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Abstract

We study, using Mean Curvature Flow methods, 341 dimensional cosmologies with a positive
cosmological constant, matter satisfying the dominant and the strong energy conditions, and
with spatial slices that can be foliated by 2-dimensional surfaces that are the closed orbits
of a symmetry group. If these surfaces have non-positive Euler characteristic (or in the case
of 2-spheres, if the initial 2-spheres are large enough) and also if the initial spatial slice is
expanding everywhere, then we prove that asymptotically the spacetime becomes physically
indistinguishable from de Sitter space on arbitrarily large regions of spacetime. This holds
true notwithstanding the presence of initial arbitrarily-large density fluctuations.
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1 Introduction

Inflation is widely believed to be a cosmological epoch that occurred before the epoch of
radiation dominance (the hot big bang). Typically, it is driven by a scalar field that runs
down its flat potential, homogeneously and slowly, and leads to an exponential expansion of
the universe. Inflation seems to be required to produce an approximately flat homogeneous
and isotropic universe endowed with small perturbations that, in the theory of inflation, are
due to the quantum fluctuations of the scalar field while it rolls down. Inflation has been
extraordinarily successful when compared with observational data from the Cosmic Microwave
Background (see for example [1, 2, 3]) or from the Large-Scale Structure of the universe (see
for example [4, 5, 6, 7, 8]). Despite all these observational successes, the onset of inflation
has been a source of heated debate for a long time. If a region of space somewhat larger than
the Hubble length during inflation is homogeneously filled with the inflationary scalar field
at the top of its potential, then inflation starts, but the debate is about how likely it is for
the universe to have such a homogenous initial condition. This is the so-called ‘initial patch
problem’ (see for example [9]).

Solid progress on this matter was hard to achieve because the presence of large inhomo-
geneities and the formation of singularities made it hard to attack the problem both numer-



ically and analytically, at least without imposing symmetries. Recently, however, there has
been significant progress on both fronts. Initially, on the numerical side, the codes that can
handle singularities and that are normally used in the prediction of the templates of gravita-
tional waves from black-hole mergers [10] have been applied to simulate the early universe.
Ref. [11], and subsequently [12, 13], have found numerical evidence that, on an extremely
large set of inhomogenous initial conditions, inflation always starts. On the analytical side, a
combination of Mean Curvature Flow techniques (see for example [14]) and the now-proven
Thurston Geometrization Classification (see [15] Theorem 4.35 and [16, 17]) allowed to prove
some partial results in the general case, without imposing extra symmetries. In particular,
approximating the inflationary potential as a positive cosmological constant, and assuming
that matter satisfies the weak energy condition and that all singularities are of the so-called
crushing kind, Ref. [18] has shown that, for almost all topologies of the spatial slices of a
cosmological spacetime, the volume of these slices (assumed to be, initially, expanding every-
where) will grow with time (see also [19]); moreover, there is always an open neighborhood
that expands at least as fast as the flat of de Sitter space. This suggests, though does not
prove, that the volume will go to infinity, matter will dilute away, and the universe will re-
semble de Sitter space in arbitrarily large regions of spacetime. This statement was recently
proven in 2+1 dimensions (with the additional assumption that matter satisfies the strong
and the dominant energy condition [20]; see [21] for proofs with stronger assumptions on
the matter content and on the initial conditions). Historically, it has been conjectured for
many years and with different level of refinment (see for instance [22, 23, 24, 18]) that in
the presence of a positive cosmological constant, cosmologies that are initially “sufficiently
expanding” should asymptote to de Sitter space. This is usually dubbed the de Sitter no-hair
conjecture.

In this paper we focus on 341 dimensions, and we assume that the spatial slices can be
foliated by 2-dimensional surfaces that are the closed orbits of a symmetry group (in addition
to the assumptions just discussed for the theorem in 241 dimensions). We will find that
asymptotically in the future, the spacetime appears physically indistinguishable from de Sit-
ter space, in the following sense. Any future observers will have at their disposal a vanishing
amount of energy and momentum to make any experiment. Furthermore, the length of any
future-directed timelike or null curve approaches the one computed with the de Sitter metric
(see Theorem 3 for the full statement, and Section 9 for a physical explanation of why the
mathematical results imply that, asymptotically, the spacetime is physically indistinguishable
from de Sitter, in a low energy sense). In the context of 3+1 dimensions stronger conver-
gence results were obtained in [25, 26, 27, 28, 29], assuming more symmetries and prescribing
specific PDEs which govern the matter stress tensor (from point particles to stiff fluids). As-
suming homogeneity of the entire spatial slices (while here we assume homogeneity only on
2-dimensional slices), Wald proved pointwise convergence to de Sitter assuming the strong
and the dominant energy condition for matter [24] for all Bianchi universe except type IX.

It is important to stress that a de Sitter no-hair theorem is also a statement about the
asymptotic future of the present universe, assuming that the present acceleration is due to a



cosmological constant.

Let us mention that from the geometric standpoint, our result fits into an extensive body
of literature of studying the structure of spaces satisfying some curvature conditions, using
special submanifolds. Such special submanifolds could be geodesics (as in the Bonnet-Myers
theorem [30]), minimal surfaces (as in the proof of the positive mass theorem [31]) or sub-
manifolds produced by some curvature flows (as in the proofs of the Riemannian Penrose
inequality [32] and of the high co-dimensional isoperimetric inequality for surfaces [33]). In
our setting, the curvature conditions imposed by the Einstein equation and the energy con-
ditions are reminiscent of a lower Ricci curvature bound - a topic which has been studied in
depth in the works of Cheeger, Colding, Naber and others (c.f. [34, 35, 36, 37]).

We have tried to write this paper in a way that would be approachable to both the cos-
mology and the geometric analysis communities. We have therefore decided to spell out many
derivations which are “standard” in one discipline, for the benefit of the other community.

2 General assumptions and known results

We will prove a theorem that uses some properties of the topology of 3-dimensional manifolds,
as well as of the mean curvature flow. It requires the following assumptions [20], on top of
others that we will specify next:

(A) There is a “cosmology”, which is defined as a connected 3 + 1 dimensional spacetime
MG+ with a compact Cauchy surface. This implies that the spacetime is topologically
M® x R where M® is a compact 3-manifold, and that it can be foliated by a family of
topologically identical Cauchy surfaces M, [38]. We fix one such foliation, i.e. such a time
function ¢, with ¢ € [tg, +00), and with associated lapse function N: N2 := —9,td/t,
N > 0. We consider manifolds that are initially expanding everywhere, i.e. there is
an initial slice, My, where K > 0 everywhere, with K being the mean curvature with
respect to the future pointing normal to M,. For example, K > 0 holds if one has a
global crushing singularity in the past.

(B) MGV satisfies Einstein’s field equation

1
Ry, — §9uuR = 87GN (T — Agyw) (1)

where, R, is the Ricci curvature tensor, R is the scalar curvature, A is the cosmological
constant and 7}, is the stress-energy tensor of all the other forms of matter.

(C) There is a positive cosmological constant and matter that satisfies the Dominant Energy
Condition (DEC) and the Strong Energy Condition (SEC). The DEC states that —T*, k"
is a future-directed timelike or null vector for any future-directed timelike vector k*.
The DEC implies the Weak Energy Condition (WEC), T, k*k” > 0 for all time-like
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vectors k*. The SEC, in 3 + 1 dimensions, reads: (7}, — %gWT)k“k” > 0 for any future-
directed timelike vector k*.

