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ABSTRACT
Geometric intersection algorithms are fundamental in spatial anal-
ysis in Geographic Information System (GIS). Applying high per-
formance computing to perform geometric intersection on huge
amount of spatial data to get real-time results is necessary. Given
two input geometries (polygon or polyline) of a candidate pair, we
introduce a new two-step geospatial filter that first creates sketches
of the geometries and uses it to detect workload and then refines the
sketches by the common areas of sketches to decrease the overall
computations in the refine phase. We call this filter PolySketch-
based CMBR (PSCMBR) filter. We show the application of this filter
in speeding-up line segment intersections (LSI) reporting task that
is a basic computation in a variety of geospatial applications like
polygon overlay and spatial join.

We also developed a parallel PolySketch-based PNP filter to per-
form PNP tests on GPU which reduces computational workload
in PNP tests. Finally, we integrated these new filters to the hier-
archical filter and refinement (HiFiRe) system to solve geometric
intersection problem. We have implemented the new filter and re-
fine system on GPU using CUDA. The new filters introduced in
this paper reduce more computational workload when compared
to existing filters. As a result, we get on average 7.96X speedup
compared to our prior version of HiFiRe system.

CCS CONCEPTS
• Theory of computation → Computational geometry; • In-
formation systems → Geographic information systems; • Com-
puting methodologies→Massively parallel algorithms.
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1 INTRODUCTION
Filter and refine strategy is used in many spatial computing al-
gorithms for spatial query, spatial join and overlay in geographic
information system [11]. Given two input layers of geometries, fil-
ter step uses minimum bounding rectangle (MBR) approximation of
a geometry and refine step uses the actual vertices that represent it.
Typically, filter step is lightweight and refinement step is compute-
intensive because of complex computational geometry algorithms.
Filter step produces candidate pairs which may result in false hits.
The refinement step further examines the candidates sequentially
to eliminate false hits by using computational geometry algorithms
on each candidate. Geometric intersection algorithms are funda-
mental in spatial computing [8, 10, 14, 17, 21, 27]. Here we study
GPU-based implementation of filter and refine strategy which is
relevant to spatial join and polygon overlay algorithms.

Geometric intersection algorithms for polygons use line segment
intersection (LSI) and point-in-polygon (PNP) operations as build-
ing blocks. Here, we are interested in the LSI reporting problem
which means that all the points of intersection between two poly-
gons should be reported. Moreover, for all the points of two poly-
gons corresponding to a candidate, the inside/outside status needs
to be determined. LSI and PNP operations are useful for implement-
ing boolean set operations like union, intersection, and difference
for a pair of polygons. Polygon intersection and polygon clipping
algorithms internally invoke LSI and PNP tests [8, 10, 19, 20, 29].
Depending on the variation in size of line segments and its spa-
tial distribution, planesweep [15] and grid-based algorithms on
CPU [13] and GPU [25, 28] have been reported in literature. In
addition, there are data structures like segment tree and R-tree that
have been used to speedup LSI problems [23].

In addition to MBR, other approximations which are used as
filter are rotated minimum bounding box, convex hull, minimum
bounding circle and ellipse, n-cornered bounding polygon, etc [5–
7, 24]. Recent approaches for implementing spatial computations
using GPU, include a variety of filters, for instance, Common MBR
Filter (CMF) [3], two-level uniform grid [13], Grid-CMF [2], and
PolySketch [12]. A collection of filters applied in a hierarchical
manner for speeding up geometric intersection on GPUs was pre-
sented as Hierarchical Filter and Refine (HiFiRe) technique [12].
In this paper, we extend the filter and refine technique by adding
two efficient filters for speeding up LSI and PNP operations. The
filters are designed to exploit the parallel GPU architecture and
minimize the workload inherent in the refinement step of spatial
computations by improving the filter efficiency.

https://doi.org/10.1145/3397536.3422264
https://doi.org/10.1145/3397536.3422264
https://doi.org/10.1145/3397536.3422264
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Figure 1: Two input polygons with (a) CMBR (green rectangle), (b) PolySketch showing the tiles and (c) only overlapping tiles
after applying PolySketch filter.

PolySketch filter uses sketch of a geometry represented by a set
of contiguous MBRs (tiles) that approximate the geometry [12] in-
stead of a single MBR. Common MBR filter is based on the common
area of overlap between MBRs of the two input polygons of a can-
didate. The first new filter proposed here combines the strengths of
PolySketch and CMBR filters and thus we refer to it by PolySketch-
based CMBR (PSCMBR) filter. The second new filter is a PNP filter
that uses PolySketch representation of the geometries to quickly
find whether the points of a geometry are inside or outside of a
given polygon. The contributions of this paper are as follows.

• PSCMBR Filter: Compared to standard R-tree filter, the PSC-
MBR filter discards on average 76% of candidate pairs which
do not have line segment intersection points. The workload
after using it is on average 98% and 90% smaller than using
CMF and PolySketch filter respectively.

• PolySketch-based PNP filter: The workload after using it
is on average 60% smaller than using Stripe-based PNP fil-
ter [12]. The workload after using tile-based PNP filter is
on average 98% smaller than using constant vertex PNP fil-
ter [12].

• With the improved HiFiRe system equipped with new filters,
we get on average 7.96X speedup compared to our prior
version of HiFiRe system. The processing rate of this new
filter and refine system on GPU for reporting line segment
intersection is 61 million segments/sec on average for real
datasets.

