuning law for the actor approximator, we
need to define the error eu P R

m in the following form:

eu :“ û ´ u
Ŵc

“ Ŵ T
u φu px̂augq ` R´1gaug px̂augqT Bφu px̂augq

Bxaug

T

Ŵc, @x̂aug,

where u
Ŵc

is the controller with the critic weights Ŵc.

The objective is to select Ŵu such that the error eu goes to zero.
For that reason, we shall select to minimize the following squared error
performance:

Eu “ 1

2
eT

u eu.

The update law for the actors will have an aperiodic nature because
the updates occur only at the triggering instants, and held constant
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otherwise. This has a form of an impulsive system as described in
Haddad et al. (2006, 2008).

We can then define the following laws:

9̂
Wuptq “ 0, t P R

`z
ď

jPN

rj , (5.32)

and the jump equation to compute Ŵupr`
j q is given by,

Ŵ `
u “ Ŵu ´ αuφupxaugptqq

ˆ

Ŵ T
u φupxaugptqq

` R´1gaug pxaugptqqT Bφ pxaugptqqT

Bxaug

Ŵc

˙T

, t “ rj . (5.33)

By defining the actor error dynamics as W̃u :“ W ‹
u ´ Ŵu and taking

the time derivative using the continuous update (5.32) and by using
the jump system (5.33) updated at the trigger instants, one has,

9̃Wuptq “ 0, t P R
`z

ď

jPN

rj , (5.34)

and

W̃ `
u “ W̃u ´ αuφu pxaugptqq φu pxaugptqqT W̃uptq

´ αuφu pxaugptqq φu pxaugptqqT ǫu

´ αuφu pxaugptqyq W̃ T
c

Bφ pxaugptqq
Bxaug

gaug pxaugptqq R´1

´ αuφu pxaugptqq Bǫc

Bxaug

gaug pxaugptqq R´1, for t “ rj , (5.35)

respectively. Note that the solution of (5.34)–(5.35) is left continuous;
that is, it is continuous everywhere except at the resetting times rj and,

Ŵu prjq “ lim
δÑ0`

Ŵu prj ´ δq , @j P N,

and

Ŵ `
u “ Ŵu ´ αuφupxaugptqq

˜

Ŵ T
u φupxaugptqq ` R´1gaug pxaugptqqT

ˆ BφpxaugptqqT

Bxaug
Ŵc

¸T

, t “ rj .
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In addition, in order to deal with the presence of the approximation
errors and known bounds (Polycarpou et al., 2003), and obtain an
asymptotically stable equilibrium for the closed-loop system, one needs
to add a robustifying term to the closed-loop system of the form,

ηptq “ ´c2
}x̂aug}2

1m

c1 ` }x̂aug}2
,

where c1, c2 P R
` satisfy,

c2 ą c1 ` }x̂aug}2

pWcmaxφdcmax ` 1
2
ǫdcmaxq }x̂aug}2

ˆ
˜

1

8α
ǫ2
Hcmax ` γpWcmaxφcmax ` ǫcmaxq ` ρ

¸

,

where

ρ :“ 1

2
pφ2

umaxǫumaxq2 ` 1

8
p}W̃c}φumaxφdcmaxλpR´1qq2

` 1

8
pφumaxǫdcmaxλpR´1qq2

` αu

2
φ4

umaxǫ2
umax ` αu

32
φ2

umax}W̃c}2φ2
demaxλpR´1q2

` αu

32
φ2

u maxǫ2
dcmaxλpR´1q2 ` 1

2
pαuφ3

u maxǫ2
u maxq2

` 1

4
αuφumaxφdcmaxλpR´1q}W̃c} ` 1

4
αuφumaxǫdcmaxλpR´1q

` 1

4
αuφu maxǫu maxφdcmaxλpR´1q}W̃c}

` 1

8
αuǫdcmaxφdcmaxλpR´1q}W̃c}.

The closed-loop system dynamics of (5.18) with control law given
by (5.30), can now be written as,

9xaug “ faugpxaugq ` gaugpxaugqppW ‹
u ´ W̃uqTφupx̂augq ` ηq,

t ě 0. (5.36)

The following theorem establishes asymptotic stability of the impulsive
closed-loop system described and convergence to the optimal solution.
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Theorem 5.3 (Vamvoudakis et al., 2017b, Thm. 3). Consider the non-
linear CT system given by (5.36) with the event-triggered control input
given by (5.30) and the critic approximator given by (5.29). The tuning
laws for the CT critic and impulsive actor approximators are given by
(5.31) and (5.32)–(5.33), respectively. Then there exists a quadruple
pΩxaug ˆ Ωx̂aug

ˆ ΩW̃c
ˆ ΩW̃u

q Ă Ω with Ω compact such that the solu-
tion of the impulsive system ψ P pΩxaug ˆ Ωx̂aug

ˆ ΩW̃u
q exists globally

and converges asymptotically to zero for all xaugp0q inside Ωxaug , x̂augp0q
inside Ωx̂avg

, W̃cp0q inside ΩW̃c
and W̃up0q inside ΩW̃u

given the following
triggering condition:

}etrig}2 ď p1 ´ β2qλpQq
L2λ̄pRq

}etrack}2 ` λpRq
L2λ̄pRq

}Ŵ T
u φupx̂augq}2, (5.37)

where β P p0, 1q and the following inequalities are satisfied,

α ą 1

4

d

1

λpMq ,

for the critic approximator, and

0 ă αu ă 2
pφ2

umax ´ 3
2
q

φ4
umax

; φumax ą
c

3

2
,

for the actor approximator.

In the following theorem, we shall guarantee the absence of the Zeno
behavior. Toward this aim, we will find a lower bound for the inter-event
time Tj :“ rj`1 ´ rj , @j P N. Before we state the theorem, the following
assumption is needed.

Assumption 5.4. There exists a compact set Ω such that:

1. The function gaugp¨q is uniformly bounded on Ω, that is,
supxaugPΩ }gaug pxaugq} ď 1

2
.

2. The function faugp¨q is uniformly bounded on Ω, that is,
supxaugPΩ }faug pxaugq} ď bf }xaug}, where bf is a constant. l

Theorem 5.5. Suppose that Assumption 5.4, the triggering condition
(5.37) and the concluding statement of Theorem 5.3 hold. Then the
inter-event time Tj , @j P N, is strictly positive and has a positive lower
bound.
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5.3.4 Further Reading

The interested reader is directed to Vamvoudakis et al. (2017b) for
detailed theorems and proofs of the above statements and algorithms.
Also, the authors in Wang et al. (2017b,c,d) rely on the results presented
here to construct event-triggered adaptive learning schemes.

5.4 Intermittent Q-Learning

This subsection extends the results derived in Subsection 4.2 to propose
a model-free event-triggered optimal control algorithm for CT linear
systems. The problem is formulated as an infinite-horizon RL problem,
and we are able to simultaneously address the issue of designing a control
and a triggering mechanism with guaranteed optimal performance by
design. In order to provide a model-free solution, we adopt a Q-learning
framework with a critic-network to approximate the optimal cost and
a zero-order hold actor network to approximate the optimal control.
Since we have dynamics that evolve in continuous and discrete-time,
the closed-loop system is an impulsive model with an asymptotically
stable equilibrium point.

5.4.1 Problem Formulation

Consider the system given by (4.1) but with the plant and input matrices,
to be considered uncertain/unknown.

To save resources, the controller will work with a sampled version
of the state defined as follows:

x̂ptq “
"

x prjq , @t P prj , rj`1s
xptq, t “ rj .

The controller maps the sampled state onto a control vector which after
using a zero-order hold becomes a CT input signal. In order to decide
when to trigger an event, we will define the gap between the current
state xptq and the sampled state x̂ptq as,

eptq :“ x̂ptq ´ xptq. (5.38)

Remark 5.5. Note that when an event is triggered at t “ rj , j P N a new
state measurement is rendered that resets the gap (5.38) to zero. l
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We are interested in finding a controller uptq “ ud of the form
ud :“ kpx̂ptqq that minimizes the cost functional,

Jpxp0q; udq “ 1

2

ż 8

0

pxTHx ` uT
d Rudqdτ,

with user-defined matrices H ľ 0, R ą 0, and with reduced updates of
the control input given by the triggering rule.

For that reason, we will find a value function with a quantified
guaranteed performance that approximates the time-triggered optimal
value function V ‹ for the system (5.38) with controller uptq “ ūc of the
form uc :“ kpxptqq as defined by,

V ‹pxptqq :“ min
uc

ż 8

t

1

2
pxTHx ` uT

c Rucqdτ, @x, (5.39)

but without any information of the system dynamics and given the
event-triggered updates of the control input.

One can define the time triggered Hamiltonian associated with (5.38)
and (4.1) with controller uc as follows:

H

ˆ

x, uc,
BV ‹

Bx

˙

“ BV ‹T

Bx
pAx ` Bucq ` 1

2
xTHx

` 1

2
uT

c Ruc, @x, uc. (5.40)

After employing the stationarity condition, in the Hamiltonian

(5.40), i.e.,
BH

´

x,uc, BV ‹

Bx

¯

Buc
“ 0, the time-triggered optimal control can be

found to be,

u‹
c :“ u‹

cpxq “ arg min
uc

H

ˆ

x, uc,
BV ‹

Bx

˙

“ ´R´1BT BV ‹

Bx
, @x. (5.41)

Assumption 5.6. We assume that the pair (A, Bq is stabilizable and
the pair p

?
H, Aq is detectable. l

Since the system (4.1) is linear, we can represent the time-triggered
value function as quadratic in the state, i.e., V ‹pxq: R

n Ñ R
`,

V ‹pxq “ 1

2
xTPx, @x, (5.42)
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where under Assumption 5.6 P P R
nˆn is the unique positive definite

matrix that solves the following Riccati equation (i.e., Hpx, u‹
c , BV ‹

Bx
q

“ 0q,
ATP ` PA ´ PBR´1BTP ` H “ 0. (5.43)

Furthermore, the optimal control (5.41) is given by,

u‹
c :“ u‹

cpxq “ ´R´1BTPx, @x. (5.44)

It is important to note that Eqs. (5.43) and (5.44) require complete
knowledge of the system dynamics, i.e., the matrices A and B. Moreover,
the controller needs to continuously monitor the state for updates.

In order to reduce the communication between the controller and
the plant, we propose to use an event-triggered version of the above
Riccati Equation (5.43) by introducing a sampled-data component with
aperiodic controller updates that ensures stability and performance.
For that reason, we define the event-triggered controller that uses the
sampled version of the state as follows:

u‹
d :“ u‹

dpx̂q “ ´R´1BTPx̂, @x̂. (5.45)

Our goal is to propose an event-triggered Q-learning-based approach to
solve the optimal control problem without any information of the system
dynamics and by adjusting the parameters of the action-dependent value
function in an adaptive way. To this end, the value function (5.42) needs
to be parameterized as a function of the state x and the control ud

to represent the Q-function. We can write the following Q-function or
action-dependent value Qpx, udq: R

n`m Ñ R
`,

Q px, udq :“ V ‹pxq ` H

ˆ

x, ud,
BV ‹

Bx

˙

´ H

ˆ

x, u‹
c ,

BV ‹pxq
Bx

˙

“ V ‹pxq ` 1

2
xTP pAx ` Budq ` 1

2
pAx ` BudqT Px

` 1

2
uT

d Rud ` 1

2
xTHx, @x, ud, (5.46)

where H
`

x, u‹
c , Bv‹

Bx

˘

“ 0, and the optimal time-triggered cost is V ‹pxq “
xTPx.
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The Q-function (5.46) can be written in a compact quadratic form
in the state x and control ud as follows:

Q px, udq “ 1

2
UT

„

P ` H ` PA ` ATP PB

BTP R



U

:“ 1

2
UT

„

Qxx Qxud

Qudx Qudud



U :“ 1

2
UTQ̄U, (5.47)

where U :“
“

xT uT
d

‰T
, Qxx “ P `H`PA`ATP, Qxud

“ PB, Qudx “
Qxu

T
d “ BTP, Qudud

“ R, and positive definite

Q̄ “
„

Qxx Qxud

Qudx Qudud



P R
pn`mqˆpn`mq.