(D) We will also need a technical assumption, see Definition 1: the only spacetime singu-
larities are of the crushing kind [39] (thus singularities that have zero spatial volume).
Physically, these are the only singularities that are believed to be relevant.

Let us comment on the physical restrictions implied by the above hypotheses. The SEC
and the DEC are satisfied by non-relativistic matter, radiation and the gradient energy of a
scalar field !. The Inflationary potential violates SEC and if the potential is negative some-
where also DEC is violated. However, in our setup the Inflationary potential is represented by
the positive cosmological constant, which is a good approximation in the inflationary region
of the potential.

We also comment on the definition of a crushing singularity, as we follow [20] in adopting
a slight generalization of the Definitions 2.10 and 2.11 in [39]. Our definition will agree with
theirs in the case of asymptotically flat spacetimes.

Definition 1. Analogously to Definition 2.9 of [39], a future crushing function ¢ is a globally
defined function on M®*+Y such that on a globally hyperbolic neighborhood N N {t > ¢},
t is a Cauchy time function with range ¢y < t < +00 (cy > 0 is a constant), and such that
the level sets S. = {t = ¢}, with ¢ > ¢;, have mean curvature K < —c. 2 We shall say that
a Cosmology has potential singularities only of the crushing kind if there is an open set N
such that, outside N, the inverse of the lapse of the ¢ foliation, N~!, is bounded, and such
that A contains a Cauchy slice and admits a future crushing function ¢ and, for any given c,
in {t < c}, N1 is bounded.

In physical terms, this N corresponds to a subset of the interior of black holes, and we are
requiring that any possible pathology takes place only for ¢ — co.

Choosing any ¢; > ¢, that we later specify, we define a new time function on MG+D,
which we call ¢ from now on, such that the lapse N is set to 1 in the region where t < ¢;. In
this region, the new time function ¢ now satisfies d,t0/"t = —1.

We will use the Mean Curvature Flow (MCF) of codimension-one spacelike surfaces in
Lorentzian manifolds. This is defined as the deformation of a slice as follows: y*(-, \) := ya
is, at each A, a mapping between the initial spatial manifold M, (which is parametrized by

IFor SEC indeed

Ty = 0,00,¢ — %gw(&é)? = (TW - %T) Kk = (06 - k)2 > 0. 2)

2For example in a Schwarzschild-de Sitter spacetime in the standard coordinates, one could take £ to be a
function of r for r close to 0, so the level sets S. would be r = const.



Figure 1: A depiction of Mean Curvature Flow. The new surface has larger or equal volume than
the previous one.

), and the global spacetime, My X [Ain, Amax) — MGHY. We take Ay, = 0. The evolution
under the change of A is given by (see for instance [40])

—yH(x, \) = Kn*(y*) , 3
S, 3) = Kn () )
where n* is the future-oriented vector orthonormal to the surface of constant A\. We denote
by M, the geometric image of y(+, A).

Using the first variation of area formula

Enlog\/ﬁ:[( , (4)

one gets the variation of the volume element v/ under the flow: %\/_ = K2\/h. Therefore
. o 4 .
the total spatial volume V() := fM)\ d*x\/h satisfies
av
—:/ d'avVh K2 > 0. (5)
d\ My,

Hence after the deformation, the new surface has either strictly larger or equal volume
(see Fig. 1). MCF has been very much studied in the context of Riemannian manifolds, but
there is quite a large literature also for the Lorentzian (or semi-Riemannian) one, see [40, 14].

We will assume that MG+ satisfies Einstein equations, and we will use MCF to probe
the geometry of M®*1) . This is possible because the flow is endowed by many regularity

properties as we review below. Importantly, in the Lorentzian cosmological context, the flow
is globally graphical, which is rarely a natural assumption in the Riemannian setting.



The evolution of K under MCF reads
dK 1
0=—+—AK+ §K3 + (6% + Ric(n,n))K | (6)
where A is the Laplacian operator on the three dimensional evolving surface, M, where we
remind that o? is the norm squared of the traceless part of the second fundamental form, and
where Ric is the Ricci tensor (See [40, Proposition 3.3]). Substituting (n,n) into the Einstein

equation (1), we get

1
Ric(n,n) + ER = 81Gn(T(n,n) +A), (7)
while tracing (1) yields
— R=8nGn(T —4A) , (8)
where T is the trace of 7),,. Combining (7) with (8) gives
1
Ric(n,n) = —8rGNA 487Gy (T(n, n) — éTg(n, n)) : (9)
which, after substituting into (6) gives
dK 1 by
o T AK 4 oK (K2 = K{) + 0* K + RiMnn"K =0, (10)
where
K} = 247GNA >0, (11)
and g
R = 87Gly <TW - %T) . (12)
The SEC gives
RiMntn” > 0. (13)

Two properties of the evolution under MCF are worthwhile mentioning. First, if a surface
is spacelike, it remains so: in fact the local volume form is non-decreasing under MCF, but
it would vanish if the surface became null anywhere (see for example [18]). Second, it also
preserves the property that K > 0 everywhere (see e.g. [14], Proposition 2.7.1). Intuitively,
this is because the flow stops in any region where K approaches zero.

Our stated assumptions were used in [20] to prove the following useful statements about
the maximum of K and the existence of the flow. We reproduce them here for convenience,
referring to [20] for their proofs.

Theorem 1 (Bound on the Maximum of K). [20] Let My be smooth compact spacelike
hypersurfaces satisfying the MCF equations, in an interval [0, \1], inside the smooth (3 + 1)-
dimensional Lorentzian manifold M3tV satisfying (1) and SEC. Suppose also there exists a
point (x, \), with 0 < X\ < Ay, such that K(x,\) > Ky, then we have

Kn(0) < Ky + e 3980 (1,(0) = Ky) < K (1+ Crem 35600 (14)

with C; = max(K,,(0)/Kx —1,0). So the mazimum, if larger than Ky, decays exponentially
fast towards K with a rate given by the cosmological constant.
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Notice that if no point (z,A) as in the hypotheses of the theorem exists, then the maxi-
mum K, (), with 0 < X\ < Ay, is automatically < Kj.

We also have the following long time existence theorem, which follows from [40], Assump-
tion (D), and Theorem 1:

Theorem 2 (Existence of the flow). [20] Let MY be a Cosmology satisfying the SEC
and DEC, having potential singularities only of the crushing kind. Let My be a compact
smooth spacelike hypersurface in MGV, Then there exists a unique family (My) of smooth
compact spacelike hypersurfaces satisfying the MCF equations with initial condition My, in
the semi-interval [0, +00).

3 Symmetry assumptions

For some of the most interesting settings it is sufficient to make the following simple symmetry
assumption.

Assumption 1 (Simplified symmetry assumption). There is a Lie group G which acts on
M® such that the induced action on M©+Y is by isometries, and such that the orbits under
G are closed surfaces. Assume that the orbits of G are two-sided (i.e., with trivial normal
bundle).

Taking M, and considering its mean curvature flow M starting from M, we see that the
isometries in G preserve the level sets of A as well.

Example 1. Consider M® being the three torus T? = S' x S* x S' such that given a point
(z,1) = (01,05,05,t) € T> x R = MGV the metric at (z,t) is independent of #;, 6,. Taking
G = S' x S', it acts on MG+ by isometries, as for every ¢ = (a,b) € S* x S* we can set
o(x,t) = (01 +a,0, +b,03,t).