The rest of the paper is organized as follows. Section 2 describes
the background and related work. Section 3 describes PSCMBR.
Section 4 describes the PNP filter based on PolySketch. Section 5
shows the experimental results. Finally, we conclude the paper with
acknowledgement.

2 BACKGROUND AND RELATEDWORK
Filter and refine is a widely used technique that takes a two-step ap-
proach of first filtering the geometries that can potentially become
part of the output using rectangular approximations (MBR). Given
a collection of geometries in an input dataset (layer), each geometry
is represented as one rectangle that encloses it completely in the

filter phase. It has been shown that approximations excluding MBR
are costly to construct [24]. After the filter phase, refinement is done
using actual line segments of the input. This idea has been shown
to be effective on a GPU which is a massively parallel hardware that
accelerates the filter and refine computations. Using PolySketch
as one of the filters, a hierarchical filter and refinement system
(HiFiRe) [12] was implemented which is essentially a collection of
filters to speedup geospatial intersection algorithms on a GPU. As
shown in HiFiRe, the filter step is the key to improve the perfor-
mance.

An algorithm for polygon intersection with 𝑁 and 𝑀 line seg-
ments requires 𝑂 (𝑁 ·𝑀) line segment intersection tests. This qua-
dratic time complexity makes it an expensive operation. In GIS, mil-
lions of polygon intersections are common. As such, filters are de-
signed which acts as proxy for polygons. One such filter is an MBR
filter. Minimum bounding rectangle is the smallest axis-aligned
rectangle that encloses a spatial object, such as a polygon. It only
requires two multi-dimensional points to store a MBR. Computing
a MBR and checking a MBR with other MBRs are much cheaper
than checking the intersection points between line segments so
MBR is widely used to the filters of basic spatial operations, such
as the intersection test.

Common Minimum Bounding Rectangle (CMBR) is an ap-
proach based on MBRs and it is the overlapping area of MBRs of
two polygons. The paper [3] introduces and applies it to perform
spatial join for real datasets. As shown in Figure 1(a), the blue and
red rectangles are MBRs that each encloses a polygon and the green
rectangle is their CMBR. Common MBR filter (CMF) is an effi-
cient filter based on the idea of CMBR for line segment intersection
because it can ignore the line segments that do not overlap with the
CMBR, which can reduce the computational workload in LSI refine-
ment. In addition, it is possible that two polygons do not overlap
but their MBRs overlap. CMF can identify this scenario and avoid
expensive polygon intersection. This is the rationale of using a filter.
However, the feature of CMBR makes it less effective if the CMBR
is large as shown in Figure 1(a). Most of line segments are still in
CMBR and cannot be ignored. In addition to CMF method, to im-
prove the efficiency of MBR, the paper [22] introduces the clipped
bounding box (CBB) that includes a set of clip points that clip away
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empty corners of MBRs. Danial et al. presented two spatial filters,
namely, CMF and Grid-CMF [2, 3]. CMF is based on common MBR
area between two cross-layer polygonal MBRs. Grid-CMF further
partitions the Common MBR area. Both filters have been used in
spatial join using GPU to filter out candidate pairs that do not need
further refinement.

PolySketch is a representation of a spatial object by a set of
tiles [12]. A tile is a subset of consecutive vertices of a geometry
and tile-size is the number of vertices in the tile. Once tile-size is
fixed, then a MBR is calculated which is known as tile-MBR. If a
geometry has 𝑛 vertices and the tile size is set as 𝑏, it consists of 𝑛/𝑏
tiles. The basic idea is to first do tile intersections that are cheap
and then to do expensive refinement on tiles that have overlap.
Figure 1(b) shows an example of PolySketch. We can see that each
polygon contains some tiles which contain different line segments.
The performance of PolySketch is affected by the tile-size. Using
different tile-sizes, we can get more or fewer tiles. Generally, by
using smaller tiles, we may discard more parts of polygons. We can
discard the tiles whose MBRs do not overlap with others. Figure 1(c)
shows the candidate tiles. The line segments within one tile should
be compared with the line segments of other overlapping tiles.

CMF vs PolySketch: CMF is different from PolySketch filter
because all line segments overlapping the CMBR of two polygons
should be compared against each other in CMF. PolySketch can
better handle the case where CMBR is large [12]. PolySketch filter
checks every tile of a polygon with all tiles of another polygon.
By using smaller tiles, the line segments within a tile are only
compared with the line segments of the overlapping tiles. Most
parts of polygons which cannot have intersection points can be
safely ignored. However, the line segments within a tile cannot be
discarded if a tile overlaps with others. All line segments within this
tile should be tested. In short, there is room for further improvement
in PolySketch filter when the number of candidate tile pairs is high
and each tile contains a large number of line segments. In contrast
to PolySketch, CMBR can contain any number of line segments.
All line segments which do not overlap with the CMBR will be
discarded. PolySketch has been compared to CMF in [12].

Another prior work in this area uses PixelBox technique which is
pixel approximation of polygons for computation [25]. Geometries
represented as 2D co-ordinates are converted to raster format (pix-
els) to leverage image processing using a GPU [9]. Another work by
Audet et al. [4] uses uniform grid for polygon overlay. Space divi-
sion techniques like gridding can potentially increase the problem
size by replicating the line segments crossing the grid boundaries.
In a filter and refine algorithm, planesweep technique is used in
the refine phase when the dataset fits in the memory. Geometric
intersection using GPU has been studied earlier for planesweep
algorithm [16].