The next lemma shows that when ud “ u‹
d with u‹

d given by (5.45),
then we can show that (5.47) and (5.39) have the same value.

Lemma 5.7. Given the Q-function as in (5.47) and the optimal value
of the time-triggered control as in (5.39), then one has Q px, u‹

dq :“
minud

Q px, udq “ V ‹pxq ` 1
2

pu‹
c ´ u‹

dqT R pu‹
c ´ u‹

dq , @x.

A formulation of (5.45) that will be useful in our model-free for-
mulation that follows, can be found by solving BQpx,udq

Bud
“ 0 to write,

u‹
d “ arg min

ud

Q px, udq “ ´Q´1
udud

Qudxx̂, @x̂. (5.48)

Since we would like to develop a model-free online tuning of the
parameters of the action-dependent value function the next subsection
will introduce an actor/critic structure to achieve that.

The critic approximator will approximate the Q-function (5.47)
and the actor approximator (implemented with a zero-order hold) will
approximate the optimal controller (5.48). Specifically, Q px, u‹

dq can be
written as follows:

Q px, u‹
dq “ 1

2
UT

«

Qxx Qxud

Qudx Qudud

ff

U :“ 1

2
vechpQ̄qTpU b Uq.

By denoting as Wc :“ 1
2
vechpQ̄q we can write it in a compact form as

Q px, u‹
dq “ W T

c pU b Uq, with Wc P R
1
2

pn`mqpn`m`1q the ideal weights
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given as, vechpQxxq :“ Wcr1:
npn`1q

2
s,

vech pQxud
q :“ Wc

„

npn ` 1q
2

` 1:
npn ` 1q

2
` nm



,

and vech pQudud
q :“ Wc

”

npn`1q
2

` nm ` 1:
pn`mqpn`m`1q

2

ı

.

Since the ideal weights Wc for computing Q px, u‹
dq are unknown,

one must consider weight estimates Ŵc to write an approximate solution
Q̂ px, udq in the following form:

Q̂ px, udq “ Ŵ T
c pU b Uq, @x, ud, (5.49)

where Ŵc P R
1
2

pn`mqpn`m`1q.
Similarly for computing an approximate solution ûd of u‹

d given by
(5.48), one has the following actor approximator:

ûd “ Ŵ T
a x̂, (5.50)

where Ŵa P R
nˆm are the weight estimates.

It was shown in Vrabie et al. (2013) that by using IRL we can write
the value function (5.39) as the following Bellman equation:

V ‹pxptqq “ V ‹pxpt ´ T qq ´ 1

2

ż T

t´T

pxTHx ` u‹T
d Ru‹

dqdτ, (5.51)

where T P R
` a small fixed time interval. By using the result from

Lemma (5.7) where we have brought together the values with the
time-triggered and event-triggered controllers, we can write (5.51) as,

Qpxptq, u‹
dptqq “ Qpxpt ´ T q, u‹

dpt ´ T qq ´ 1

2

ż T

t´T

pxTHx ` u‹T
d Ru‹

dqdτ.

In order to find the update law for the critic, we shall define the
following error ec P R that we would like to eventually drive to zero by
picking appropriately Ŵc,

ec :“ Q̂pxptq, ûdptqq ´ Q̂pxpt ´ T q, ûdpt ´ T qq

` 1

2

ż T

t´T

pxTHx ` ûT
d Rûdqdτ “ Ŵ T

c pUptq b Uptqq

` 1

2

ż T

t´T

pxTHx ` ûT
d Rûdqdτ ´ Ŵ T

c pUpt ´ T q b Upt ´ T qq.
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Now, for the actor approximator, we can define the error ea P R
m as

follows:
ea :“ Ŵ T

a x prjq ` Q̂´1
uud

Q̂udxx prjq , t “ rj ,

where the values of Q̂´1
udud

and Q̂udx are going to be extracted from the
vector Ŵc. Now, we shall find tuning updates for Ŵc and Ŵa such that
the errors ec and ea go to zero.

By following adaptive control techniques (Ioannou and Fidan, 2006),
we can define the squared-norm of these errors as,

K1 “ 1

2
}ec}2 , (5.52)

K2 “ 1

2
}ea}2 . (5.53)

5.4.2 Learning Algorithm

The estimate of Ŵc for the critic weights can be constructed by applying
gradient descent in (5.52) and normalizing as,

9̂
Wc “ ´αc

1

p1 ` σTσq2

BK1

BŴc

“ ´αc
σ

p1 ` σTσq2
eT

c , (5.54)

where σ :“ UptqbUptq´Upt´T qbUpt´T q, and αc P R
` is a constant

gain that determines the speed of convergence.
The update law for the actors will have an aperiodic nature since

it occurs only at the triggering instants and the previous value is held
constant otherwise. This has a form of an impulsive system as described
in Haddad et al. (2006), Hespanha et al. (2008). Hence, the actor
weights Ŵa will be updated based on the following impulsive system
(after applying a gradient descent in (5.53)),

9̂
Wa “ 0, t P prj , rj`1s

Ŵ `
a “ Ŵa ´ αa

1

p1 ` xptqTxptqq
BK2

BŴa

“ Ŵa ´ αa
xptq

p1 ` xptqTxptqeT
a q , t “ rj ,

where αa P R
` is a constant gain that determines the speed of

convergence.
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We just saw that the dynamics are continuous but the controller
jumps to a new value when an event is triggered. Hence, we need to
formulate the closed-loop system as an impulsive system. The closed-
loop system dynamics of (4.1), (5.39), (5.50) can now be written as,

9x “ Ax ` Bp´Q´1
udud

Qudx ´ W̃ T
a qx̂, t ě 0. (5.55)

The main theorem is presented next establishing the stability properties
of the closed loop system.

Theorem 5.8 (Vamvoudakis and Ferraz, 2018, Thm. 2). Consider the
system dynamics given by (5.55), the Q function critic approximator
given by (5.49) and the actor approximator given by (5.50). The tuning
laws for the weights of the critic and for the actor are given by (5.54) and
(5.54), respectively. Then, the origin of the closed-loop impulsive system
is globally asymptotically stable as long as the following condition on
the gap is satisfied:

}e}2 ď
`

1 ´ β2
˘

λpHq
4

`

L2 ` L2
1

˘

λ̃pRq
}x}2 ` λpRq

4
`

L2 ` L2
1

˘

λ̃pRq
}ûd}2 ,

where L1 is a positive constant of unity order, and the following inequal-
ities hold:

αc " αa; 0 ă αa ă 8λpRq ´ 4

λpRq ` 2
;

λpHq
λ̄pRq

ą L2
1

β2
.

5.4.3 Further Reading

The interested reader is directed to Vamvoudakis and Ferraz (2018) for
detailed theorems and proofs of the above statements and algorithms.
Also, the authors in Yang and He (2018) devised a novel event-triggered
robust control strategy for continuous-time nonlinear systems with
unknown dynamics.



6

Bounded Rationality and Non-Equilibrium

RL in Games

In this section, we relax the assumption of infinitely rational agents,
whereby the analysis in Section 3 took place, giving rise to non-
equilibrium differential games involving agents with bounded intel-
ligence. We start by motivating the application of bounded rationality
in the context of a differential game, and next, we introduce a formu-
lation for non-equilibrium learning behavior analysis in systems with
adversarial inputs.

6.1 Introduction and Motivation

The assumption of perfect rationality that permeates the Nash equilib-
rium solution concept has been shown to fail in explaining experimental
data from a plethora of studies (Crawford and Iriberri, 2007). In par-
ticular, in many games where human players are involved, equilibrium
models fail to predict or explain the observed behavior. Consequently,
these observations give rise to several structural non-equilibrium models,
such as quantal responses (McKelvey and Palfrey, 1995), level-k thinking,
and cognitive hierarchy models (Camerer et al., 2004), systematically
outperform Nash models in their predictive abilities.

112



6.1. Introduction and Motivation 113

An alternative explanation is that agents are boundedly rational,
i.e., agents might be making mistakes during the game. Thus, decision
makers may never play the exact same game very often, but they may
also extrapolate between games and learn from experiences. Several
recent experimental studies (Ho and Su, 2010) suggest that decision
makers’ initial responses to games often deviate systematically from
equilibrium, and that structural non-equilibrium models (e.g., cognitive
hierarchy) often out-predict equilibrium. Non-equilibrium models need
to allow for players whose adjustment rules are not a best response
to the adjustment rules of the others. As a concrete example of this
need, we may consider the interactions between humans and unmanned
autonomous vehicles. Since the interacting agents are heterogeneous in
their computational capabilities, solution concepts that go beyond the
infinite intelligence models need to be investigated.

One of the first works on non-equilibrium game theoretic behavior in
static environments has been reported in Fudenberg et al. (1998), Tambe
(2011), and Brams and Kilgour (1988). In such works, the authors state
that, for most purposes the right models involve neither full rationality
nor the extreme naivete of most stimulus–response models; “better”
models have agents consciously but perhaps imperfectly trying to get a
good payoff. Besides specifying the players’ forecast rules, an analysis of
learning must also address the issue of whether players try to influence
their opponents’ play. The work of Roth and Erev (1995) and Erev
and Roth (1998) examined RL approaches for experimental games with
unique equilibrium and discussed implications for developing a low-
rationality framework, namely behavioral game theory. The authors in
He et al. (2016) overcame the irrationality issue with a Win-or-Learn
Fast in a mini-max-Q learning framework, but with the penalty of losing
convergence assurance. Quantal response models (McKelvey and Palfrey,
1995) assume that the players’ actions are perturbed equilibrium policies,
altered by stochastic mistakes.

Another class of non-equilibrium models depend on the computation
of a finite number of best response strategies up to a certain level. Level-
k thinking assumes that each player believes all of her opponents operate
at the pk ´ 1q th level of intelligence. On the other hand, in cognitive
hierarchy models, each player believes that her opponents’ levels follow
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a Poisson distribution. Both of these models are examined in Chong
et al. (2016). In the context of CPS, the authors in Li et al. (2016) use a
cognitive hierarchy approach to train autonomous vehicles in real-world
situations. Cognitive hierarchy was also used for cyber–physical security
in Abuzainab et al. (2016), for the problem of distributed uplink random
access for the Internet of Things.

However, in the control discipline, the non-equilibrium game theory
constitutes a useful tool for modeling the class of problems arising
from the interaction of strategic agents with bounded rationality. In
particular, in the work of Kanellopoulos and Vamvoudakis (2019) and
Vamvoudakis and Kanellopoulos (2019) is formulated a CPS operating
in an adversarial environment by considering a general non-zero-sum,
nonlinear differential game and are derived the expressions for the
level-k best response. Furthermore, the work of Kokolakis et al. (2020)
developed a level-k framework for addressing the problem of tracking an
actively evading target by employing a team of coordinating UAVs where
the rationality policies are computed by using a RL-based architecture.

6.2 Non-Equilibrium Dynamic Games and RL

This subsection concerns non-equilibrium dynamic games for CPS via
a cognitive hierarchy approach. Initially, we describe the mathematical
representation that captures the behavior of the competing agents in its
general setting, as well as in simple – and easier to tackle – scenarios.
Next, we construct a framework that introduces level-k thinking strate-
gies in differential games. Finally, we will propose an iterative approach
to deriving boundedly rational decision policies by leveraging structural
connections between cognitive hierarchy theory and RL techniques.

6.2.1 Nash Games

Initially, we describe the differential game structure along with the
Nash equilibrium solutions. Let N denote the set of all players, and
N´i “ N ztiu the set containing all players except player i. In order
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to investigate the interactions between non-cooperative players in dy-
namically changing environments, we define an underlying nonlinear
time-invariant dynamical system upon which the agents act as (3.8).