Example 2. Consider M® being the product S? x S' and M©G+D = §%2 x S x R. Letting
G = SO(3) be the group of orientation preserving orthogonal transformations of the three
Euclidean space, G acts on MG+ by ¢(x,0,t) = (¢(z),0,t), where (z,0,t) € S? x S* x R.
If this action is by isometries, then assumption 1 is satisfied . One can construct such a
metric as follows: Let PT be the north-pole of S2, and choose a metric hgy for MG+ along
the surface {P*} x S! x R, with signature (+, +, +, —), with d; timelike, and such that for
each (6,t) all rotations of S? across the axis from the north to south pole are isometries of
T(p+797t)M(3+1) (in the linear algebra sense). Then for every x € S? choose any ¢ € G s.t.

¢(x) = P* and let h|zo0 = ¢*h|(p+o.40)-

The drawback of working only under the simplified assumption above is that it imposes
that the compact 2-dimensional orbits of G have a transitive isometry group acting on them.
Compact surfaces of negative curvature however have only discrete isometry groups. Thus,

hyperbolic surfaces, which are

‘most surfaces” in some sense, can not arise under the above
assumption. To overcome this we assume:



Assumption 2 (General symmetry assumption). There is a Lie group G which acts on some
cover 7 : M® — M® such that the induced action on M® := M®) x R is by isometries.
Assume further that the orbits of G are two dimensional complete (i.e. with no edges) surfaces,
and that for each such orbit 3, its projection ¥ := 7(%) is a two-sided surface.

Now, letting M, = 7 (M), and M, = 771 M,), we see that M, is a MCF with
bounded curvatures and height over finite intervals, emanating from M,. As every ¢ € G is
an isometry of M@, and as ¢(My) = My, we have that ¢(M,) is also a MCF, with bounded
curvatures and height, emanating from M. Standard uniqueness theory (see [41]*) gives that
(M) = M,. ] ] ] ]

In particular, if (Z,t) € M, then for every ¢ € G, (¢(Z),t) € M,. Letting X be the orbit
of such (z,t), we see that along 3, all intrinsic and extrinsic geometric quantities are invariant
under the action of G. Thus, all intrinsic and extrinsic scalar quantities on ¥ = 7(3) (such
as K, %R, ®R H,, H" |K;|* |VK|? |0;|* in Section 5) are constant along it.

Example 3. Let I' be a discrete co-compact subgroup of G .= O(2, 1)- the group of isometries
of the hyperbolic plane H?, and consider M®) = (H?/T) x S'. G acts on M by ¢(x,0,t) =
(¢(x),0,1), so any metric on M3+ such that G acts by isometries on its pull-back to A7)
will satisfy Assumption 2. To obtain such a metric, we can use a similar construction to the
one in Example 2.

In addition to Examples 1, 2 and 3, other examples include the topologies T?/T" x S (with
I being a freely acting finite subgroup of isometries of two-torus) and S? xz, S'. The case
of H3/T" (with I" being a discrete, co-compact subgroup of isometries of H?) does not fit into
our setting (but it does fit into the one in [24]). A pictorial representation of an example of
the geometry of the spatial slices allowed by our assumptions is given in Fig. 2.

Remark 1. It is interesting to compare our symmetry assumption in the torus case of example
1 with the symmetry assumptions of previous results on the no-hair conjecture for a coupled
evolution rule of the metric and the stress energy tensor (such as the Einstein-Vlasov system)
(c.f. [25, 26, 27, 28, 29]). Prior to [29], all results assumed a full 3-dimensional group of
symmetries (corresponding either to completely homogeneous 3-dimensional spaces [24] or to
homogeneous and isotropic cross-sectional surfaces). In [29], a so called T3-Gowdy symmetry
was imposed, and in fact, results indicating some asymptotic resemblance to de Sitter were
obtained there for general matter satisfying some energy conditions. The group of T3-Gowdy
symmetries imposes a few additional discrete symmetries on top of the S' x S! symmetries
we impose.

3The results in [41] are about MCF in an ambient Riemannian manifold with bounded ||V*Rm|| for
k = 0,1,2, and we are unaware of a reference where such a uniqueness result is stated in the Lorentzian
setting. In our setting we already have a bound on the motion by Theorem 1, and so everything occurs
inside a covering preimage of compact set. This, combined with [40, Theorem 4.4] (which is valid in our
non-compact setting because of periodicity) implies that all the geometric quantities in the relevant analysis
will be bounded. Arguing similarly to [41] we will get uniqueness in our setting. See also [42].
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Figure 2: A pictorial representation of an example of the geometry of the spatial slices allowed by
our assumptions.

4 Notations and statement of main results

Notation and conventions. The Riemann tensor is defined through (V,V, -V, V,)w, =
R, ws, the Ricci tensor by R, := R, (we also use the notation Ric(a,b), with a,b being
two vectors), the Ricci scalar (also known as scalar curvature) by R := R/

A time slice M, has an induced Riemannian metric g,,, and we can write gfw) = G — NNy,

where g,(f;) is the spacetime metric (we use the mostly-plus convention) and n* is orthonormal
to My, n,n* = —1, and future-directed. The extrinsic curvature (also known as second
fundamental form) of these slices is defined as K, := guO‘Vany, satisfying n* K, = 0 and with
trace (also known as mean curvature) K = ¢g"K,, = O K w, and traceless part o, =
K, — %K hy, (with our sign convention K > 0 corresponds to expansion). We also define
o? := 0,,0"; notice that o > 0, since 0, is a tensor projected on the spatial hypersurfaces.
The Ricci tensor and Ricei scalar (scalar curvature) associated with the induced metric g,
on the 3-dimensional slices are denoted, respectively, by @R, and ®R.

Similarly, each 2-dimensional symmetric orbit (or covering image of a symmetric orbit)
¥ (see Section 3) within M) has induced metric h,, satisfying g,, = hu, + t,t,, where t*
is orthogonal to ¥ and to n, and ¢,t* = 1. The extrinsic curvature (second fundamental
form) of this slice within M is defined as A,, = hfvaty, satisfying t#A,, = 0 and with
trace (mean curvature) H := h*”A,,. The Ricci tensor and Ricci scalar (scalar curvature)
associated with the induced metric h,, on a 2-dimensional slices are denoted by (Q)RW and
@) R respectively.

We denote by the capital or lower case letters C;, and D;, with ¢ = 1,2, 3, ..., non-negative
constants that depend only on the intrinsic and extrinsic properties of the initial 3-manifold

of the flow: M,. We refer to such constant as universal.
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Statement of main result. We can now state the main theorem of this paper, the proof

of which is spread in the following sections.

Theorem 3. Let MY be a spacetime satisfying assumptions (A) — (D) of Section 2, in

addition to the symmetry assumptions of Section 3. If the orbit surfaces are spheres, one

needs to further assume that the minimal area of an orbit surface in My satisfies

Smin 2 SIOWGI‘7 (15)

where Siower depends only on maxgen, K and Ky (see (37)). Then there exists some 0 <\ < 00
and universal constants 0 < dy < 00, 0 < dg, d3, dy, ds < oo such that

L

11

11

Iv.

(The flow probes the entire future) The {Mx}x>o foliate MG+Y N {t > 0}.

(Geodesic completeness and lack of singularities) MG+ N {t > 0} is future complete for
timelike and null geodesics. There are no crushing singularities.