3 POLYSKETCH-BASED COMMON MBR
(PSCMBR) FILTER

3.1 Overview of PSCMBR Filter
As we discussed before, CMF and PolySketch filter were used in the
geometric intersection computations. These filters have their ad-
vantages and drawbacks. Our new PSCMBR filter is a more efficient
filter that can handle various types of polygons with varying degree

of overlaps. It combines the strength of CMF and PolySketch Filter.
PSCMBR first creates sketches of the geometries. Then, it checks
which tiles of a polygon overlap with tiles of another polygon and
the overlapping tiles are candidate tile pairs. The tiles that do not
overlap with other tiles are discarded. After this, we calculate the
common area of overlap for every candidate tile pairs and check
whether both tiles have line segments overlapping with the CMBR.
Those candidate tile pairs that do not have any line segments in
the CMBR are discarded. If they do, we will perform LSI function
only for the line segments overlapping with the CMBR instead of
all line segments within the tiles. So, in essence, CMBR filtering is
used at the granularity of tiles instead of polygonal MBRs.

Figure 2: PSCMBR filter with four tile-CMBRs. Only the
common area of overlap between the candidate tile pairs are
retained (see Figure 1(c)).

We illustrate PSCMBR filter in Figure 1. Figure 1(b) is the first
step in using PSCMBR where we create sketches of polygons. There
are four candidate tile pairs shown in Figure 1(c), where one tile
of a polygon overlaps with four tiles of another polygon. Then,
PSCMBR filter calculates the CMBRs of a pair of tiles correspond-
ing to the four candidate pairs. The four rectangles in Figure 2
are their CMBRs. The two candidate tile pairs whose CMBRs are
yellow do not need further refinement because only one tile has
line segments overlapping the CMBR. Since another polygon does
not have any line segment overlapping the CMBR, there cannot
be any line segment intersection. Therefore, we do not need to
perform refinement phase. Another two candidate tile pairs whose
CMBRs are purple need further refinement because both polygons
have line segments overlapping their CMBRs. In addition, only line
segments overlapping the purple rectangles need to be checked
instead of all line segments within the tiles. This leads to reduction
in workload in the refinement phase.

Execution time model of intersection of two geometries
using PSCMBR: We describe the workload in terms of tile-MBR
intersections (two filters) and refinement using LSI. Table 1 defines
the symbols used in modeling the run-time of intersection of two
geometries (polygons). 𝑇𝑃 and 𝑇𝑄 are tile-counts for two polygons
with P and Q numbers of line segments respectively. 𝑃

𝑇𝑃
and 𝑄

𝑇𝑄

are number of line segments in a tile (tile-size) of the respective
geometries.
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Table 1: Symbol Table

𝑆𝑦𝑚𝑏𝑜𝑙 Definition
T𝑀𝐵𝑅 Time for checking if two MBRs overlap
T𝐶𝑀𝐵𝑅 Time for checking if a line segment overlaps CMBR
T𝐿𝑆𝐼 Time to find intersection point of two line segments
𝑃,𝑄 Number of line segments in two input geometries
𝑇𝑃 , 𝑇𝑄 Number of tiles in the two input geometries
C Number of candidate tile pairs after PolySketch
𝐶 Number of candidate tile pairs after CMBR
𝑃, 𝑄̂ Number of line segments in CMBR

Figure 3: PSCMBR filter for reporting line segment intersec-
tions (LSI). Two polygons A1 and B1 are the input and the
output is list of intersections.

Figure 3 shows the data-flow and control-flow in PSCMBR filter
and refine system. Input of PSCMBR is the candidate tasks. As
shown in Figure 3, A1 and B1 are two polygons of a task. Output
of the ‘check tiles’ step is a collection of candidate tile-pairs of size
𝐶 . Output of the ‘check CMBR’ step is a collection of candidate tile-
pairs of size 𝐶 . Because of CMBR filtering on candidate tile pairs,
we have𝐶 <=𝐶 . Moreover, 𝑃 <= 𝑃 and 𝑄̂ <= 𝑄 . Using PolySketch,
the run-time is given by the following equation:

T = 𝑇𝑃 ·𝑇𝑄 · T𝑀𝐵𝑅 +𝐶 · 𝑃

𝑇𝑃
· 𝑄

𝑇𝑄
· T𝐿𝑆𝐼 (1)

In Figure 4, we show the relationship between tile-size and ef-
fectiveness of the PolySketch filter. Maximum number of tiles in a
polygon is bounded by the number of line segments in the polygon
because we do not split a line segment. Therefore, for calculating
the input tile percentage, we use the product of P and Q. Tile-size
determines the number of tiles used in the filter. Large (small) tile-
sizes correspond to very small (large) number of input tiles. In
general, small tile sizes lead to better filter efficiency. However,
small tile size means a larger number of tiles which increases the
overhead of the filter. So, there is a tradeoff between filter efficiency
and run-time performance of the filter. The polygon pairs used here
have been taken from Classic1, Ocean2 and Water (described in
Subsection 5.1). Table 2 shows an example of input polygon pair of
Figure 4. For spatial join and polygon overlay workloads, it is diffi-
cult to estimate good tile size because as we can see the output-size
varies from one candidate pair to another.

1https://rogue-modron.blogspot.com/2011/04/polygon-clipping-wrapper-
benchmark.html
2https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-ocean/
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Figure 4: Effect of tile-size on the number of candidate tile-
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pairs% for a given input polygon-pair.