Each player aims to minimize a cost functional of the form,

Jipu1, . . . , uN q “
ż 8

0

ripx, u1, . . . , uN qdτ

:“
ż 8

0

ˆ

Qipxq ` uT
i Riiui `

ÿ

jPN´i

uT
j Rijuj

˙

dτ, @i P N ,

Due to the coupled nature of the cost functionals and the envi-
ronment dynamics, there is a plethora of different approaches to the
“solution” of a differential game. The most common one, which consti-
tutes a rational equilibrium concept, is the Nash equilibrium solution
(Başar and Olsder, 1999; Hespanha, 2017).

Definition 6.1. A tuple of decision policies pu‹
1, . . . , u‹

i , . . . , u‹
N q consti-

tute a Nash equilibrium if it holds that,

Jipu‹
1, . . . , u‹

i , . . . , u‹
N q ď Jipu‹

1, . . . , ui, . . . , u‹
N q, @i P t1, . . . , Nu.

The derivation of the Nash policies u‹
i , i P t1, . . . , Nu, corresponds

to solving the coupled minimization problems,

Jipu‹
i , u‹

´iq “ min
ui

Jipui, u‹
´iq, i P t1, . . . , Nu,

where for brevity we define u´i “ pu1, . . . , ui´1, ui`1, . . . , uN q.
Following methods from the theory of optimal control (Lewis et al.,

2012a), the goal of the decision makers is to evaluate the optimal value
functions Vipxq, i P t1, . . . , Nu such that,

Vipxptqq “ min
ui

ż 8

t

ripx, ui, u‹
´iqdτ, @x, t ě 0.

This is achieved with the help of the Hamiltonian function, defined
@i P t1, . . . , Nu, as,

Hipx, ui, u´iq “ ripx, u1, . . . , uN q ` ∇V T
i

ˆ

fpxq `
ÿ

jPN

gjpxquj

˙

. (6.1)
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It is known that minimizing inputs on the system minimize the Hamil-
tonian (Lewis et al., 2012a). Consequently, this allows for the use of
stationarity conditions to derive the Nash policies,

BH

Bui
“ 0 ñ u‹

i pxq “ ´R´1
ii gT

i pxqBV ‹
i

Bx
. (6.2)

Substituting (6.2) into (6.1), yields the following coupled HJ system
of N equations,

Qipxq ` 1

4

ÿ

jPN

∇V T
j gjpxqpR´1

jj qTRijRjjgT
j pxq∇Vj

` p∇ViqT

ˆ

fpxq ´ 1

2

ÿ

jPN

gjpxqR´1
jj gT

j pxq∇Vj

˙

“ 0. (6.3)

A specific case of the general framework presented above that allows
us to exhibit clearer results while capturing a large class of applications
is the linear quadratic ZS case. In this scenario, consider that N “ t1, 2u,
i.e., there are two players, whose cost functionals are such that J1 “
´J2 “ J . This formulation is extremely useful in the field of CPS, in
which the competing players correspond to a defending agent (or team
of defenders), whose decision vector is uptq P R

m and an attacking agent
whose decision is denoted by dptq P R

l. Furthermore, the environment
evolves according to the simplified dynamics,

9xptq “ Axptq ` Buptq ` Kdptq, xp0q “ x0, t ě 0, (6.4)

and the cost is quadratic in its arguments,

Jpu, dq “ 1

2

ż 8

0

pxTMx ` uTRu ´ γ2}d}qdt.

Due to the ZS property of the players’ costs, we can redefine the
problem of deriving the Nash equilibrium, as one of solving for the
mini-max policies, i.e.,

V ‹pxq “ min
u

max
d

ż 8

0

pxTMx ` uTRu ´ γ2}d}qdτ, @x.

The value function for the linear quadratic case is known to also
be a quadratic in the states function, i.e., V ‹pxq “ xTPx. The optimal
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kernel P satisfies a simplified version of (6.3),

ATP ` PA ´ PBR´1BTP ` 1

γ2
PKKTP ` M “ 0. (6.5)

Finally, the Nash policies can be found after solving (6.5) for P and
substituting in,

u‹pxq “ ´R´1BTPx, d‹pxq “ 1

γ
KTPx, @x.

Computational and cognitive limitations have been shown to prevent
players from reaching the Nash equilibrium solution even in simple sce-
narios (Daskalakis et al., 2009). This behavior, which has been observed
in most experimental setups, has lead to the formulation of various non-
equilibrium solution concepts that aim to better approximate realistic
agents. In our work, we introduce bounded rationality concepts via the
level-k thinking and cognitive hierarchy frameworks. Towards this, we
will define strategies of lower “level-k” thinkers that perform a certain
number of steps of strategic thinking and show methods to derive the
distribution of beliefs for their abilities.

6.3 Games with Adversaries

In this subsection, we construct a framework that introduces level-k
thinking strategies in differential games. In particular, we will propose
an iterative approach to deriving boundedly rational decision policies
by leveraging structural connections between cognitive hierarchy theory
and reinforcement learning techniques.

6.3.1 Level-k Thinking Model

Consider a player i P N belonging to a cognitive type k P Z
`. This

player is able to perform k-steps of iterative strategic thinking while
her beliefs about the behavior of the rest of the players are constructed
based on a fixed, full-support distribution, e.g., according to the work
of Camerer et al. (2004), a Poisson distribution.
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Level-0 Policies. The approach of iterative best responses to model
bounded rationality – such as the one we employ in this work – requires
the existence of a common anchor strategy; a policy that a level-0
player will adopt. It is clear that the assumption that the structure of
the anchor policy is common knowledge to all the players is a strict
one. However, in various scenarios, those policies can be derived as
completely random responses or as focal policies for the game without
loss of generality of the framework (Strzalecki, 2014).

Level-k Policies. All high-level players follow a model inspired by
Policy Iteration schemes in order to compute their strategies. Specifically,
given the cognitive level-k of an agent, their thinking process is initialized
by assigning level-0 intelligence to the opponents and computing the
optimal response to this environment. Subsequently, they increase the
level of the opponents via a similar process until a predefined distribution
of lower levels has been embedded on the rest of the players. This process
involves the solution of a number of single agent optimization problems.

The single agent optimization that a level-k player performs cor-
responds to solving the following HJB equation with respect to a
non-equilibrium value function V kpxq: R

n Ñ R, which is conditioned by
the belief probabilities of the agent of level-k, regarding the intelligence
level of player h P N ztiu, denoted as bkphq,

Qpxq ` ukT
i Riiu

k
i `

ÿ

jPN´i

k´1
ÿ

h“0

pbkphqujqhTRijbkphquh
j

` p∇V k
i qT

ˆ

fpxq ` gpxquk
i `

ÿ

jPN´i

k´1
ÿ

h“0

pgpxqbkphqujq
˙

“ 0,

which yields the level-k policy given by,

uk
i pxq “ ´R´1

ii gT
i ∇V k

i , @x.

A simplified version of this bounded rationality principle can be
extracted for linear quadratic ZS games. For ease of exposition, we will
focus on the iterative scheme that corresponds to the minimizing player
of system (6.4). Initially, for CPS applications, a focal strategy for a
minimizing (defending) player, is taken as one that assumes attacker-free
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environments. This, leads to a level-0 policy derived by the one-sided
optimal control problem,

V 0
u px0q “ min

u

ż 8

0

pxTMx ` uTRuqdτ, @x0. (6.6)

The optimal decision for (6.6) given (6.4) with di “ 0 is,

u0pxq “ ´R´1BT BV 0
u pxq
Bx

“ ´R´1BTP 0
u x, @x,

where the value function is taken as quadratic in the states V 0
u p¨q “

xTP 0
u x and the kernel P 0

u solves the Riccati equation, ATP 0
u ` P 0

u A `
M ´ P 0

u BR´1BTP 0
u “ 0.

The iterative process described above, leads to the formulation of
high-level optimal control problems described by,

V k
u px0q “ min

u

ż 8

0

pxTMx ` uTRu ´ γ2}dk´1}2qdτ, @x0,

where the k ´ 1-th attack dk´1 corresponds to an adversary of limited
cognitive ability. Solving this problem through classical optimal control
tools yields the level-k Riccati equation,

ˆ

A ` 1

γ2
KKTP k´1

d

˙T

P k
u ` P k

u

ˆ

A ` 1

γ2
KKTP k´1

d

˙

`
ˆ

M ´ 1

γ2
P k´1

d KKTP k´1
d

˙

´ P k
u BR´1BTP k

u “ 0, (6.7)

with its associated level-k defense strategy given by,

ukpxq “ ´R´1BTP k
u x. (6.8)

Similarly, the attacking agent can calculate their level-k response
through the solution of the Riccati equation,

pA ´ BR´1BTP k
u qTP k

d ` P k
d pA ´ BR´1BTP k

u q

` pM ` P k
u BR´1BTP k

u q ` 1

γ2
P k

d KKTP k
d “ 0, (6.9)

and the optimal attack policy given by,

dkpxq “ 1

γ2
KTP k

d x, @x. (6.10)
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With this iterative procedure, a defending agent is able to compute
the strategies of the adversaries with finite cognitive abilities, for a
given number of levels. For the linear quadratic zero-sum case, proper
conditions that guarantee convergence to the Nash equilibrium of the
game as the levels of cognition of the players increase have been derived
and are summarized in the theorem that follows.

Theorem 6.1 (Kanellopoulos and Vamvoudakis, 2019, Thm. 1). Consider
the pairs of strategies at a specific cognitive level-k, given by (6.8)
and (6.7) for the defender, and (6.10) and (6.9) for the adversary. The
policies converge to a Nash equilibrium for higher levels if the following
conditions hold as the levels increase,

pP k´1
d ` P k

d ´ P k`1
u qKKTpP k

d ´ P k´1
d q ą 0,

p3P k´1
u ´ P k

u ` P k
d qBR´1BTpP k

u ´ P k´1
u q ą 0.

6.3.2 Model-Free Learning for Interaction with Level-k Attacks

By leveraging the Q-learning algorithm developed in Subsection 4.2, we
are able to learn the best responses of all level-k agents without explicit
knowledge of the physics of the system. For ease of exposition, we shall
introduce the notation V k

j p¨q, ak
j pxq, and Hk

j px, ak
j , ∇V k

j q to mean the
value function, action policy, and Hamiltonian of a level-k agent, where
j P tu, du, i.e., the defender and the adversary.

The action-dependent function can be defined to be,

Qk
j px, ak

j q – V k
j pxq ` Hk

j px, ak
j , ∇V k

j q, @x, ak
j , j P tu, du. (6.11)

We can rewrite the action-dependent function (6.11) in a compact
quadratic in the state and action form as,

Qk
j px, ak

j q “ pUk
j qT

„

Qk
j,xx Qk

j,xa

Qk
j,ax Qk

j,aa,



Uk
j – pUk

j qTQ̃k
j Uk

j ,

@x, ak
j , j P tu, du, (6.12)
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where for the level-k defender’s problem, j – u, we have that Uk
u “

“

xT pukqT
‰T

,

Qk
u,xx “

ˆ

A ` 1

γ2
KKTP k´1

d

˙T

P k
u ` P k

u

ˆ

A ` 1

γ2
KKTP k´1

d

˙

`
ˆ

M ´ 1

γ2
P k´1

d KKTP k´1
d

˙

´ P k
u BR´1BTP k

u ` P k
u ,

Qk
u,xa “ BTP k

u , Qk
u,ax “ BP k

u , Qk
u,aa “ R.

Accordingly, for the level-k adversarial problem, j – d, we have

that Uk
d “

“

xT pdkqT
‰T

,

Qk
d,xx “ pA ´ BR´1BTP k

u qTP k
d ` P k

d pA ´ BR´1BTP k
u q

` pM ` P k
u BR´1BTP k

u q ` 1

γ2
P k

d KKTP k
d ,

Qk
d,xa “ KTP k

d , Qk
d,ax “ KP k

d , Qk
d,aa “ ´γ2.