(Flatness of slices) For every A > X and every p € My, the ball of radius ;é—lAeleKX(/\—Z\)
around p in My, is (1 + e HXOV)

fact,

-bi-Lipschitz equivalent to a Euclidean ball. In

(FLRW-expansion of slices) Taking any flow time \g > X, for any X > Ao we can define
the FLRW-expanding comparison metric on M

Gro (16)

where the point identification is done by the MCF. Then
19N = gMlloe) < 2llg(N) — 8N)|lger) < dae™ 6 KR, (17)

(Length convergence to de Sitter of timelike and null curves) Let v : [0,a] — MG+ pe
a future-pointing timelike or null curve, with A(y(0)) > A. Setting Ao = A(7(0)) and
Ao = A(y(a)), we have

L9(3+1) [’Y] . ng‘g [’Y] < %6_118]{/2\()‘0_5‘) + dBKAe—iKﬁ(AO—S\) ()\a N )\0)’ (18)
A
where g((fs) is a de Sitter metric
gl = —K3id)\? 4+ e3M0 gy (19)

with geue ts some FEuclidean metric on (part of ) My,, and where the point identification
is done by the MCF.
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VI. (L' Dilution of matter) While 3 < % <2,

d ~
/ 1T dVol < —Lea®i-N (20)
My KA
which is a slower rate than the volume by e~5KXX. The norm in this statement is the

mazimum of the components of the stress tensor, T, in an orthonormal frame whose
time direction is orthogonal to the surfaces of mean curvature flow, My, or equivalently,
the norm of T with respect to a Riemannian metric associated to the Lorentzian metric

g wia the flow. Furthermore, letting v\ be a geodesic in My, orthogonal to the orbit
L) <9

surfaces, and passing through each orbit surface once, we get that % < o S
L(vs)e3 A

but
/ IT|| dt < dsKpe 353N (21)
YA

which is a slower rate than the length L by e~ 3K,

The proof of Theorem 3 (and more) occupies the upcoming four sections. In Section 5
we study the asymptotic behavior of the volume, length of the transverse geodesics v, of
Theorem 3, and the minimal area of orbit surfaces. I1I of Theorem 3 is proved in Section 6.4.
IV of Theorem 3 is proved in Section 6.3. [,II and V are proved in Section 7. VI is proved in
Section 8. Section 9 includes a discussion of why the results, as summarized in Theorem 3,
imply asymptotic physical equivalence to de Sitter space.

5 Asymptotic behavior of minimal surfaces, transverse
length and spatial volume

Easy consequences. Contracting the Gauss equation for space-like hypersurface in a
Lorentzian manifold * twice, we get

2
R+ 2Ric(n,n) = ¥R — K, K" + K> = ®R — ¢* + §K2 ; (22)

(see for instance [43], eq. (E.2.27)) which, combined with (7) and (11) gives
2 2
®R — 0% + §K2 = 167Gn (T (n,n) + A) = 167rGNT'(n,n) + §K12\ : (23)

or in coordinate form:

2 2
®R + 5}(2 . gKi + 167G N T} ntn” . (24)

4Note that the second fundamental form term appears with an opposite sign compared to the Riemannian
Gauss equation.
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By WEC, we have

2 2
®R + §K2 —0? > gKi : (25)

so by Theorem 1, we have the following pointwise bound on ®)R:
BR > —CoK2e #53N| (26)

where Cy = 2C1(2 + C1) and €y = max(K,,(0)/Kx —1,0), as in Theorem 1.

Growth of geometric quantities. We are now going to establish the growth of some
geometric quantities defined along the mean curvature flow hypersurfaces M,. Fix some
time A > 0, M, and consider the foliation of M, by the orbits of G (or more generally, by
the projections of the orbits of G’) By our two-sidedness assumption, there exists a global
unit normal vector E to this foliation. Let z be the parameter along the flow lines of E, thus
it is a signed distance function; and, due to the isometries of G (or @), the metric on M, has
the warped product form

g=dz*+h, , (27)

where h, is a two-dimensional metric of constant curvature. By passing to a double cover, we
can assume without loss of generality that the orbit surfaces ¥ are orientable. Thus, each such
orbit is a two-dimensional orientable surface, with Euler characteristic x = 2,0, -2, —4, .. ..

We will start by proving that the minimal area of a surface orbit contained in M, which
we denote by Spin(A), grows as two-dimensional spatial slices of de Sitter space in the FLRW
slicing. In order to study the time evolution of Sy,(A), we would like to find a differential
equation for Sy (\) and solve for it. However, since the area of the minimal surface can
be non-differentiable as the flow evolves, it is unclear that this can be done. Therefore,
we first need to show that Sp;,(A) has well defined derivatives almost everywhere and that
the fundamental theorem of calculus applies to them. We do this by proving that they
are Lipschitz. This is true because of the following standard lemma which applies to all
minimizers:

Lemma 1 (Hamilton’s trick (c.f [44] Lemma 2.1.3)). Let f : K x [a,b] — R be a smooth
function with K being compact, and set g to be the minimizer of f on K:

g(t) = min f(z,1). (28)

zeK

Then g is a Lipschitz function, and thus, differentiable almost everywhere and obeying the
fundamental theorem of calculus. Moreover, if ty is a point of differentiability of g, and if xg
is such that f(xo,t9) = g(to) then

of

g'(to) = e - (29)
(wo,t0)
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Proof. First, we show that ¢ is Lipschitz. For every ¢, let z; be a point such that g(t) = f(z,1).
Then for every ¢, s € [a,b], we have
I R
o(5) = 90) < f(ai) = flwet) = [t Fhiwt) < Cole =), (30)
t
where C3 = max(z, 1;)ek x[a,b] aa—{(:cl,tl). Similarly, g(t) — g(s) < Cs|t — s|, so ¢ is indeed
Lipschitz, hence differentiable almost everywhere and obeying the fundamental theorem of
calculus.
Let ty be a point of differentiability of ¢g. In particular

lim g(t> — g(tO) _ g'(to) — lim g<t0> B g(t) . (31)
Nto t— 1 t/ o lo—t
For t < ty, we have that
g(tO) - g(t> > f(xtoa tO) - f('rtoa t)v (32)
so dividing both sides by ¢ty — ¢t and taking the limit as ¢ " ¢y, we obtain
of
¢ e
g'(to) > ot . ) (33)
CEO 0
Similarly, for t > ty, we have
9(t) = g(to) < f(4,t) — f (4, %0) (34)

so dividing both sides by ¢ — ¢y and taking the limit as t \, ty we also get

0
d0 <Gyl (35)

This proves the claim. O]
We can now prove the following theorem on the area growth of the minimal orbit surface:

Theorem 4. Denote by Spmin(A) the minimal area of a z-cross section and x its Euler char-
acteristic. Then if either x < 0, or, if x = 2, if also Syin(0) > Slower, then there exists A1
such that for all g1 < A1 < Ao

1 Smm()\Z) (36)
2 — Smin()\1>6§K (A2—X1) — ;
where 8 )
Slower = 75 2 (904)304_4/3 ) (37)

K3 (\/(1 +C1)?2+2/9—(1+ Cﬂ)

with C; = max(K,,(0)/Kx — 1,0) as in Theorem 1 and Cy =
3C1(C1 +2).