Table 2: An example of input polygon pair in Figure 4

P Q Tile-size
for A1

Tile-size
for B1

Input
tile-pairs %

72997 101242 128 128 0.006%
72997 101242 15 15 0.44%

We assume that MBR overlap test is computationally cheaper
than line segment intersection for a pair of line segments, T𝑀𝐵𝑅

<T𝐿𝑆𝐼 . In addition, T𝐶𝑀𝐵𝑅 <T𝐿𝑆𝐼 . From Equation 1, the LSI workload
depends on the candidate tile-pairs. Overall performance depends
on the delicate balance between the tile-MBR intersections and line
segment intersections as shown in Equation 1.

Using PSCMBR, the run-time is given by the following equation:

T = 𝑇𝑃 ·𝑇𝑄 · T𝑀𝐵𝑅 +𝐶 · 𝑃

𝑇𝑃
· 𝑄

𝑇𝑄
· T𝐶𝑀𝐵𝑅 +𝐶 · 𝑃 · 𝑄̂ · T𝐿𝑆𝐼 (2)

3.2 Advantages of PSCMBR Filter
As we discussed before, the existing CMF is not efficient if the
CMBR of two polygons is very large. In contrast to CMF, PolySketch
can handle this case well by using small tiles. In addition, using
CMF also requires calculation and storage of the line segments
overlapping the CMBR, which also takes more time if the CMBR is
large. However, if the CMBR of two polygons is small, CMF works
better than PolySketch because the tiles of PolySketch contain a
fixed number of line segments and we can only ignore or keep all
line segments within the same tile. CMBR can contain any number
of line segments.

PSCMBR can solve the previous problems. Since it creates the
sketches of polygons, it can discard most parts of polygons, which
do not overlap with another polygon. Then, checking whether both
tiles have line segments overlapping with their CMBR can reduce

https://rogue-modron.blogspot.com/2011/04/polygon-clipping-wrapper-benchmark.html
https://rogue-modron.blogspot.com/2011/04/polygon-clipping-wrapper-benchmark.html
https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-ocean/
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the number of candidate tile pairs. The new filter can potentially
reduce the number of false hits compared to the classical filter and
refine strategy, CMF and PolySketch filter. Moreover, if both tiles
still have line segments overlapping with their CMBR, we only need
to perform the refinement phase for the line segments overlapping
the CMBR, instead of all line segments in a tile. Therefore, the
refinement phase has fewer line segments to handle.

For CMF, storing all line segments overlapping with the CMBR
of two polygons for all tasks has significant memory overhead,
especially on GPU. There are variations in vertex count and degree
of overlap in real-world datasets. For example, some polygons are
huge (about 50,000 vertices) and some polygons are small (about 50
vertices). The CMBR of two huge polygons can be also huge. The
global memory in a GPU is limited. PSCMBR can handle this sce-
nario because it calculates the CMBR of only candidate tiles which
leads to better space utilization. In addition, different GPU threads
can be assigned to process different tiles of the same polygon, which
increases the parallelization.

3.3 The Implementation of PSCMBR Filter
In CUDA programming model, the threads are organized as blocks
of threads. A thread block may include up to 1024 threads. threadIdx
variable stores a unique thread ID assigned by CUDA to each GPU
thread. It is the index of the current thread within its block. blockIdx
variable is a unique block ID assigned by CUDA to each GPU thread
block. ACUDAkernel is a function that runs on aGPU. It is executed
in parallel by different threads. Threads in the same block can
communicate by shared memory or global memory.

Figure 5 shows the pseudo-code of PSCMBR filter applied to
LSI function using CUDA. Each candidate polygon pair (task) will
be assigned a thread block. Here we are showing how the filter is
implemented for a single task that uses a single GPU thread block
for simplicity. Our actual kernel applies the same filter on thousands
of such tasks by mapping one thread block to one candidate pair.
For parallelization, we define a task as a pair of polygons whose
MBRs overlap.

In the CUDA pseudo-code, the number of tiles for the two poly-
gons are stored in arrays numTileL1 and numTileL2, and the number
of line segments in a tile are stored in tileSize1 and tileSize2. Given
the line segments of the two input polygons denoted by arrays
segment1 and segment2, a tile needs two offsets to mark the starting
and ending points in the arrays. We can find the corresponding line
segments within the tiles by using them. These offsets are stored in
the arrays prefixSum1 and prefixSum2. The MBRs of tiles are stored
in tileMBR1 and tileMBR2 arrays.

For simplicity, given a candidate pair, let us assume that the 1st
polygon in the algorithm is the one that has more tiles as described
in Subsection 3.4. When we use CUDA, the first step is to create
different thread blocks for different tasks. Then, we assign the
threads to the polygon which has more tiles and every tile will
be compared with all tiles of another polygon. If two tile-MBRs
overlap, we will calculate their CMBR and check if both tiles have
line segments overlapping with the CMBR. The implementation
follows the algorithm that we discussed earlier. SIZE1 and SIZE2
in Figure 5 are always larger than the tile-size to prevent buffer
overflow.

Figure 5: CUDA Implementation of PSCMBR Filter

In the CUDA algorithm, it is possible to increase the number of
threads to avoid the 𝑘 loop which is sequential. However, the kernel
handles a large number of tasks with different polygon sizes and
we assign one thread block to one task. In the real-world datasets,
candidate polygon-pairs (tasks) have different vertex count (e.g.,
50K or 100), so it is difficult to decide how many threads to be used
in each block for a huge number of tasks. While mapping tiles to
threads, we make sure that the inner 𝑘 loop goes over fewer number
of tiles from the smaller polygon.