The action for each agent at every level can be found by solving
BQk

j
px,ak

j
q

Bak
j

“ 0 as,

ak
j pxq “ ´pQk

j,aaq´1Qk
j,axx, @x, j P tu, du. (6.13)

We will now use an actor/critic structure to tune the parameters
online by utilizing an integral reinforcement learning approach (Vrabie
et al., 2013). The level-k critic approximator shall approximate the
action-dependent function (6.12), while the level-k actor shall approxi-
mate the appropriate defense or attack policy (6.13).

In order to do that, we write the action-dependent function as,

Qk
j px, ak

j q “ vechpQ̃qTpUk
j b Uk

j q, @x, ak
j , j P tu, du, (6.14)

where the Kronecker product-based polynomial quadratic polynomial
function pUk

j b Uk
j q is reduced to guarantee linear independence of

the elements. The vectorized action-dependent function (6.14) can be
described in terms of the ideal weights W k

j “ vechpQ̃q, leading to the
compact form Qk

j px, ak
j q “ pW k

j qTpUk
j b Uk

j q.
Since the ideal weights are unknown, we will consider the following

estimated level-k action-dependent function, according to the estimated
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critic weights, Ŵ k
j “ vechp ˆ̃Qq,

Q̂k
j px, ak

j q “ pŴ k
j qTpUk

j b Uk
j q, @x, ak

j , j P tu, du,

as well as the estimated actor approximator,

âk
j pxq “ pŴ k

a,jqTx, @x, j P tu, du,

where the state x is serving as the basis for the actor approximator and
Ŵ k

a,j denotes the weight estimate of the level-k agent’s policy.
The action-dependent function with the ideal weights, (6.12), has

been shown in 4.2 to satisfy the integral form of the Hamilton–Jacobi–
Bellman equation,

Qk
j pxptq, ak

j ptqq “ Qk
j pxpt ´ TIRLq, ak

j pt ´ TIRLqq

´
ż t

t´TIRL

pxTM̄k
j x ` pak

j qTR̄jak
j qdτ,

@t ě 0, j P tu, du,

where TIRL P R
` is the sampling period of the algorithm. For the de-

fender, we define M̄k
u – M ´ 1

γ2 P k´1
d KKTP k´1

d , and R̄u – R. Similarly,

for the adversary we define, M̄k
d – M `P k

u BR´1BTP k
u , and R̄d – ´γ2.

We will now define the error based on the current estimate of the
action-dependent function that we wish to drive to zero as,

ek
j “ Q̂k

j pxptq, ak
j ptqq ´ Q̂k

j pxpt ´ TIRLq, ak
j pt ´ TIRLqq

`
ż t

t´TIRL

pxTM̄k
j x ` pak

j qTR̄jak
j qdτ

“ pŴ k
j qTpUk

j ptq b Uk
j ptqq ´ pŴ k

k qTpUk
j pt ´ TIRLq b Uk

j pt ´ TIRLqq

`
ż t

t´TIRL

pxTM̄k
j x ` pak

j qTR̄jak
j qdτ,

as well as the policy error ek
j,a “ pW k

a,jqTx ` pQ̂k
j,aaq´1Q̂j,axx, @x, j P

tu, du, where the appropriate elements of the Q̂ matrix will be extracted
from the critic estimate Ŵ k

j .
Defining the squared error functions for the critic and the actor

weights K1 “ 1
2
}ek

j }2, and K2 “ 1
2
}ek

j,a}2 respectively, we derive the
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tuning rules by applying normalized gradient descent as,

9̂
W k

j “ ´α
σk

j

p1 ` pσk
j qTσk

j q2
pek

j qT, @t ě 0, j P tu, du

9̂
W k

j,a “ ´αaxpek
j,aqT, @t ě 0, j P tu, du,

where σk
j “ pUk

j ptq b Uk
j ptqq ´ pUk

j pt ´ TIRLq b Uk
j pt ´ TIRLqq, and

α, αa P R
` are tuning gains.

Remark 6.1. The persistence of excitation condition can be guaranteed
by adding exploration noise in the control input (Ioannou and Fidan,
2006). l

Remark 6.2. Although the described algorithm does not require explicit
knowledge of the system matrices, both opponents require knowledge of
the policies of the previous levels. This result agrees with similar claims
from non-equilibrium game theory about the difficulty of operating in
higher cognitive levels since for an agent to learn a level-k best response,
first she has to successfully learn all the previous best responses of all
the other agents acting on the system. l

6.3.3 Estimation of the Adversarial Levels

In this subsection, we will propose an algorithmic framework where a
defender interacts with adversaries of different cognitive levels for a
predefined time period Tint P R`. To further generalize our results, we
will not restrict the adversaries to statically use only a specific level
policy throughout the interaction. This will account for opponents who
manage to increase their cognitive level after their initial attack, who
try to deceive the defender, or even adversaries that do not follow a
best response policy. Also, as we noted in Subsection 6.3.2, the defender
computes the level-k responses from a model-free learning algorithm
utilizing fictitious inputs. Consequently, instead of identifying the exact
distribution of the levels of intelligence in the adversarial environment,
we fit an arbitrary attack input to the set of beliefs over the different
level-k model-free policies.

Initially, we assume that the defender is able to directly measure the
effect of the attack input on the system. We define the error between
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the actual measured adversarial input, denoted fptq, and the adversarial
input of a level-k adversary as,

rk “
ż t

t´Tint

}fpτq ` pQk
d,aaq´1Qd,xaxpτq}dτ, @t ě 0, k P t1, . . . , Ku

(6.15)
where K is the maximum level the defender has computed. We note
that (6.15) is the norm of the “distance” of the measured attack from
each cognitive level during the time of interaction with the particular
adversary.

After each interaction period rt ´ Tint, ts, we will stack the elements
rk into a vector of the form, r “

“

r1 r2 . . . rK
‰

. Motivated by
(Sutton and Barto, 2018), we will use the softmax function to map
the error vector r to a reinforcement-like signal. However, we need to
reward those elements of the vector that are closer to the appropriate
level, i.e., to reinforce the minimum element. As a result, we apply the
softmax function to each element of r, as follows

σk “ e´rk {τ
řK

i“1 e´ri{τ
,

where τ P R` is the softmax temperature parameter. This will give

us, σσσ “
“

σ1 σ2 . . . σK
‰T

. We model the distribution of the players
over the different levels as a Poisson distribution with the following
probability mass function, pk “ λke´λ

k!
, λ P R`. This probability shall

also define the belief of the defender about the relative proportion of
level-k adversaries as,

bk “ pk

řK
i“1 pi

.

Our goal is to evaluate the parameter λ. To this end, we use the
following update rule for the mean of the observations,

λ` “ λ ` pK̃Tσσσqn
n ` 1

,

where K̃ “
“

1 2 . . . K
‰

is a vector containing the indexes of the
levels we have trained and n is the number of different agents we have
interacted with.
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6.3.4 Further Reading

More details about non-equilibrium dynamic games and cyber–physical
security are given in Kanellopoulos and Vamvoudakis (2019) and
Vamvoudakis and Kanellopoulos (2019).



7

Applications to Autonomous Vehicles

In this section, we present applications of synchronous-RL based decision-
making mechanisms to autonomous vehicles. In Subsection 7.1, by
leveraging ideas developed in Section 4, we shall endow the intelli-
gent autonomous robots with online model-free algorithms to allow
the kinodynamic motion planning in unknown cluttered environments.
Subsection 7.2 extends the results displayed in Section 6 to introduce the
non-equilibrium pursuit-evasion games. In particular, we devise a novel
framework for coordinating a team of bounded rational UAVs to track
an adversarial target while learning the target’s profile of intelligence
by employing a data-driven algorithm utilizing measurements along the
target’s trajectory.

7.1 Kinodynamic Motion Planning

This subsection presents an online kinodynamic motion planning al-
gorithmic framework using asymptotically optimal rapidly-exploring
random tree (RRT‹) (Goretkin et al., 2013; Perez et al., 2012; Webb and
Berg, 2013) and CT Q-learning, which we term as RRT-Q. We formulate
a model-free Q-based advantage function and we utilize integral RL to
develop tuning laws for the online approximation of the optimal cost and

126
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the optimal policy of CT linear systems. Furthermore, a terminal state
evaluation procedure is introduced to facilitate the online implemen-
tation. Finally, we propose a static obstacle augmentation and a local
replanning framework, which are based on topological connectedness, to
locally recompute the robot’s path and ensure collision-free navigation.

7.1.1 Problem Formulation

Consider the linear time-invariant CT system given by (4.1). For driving
our system from an initial state x0 to a final state xpT q “ xr, we define
the difference between the state xptq and the state xr, as our new state
x̄ptq :“ xptq ´ xr. The final time is denoted by T P R

`. Similarly, we
define our new control as, ūptq :“ uptq ´ ur, with ur “ upT q. The new
system becomes,

9̄xptq “ 9xptq ´ 9xr

“ Ax̄ptq ` Būptq, x̄0 “ x0 ´ xr, t ě 0. (7.1)

We define an energy cost functional,

Jpx̄; ū; t0, Tq “ φpT q ` 1

2

ż T

t0

px̄TMx̄ ` ūTRūqdτ, @t0,

where φpT q :“ p1{2qx̄TpT qP pT qx̄pT q is the terminal cost with P pT q :“
PT P R

nˆn ą 0 the final Riccati matrix, and M P R
nˆn ľ 0 and

R P R
mˆm ą 0 are the user-defined matrices that penalize the states

and the control input, respectively.

Assumption 7.1. We assume that the unknown pairs pA, Bq and
p
?

M, Aq are controllable and detectable, respectively. l

We are interested in finding an optimal control ū‹ such that, Jpx̄; ū‹;

t0, T q ď Jpx̄; ū; t0, T q, @x̄, ū, which can be described by the minimiza-
tion problem Jpx̄; ū‹; t0, T q “ minū Jpx̄; ū; t0, T q subject to (7.1). In
other words, we want to obtain the optimal value function V ‹ that is
defined by,

V ‹px̄; t0, T q :“ min
ū

ˆ

φpT q ` 1

2

ż T

t0

px̄TMx̄ ` ūTRūqdτ

˙

, @x̄, (7.2)

but without any information about the system dynamics.
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Consider the closed obstacle space Xobs Ă X . The free space is
defined as the relative complement of the obstacle space in the state
space, Xfree :“ pXobsqC “ X zXobs which is an open set (Rudin, 1964).
The output of an algorithm is designed to efficiently search nonconvex,
high-dimensional spaces by randomly building a space-filling tree (e.g.,
RRT) that will produce the global path π px0,i, xr,iq P R

2pkˆnq, for
i “ 1, . . . , k with i P N. The global path π px0,i, xr,iq will include the
initial states X0 “ x0,i for all i, with X0 P R

kˆn Ă Xfree, and the final
states XG “ xr,i for all i, with XG P R

kˆn Ď Xfree. The algorithm will
also provide an initial graph G “ pV, Eq, where V is the initial set of
nodes, VG “ |V | its cardinality, and E the initial set of edges. With
a slight abuse of notation, we will refer to the nodes v P V as states
x P X .

A direct relationship of the global path π in the initial graph is
given by the tree T “ pVT , ET q Ď G. Furthermore, the augmented
obstacle space X

aug
obs “ f pt; Drobq will change through time depending

on the kinodynamic distance Drob of the robot motion at every i-
TPBVP. Similarly, the diminished open free space is defined as X dim

free :“
pX aug

obs qC “ X zX
aug
obs Our work will formulate an online implementation

framework of safe kinodynamic motion planning, given the global path
and the initially randomly sampled graph, with completely unknown
dynamics as described in (7.1) since we are solving a finite horizon
optimal control problem with a free final state, and we are also setting a
new state x̄ptq, as the difference of the current state xptq with the desired
state xr, we can make the following approximation limtÑT xpT q « xr.