FVO(C+2)(Cr +1) +

14



Proof. Recall that the function Spin(A) are (locally) Lipschitz functions, and hence differen-
tiable almost everywhere. Also, recall that at differentiable times A for Sy, the derivative
will be identical to the derivative of the area of the section where the minimum is obtained
(see Lemma 1).

By the Riccati equation (primes indicate derivatives w.r.t. z)

H +A,A" = -OR__ . (38)

Now, the traced Gauss equations imply

®R =R+ 28R, + A, A" — H* (39)
% 2 3) A A 2
_ mwo_ i
— (3)Rzz — R R +2 KV . (40)
Combining (38) and (40), we obtain
() » BN C)) A, AR — H?
H + A, A" = -OR_ = h= PR+ A, : (41)

2
Consider a z slice with minimal area. On this z slice we have H = 0 and H' > 0, so (41)

gives
OR=@R - A,A" - H* —2H <R (42)
which, combined with (25) gives
2pr_2g2y 2 < Op (43)
ghAT3n T =T

on such a slice. Notice that by our isometries, if S(z, A) is the area of a fixed z surface at
time A:

4mxo < 41 X0
S(z,A) 7 Smin(A)

PRz, \)< (44)

where Yo is 2 if ¥ is the sphere and 0 otherwise. Eq. (43) and Theorem 1 imply that,
considering either cases in which K < K or K > Kj, we have

2 2 4 2
3 [BX = K2+ 0% < PR 4 205K 319 < S”XO + 20, K2e 353N (45)
The evolution equation for the metric under MCF (see [40, Prop. 3.1]) is
dgi; 2 2
j; = 2K Ky = K20 + 2Koy; = SK3gy + Bsy (46)

where Eg;; = 2(K?—K3)gij+2Ko;;. We want now to bound this equation using the previous
inequalities. Note that, using a more abstract notation, we can write, with no summation

(2
lredin

over repeated indexes,

2 2
§|(K2 — K})gi5| = §|K2 — K3

0. 2
o) | VI < e Kl
J

15



where in the last step we used that, for two unit vectors n, and ns,

g(R1,72) < \/g(Ry, mn)y/g(Ra,fin) = 1. (48)

Similarly, we can write

9. 0, \?
U?':U( - ,—] ) 9iidii - 49
=\ ) %9 (49)

So, putting this together with the inequalities (45) and Theorem 1, we get

47x0

4
|Es.ij] < K;XO +20,K2e 351 A) +2KA (14 Cy) (

min

+ v/ QOQKAe_éK/Q\A)} V9955 >
(50)

min

where we used that va + b < /a+ v/b. Choosing the coordinates on the surface, 1, 2, to be
orthonormal at the point at time A, the area form of the cross section surface at that point,

at varying times, is given by y/det'?g;;dz'dx?, and we obtain:

1 d
/detlzgij dA\

where Eg satisfies

1 dg; 1
detmgij|/\: ( gjl ) :_KA+2ES7 (51)

4
|Eg| <2 ({S”XO + zozKieiKiA] + 2K, (1+CY) {

min

Xo \/QCZKAeéK/Q\’\}) . (52)

Srnin
Thus, at such a slice

d 2 ., 1
515 = (gKA+§ES) ds . (53)

Integrating over that slice and using Lemma 1, we see that at every A where Spn(\) is
differentiable,

2 152 d
K2 (g - C4esKAA> Simin(A) = 4mx0 = 2(1 + C1) Kav/4Tx0Smin(A) € = Sin(A)  (54)
2 1702
S Ki <§ + 04 6_3KA)\) Sm1n(>\) + 47TXO + 2(1 + Cl)KA\/ 47TXOSmin(>\) s

where Cy = 2(1 + C)+/2C5 + 2C5. Thus, at such point of differentiability,

1/ 47TXO

2 4
‘— log(Sin) — 5 K7 | < S”XO +2(14 1)K, + K20, e 353 (55)
Now, if x <0, ie. xo=0
d 2 2 —1K3X
5 log(Smin) — gKA < KAC4 e 374 (56)




and there exists a time \j ; such that

1
SK? (57)

KIZ\C4 eiéKlz\)\é’l =
9

If instead y = 2, note that as long as S, > S =
X= & (\/ (1+C1) +2/9 (1+C1) )2

the first two terms in the right hand side of (55) contribute at most 2K3)

(ensuring that

d 4 ,
alog(Smm) Z (g - 04) Ki = —C4K/2\ . (58)

We therefore get that if S (0) > Siower, Where

Slower = S'eC:lK[Q\)\é)’l = S' (9614)30:l (59)

~

then Spin(A) > S on [0, Ay ;] with \j ; defined by (57), and at Aj ;,

S 214 COVERK,
; +
Smin(/\o,l) Smin(AG 1)

;1
+ K20 e 530 < gKi . (60)

Assuming, for x = 2, that Spin(0) > Siower, We can integrate (55) for any xo, and get for
every A > Ay, the non-optimal estimate

Smin(A> Z Smin(AE)J) 1K2(>\ )\01) (61)
Substituting back to (55), we obtain

d 2
= V- IR?| <
o log(Smin) 3KA < (62)

40 e~ 3K (- ’\01)+2 1+C)K e~ e KA~ ’\01)+K2C’4e LSO

< _ VATXo AT X0
B Smin(/\6,1) + / Siin )\61
Now, let Ag1 > Ay, be such that
& 4: 1 \ 4 1 / 1
/ d\ W—X?e sKZ(A=XG 1) +2(1+ K X0 e*EKzzx()‘*)‘o,ﬂ 4 K/2\04 e~ 3 KRN
Ao,1 Smin(AO,l) /S )\/

<log?2. (63)

Then integrating (62) from A; to Ag, where Ao < A; < A9, and using (63), we obtain

Smin()\2> 2 2
1 —— ) = =Ki( A — )| <log2 64
o (g3 ) = 3KA0 — )| < log2, (69)
so exponentiating both sides yields the desired result. O]
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Notice that the additional requirement in the case of the sphere depends exponentially on
the initial conditions. This is different from what happens in the case of complete homogeneity
where, for Bianchi-IX universes, one has to impose a lower bound on ® R [24]. This bound
however does not depend exponentially on the initial conditions.

By the form of the metric in (27), it is straightforward to check that if a geodesic is at a
point tangent to the vector E, it is tangent to E everywhere. Denote therefore by L(\) the
length, at time A, of any geodesic v that is parallel to the z-direction, from an initial slice to
itself. Additionally, denote by V() the volume of M, at time .