3.4 Optimization: Mapping tiles to threads
In the implementation, given a candidate pair, a thread picks a tile of
a polygon and compares it with all tiles of another polygon. When
mapping computations associated with tiles to GPU threads, we
assign threads to the tiles of the larger polygon. Our implementa-
tion dynamically swaps the order of polygons in a candidate pair
based on the number of tiles in a polygon. This leads to a better di-
vision of work among threads and it leads to better mapping of the
computations to different levels of GPU parallelism. For example,
to illustrate this optimization, let us assume that we have a thread
block with 128 threads and we have two polygons A with 256 tiles
and B with 16 tiles. If we assign 128 threads to A, a tile of A should
be compared with only 16 tiles of B by each thread. However, if we
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assign 128 threads to B, we cannot make full use of the threads and
a tile of B should be compared with 256 tiles of A by each thread.
This increases the workload for all threads. Therefore, we compare
the number of tiles of two polygons from layer 1 and layer 2. Then,
we assign threads to the polygon which has more tiles. This helps
us in making better use of the GPU resources and implement the
algorithm efficiently. In addition, the workload in every thread is
more balanced.

4 POINT-IN-POLYGON FILTER USING
POLYSKETCH

Point-in-Polygon (PNP) tests are necessary for polygon-polygon
intersection algorithms to create the output polygon. For instance,
when a polygon is completely inside another polygon, there are no
intersection points. A brute-force algorithm requires running PNP
test for every point, which is an expensive operation. Therefore, we
have designed a PNP filter based on PolySketch approximation. We
assume that PNP filter is invoked after LSI function as discussed
earlier.

For a candidate polygon pair (A,B), the input to the algorithm
are 1) two list of vertices from each polygon and 2) information
about intersecting points found by the LSI function. The goal is to
find which points of a polygon A fall inside/outside of polygon B
and vice versa. The classical point-in-polygon (PNP) test for a point
is 𝑂 (𝑁 ) where 𝑁 is the number of points in a polygon. The basic
idea is to create a filter that minimizes the number of expensive
PNP tests using PolySketch.

Basic Idea: Using Jordan curve theorem, we can show that the
inside/outside status of points of a polygon A changes when its line
segments intersect with the line segments of polygon B. This idea is
utilized in polygon clipping algorithms [10, 20] to avoid expensive
PNP tests by first inserting the segment intersections into the orig-
inal polygons to create a graph and then traversing the graph to
find the inside/outside status of the points of input polygons. When
polygons are represented as tiles (a subset of contiguous vertices),
this idea leads to a new PNP filter.

Figure 6: An example of intersection tile (red rectangle) and
no-intersection tile (yellow rectangle)

4.1 Algorithm Overview
There are three cases that need to be handled for a candidate pair.

Case I: If a tile’s MBR overlaps with another tile’s MBR and
there are line segment intersections, the vertices inside these two
tiles need further processing. This is the case where the filter does
not help. So, PNP tests are required for all the vertices in the tiles.

Case II: If a tile’s MBR overlaps with another tile’s MBR but
there is no line segment intersection, the inside/outside status of
the vertices in a tile should be the same.

Case III: If a tile’s MBR does not overlap with any other tiles,
then the inside/outside status of the vertices in a tile should also be
the same.

In the second and the third cases, the filter works in reducing
the number of PNP tests because only one PNP test is required for
an entire tile. The status of the remaining vertices of a tile is the
same. Therefore, PolySketch-based PNP function divides the tiles
into two types: intersection tile and no-intersection tile. If a tile does
not have any line segment intersection, we consider this tile as the
no-intersection tile. If a tile has at least one line segment intersection,
we consider this tile as the intersection tile. For no-intersection tile,
we need a single PNP test and then we know whether all vertices
within this tile are inside another polygon or not. For intersection
tile, we test all vertices within a tile because there are line segment
intersections; so the status of the points before the intersection-
point could be different from the status of the points that are after it
if we traverse the points in clockwise order. We have observed that
the number of intersection-points are far less than the input size of
the overlapping polygons. Therefore, this limitation has very less
impact on the performance.

As shown in Figure 6, there are two polygons C1 (black) from
layer1 and D1 (blue) from layer 2. The tile-size is set as 5 line
segments. We can see there are five tile-MBR overlap pairs. For two
tile-MBR overlap pairs, they have line segment intersections. For
the other three tile-MBR overlap pairs, they do not have any line
segment intersection. Therefore, we should do the PNP test for all
vertices of only one tile of C1 and two tiles of D1. For other tiles,
we run the PNP test for only a few vertices within every tile.

4.2 Comparison of PNP workload reduction

Figure 7: Illustration of PNP functions. Two polygonal
chains extracted from input polygons is highlighted by red
and blue colored tiles. The space is divided into two stripes
S1 and S2. Dotted line is an imaginary ray parallel to X-axis
and passing through the test point shown as yellow point.