This means that the final state xpT q may not obtain the exact desired
state xr value. Still, the system may be fast enough to approximate the
desired state, and stay there, until the end of the fixed finite horizon T.

To address this problem, we define the initial distance as the n-norm of
the initial state x0 and the desired state xr as,

D0 px̄0q :“ }x̄0}n , @x̄0. (7.3)

We shall then measure the relative distance at time t ě 0 with the
n-norm of the current state xptq and the desired state xr as,

Dpx̄; tq :“ }x̄ptq}n, @x, t. (7.4)
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Let us also define the distance error of (7.3) and (7.4) as,

ed px̄0, x̄; tq :“ |D0 px̄0q ´ Dpx̄, tq| .

7.1.2 Finite Horizon Optimal Control

Define the Hamiltonian with respect to (7.1) and (7.2) as,

Hpx̄; ū; λq “ 1

2
px̄TMx̄ ` ūTRūq ` λTpAx̄ ` Būq, @x̄, ū, λ.

In order to solve the finite horizon optimal control problem (7.2), by
using the sweep method (Bryson, 2018) and λ “ pBV ‹{Bx̄q, we derive
the HJB equation,

´BV ‹

Bt
“ 1

2
px̄TMx̄ ` ūTRūq ` BV ‹

Bx̄

T

pAx̄ ` Būq, @x̄.

Since our system (7.1) is linear, we can write the value function in a
quadratic in the state x̄ form as,

V ‹px̄; tq “ 1

2
x̄TP ptqx̄, @x̄, t ě t0, (7.5)

where P ptq P R
nˆn ą 0 solves the Riccati equation,

´ 9P ptq “ M ` P ptqA ` ATP ptq ´ P ptqBR´1BTP ptq. (7.6)

Hence, the optimal control is,

ū‹px̄; tq “ ´R´1BTP ptqx̄ @x̄, t. (7.7)

7.1.3 Model-Free TPBVP Formulation

Let us now define the following advantage function:

Qpx̄; ū; tq :“ V ‹px̄; tq ` H

ˆ

x̄; ū;
BV ‹

Bt
,

BV ‹

Bx̄

˙

“ V ‹px̄; tq ` 1

2
x̄TMx̄ ` 1

2
ūTRū

` x̄TP ptqpAx̄ ` Būq ` 1

2
x̄T 9P ptqx̄, @x̄, ū, t ě 0, (7.8)

where Qpx̄; ū; tq P R
` is an action-dependent value.
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Next, we define U :“ rx̄TūTsT P R
pn`mq to express the Q-function

(7.8) in a compact form as,

Qpx̄; ū; tq “ 1

2
UT

„

Qxxptq Qxuptq
Quxptq Quuptq



U :“ 1

2
UTQptqU, (7.9)

where Qxxptq “ 9P ptq ` P ptq ` M ` P ptqA ` ATP ptq ` P ptqB Qxuptq “
QT

uxptq “ P ptqB, and Quu “ R, with Q: R
n`m ˆ R

pn`mqˆpn`mq

Ñ R
`. Note that, since the Riccati matrix is symmetric, x̄TP ptqAx̄ “

p1{2qx̄TpP ptqA`ATP ptqqx̄, and x̄TP ptqBū “ p1{2qx̄TpP ptqB`BTP ptqq¨
ū. We can find a model-free formulation of ū‹ given in (7.7) by using
the stationarity condition pBQpx̄; ū; tq{Būq “ 0 to obtain,

ū‹px̄; tq “ arg min
ū

Qpx̄; ū; tq “ ´Q´1
uu Quxptqx̄. (7.10)

7.1.4 Learning Algorithm

We design a critic approximator to approximate the Q-function in
(7.9) as,

Q‹ px̄; ū‹; tq “ 1

2
UTQ̄ptqU :“ 1

2
vechpQ̄ptqqTpU b Uq,

where vechpQ̄ptqq P R
ppn`mqpn`m`1q{2q. This structure exploits the sym-

metric properties of the Q̄ matrix to reduce the computational
complexity.

Since the ideal weight estimates are unknown, we employ an adap-
tive estimation technique (Ioannou and Fidan, 2006) by using current
weights. Thus, the critic approximator can be written as,

Q̂px̄; ū; tq “ Ŵ T
c vptqpU b Uq, (7.11)

where Ŵcvptq :“ p1{2qvechpQ̂ptqq.
By using a similar way of thinking for the actor, we will assign

µptqTWa “ ´Q´1
uu Quxptq to write,

ū‹px̄; tq “ W T
a µptqx̄,

where Wa P R
nˆm are the actor weight estimates, µptq P R

nˆn is a
radial basis function of appropriate dimensions that depend explicitly
on time.
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The actor by using current weight estimates is,

ˆ̄upx̄; tq “ Ŵ T
a µptqx̄. (7.12)

Remark 7.1. The critic and the actor approximators described in (7.11)
and (7.12), respectively, do not include any approximation errors. There-
fore, we use the whole space and not just a compact set. With this
structure, the approximations will converge to the optimal policies, and
hence, the superscript ‹ that denotes the ideal values of the adaptive
weight estimation render similarly with the optimal solutions. l

We adopt the integral RL approach from Vrabie et al. (2013) that
will express the Bellman equation as,

V ‹px̄ptq; tq “ V ‹px̄pt ´ ∆tq; t ´ ∆tq ´ 1

2

ż T

t´∆t

px̄TMx̄ ` ˆ̄uTRˆ̄uqdτ,

(7.13)

V ‹px̄pT q; T q “ 1

2
x̄TpT qP pT qx̄pT q, (7.14)

where ∆t P R
` is a small fixed value.

It holds that Q‹px̄; ˆ̄u‹; tq “ V ‹px̄; tq, we can write (7.13) and (7.14) as,

Q‹px̄ptq; ˆ̄u‹ptq; tq “ Q‹px̄pt ´ ∆tq; ˆ̄u‹pt ´ ∆tq; t ´ ∆tq

´ 1

2

ż t

t´∆t

px̄TMx̄ ` ˆ̄uTRˆ̄uq dτ,

Q‹px̄pT q; T q “ 1

2
x̄TpT qP pT qx̄pT q.

Next, we select the errors ec1
, ec2

P R, which we would like to drive to
zero by appropriately tuning the critic weights of (7.11). Define the first
critic error ec1

as,

ec1
:“ Qpx̄ptq; ûptq; tq ´ Qpx̄pt ´ ∆tq; ûpt ´ ∆tq; t ´ ∆tq

` 1

2

ż t

t´∆t

px̄TMx̄ ` ˆ̄uTRˆ̄uqdτ

“ W̃ T
c vptqppÛptq b Ûptqq ´ pÛpt ´ ∆tq b Ûpt ´ ∆tqq

` 1

2

ż t

t´∆t

px̄TMx̄ ` ˆ̄uTRˆ̄uqdτ,
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with Û “ rx̄TûTsT the augmented state that is comprised from the
measurable full state vector and the estimated control action. Next, we
define the second critic error as,

ec2
:“ 1

2
x̄TpT qP pT qx̄pT q ´ Ŵ T

c vpT qpÛpT q b ÛpT qq.

The actor approximator error ea P R
m is defined by,

ea :“ Ŵ T
a µptqx̄ ` Q̂´1

uu Q̂uxptqx̄,

where Q̂uu, Q̂ux will be obtained from the critic weight matrix estimation
ŴC. By employing adaptive control techniques (Ioannou and Fidan,
2006) we define the squared norm of errors as,

K1pŴc, ŴcpT qq “ 1

2
}ec1}2 ` 1

2
}ec2}2, (7.15)

K2pŴaq “ 1

2
}ea}2. (7.16)

7.1.5 Learning Framework

The weights of the critic estimation matrix are obtained by applying a
normalized gradient descent algorithm in (7.15),

9̂
Wc “ ´αc

BK1

BŴc

“ ´αc

˜

1

p1 ` σTσq2
σec1

` 1
`

1 ` σT
f σf

˘2
σfec2

¸

, (7.17)

where σptq “ vptqpÛptq b Ûptq ´ Ûpt ´ ∆tq b Ûpt ´ ∆tqq, σfpT q “
vpT qpUpT q b UpT qq, and αc P R

` is a constant gain that specifies the
convergence rate. The critic tuning (7.17) guarantees that as ec1

Ñ 0

and ec2
Ñ 0 then Ŵc Ñ Wc and ŴcpT q Ñ WcpT q.

Similarly, the weights of the actor estimation matrix Ŵa by applying
a gradient descent algorithm in (7.16) yield,

9̂
Wa “ ´αa

BK2

BŴa

“ ´αax̄eT
a , (7.18)

where αa P R
` is a constant gain that specifies the convergence rate.

The actor estimation algorithm (7.18) guarantees that as ea Ñ 0,
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then Ŵa Ñ Wa. Next, we provide the main stability Theorem for the
proposed Q-learning framework.

Theorem 7.2 (Kontoudis and Vamvoudakis, 2019, Thm. 2). Consider
the linear time-invariant CT system (7.1), the critic, and the actor
approximators given by (7.11) and (7.12), respectively. The weights
of the critic and the actor estimators are tuned by (7.17) and (7.18),
respectively. The origin is a globally uniformly asymptotically stable
equilibrium point of the closed-loop system, given that the critic gain αc

is sufficiently larger than the actor gain αa and the following inequality
holds:

0 ă αa ă 2λpM ` QxuR´1QT
xuq ´ λpQxuQT

xuq

δλ

ˆ

µptqR´1

}1`µptqTµptq}2

˙ ,

with δ a constant of unity order.

In this subsection, we discuss the structure of the proposed model-
free, online motion planning algorithm with Q-learning and optimal
sampling-based path planners. We also present the algorithmic frame-
work of the proposed RRT-Q‹.

7.1.6 RRT-Q‹ Algorithmic Framework

The structure of the proposed motion planning RRT-Q‹ is presented in
Figure 7.1. The proposed motion planning RRT-Q‹ consists of an offline
global RRT computation; an online actor/critic structure; an online
terminal state evaluation; an online static obstacle augmentation; and
an online local re-planning. First, we compute offline the global path
π px0,i, xr,iq by using the RRT‹ algorithm. Then, we continue with the
online model-free learning of the optimal policy. More specifically, the
policy evaluation is assessed by the critic and the policy improvement is
performed by the actor. The actor is an inner-loop feedback controller
that drives the system with û according to (7.12), where Wa are the
actor parameters that can be found online by (7.18). The critic’s ob-
jective is to estimate the Q-function, which is the value function that
follows from the Bellman equations (7.13). The critic approximates Q̂ by



134 Applications to Autonomous Vehicles

Online

Terminal State Evaluation

Online

Actor/Critic Network Structure

xr

x

ed

Q
^

Actor

Critic

x0

Online

Static Obstacle Augmentation

Drob

Online

Local Re-Planning

Vfree

Condition

Vnew

Tnew

Yes

Global Planning

V0

-

u-̂

ur

Condition

+ -

Yes
System

xr

Obstacle

Augmentation

Condition
Yes

Offline

Discard

Nodes

RRT*

Re-Planning

Re-planning

Nodes

Initial

Distance

Current

Distance

Kinoydynamic

distance

RRT*

X obs
aug

Figure 7.1: The motion planning RRT-Q‹ structure. The RRT-Q‹ incorporates
five stages, (1) the offline global RRT‹ computation, (2) the online actor/critic
network structure, (3) the online terminal state evaluation, (4) the static obstacle
augmentation, and (5) the online local RRT‹ re-planning.

using (7.11), where Wc are the critic parameters that can be computed
online by (7.17). The control actor computes the action û according
to (7.9), where Wa are the actor parameters that can be estimated
online. The disturbance actor computes the action d̂ according to (7.10),
where Ŵd are the actor parameters that can be estimated online. The
critic’s parameters include intrinsic dynamics, which can be obtained
by computing the time derivative that yields,