Theorem 5. Under the conditions of Theorem 4, for every é > 0, there exists Ao2>MNo1 such
that for every A > Ao

(140)7' < ( 02;5(2;“—%2) <1+44. (65)
and
(1+0)7"' < 7 AO;%)(A oy S 140 (66)
Proof. Re-arranging (41), we obtain
GR=—A,, A" — H* + R - 2H' . (67)

Let us integrate (67) along all the z-directed geodesic. By the periodicity, the term in H’
does not contribute. Therefore, using (44), we obtain

L(X\) L(\) L | |
dz (3)R < dz (2)R < dz 2 47TXO _ KZC%@_%KA)\L(/\) (68)
: ’ 0 Smin<)\071)€§K/2\()‘*>\0,1) A
where 8
s
05 = Xo (69)

B KIZ\Smin(AO,1>6_§K/2\)\O’1 ’
and where we used Theorem 4, since A > A1, given that for this Theorem we are assuming
A > Xg2>Aoq. In light of (25), we therefore have that

L(\) 2 2 12
/ dz <§ (K3 — K?) + 02> < KR{C5 e 35 L()) (70)
0

This implies that, using Theorem 1:

L) L) g
/ dz 0® < K2Cse " L) + / dz 3 (K2 — K3) < K2 (Cs + Cy) e 3" L(N)
0 0
(71)

Using again Theorem 1, we therefore get that
Ly 2 o2
/ dz <§yK§ — K% + 02) < K3Cse 353 L(N) (72)
0

18



where Cg = C5 + 2C;. Computing

L) L(N) K2
L'(\) = / dz KK.. :/ dz (? + Kazz> = (73)
0 0
K2 L()\) 1
= —AL<)\) —|—/ dz —(K2 — K?\) + Ko-zz )
3 0 3
we see that
K?
L) = SELO) < B (74)

for Ep(\) satisfying
IEL(\)] < Ki%e—iKiAL(A) + K3 (1 + Cle_%K?\’\> (Cs + Cy) /2 3KRAL(N) . (75)

Here, we have used (72) and, for the term Ko,,, we have used Theorem 1, the Cauchy-
Schwartz inequality for [dz |o..| and eq. (71). Integrating the ordinary differential in-
equalities (74) (keeping in mind (75)), similarly to what done in Theorem 4, and defining
A2 = max(Xo1, Ay,), with Ay, such that

A d\ (Ki%e—muxﬁ <1+Cle_%Ki’\> (05+c2)1/2e—§K3A) <log(144), (76)

1
0,2

we obtain

LY <143 (77)

14+0)7t<
AR S mA

One can work quite similarly for the volume. Explicitly, we can write

V’(A):/M dVv K2:K§V(A)+/M dv (K* - K3) . (78)

Notice that equations (68), (70), (71), (72), and their derivation hold verbatim if we replace
L(\) with V(X), and integrals over v with integrals over M. In particular,

2
/M <§\Ki — K?| + 02) < K2Cge 35V () (79)
A
We therefore see that

V'(A) = KRV(N] < Ev(A) (80)

with 5
[Ev(N)] < SERCee 3 V() . (81)

19



Integrating the ordinary differential inequalities (80), and defining Af, = max(Ag,1, Aj,), with
Aj.5 such that

/ d\ (gKiCGe_gKXA) <log(1+9), (82)
A5,2
we obtain v\
1< < .
(1+9) < VRO 1+9¢ (83)
Choosing Ap» = max(\j,, Aj,), we obtain the desired result. O

Lemma 2. There exists some Cy such that
1 1
/ dV (K} — K|+ 0%) < FC7 esKR(A—20.2) (84)
My A

Proof. The desired result is obtained by combining (79) with (66), with C7; = %C’G(l +
§) K3V (Aga)e 35Nz, O

Resetting of time: Now, for ease of notation, let us re-define the initial time of the flow
as to be Ag2, so from now on Ago = 0. Note that estimates (26) and (14) still hold (in fact,

with much better constants).

In particular, we have, for every A > 0

1 V(A)
- — <2
2= V(0)efr = (85)
1 Shin(A)
S IV , 86
2= Smin(o)egKi)\ B ( )
and )
/ AV (K3 — K%+ 0%) < —Cy es"3N (87)
M K

6 Spatial closeness

In this section we focus on the spatial part of the metric, i.e. the induced metric on the
hypersurfaces M at fixed A. One can define a comparison metric

g = g()\o)e%Kf\(A—AO). (88)

This corresponds to evolving in A, starting from )y, the spatial metric of M, with the same
rate as the flat slicing of de Sitter. We are going to prove that the metric on the surfaces at
constant \ converges pointwise, for large \g, to this comparison metric. At the end of this
section, in 6.4, we will construct a genuinely-flat spatial metric that expands in time as the
flat slices of de Sitter space, which approximates g over expanding balls.
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6.1 Propagation of the metric along the level set

In this section we are going to show that, as A becomes larger and larger, the spatial metric
g of M, becomes less and less dependent on the transverse direction z. The propagation of
the metric along the level sets is given by the second fundamental form (extrinsic curvature):

Eazg;w = 2A,u1/ . (89)

Now, using eq. (41), the pointwise bounds ?)R given by (44) and (86) and the one on ®)R in
eq. (26), we get

H24 Ay A (4 CoR2\ oy e
o TR < (R SR B e B (o)

This implies the following pointwise bound of |H|:

Claim 1. 5
|H| < ﬁ\/C’gKAeéK/Q\A = ey . (91)

Proof. At the minimum and maximum points of H, H' = 0 and (91) follows from (90) there.
If (91) holds at the minimum and the maximum, it holds at any point. ]

Integrating (90), and using the pointwise bound (91), we also get

z 3
/ A AP < 553\75 + 4ey (92)
0

which, using Cauchy-Schwartz, implies

N 3
/ |A| < Uééﬁz? +4eyz . (93)
0

Observe that (89) implies that, taking any product co-ordinate system on M, (i.e., a
co-ordinate of the form («, 3, z), where z is as above and d,,Js are tangent to each surface
orbit)

8Zgaa:2A(8a,8a):2A< o Oa >]|8a]]2:2A( 0o _Oa ).gm. (94)

As 22 ig a unit vector

[10a]l
0, 0,
A( == )‘ <|A], 95
4 (e ) <14 )
so using this and (94),
10.9aa] < 2|A|%0n - (96)

Thus, for every product co-ordinate system on M, (96) and (93) imply that as long as

8
ex(z2 — 21) < 3 (97)
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we have that

llog(g22,) — log(g7L)| < 2 / Al < 4V2Zer(z — 1) - (98)

z

Exponentiating both sides, we obtain that for every tangent vector W € T,,{z = 2}

6—4\/26)\(2’2—2’1) < M < 64\/ 2ex(22—21) (99)
= gerod (W, W)~ ’

where gP™4 is the product metric dz? + ¢* under the standard flow lines. Thus, given some
d > 0, the two metrics remain a factor (1 4 §) one from the other over a distance
log?(1+0) 1 1 [3 12
Bo=— L= [ " log?(1+ §)esFr. 100
. 32> Ry od\ gy og (Lo (100)
Note that for ¢ sufficiently small, this is compatible with the assumption (97) which was
previously employed.

Claim 2. For every § there exists some 1 > p = p(§) > 0 such that for every X > 0, each
strip MZ = {z € My | 21 < 2(z) < 2 + di} satisfies

Vol (M)
—2 2 >p. 101
Proof. Using (86) and (85), we see that
Area({z = s}) > %sm(o)eifﬁA , (102)
and
V(A) < 2V(0)eRiN (103)
Since,
Vol(My) = / ds Area({z = s}) (104)
0
the result holds with o ) 0
1 3 log”(1 4+ 6)Smin(0
0) == —1/—= . 1
PO =G\ G v o)k, (105)
[

6.2 Conditional L? closeness to exponentially expanding slices

For technical reasons, it will be important in the following to define norms with respect to the
comparison metric g defined in (88), instead of the actual metric g. In this Section, we are
going to deduce results under the condition the two metrics are a priori close to each other.
We are going to relax this assumption in the following Section. To compare norms defined
with respect to the two different metrics we will need the following lemma.
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Lemma 3. There exists a 1 > v9 > 0 with the following property. Suppose 0 < v < 7 and
g —gllg < - (106)
Then, for any 2-tensor T, there exists a universal constant Ds such that
(1= Dsy) [[T]lg < [|Tllg < (1 + Dsy) || T - (107)