Comparsion with our prior work: In our previous work [12],
we had used space division (striping) to decrease the PNP workload
where we divided the space occupied by the two overlapping poly-
gons into horizontal stripes and mapped the line segments of the
polygons to the stripes based on overlap. This mapping step used
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extra memory to store the line segments contained in the stripes
and was done on a multi-core CPU as a pre-processing step. In
addition, if the area to be divided is very large or the number of
stripes is high, then the performance degrades. For real datasets
with a variety of candidate pairs, using a static number of stripes
limited the performance. Another idea that we utilized was to do
only a few PNP tests when it was determined that a polygon can be
only contained completely inside another polygon or not. Overall,
the PNP part was the bottleneck in earlier work [4, 12]. The for-loop
in the ray-shooting algorithm was parallelized in [3] to improve the
performance. Therefore, we revisited the parallel PNP algorithm in
this paper. We do not use CPU-based preprocessing in this paper
using a novel approach. Our new algorithm reduces the workload
considerably and performs better than [12].

Stripe-based PNP function: Stripe-based PNP function was
proposed in the paper [12]. Using ray casting algorithm for the PNP
test, a point is tested whether it is inside another polygon based
on how many times an imaginary ray from a test point crosses the
polygon boundary. For a test point, we can reduce the PNP test
workload by discarding those line segments which the ray could
not cross. This is implemented by comparing y-coordinates of line
segments with the test point. Figure 7 shows how Stripe-based PNP
function works. In this example, the area is divided into two stripes
S1 and S2 (area between two green lines). In short, we divide the
area considering the y-coordinates of the polygonal vertices. For
both polygons, we check every vertex whether it is inside any stripe
and every line segment whether it crosses the stripe boundaries.
Then, the vertex inside one stripe is compared to another polygon’s
line segments corresponding to the same stripe.

Tile-based PNP function: In our new approach, we compare
the test point only with the line segments within the tiles whose
MBRs overlapwith the y-coordinate of the test vertex. If a tile’s MBR
does not overlap with it, we can discard the line segments within
the tile for this vertex. If a tile’s MBR overlaps with it, we compare
the vertex with all line segments within this tile. The situation is
different for different tiles and different tasks according to the tile
size and the number of vertices of polygons. This technique can
reduce a lot of line segments even if the polygon is large or huge.
For small polygons, it can also reduce a similar number of line
segments compared with using striping. Figure 7 shows a part of
two polygons. The areas between green lines are different stripes
and there are two stripes. If we use striping, the test vertex (yellow)
should be compared with all line segments of another polygon in
S1. By using tile-based PNP function, it should be compared with
the line segments within only two tiles (considering y coordinate
of the test vertex).

4.3 The implementation of PNP filters
For our system, we have two different kernels to perform PNP
tests. One kernel (K1) is for the tasks where one polygon may
be completely inside another polygon since two polygons do not
have any line segment intersection. Another kernel (K2) is for the
tasks where two polygons have intersection points. For K1, tile-
based PNP function is used since two polygons do not have any
line segment intersection. PolySketch-based PNP function cannot
be used here. For K2, PolySketch-based PNP function is used for

tasks where two polygons have line segment intersection points. In
addition, tile-based PNP function can be also used here to reduce
the workload. Therefore, we apply these two filters together in the
same kernel.

5 EXPERIMENTAL RESULT
5.1 Data sets
We have used three datasets to evaluate our system: (1) Water,
(2) Urban, and (3) Lakes. The details are shown in Table 3. Ur-
ban and Water are from http://www.naturalearthdata.com and
http://resources.arcgis.com. The third dataset (Lakes) is from http://
spatialhadoop.cs.umn.edu/datasets.html.

Table 3: Three real datasets used in our experiments

Label Dataset Polygons Size

Water USA_Water_Bodies
USA_Block_Boundaries

463,591
219,831

520MB
1300MB

Urban ne_10m_urban_areas
ne_10m_states_provinces

11,878
4,647

20MB
50MB

Lakes Lakes
Sports

7.5M
1.8M

9GB
590MB

5.2 Hardware Description
We have used a single Nvidia Titan V GPU to run the experiments.
Titan V has Volta architecture. It has 12 GB HBM2 memory, 5120
CUDA cores and its memory bandwidth is 652.8 GB/s. We have
also used Intel Xeon E5-2695 multi-core CPU with 45MB cache and
base frequency of 2.10GHz.

5.3 PSCMBR Filter Performance Results
Given two layers of polygons, the input to all the filters is the set of
candidate polygon pairs obtained from R-tree query using standard
MBR filter. To compare the performance of filters, let us consider
that we have 𝑡 tasks and each task has two cross-layer polygons. A
task refers to a candidate polygon pair. In this paper, we compare
the new filter PSCMBR with PolySketch (PS) filter and Common
MBR filter (CMF).

First, we show the results of the workload in the refinement
phase after the application of a filter. We calculate the refinement
workload for each task first and then add the workload for all
tasks to get total workload which is shown in the tables. For CMF,
refinement workload for one task is the number of line segments
overlapping the CMBR of a polygon multiplied by the number of
line segments overlapping the CMBR of another polygon. For the
definition of the workload, we used the symbols as described in
Table 1.