9p “ x̄TptqMx̄ptq ´ x̄Tpt ´ ∆tqMx̄pt ´ ∆tq ` ˆ̄uTptqRˆ̄uptq
´ ˆ̄uTpt ´ ∆tqRˆ̄upt ´ ∆tq. (7.19)

A distance metric will be used to evaluate the final state. The initial
distance D0 is computed by (7.5). Next, the relative distance D is
obtained online at every iteration ∆t by (7.6). In the case that the
distance error (7.7) decreases below an admissible value of the initial
distance ed ď βD0, β P B :“ tβ P R|0 ď β ď 1u, we continue to the
next i-TPBVP, by assigning the current state value as the new initial
state x0,i`1 “ xptq. It is to be noted that the i-TPBVP is specified
by the i-set of the initial and the final states x0, xr, which final states
x0, xr, which were initially provided by the global planning with RRT‹.
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The RRT‹ algorithm is proven to compute the optimal path, which most
of the times passes very close to the obstacles, that is potentially unsafe.
Inherently, in kinodynamic motion planning, we cannot track straight
lines due to the kinodynamic constraints imposed by the physics of the
system. Therefore, when the robot navigates close to the obstacle and
deviates from the given RRT‹ path, then a collision may occur with the
obstacle. To address this problem, we propose a static augmentation
of the obstacle space and a local re-planning strategy. For the static
obstacle augmentation, we compute the maximum deviation of the robot
from the straight line at every TPBVP, which we term as kinodynamic
distance Drob px̄0, x̄q. The kinodynamic distance is computed by,

Drob px̄0, x̄q “ |x̄0 ˆ x̄|
D0

. (7.20)

Next, if the kinodynamic distance is greater than the previously mea-
sured deviations of motion Drob,i ą max tDrob,1, . . . , Drob,i´1u , we com-
pute the augmented obstacle space,

χ
aug
obs “ Xobs ‘ Xrob,

where Xrob P R
2 is the kinodynamic distance space that is constructed

as a rectangle with sides δ “ 2Drob. That is a conservative approach, as
we limit the navigation considering the maximum kinodynamic distance.
since we tackle the model-free problem, the model of the system is
unknown, and hence, we cannot perform offline computations. Therefore,
the agent may deviate from the optimal path, still the proposed method
ensures collision-free navigation.

We continue on the local replanning stage that will provide a safe
path in the open diminished free space X dim

free :“ pX aug
obs qC “ X zX

aug
obs .

We start by evaluating whether the global path π px0,i, xr,iq collides
with the augmented obstacle space X

aug
obs . Then, if a collision occurs,

we prune the graph GpV, Eq by discarding the nodes in the augmented
obstacle space Vaug “ V P X

aug
obs from the initial set of nodes, Vnew “

V zVaug. Since the proposed algorithm operates online, we cannot afford
computationally to perform the RRT even in the diminished free state-
space X dim

free . Therefore, a significantly reduced free state-space needs to
be specified. The underlying principle to narrow down the local path
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planning problem exploits the precomputed nodes V and the initial
global path π toward defining a new local free state space X loc

free. First,
we search for the two closest states of the initial global path π outside
the area of collision with the augmented obstacle space X

aug
obs . These two

states will serve as the local start state xloc
start and the local goal state

xloc
goal, while the rest path will not be affected. If any states of the path

π are located in the augmented obstacle space X
aug
obs , we discard them

from the updated set of nodes Vnew. Next, we establish a circle with
center point at Oloc “ pxloc

start `xloc
goalq{2 and radius rloc “ }xloc

start ´xloc
goal},

which forms the local circular space X loc
circle :“ tx P X |}x´Oloc}2 ď r2

locu.
Then, the local candidate path planning space is defined as the relative
complement of the augmented obstacle space in the local circular space,
X loc

cand “ X loc
circlezX

aug
obs . To assess the local candidate space X loc

cand, we
introduce the following definitions (Rudin, 1964).

Definition 7.1. If A is a subset of a metric space X, and if BA denotes
the set of all its limit points, then Ā said to be closure of A if Ā “
A

Ť BA. l

Definition 7.2. Two subsets A and B of a metric space X are said to
be separated if both A X B̄ “ H and Ā X B “ H hold. l

Definition 7.3. A set A is connected if it is not the union of two
separated sets. l

We analyze whether the local candidate path planning space X loc
cand

has separated sub-spaces, as this notion can be handled easier than the
connected space. According to the structure of the environment (i.e.,
obstacle space and free state space), the local candidate path planning
space X loc

cand may result to be separated, with one space that contain the
local goal state xloc

goal and another space with the local start state xloc
start.

Lemma 7.3. For a given set of states in the diminished free space X dim
free ,

the local start state xloc
start, and the local goal state xloc

goal if there exists a
sufficient, connected, and closed local free space X loc

free that forms a ring,
based on the fixed incremental distance ǫ of the RRT‹, then we can
obtain a collision-free path with the local replanning framework.
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Since we obtained a relatively small local free space X loc
free that is

guaranteed to contain the local start state xloc
start, the local goal state

xloc
goal, and sufficient space for the implementation of the path planning

with incremental distance ǫ, we can move on the next step, which is the
local replanning with RRT. We locate the free replanning nodes from
the updated set of nodes Vnew that lie in the local free space X loc

free, which
we term as Vfree “ Vnew P X loc

free. The coordinates of the free replanning
nodes Vfree will further reduce the computational effort, as no random
sampling is required in the local free space X loc

free. The output is a local
path πloc that connects the local start state xloc

start with the local goal
state xloc

goal, which along with the previously computed global path π

produces the new tree Tnew.
The RRT-Q‹ is presented in Algorithm 17 and its subroutines in

Algorithms 18 and 19. However, note that it is beyond the scope of this
monograph to present in detail the operation of classic RRT‹ algorithm.
Hence, we omit to present the standard routines of the RRT‹. The
interested reader is directed to Kontoudis and Vamvoudakis (2019) for
the detailed presentation of the RRT-Q‹ algorithm.

Next, we continue with the online implementation. The function
NoCollision monitors if there exists a collision in the entire augmented
obstacle space X

aug
obs with the global path π through the whole pro-

cedure and returns a binary value. The function InitialDistance

calculates the distance of the initial and the final state according to
(7.3). Then, follows the online approximation of the optimal policy
with full state feedback (lines 8–12). The function Critic estimates
the critic parameters from (7.17). This includes internal dynamics as
given in (7.19). The function EstimateQ estimates the parameters of
the Q̂ from (7.11). The Actor calculates the actor parameters from
(7.18), that lead the function Control to produce the control action
ˆ̄u from (7.12). Next, we perform the terminal state evaluation (lines
13–18). The function KinodynamicDistance returns the deviation of
the agent from the straight line that connects the initial and final
states, by employing (7.20). The distance error is calculated by the
function DistanceError, which allow the terminal state evaluation
to proceed to the next i-TPBVP. The primitive Augment inflates the
obstacle space by comparing the maximum distance of the previously
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obtained deviations maxtDrob,1, . . . , Drob,i´1u, with the current kinody-
namic distance Drob,i.

When a collision of the path π occurs with the augmented obstacle
space, then the algorithm continues to the next phase of the online
local re-planning. A critical aspect for the feasibility of the online
implementation, is to perform the re-planning procedure sufficiently
fast. To this end, we narrow down the local free space with LocalNodes,
that provides the free nodes Vfree according to the fixed incremental
ǫ of the RRT‹ for feasible local re-planning. Then, the RRT‹ provides
the local graph Gnew, with a given set of nodes Vfree that reduce the
computational effort even further, as no random sampling is required.
Lastly, the primitive Connect employs the global graph G and the locally
graph Gnew to find a safe tree Tnew with respect to the kinodynamic
constraints.

In Algorithm 18, the function Circle establishes a local candidate
space X cand

loc based on a circle with radius rloc and at center Oloc. The
function SemiCircle attempts to evaluate the connectedness of the
X cand

loc with respect to the fixed incremental distance ǫ of the RRT‹.
The Edge returns the closest states to the area of collision that we set
as the local start state xloc

start and the local goal state xloc
goal.

7.1.7 Further Reading

More details about the online kinodynamic motion planning algorithm
are given in Kontoudis and Vamvoudakis (2019).

7.2 Bounded Rationality in Adversarial Target Tracking

This subsection addresses the problem of tracking an actively evading
target by employing a team of coordinating UAVs while also learning
the level of intelligence for appropriate countermeasures. Initially, under
infinite cognitive resources, we formulate a game between the evader
and the pursuing team, with an evader being the maximizing player
and the pursuing team being the minimizing one. We derive optimal
pursuing and evading policies while taking into account the physical
constraints imposed by Dubins vehicles. Subsequently, we relax the
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Algorithm 17: RRT_Q˚(T, ∆t, M, R, P pT q, αc, αa, β, Xobs, G(V, E))

1: Vfree Ð H; X
aug

obs Ð Xobs;
2: G, πpx0, xrq Ð RRT˚(G, N, Vfree);
3: Dkin

rob Ð H;
4: while NoCollision(π) do

5: for i “ 1 to k do

6: D0 ÐInitialDistance(x0);
7: for t P T do

8: Ŵc Ð Critic(x̄, ū, αc, M, R, ∆t, P pT q);
9: Q̂ Ð EstimateQ(x̄, ū, Ŵc);

10: Ŵa Ð Actor(x̄, ū, Q̂, αa);
11: ˆ̄u Ð Control(x̄, ū, Ŵa);
12: Return ˆ̄u;
13: Drob Ð KinodynamicDistance(x̄, D0);
14: ed Ð DistanceError(x̄, D0);
15: if ed ď βD0 then

16: x0,i`1 Ð xptq;
17: break;
18: end if

19: end for

20: if Drob ą Dkin
rob then

21: X
aug

obs Ð Augment(Xobs); Dkin
rob Ð Drob;

22: end if

23: end for

24: end while

25: Vfree Ð LocalNodes(π, X
aug

obs , ǫ);
26: Gnew Ð RRT*(Vfree);
27: Tnew Ð Connect(G, Gnew);
28: Return Tnew;

Algorithm 18: LocalNodes (π, X
aug
obs , ǫ)

1: Vnew Ð V ´ tv P X
aug
obs u;

2: (xloc
start, xloc

goal) Ð Edge(X aug
obs , π);

3: (Oloc, rloc, X cand
loc ) Ð Circle(xloc

start, xloc
goal);

4: for j “ 1 to l do

5: xtest Ð SemiCircle(Oloc, rloc, ǫ)
6: if xtest P X

aug
obs then

7: Vfree Ð H;
8: else

9: Vfree Ð Vnew;
10: end if

11: end for

12: Return Vfree;



140 Applications to Autonomous Vehicles

Algorithm 19: Edge (π, X
aug
obs )

1: for i “ 1 to k do

2: if x0 P X
aug
obs then

3: xloc
start Ð xfree

0
; break;

4: end if

5: x0 Ð xfree
0

;
6: end for

7: for i “ 1 to k do

8: if xr P X
aug
obs then

9: xloc
goal Ð xfree

r ;
10: end if

11: xr Ð xfree
r ;

12: end for

13: Return (xloc
start, xloc

goal);

infinite rationality assumption, via the use of level-k thinking. Such
rationality policies are computed by using a RL-based architecture, and
they converge to the Nash policies as the thinking levels increase.

7.2.1 Problem Formulation

Consider N camera-equipped UAVs tasked with estimating the state of
a target vehicle moving evasively in the ground plane. The UAVs fly at
a fixed airspeed and constant altitude and are subject to a minimum
turning rate. The target vehicle moves in the ground plane and is subject
to a maximum turning rate and maximum speed that is less than the
UAVs’ ground speed, which is the same as its airspeed in the ideal
case of no wind. Each UAV takes measurements of the target’s position
using a gimballed video camera, and we assume that the target can
be detected at all times and kept in the center of the camera’s field of
view by onboard software. We shall first discuss the dynamical models
for each of the two types (N UAVs and 1 target) of vehicles and then
proceed to describe the relative kinematics of each UAV with respect
to the ground moving target.
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Vehicle Dynamics

In our approach we consider that the kinematics of each moving vehicle,
namely both the UAV and the target can be described via Dubins. The
Dubins vehicle is a planar vehicle that moves forward at a fixed speed
and has a bounded turning rate.