Proof. Choose coordinates at a point such that g;; = d;;, i.e. orthogonal at the point. Then
the condition (106) implies that g;; = d;; + €;; where |g;;| < . By the inversion formula for
3 X 3 matrices, g = 6% + &7 where || < D, (for sufficiently small +). Thus,

T2 = g g" T3y, Ty = 696" Ty Tjy + i T Ty (108)

where |g;;.| < Dyy. Now, the first term in the right hand side is (by definition, and by our
choice of co-ordinates) ||T'[|2. Moreover, again by definition

T < 1ITlg - (109)

as this is one of the terms appearing in the sum (again, by our choice of co-ordinates). Thus
e T Tyl < Dsy||TI|3 (110)

from which, using (108), we obtain (107). O

Lemma 4. Let vy be as in Lemma 3, and let 0 < v < 9. There exists a positive constant Cy
with the following significance: let A\g > 0 be some time and g defined in eq. (88) and set, for
each A > \g

B0 = [ 1190 ~ 0oyt (1)
Then, for every X such that ||g(A) — g(N)||g) < v, we have that
E'(\) < K3 (1 + 2026-31@) E(\) + CoK)2esKERAB(N)V2 (112)
Proof. We have (we suppress the dependence on A in g and g),
B0 = [ K-l 2 [ g s2KK, - SR, - SRREW) . (1)

My Mo

To get to the final inequality, we bound the first two terms on the RHS separately °. For the
first one, we use Theorem 1 (Cj is defined in (26)):

3 2 42
/‘cw;Kﬂm—gW%gkﬁ(1+§Cﬁﬂfﬁ)ﬂmn. (114)
M

5Notice that if we had defined the norms with respect to the metric g instead of g, this equation would
contain terms involving the A-derivative of g that would be difficult to control. This is the reason of choosing
norms with respect to g.
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For the second one, writing K;; = %gij + 05, we first write

2 4
2/ (9—8 2K Kij—= K}g)gdV, < g/ (g—g,Kzg—KigdeqH’/ (9 — 8 Koij)gdVy| .
My My My
(115)
The first term on the right-hand side of (115) can be bounded as

4

4 4
3 | o e K- Kighadv, < SRREO)+ 5 [ g -8 (K~ K)ghdav, (110
M)\ M)\

IN
2

8 C 2
B+ 5K, (14 Deirx / K — K| - (g — g 9)gldV,
3 2 o

8 C 2 72 2
E(\) + K\ (1 + —1e‘3KAA> 3(1+ Ds7)E(N)'? (/ K~ KA\z)
M

3 2 A
8 C
ZOVER (1 * 71) VB F D) P E(N) Pes R |

where in the second step we used the bound (14), in the third the Cauchy-Schwartz inequality
(both on the integral and on the scalar product with respect to the metric g) and Lemma 3; in
the last step we used the inequality (K — K)? < |K? — K3|, for K > 0, and the bound (87).
The second term on the right-hand side of (115) is bounded by

IN (VAN
QI Wik Wl

=

=N

2

4‘ [ to— & KoueaVy| < 4Rx(1+ Coe RN B0 oy 15 (117)
My

< A0 (14 D) K (14 Coer B2,

where we used the bound (14), the Cauchy-Schwartz inequality, the bound (87) and the
inequality |[oy;{|zz < (14 D37) ||oij||22 by Lemma 3.

Assuming that A > Ag and ||g(A) — g(A)|[gn) < 7 one can put together (114), (116) and
(117) to get the final inequality (112) with a suitable constant Cy that can be expressed in
terms of the constant that appear (116) and (117). O

Lemma 5. Let v be as in Lemma 3, and let 0 < v < 7. There exists a universal constant
Cho < oo with the following significance: let \g > 0 be some time. Define g and E as in
equations (88), (111). Let A > Ao be such that for every X' € [Xo, \| we have that ||g(\') —

g(\N)llgoy <. Then

Cho
E< i

A

e~ 3KRNRRN (118)
Proof. Making the substitution E(\) = e353%¢=KXAE()), the inequality (112) becomes

E'(\) < ;CzKie-iKi*E(A) + CoKPem 3K s KRN0 ()12 (119)

< C{oKz%e_%K?‘Ae%K[Q‘AO (E()‘) + 20?2—3) )
10 A
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where for simplicity in the second step we assumed Cy > 0 (%) and we used that vab <
(a+b)/2, with a > 0,b > 0, and where Cf, := 2Cy + 3 C.

Thus, ,
which, together with E()\g) = 0, integrates to
log (E + 5 Cig}(i) < 3C%, — log (201, K3 /Cy) (121)

for all A\. Thus s
~ Cho Cye’*10
EN) < — = ——= 122
W= R T a0 12
which is equivalent to (118).

]

6.3 Unconditional pointwise closeness to exponentially expanding
slices

In this Section we put together the results on the z-dependence of the spatial metric obtained
in Section 6.1 with the results on the L?-closeness of Section 6.2 in order to prove the pointwise
convergence of the metric to the exponentially expanding comparison metric (88).

Theorem 6. There exists some N\, < 0o and a universal constant C1; < oo such that for
every Ao > A, defining, as before, g(\) as in (88), we have

lg(\) — gW)llg < Crem s 0, (123)
pointwise for every X > Ag.

Proof. Let 6, = v/4, and define A, so that

2
Cho e_gKgA* _ d;p(0.)

92—
K3 1

V(0), (124)
where (g is the constant that appears in eq. (118) and p(d) is in (105). Let Ag > A,, and
define 4 to be the solution of

Cio _2x25, _ 0°p(9)

e 3

22—
K3 4

V(0) . (125)

Notice that since ¢ is a monotonically decreasing function of \g, we automatically have that
for A\g > A,, 0 < /4.
Eq. (118) and (85) imply that

SIf Cy = 0, the first inequality of eq. (119) implies E(\) = 0 so that the Lemma holds with Cjo = 0.
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V(A (126)

as long as

1g(\) — g(\)|lgoy < v for every X € [Ag, A . (127)

Recall also that for X = Ao, |[g(N) — g(N)||gvy) = 0, and note moreover that this norm is a
continuous function of \'.
Now, suppose for the sake of contradiction that there exists some \” > \q such that

max (|lg(X") — g(A\")llgx)) = 44. (128)

Let A be the infimum of the \’, and notice that A\ > A\g. Let zp.,q be a point where this
maximum is obtained at A, so that at z},.q the following holds

l9(A) = g(Mllg) = 40 - (129)

In particular, we have that ||g(A) —g()\)||gn) < 46 < 7 for every z. Note that (127) is satisfied
up to time A, so in particular, (126) is valid at time A. Now, applying (99) twice, at flow
times Ao and A, starting at zp.q, we see that [[g(A) — g(A)||g) = d for every z in Miaad,
Thus

EQ) > / 19(A) = 8(N)[[gn) = 62VOl(MG") > 8p()V(N) (130)

Zbad 9
M

which contradicts (126). Therefore, there cannot exist such a A, and so ||g(A) —g(A)||g) < 40
always. The dependence of § on Ay can be read from (125) and (105) by Taylor expansion

§ ~ e KRN (131)
This gives the final result (123). O

In the following we are going to often assume that the distance of eq. (123) is small, say

< ﬁ, by imposing Ay > 6K 1og(100C};).