After using PolySketch:𝑊𝑃𝑆 = 𝐶 · 𝑃
𝑇𝑃

· 𝑄
𝑇𝑄

After using PSCMBR:𝑊𝑃𝑆𝐶𝑀𝐵𝑅 = 𝐶 · 𝑃 · 𝑄̂
To illustrate the workload calculation, suppose we have two tiles

of a polygon, where one tile overlaps with three tiles and another
tile overlaps with 10 tiles of another polygon. Assuming the tile
sizes for both polygons are 5, the refinement workload for this task
is 1 · 3 · 5 + 1 · 10 · 5 = 65.
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Table 4: Effect of different filters on the LSI function forWa-
ter dataset

Water Workload
Candidate

Tasks
Discarded

Candidate
tile pairs

Run-time
(s)

CMF 16,327,012,938 73.13% NA 10.36+
4.53

PS 1,789,226,826 68.48% 18,792,164 1.39
PSC-
MBR 154,187,055 75.46% 17,417,707 0.62

Table 5: Effect of different filters on the LSI function for Ur-
ban dataset

Urban Workload
Candidate

Tasks
Discarded

Candidate
tile pairs Run-time(s)

CMF 25,737,640 71.53% NA 0.23+
0.03

PS 7,489,801 66.09% 152,219 0.06
PSC-
MBR 540,240 72.83% 100,052 0.02

Table 4, 5 and 6 show the performance of PSCMBR for three
real datasets. Workload means the actual computational workload
in LSI function. To show the filter efficiency on top of standard
filtering using R-tree, the percentage of candidate tasks discarded
is calculated using candidates produced by R-tree as a baseline. We
subtract the number of candidates produced by R-tree with the
remaining number of candidates after using a given filter and then
divide the difference by the baseline. We do not need to perform
further refinement on the discarded tasks. Candidate tile pairs need
further refinement using LSI function. Run-time is expressed in
seconds and it includes execution time for the filter and refine
phases for the real datasets. For the run-time of CMF, we show two
execution time results. The first number is the time of checking
and storing line segments overlapping CMBR on CPU. The second
number is the time of only refinement phase using LSI function on
GPU after applying CMF.

According to the Table 4, 5 and 6, we can see PSCMBR can
reduce much more workload in LSI function for all three datasets
when compared to the other two filters. After using PSCMBR, the
LSI workload is 99.1%, 97.9% and 98.1% smaller than using CMF
for Water, Urban and Lake datasets. The LSI function workload is
91.4%, 92.8% and 86.7% smaller than using PolySketch for the three
datasets. PSCMBR combines the strength of CMF and PolySketch
so it can handle more general cases. It can also discard the line
segments which are inside the same tile. PSCMBR can also discard
more candidate tasks in total compared to other filters so there are
fewer candidate tasks that need refinement phase. In addition, the
number of candidate tile pairs after using PSCMBR is on average
29.73% smaller than using PolySketch.

In the first step, PSCMBR discards more candidate tasks which
do not need further refinement. In the second step, it discards more
candidate tile pairs and it reduces the false hits which do not need

Table 6: Effect of different filters on the LSI function for
Lake dataset

Lake Workload
Candidate

Tasks
Discarded

Candidate
tile pairs Run-time(s)

CMF 260,210,378 80.81% NA 9.4+
0.51

PS 37,464,000 70.96% 1,286,389 1.17
PSC-
MBR 4,972,603 82.21% 674,667 0.80

further refinement. According to Table 6, it reduces up to 47.6%
candidate tile pairs by using PSCMBR instead of PolySketch. For
the run-time also, we can see PSCMBR works well. Compared to
PolySketch, PSCMBR filter yielded 2.24X, 3X, and 1.46X speedup
for Water, Urban and Lake datasets. Even if we only compare the
refinement time of PSCMBR with LSI function to the refinement
time with LSI function after using CMF, PSCMBR also works well.
The size of Lake dataset is huge which leads to higher overhead of
copying the Lake data from CPU memory to the GPU memory for
PSCMBR filter. However, the data copy overhead is lower for CMF
because we do pre-processing on CPU, so the size of data copied
to GPU is much smaller because it only contains the line segments
overlapping the CMBRs. This explains why PSCMBR-based refine-
ment with LSI function is little slower than the refinement time of
LSI function after using CMF.

5.4 Results for different PSCMBR tile-sizes

Table 7: Performance variation while using different tile-
sizes for Water dataset

Tile-size Current
Workload

Candidate
Tasks Run-time(s)

15-5 139,698,900 250,064 0.715
15 154,158,443 258,703 0.719
20 178,527,782 261,640 0.671
20-10 164,191,106 256,226 0.627
30 232,956,052 265,858 0.644
30-10 198,688,474 257,191 0.627
40 292,387,187 269,139 0.670
50 355,278,337 272,016 0.726

The real-world datasets are complicated since it contains differ-
ent sizes of polygons. Therefore, the tile-size used in the first step
for filtering is a factor that affects the performance. Table 7 shows
the performance of using different tile-size for Water dataset. Simi-
lar to PolySketch, we can either use one tile-size for all polygons
or use two tile-sizes for different polygons. In Table 7, for some
rows, there are two numbers in ‘tile-size’ column. The first and
second numbers are the tile sizes for large and small polygons. In
the experiments, if we use two tile-sizes for the polygons, we use
larger tile-size for the large polygons (with more than 400 vertices)
and smaller tile-size for the small polygons (with less than 400 ver-
tices). We found that smaller tile-sizes perform better in our prior
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work [12]. We use different tile-sizes for Water dataset to test the
performance of PSCMBR.

According to Table 7, we can see that the range of tile-sizes that
can be chosen is large since we can get similar run-time results by
setting tile-size as 20, 30 or 40. Although the current workload is
increasing, the run-time results are similar. Using two tile-sizes at
the same time can reduce more workload compared to only using
one tile size. Run-time results are also better. In addition, using
smaller tile-size can reduce more workload in LSI function.