Consider that each UAV i P N :“ t1, 2, . . . , Nu flies at a constant
speed si, at a fixed altitude, and has a bounded turning rate ui P U in
the sense that U :“ tui P R: |ui| ď ūiu with ūi P R`.

Denote the state of each vehicle by ξi :“
“

ξi
1 ξi

2 ξi
3

‰T P R
3, i P N ,

which comprises the planar position of each UAV in pi :“
“

ξi
1 ξi

2

‰T

and its heading ψi :“ ξi
3 all of which are measured in a local East-

North-Up coordinate frame. Hence the kinematics of each UAV are
given @i P N by,

9ξi “ f i
vpξi, uiq :“

“

si cos ξi
3 si sin ξi

3 ui

‰T
, t ě 0.

On the basis of the above, the target is also modeled as a Dubins
vehicle with a bounded turning rate d in the sense that D :“ td P
R: |d| ď d̄u where d̄ is the maximum turning rate. Denote the state of

the target by η :“
“

η1 η2 η3

‰T P R
3, where pT :“

“

η1 η2

‰T
is the

planar position of the target in the same local East-North-Up coordinate
frame as the UAVs and η3 is its heading.

To proceed we shall make the following assumption.

Assumption 7.4. The following are needed to make the problem feasible.

• At t “ 0, the tracking vehicle is observing the target and is not
dealing with the problem of initially locating the target.

• Since the UAVs fly at a constant altitude, there is no need to
consider the 3-D distance, but only the projection of each UAV’s
position on the flat-Earth plane where the target is moving.

• The airspeed and the heading rate of the target satisfy, st ă
mints1, s2, . . . , sN u, and d̄ ă mintū1, ū2, . . . , ūN u. l
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Relative Kinematics

In a target tracking problem it is necessary to determine the relative
motion of the target with respect to the UAV. Thus, we will work in
the polar coordinates, i.e., pri, θiq, where ri is the relative distance of
each UAV to the target ri “ }pi ´ pT }2 :“

a

pξi
1 ´ η1q2 ` pξi

2 ´ η2q2

and θi the azimuth angle defined as, θi “ arctan
ξi

2´η2

ξi
1

´η1
@i P N . Also, we

define the “relative heading” angle (Kokolakis and Koussoulas, 2018),

as φi “ arctan ri
9θi

9ri
and by taking φi “ ψi ´ θi into account, we can

derive the tracking dynamics for each UAV as follows,

9ri “ si cos φi ´ 9η1 cos θi ´ 9η2 sin θi, @i P N ,

9ξi
3 “ ui, @i P N ,

9η3 “ d.

We can now write the augmented state r :“
“

r1 ξ1
3 ¨ ¨ ¨ rN ξN

3 η3

‰T P
R

2N`1 to yield the following dynamics,

9r “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

9r1

0

9r2

0
...

9rN

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ 0

1 0 ¨ ¨ ¨ ¨ ¨ ¨
0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ...

1 0 ¨ ¨ ¨
...

. . .
...

¨ ¨ ¨ ¨ ¨ ¨ 0

0 ¨ ¨ ¨ 0 1

0 ¨ ¨ ¨ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

u `

»

—

—

—

—

—

—

—

–

0
...
...
...
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

d

” F prq ` Gu ` Kd, rp0q “ r0, t ě 0, (7.21)

where, u :“
“

u1 u2 ¨ ¨ ¨ uN

‰T
is the vector of the turning rates of

the UAVs.

Differential Game Formulation

The target tracking problem can be regarded as a two-player ZS game in
which the team of UAVs tries to minimize the distance from the target
ri and the target tries to maximize it. Note that the UAVs coordinate
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their movements in order to ensure that at least one UAV is close to the
target. Additionally, the UAVs should keep their individual distances to
the target sufficiently small to maintain the adequate resolution of the
target in the camera’s image plane for effective visual detection. The
above motivates us to choose the following cost functional,

J “
ż 8

0

pRupuq ´ Rdpdq ` Rrprqqdt,

where Rrprq :“ β1
1

řN
i“1

1

r2
i

` β2

řN
i“1 r2

i , with β1, β2 P R` weighting

constants. Specifically, the term being weighted by β1 enforces distance
coordination so that one UAV is always close to the target to improve
measurement quality and the term being weighted by β2 penalizes
the individual UAV distances to the target to ensure that the size of
the target in each UAV’s image plane is sufficiently large for reliable
detection by image processing software.

To enforce bounded UAV inputs and bounded target input we shall
use a non-quadratic penalty function of the form,

Rupuq “ 2

ż u

0

pθ´1
1 pvqqTRdv, @u, (7.22)

and,

Rdpdq “ 2

ż d

0

pθ´1
2 pvqqTΓdv, @d, (7.23)

where R ą 0, Γ P R`, and θip¨q, i P t1, 2u are continuous, one-to-one
real-analytic integrable functions of class Cµ, µ ě 1, used to map R onto
the intervals r´ū, ūs and r´d̄, d̄s, respectively, satisfying θip0q “ 0, i P
t1, 2u. Also note that Rupuq and Rdpdq are positive definite because
θ´1

i p¨q, i P t1, 2u are monotonic odd.
First, by assuming infinite rationality (the players in the game are

familiar with the decision making mechanism) we are interested in
finding the following optimal value function, @r, t ě 0,

V ‹prptqq “ min
uPU

max
dPD

ż 8

t

pRupuq ´ Rdpdq ` Rrprqqdτ,

subject to (7.21).
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7.2.2 Zero-Sum Game

According to the analysis in Subsection 6.2.1, the value function will
satisfy the following HJ equation,

H

ˆ

r,
BV ‹

Br
, u‹, d‹

˙

“ 0, @r, (7.24)

with Nash policies are given by,

u‹prq “ arg min
u

H

ˆ

r,
BV ‹

Br
, u, d‹

˙

“ ´θ1

ˆ

1

2
R´1GT BV ‹

Br

˙

, @r,

(7.25)

for the UAV, and,

d‹prq “ arg max
d

H

ˆ

r,
BV ‹

Br
, u‹, d

˙

“ θ2

ˆ

1

2
Γ´1KT BV ‹

Br

˙

, @r,

(7.26)

for the target.
The closed-loop dynamics can be found by substituting (7.25) and

(7.26) in (7.21), to write

9r “ F prq ` Gu‹ ` Kd‹, rp0q “ r0, t ě 0. (7.27)

For completeness purposes, we characterize the stability of the equilib-
rium point of the closed-loop system.

Theorem 7.5 (Kokolakis et al., 2020, Thm. 1). Consider the closed-loop
system given by (7.27). Assume that the equilibrium point is re “ 0.
Then, si “ st, @i P N .

The next theorem provides a sufficient condition for the existence
of a saddle-point based on (7.24).

Theorem 7.6 (Kokolakis et al., 2020, Thm. 2). Suppose that, there
exists a continuously differentiable radially unbounded positive definite
function V ‹ P C1 such that, for the optimal policies given by (7.25) and
(7.26), the following is satisfied,

Rupu‹prqq ´ Rdpd‹prqq ` Rrprq ě 0, @r,
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with V ‹p0q “ 0. Then, the closed-loop system given by (7.27), has a
globally asymptotically stable equilibrium point. Moreover the poli-
cies (7.25)–(7.26) form a saddle point and the value of the game is,
J‹p¨; u‹, d‹q “ V ‹prp0qq.

7.2.3 Cognitive Hierarchy

In this subsection, we apply the proposed bounded rationality framework
to the target tracking problem.

Level-0 (Anchor) Policy

We need to introduce an anchor policy for the level-0 player. First, we will
define the level-0 UAV strategy as the policy based on the assumption
that the target is not maneuvering and moves in a horizontal line which
arises by solving an optimal control problem described by,

V 0
u pr0q “ min

uPU

ż 8

0

pRupuq ` Rrprqqdτ. (7.28)

The optimal control input for the optimization problem (7.28) given
(7.21) with d “ 0 is,

u0prq “ ´θ1

ˆ

1

2
R´1GT BV 0

u

Br

˙

, @r,

where the value function V 0
u p¨q satisfies the HJB equation, namely

Hpr, BV 0
u

Br
, u0q “ 0.

Subsequently, the intuitive response of a level-1 adversary target
is an optimal policy under the belief that the UAV assumes that the
target is not able to perform evasive maneuvers. To this end, we define
the optimization problem from the point of view of the target for the
anchor input u “ u0prq,

V 1
d pr0q “ max

dPD

ż 8

0

pRupu0q ´ Rdpdq ` Rrprqqdτ, @r,

subject to, 9r “ F prq ` Gu0 ` Kd, rp0q “ r0, t ě 0.

The level-1 target’s input is computed as, d1prq “ θ2p1
2
Γ´1KT BV 1

d

Br
q,

where the value function V 1
d p¨q satisfies the HJB equation, i.e.,

Hpr, BV 1
d

Br
, u0, d1q “ 0.
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Level-k Policies

To derive the policies for the agents of higher levels of rationality, we
will follow an iterative procedure, wherein the UAV and the adversary-
target optimize their respective strategies under the belief that their
opponent is using a lower level of thinking. The UAV performing an
arbitrary number of k strategic thinking interactions solves the following
minimization problem,

V k
u pr0q “ min

uPU

ż 8

0

pRupuq ´ Rdpdk´1q ` Rrprqqdτ,

subject to the constraint, 9r “ F prq ` Gu ` Kdk´1, rp0q “ r0, t ě 0.
The corresponding Hamiltonian is,

Hk
u

ˆ

r,
BV k

u

Br
, u, dk´1

˙

“ Rupuq ´ Rdpdk´1q ` Rrprq

`
ˆBV k

u

Br

˙T

pF prq ` Gu ` Kdk´1q, @r, u.

Substituting the target’s input with the policy of the previous level

dk´1 “ θ2p1
2
Γ´1KT BV k´1

d

Br
q, yields,

ukprq “ ´θ1

ˆ

1

2
R´1GT BV k

u

Br

˙

, @r, (7.29)

where the level-k UAV value function V k
u p¨q satisfies the HJB equation,

namely

Hk
u

ˆ

r,
BV k

u

Br
, uk, dk´1

˙

“ 0, @r. (7.30)

Similarly, the target of an arbitrary k ` 1 level of thinking, maximizes
her response to the input of a UAV of level-k,

V k`1
d pr0q “ max

dPD

ż 8

0

pRupukq ´ Rdpdq ` Rrprqqdτ,

subject to, 9r “ F prq ` Guk ` Kd, rp0q “ r0, t ě 0.
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The corresponding Hamiltonian is,

Hk`1
d

˜

r,
BV k`1

d

Br
, uk, d

¸

“ Rupukq ´ Rdpdq ` Rrprq

` BV k`1
d

Br

T

pF prq ` Guk ` Kdq, @r, d.

(7.31)

Substituting (7.29) in (7.31) yields the following response,

dk`1prq “ θ2

˜

1

2
Γ´1KT BV k`1

d

Br

¸

, @r, (7.32)

where the level-k ` 1 target value function V k`1
d p¨q satisfies the HJB

equation, namely

Hk`1
d

˜

r,
BV k`1

d

Br
, uk, dk`1

¸

“ 0, @r. (7.33)

With this iterative procedure, the UAV is able to compute the
strategies of the target with finite cognitive abilities, for a given number
of levels.

Theorem 7.7 (Kokolakis et al., 2020, Thm. 3). Consider the pairs of
strategies at a specific cognitive level-k, given by (7.29) and (7.30) for
the UAV, and (7.32) and (7.33) for the level-k ` 1 adversarial target.
The policies converge to a Nash equilibrium for higher levels if the
following conditions hold as the levels increase,

Rupuk´1q ´ Rupuk`1q ą 0, (7.34)

Rdpdk`2q ´ Rdpdkq ą 0. (7.35)

Remark 7.2. It is worth noting that the inequalities (7.34), (7.35) have a
meaningful interpretation. The input penalties (7.22), (7.23) are strictly
increasing and decreasing functions, respectively, and as the level-k of
rationality tends to infinity the players follow a policy such that the
corresponding penalty functions become sufficiently small and large,
respectively. l
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Now, the following theorem provides a sufficient condition which
establishes the global asymptotic stability of the equilibrium point
re “ 0 of the closed-loop system at each level of rationality k.

Theorem 7.8 (Kokolakis et al., 2020, Thm. 4). Consider the system
(7.21) under the effect of agents with bounded rationality whose policies
are defined by (7.29) for the UAV and (7.32) for the adversarial target.
Assuming that the pursuer and evader have the same speed, the game
can be terminated at any cognitive level-k as long as the following
relationship hold:

Rupuq ´ Rdpdq ` Rrprq ě 0, @r, u, d.

7.2.4 Coordination with Non-Equilibrium

Game-Theoretic Learning

Due to the inherent difficulties of solving the HJI Equation (7.24), we
shall utilize the RL-based machinery developed in Sections 2 and 3.
In particular, we shall employ an actor/critic structure. Towards this,
initially we will construct a critic approximator to learn the optimal
value function that solves (7.24). Specifically, let Ω Ď R

2N`1, be a
simply connected set, such that 0 P Ω. It is known (Haykin, 2009) that
we can rewrite the optimal value function as,

V ‹prq “ W Tφprq ` ǫcprq, @r,

where φ :“ rφ1 φ2 . . . φhsT: R
2N`1 Ñ R

h are activation functions,
W P R

h are unknown ideal weights, and ǫc: R
2N`1 Ñ R is the approxi-

mation error. Specific choices of activation functions can guarantee that
}ǫcprq} ď ǭc, @r P Ω, with ǭc P R

` being a positive constant (Hornik
et al., 1990; Ioannou and Fidan, 2006; Lewis et al., 1998).

Since the ideal weights W are unknown, we define an approximation
of the value function as,

V̂ prq “ Ŵ T
c φprq, @r, (7.36)
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where Ŵc P R
h are the estimated weights. Now, we can write the

Hamiltonian utilizing the estimated value function (7.36) as,

Ĥ

ˆ

r, Ŵ T
c

Bφ

Br
, u, d

˙

” Rupuq ´ Rdpdq ` Rrprq

` Ŵ T
c

Bφ

Br
pF prq ` Gu ` Kdq, @u, d.

The approximate Bellman error due to the bounded approximation
error and the use of estimated weights is defined as,

ec “ Rupuq ´ Rdpdq ` Rrprq ` Ŵ T
c

Bφ

Br
pF prq ` Gu ` Kdq.

An update law for Ŵc must be designed, such that the estimated
values of the weights converge to the ideal ones. To this end, we define
the squared residual error Kc “ 1

2
}ec}2, which we want to minimize.

Tuning the critic weights according to a modified Levenberg-Marquardt
(Ioannou and Sun, 2012) gradient descent algorithm, yields,

9̂
Wc “ ´α

ωptqecptq
pωptqTωptq ` 1q2

, (7.37)

where α P R
` is a constant gain that determines the speed of convergence

and ω “ ∇φpF prptqq ` Guptq ` Kdptqq.
We use similar ideas to learn the best response policy. For com-

pactness, we denote ajprq, j P tu, du, that will allow us to develop a
common framework for the pursuers and the evaders. Similar to the
value function, the feedback policy ajprq can be rewritten as,

a‹
j prq “ W ‹

aj

Tφaj
prq ` ǫaj

, @r, j P tu, du,

where W ‹
aj

P R
haj

ˆNaj is an ideal weight matrix with Nau :“ N and
Nad

:“ 1, φaj
prq are the activation functions defined similar to the

critic approximator, and ǫaj
is the actor approximation error. Similar

assumptions with the critic approximator are needed to guarantee
boundedness of the approximation error ǫaj

.
Since the ideal weighs W ‹

aj
are not known, we introduce Ŵaj

P
R

haj
ˆN to approximate the optimal control in (7.25), and (7.26) as,

âjprq “ Ŵ T
aj

φaj
prq, @r, j P tu, du. (7.38)
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Our goal is then to tune Ŵaj
such that the following error is minimized,

Kaj
“ 1

2
eT

aj
eaj

, j P tu, du,

where the reinforcement signal for the actor-network is,

eaj
– Ŵ T

aj
φaj

´ âV
j , j P tu, du,

where âV
j is a version of the optimal policy in which V ‹ is approximated

by the critic’s estimate (7.36),

âV
j “

$

’

’

&

’

’

%

´θ1

ˆ

1

2
R´1GT∇φTŴc

˙

, j “ u,

θ2

ˆ

1

2
Γ´1KT∇φTŴc

˙

, j “ d.

We note that the error considered is the difference between the estimate
(7.38) and versions of (7.25) and (7.26). The tuning law for the UAV
actor approximator is obtained by a modified Levenberg-Marquardt
gradient descent rule,

9̂
Waj

“ ´αaj
φaj

eaj
, j P tu, du, (7.39)

where αaj
P R` is a constant gain that determines the speed of conver-

gence. The issue of guaranteeing convergence of the learning algorithms
on nonlinear systems has been investigated in the literature. For the pro-
posed approach, rigorous proofs and sufficient conditions of convergence
have been presented in Vamvoudakis et al. (2016).

We will now propose an algorithmic framework that allows the UAV
to estimate the thinking level of an evader that changes her behavior
unpredictably by sequentially interacting over time windows of length
Tint P R`. In essence, we will allow for arbitrary evading policies to be
mapped to the level-k policy database.

Let S :“ t1, 3, 5, . . . , Ku be the index set including the computed
estimated adversarial levels of rationality and K is the largest number of
the set. Assuming that the UAV is able to directly measure the target’s
heading rate, we define the error between the actual measured turning
rate, denoted as dptq and the estimated one of a level-k adversarial
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target,

rkptq :“
ż t`Tint

t

pd ´ âdq2 dτ, t ě 0, k P S. (7.40)

However, the ith sample shows the estimated target level of intelligence
and the sampling period is Tint. The classification of the ith sample is
found according to the minimum distance classifier, namely

xi “ arg min
k

rk, @k P S, @i P t1, . . . , Lu, (7.41)

where L is the total number of samples. Note that, the notions of
“thinking steps” and “rationality levels” do not coincide as in Camerer
et al. (2004). Let ki “ xi`1

2
be the random variable counting the

target thinking steps per game that follows the Poisson distribution
(Camerer et al., 2004) with the following probability mass function,
ppki; λq “ λki e´λ

ki!
, where λ P R` is both the mean and variance.

Our goal is to estimate the parameter λ from the observed data by
using the sample mean of the observations which forms an unbiased
maximum likelihood estimator,

λ̂pnSq “
řnS

i“1 ki

nS

, @nS P t1, . . . , Lu. (7.42)

However, in order to ensure the validity of our estimation we need
to make the following assumption.

Assumption 7.9. The target is at most at the K-th level of thinking
and does not change policy over the time interval ppi´1qTint, iTintq, @i P
t1, . . . , Lu. l

On the basis of the above, we write the following learning algorithm
that enables the UAV first to learn the level-k policies and then to
estimate the intelligence level distribution of a target.

7.2.5 Further Reading

More details and simulation results about coordinated tracking of an
evading ground moving target are given in Kokolakis et al. (2020).
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Algorithm 20: Intelligence Level Learning

1: procedure

2: Given cost weights Γ, R, β1, β2 and highest allowable target level
defined to be K.

3: for k “ 0, . . . , K ´ 1 do

4: Set j :“ u to learn the level-k UAV policy.
5: Start with initial state rp0q and, random initial weights Ŵ k

u p0q,
Ŵ k

au
p0q.

6: Propagate the augmented system with states

χ “
“

rT pŴ k
u qT pŴ k

au
qT

‰T
,

according to (7.21), (7.37), and (7.39) until convergence.
7: Compute (7.36) and (7.38).
8: Set j :“ d to learn the level-k ` 1 adversarial target policy.
9: Start with initial state rp0q and, random initial weights Ŵ k`1

d p0q,
Ŵ k`1

ad
p0q.

10: Propagate the augmented system with states,

χ “
“

rT pŴ k`1

d qT pŴ k`1

ad
qT

‰T
,

according to (7.21), (7.37), and (7.39) until convergence.
11: Compute (7.36) and (7.38). Go to 3.
12: end for

13: Define the interaction time with each adversary as Tint, the number of
total samples L.

14: for i “ 1, . . . , L do

15: for k “ 1, . . . , K do

16: Given t P rti, ti ` Tints, measure the value of (7.40).
17: end for

18: Estimate the level of rationality of target according to (7.41).
19: Update λ based on (7.42). Go to 15 to take the next sample.
20: end for

21: end procedure



8

Concluding Remarks

The use of RL to solve control and game-theoretic problems is an
area that has attracted a significant amount of research attention in
recent years and will continue to grow as cognition and autonomy
become a necessity for future engineering systems. The integration of
RL with cognitive models can advance human-agent feedback loops while
optimizing performance, guaranteeing stability, safety, and advancing
data-decision models.

In this monograph, we have reviewed a family of online model-free
and model-based adaptive learning techniques for single and multi-
agent systems using measurements along the system trajectories with
continuous and intermittent feedback for optimal regulation and track-
ing. Under the assumption of perfect rationality, we developed several
Synchronous RL-based decision-making mechanisms for online gam-
ing in the context of stabilization, tracking, zero-sum, non-zero-sum,
Stackelberg, and graphical games. In the sequel, we relaxed the assump-
tion that agents are rational, and we considered instead that they are
bounded-rational, thereby giving rise to non-equilibrium games. Within
the bounded rationality framework, by exploiting the principles of Syn-

chronous RL, we constructed online adaptive cognitive algorithms, which

153



154 Concluding Remarks

in fact are iterative procedures of best responses, allowing the secure
operation of a CPS against malicious attacks. Subsequently, moving
towards the cognitive autonomy in autonomous vehicles, by leveraging
ideas from Q-learning-based control, we endowed the mobile robots with
kinodynamic motion planning algorithms allowing them to navigate
securely in an unknown, challenging, environment with obstacles while
ensuring the avoidance of collision. Still, we introduced the bounded
rational pursuit-evasion games enabling the collaborative tracking of an
adversarial target by deploying a team of bounded rational cooperative
UAVs. Finally, throughout the monograph, it was highlighted that the
Synchronous RL-based algorithms are characterized by strong abilities
of learning while allowing the complex systems to be fully autonomous
and tolerant of failures against the uncertainty imposed by an unknown
environment.

Note that, all the aforementioned algorithms use full-state feedback.
However, complete knowledge of the agent’s state may not be available
for measurements in many applications, and it is desired to design
output-feedback controllers based on available measured output data.
Output feedback has not been fully investigated yet. Another interesting
direction to pursue would be to extend the approaches to robot motion
planning by combining game theory, formal control synthesis, and
learning. Finally, existing RL techniques for large-scale dynamic systems
require spending a long time to gather large amounts of data for learning
an optimal solution. Moreover, the availability of large amounts of data
requires novel decision and control schemes that focus selectively on the
data that are relevant for the current situation and ignores unimportant
details. The demands for fast response based on available information
in a large-scale system impose new requirements for fast and efficient
decision.

Future work, will also focus on designing new classes of learning-
based controllers that are inspired by behavioral psychology and lead to
satisfactory solutions for large-scale systems, which require making fast
and skillful decisions in highly constrained, uncertain, and adversarial
environments with an overload of information.
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