5.5 System Performance with PNP Filters

Table 8: System run-time (does not include R-tree time)

HiFiRe run-
time(s) [12]

New HiFiRe
run-time(s)

Urban 0.35 0.055
Water 10.63 1.109

Table 8 shows the system run-time results. To be fair, we compare
themwith the results of using one GPU.We can see the performance
of the system is much improved. The new system gets 6.36X and
9.56X speedup compared to HiFiRe system for the Urban and Water
data sets. One reason is that we use GPU to pre-process data for
PNP test instead of CPU. In our improved system equipped with
new PNP filters, we do not need to store the line segments and
vertices for PNP test because we can make full use of the tiles used
in LSI function and do more calculations within the PolySketch-LSI
function to get the information that will be used in PNP test. This
also avoids using more memory and data movement between CPU
and GPU. Another reason is that the new algorithm can handle
different types of polygons, such as very small, medium or huge
polygons.

5.6 Filters with PNP Test Workload
To show the efficiency, we compare PolySketch-based PNP function
with Stripe-based PNP function (using 8 stripes). We also compare
tile-based PNP function with constant vertex PNP function. For
the workload of PNP test using polygons of size P and Q, every
vertex from A1 should be compared with all line segments from
B1 and every vertex from B1 should be compared with all line
segments from A1. Therefore, the workload is 2 ·𝑃 ·𝑄 for every task.
In addition, the total workload for PNP test is the summation of
workload of individual tasks. Table 9 is about the workload of the
tasks where two polygons have line segment intersections. Since
the PolySketch-based PNP workload in each polygon of the same
task are different, we also update the workload of Stripe-based
PNP [12]. We can see that the workload is still much reduced by
using PolySketch-based PNP function even compared with Stripe-
based PNP test. For Urban and Water, it reduces 41.2% and 79.2% of
the workload of Stripe-based PNP function.

PolySketch-based PNP function classifies the tiles into two cat-
egories, namely, intersection tile and no intersection tile. Figure 8
shows the percentage of how many tiles are considered as the in-
tersection tile and no-intersection tile. We can see 96.8% and 97.7%
tiles are considered as no intersection tile for Urban and Water. This

Table 9: Workload using different methods in tasks where
two polygons have line segment intersections.

Stripe-based
PNP workload

PolySketch-based
PNP workload

Urban 28,642,336 16,854,370
Water 10,602,276,252 2,200,221,374

definitely reduces the workload and increases the efficiency of PNP
filter.

(a) (b)

Figure 8: Percentage of Intersection tile and no intersection
tile for tasks where two polygons have line segment inter-
sections

For the intersection tile, we can see the percentage is 3.2% and
2.3%. Although we have to do PNP test for all vertices within inter-
section tiles, the total number of such tiles is not large. In addition,
PolySketch-based PNP function can still reduce more workload
for these tiles because we compare a test vertex only with the line
segments within the tiles whose MBR overlaps with the horizontal
ray passing through the test vertex by considering y-coordinate.

Table 10: The workload in PNP test for the tasks where one
polygon may be totally inside another polygon

Constant vertex
PNP workload [12]

Tile-based
PNP workload

Urban 277,495,510 3,452,066
Water 10,352,636,305 145,693,382

According to Table 10, we can see tile-based PNP function can
also reduce the workload. For Urban and Water, it can reduce 98.8%
and 98.6% of the workload when compared to the constant vertex
PNP workload. The advantage is that we can keep the constant
vertex PNP test’s strengths and discard the line segments within
the tiles which can not overlap with test vertex by only considering
y-coordinate.

5.7 New Hierarchical Filter and Refine System
For this new filter and refine system, since we also use R-tree to
index input datasets, the total overlay processing time should also
include the time of using R-tree. For Water and Urban datasets, the
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time taken by R-tree filter on CPU is 2.27s and 0.065s. Therefore,
the end-to-end time of the new HiFiRe System is 3.379s and 0.12s.

To show the performance of PSCMBR HiFiRe system, we de-
fine the processing rate in terms of millions of input line seg-
ments/second:

Processing rate = Input line segments/Overlay processing time.
For Water dataset, the number of line segments in layer 1 and

layer 2 are 24,739,074 and 60,305,435. Therefore, the number of
input line segments is 85,044,509. The processing rate on GPU is
77 million segments/sec. The processing rate of end-to-end system
is 25 million segments/sec. For Urban dataset, the number of line
segments in layer 1 and layer 2 are 1,153,348 and 1,332,830. There-
fore, the number of input line segments is 2,486,178. The processing
rate on GPU is 45 million segments/sec. The processing rate of
end-to-end system is 21 million segments/sec.

6 CONCLUSION AND FUTUREWORK
We have developed new filters used in filter and refine technique
and demonstrated the benefits in our improved HiFiRe system. The
new filters make geometric intersection computations faster on
a GPU. Compared to CMF, the new PSCMBR filter can efficiently
handle the case where the CMBR of two polygons is large. Com-
pared to PolySketch, the new filter is more efficient in minimizing
the false hits and decreases the workload in the refinement phase.
For line segment reporting and point-in-polygon tests inherent
in spatial join and polygon overlay algorithms, we have shown
considerable workload reduction and better run-time using a GPU
accelerator. Moreover, our PNP filter leverages PolySketch and this
has resulted in significant end-to-end performance improvement in
HiFiRe system. We plan to integrate HiFiRe system with MPI-GIS
system for large scale distributed-memory parallelization of spatial
join and overlay analysis using a compute cluster of CPUs and
GPUs [1, 18, 20, 26].
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