6.4 Closeness to de Sitter slices over exponentially expanding balls

In this section we want to prove the pointwise convergence over expanding balls of the spatial
metric to the spatial metric of de Sitter space in flat slicing:

gas(\) = ed RNy, (132)

with ggy the flat Eucliden 3d metric. The idea is to prove that the spatial metric g(\o)
for large A\g becomes approximately flat since the surface orbits have larger and larger area
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and at the same time the metric becomes independent of the orthogonal direction z. The
exponential growth factor in A is then fixed using the results in the previous section.

Let p; be the shortest length of a non-contractible loop in one of the surface orbits con-
tained in M, (set py = 1/K, if ¥ is a sphere). By Theorem 6 at A, the metric g and g
differ by < /4 < 1/4, so that every curve in a surface orbit in M,,, A9 > A, of length
K3 (Ao—As)

<%ple% is contractible. Recalling that y is the Euler characteristic of the orbit

surfaces, from (86) we further know that each orbit surface has sectional curvature

Sec| < C2 K3 e~ 3K M (133)
where
Choe = A (134)
Smin(0) K2

If we consider the standard forms of the metric in polar coordinates for 2-sphere, 2-plane

and 2-hyperboloid (for the sphere, for instance, this is dr + 5’ Seccl/2 d6?), it is useful to
notice that, for Kyr < 2e1K M and choosmg Ao > log(2C’SeC), we can use that, for
0<t<1, |0 1] <2 and S0 1‘<t2 towrlte

sin (CS e”s A’\OKAT>

—*K A0 2 -2
C{Sec A KAT

— 1] <402 e R0 (135)

The same bound holds if we replace sin by sinh. It is now useful to impose A\g > ).,, where
A, is given by

tlog (52 ) + LKEA.
K3

4
N, = max | Ay, —5 1og(2Csec), (136)
K3

The first term on the r.h.s. was imposed above (133) to set a maximum length for the
contractible curves; the second term on the r.h.s. was imposed above (135) to ensure that
the argument of the Sine on the Lh.s of (135) is at most equal to one; the third condition
and every point p € M,,, if p € ¥ for some orbit surface 3,
then expg maps the 2-dimensional Euclidean ball By(0, 3%6 1253 Ao)
intrinsic ball in X, B*(p, 72 emK A%) (in fact, the first term on the r.h.s. of (136) ensures that

the diameter of this ball is shorter that the shortest non-contractible curve in ). Moreover,

ensures that for every \g > X

*3k )

diffeomorphically to the

setting
Itue = (exp;), ((4)) (137)

(135) implies that for every tangent vector W to X,

W, W) 1 e
1—4C2 e K% < _IW. W) <14 4C2 e 250N (138)
i Tuc(W, W) i
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Let us set

1 14
§ = —e it 1
¢ (139)
Then for Ao > ¢ K2 log (40C2,.), we can ensure that 4C2, e~ 2K3% < §, so that:
g(W, W)
l1-0< =——<<1+496. 140
PRUATE o

Now, let g be the true metric on My and ggy. be the Euclidean product metric gg,. =
dz? + gi... Then (140), (99), (100) and (136) imply that g and gg,. are a factor of (1 + 4)
é

from one another over an interval (in the z-direction) of length dfo. Therefore, taking

12 5 /Cs
A7, = max (A;*,5K2 log (40C%,.) , 52 log <64 336 107 3 )) : (141)

we get that for every Ao>M\/,, for every tangent vector W € T, M, at a point ¢ € M), N
B(MA g(A ))(p’ 32_ 612KA>‘0) we have

9l{(W, W)
Giuelg(W, W)

The second factor on the r.h.s. in (141) was imposed just above (140); the last factor in (141)
)

1-6< <1+94. (142)

comes from imposing that the distance dfo in (100) is larger than the radius of the ball above:

5 —KQ)\O
3KA€12

We can now prove the convergence to the de Sitter metric (132). We define

1210g(10C1 1) )

143

A = MAax ()\;’*,
(the second condition guarantees that the error of Theorem 6, C; exp(—1/6- K3 )o) is smaller
than the 0 defined in eq. (139)) we have
Theorem 7. For every A\g > A.., we have

[19(0) = gas ()l ]gn <16e 12732 (144)

pointwise for every X > \g on BMr9() (pA7 KLAeﬁKIQ\’\O -e%K?\(’\_’\O)) Here py results from
following p along the flow.

Proof. Remember that at Ay, g(Ao) = g(Ao). Therefore, (142) gives (suboptimally as usual)
[18(Ao) — 8as(Ao)llger) <46 (145)

on BMxog(h) <pA elzKA)‘fJ). (Notice that we took a ball of radius smaller than above.)

Since both metrics evolve with time with the same rescaling, g(\) = e35i(—%)g()y) and
gas(N) = e3FAAN)g o (o), (145) is true at all times:

18(A) — gas(Mlg) < 40 (146)
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on BMxo8(N) <p>\, Le 12530 e%K/Q\()")‘O)) But, from Theorem 6, we have that, at all times
A> A
[19(A) = g8(Mllgeny < 2[lg(A) — g(M)l[gm) < 85 (147)

Therefore, we have, on BMA9() (p,\ Le K30 -e%K/Q\(’\_’\O)> that

[[g(A) = gas(Mlgn < 2[lg(A) — gas(M]lgr) < 4[|g(X) — gas(M)[lgny < 160 , (148)

as we wished to show. O

7 Space-time closeness

We are now ready to show that, asymptotically, the spacetime becomes close to de Sitter
space, in the sense that the length of any future-oriented, timelike or null curve between two
spacetime points approaches the one evaluated between the same points using the de Sitter
metric, once both points are taken at late enough times.

To achieve our purpose, we need to gain some additional control on the extrinsic curvature,
which we do first 7. Let us start by noticing that (10) and SEC imply:

1
%—AK+3K(K2—K§)+U2K§0. (149)

Let let us now observe that we can bound [ My, dV |[VK|? if this is integrated over a finite
flow-time interval. Specifically, we have

Lemma 6. For every A > 0,

Mg Cly 1pe
/ “ d)\’/ dV |[VK|* < 12 esfa?, (150)
A My Ky
Proof. Using, first (149), and then (14) and (87), we compute
d dK
— dv —K}) = K?* - K}))K? + 2K 151
5 v e = [ av (0= s 2k ) (151)
g/ dv {(K K3}) K2+2K AK + K (K; — KQ)—#K)}
M
2
< Z0r Ky esfRN - 2/ IVK[?dV |
3 M,

where we used that K2 < 2K} for the flow times that we are considering (which follows from
(57) or (60) and our redefinition of the zero flow time). Integrating this over [\, A + 1/K3%]
gives the desired result with C{, = ((e!/® —1) + 1 (¢! +1)) C5. O

7 By making stronger assumptions on the geometry of M3+1) it is possible to obtain a stronger conclusion
on this aspect, which however does not alter the physical equivalence to de Sitter space that we discuss in the
last section. It will be discussed in a future publication [45].
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Observe that Lemma 6 and (86) imply that

M L()\) .
/ “ dX/ dz [VK|? < C1pKy e 35 (152)
A 0

where Cp = - C{Q

Similarly, (8 ) and (86) give

L)
/ dz |K? — Ku|? < Ci3Kpe 353 (153)
0

where Ci3 = m@.

We are now going to show that this result allows us to say that K is pointwise close to
K, at most of the late-enough flow times. In fact, (152) guarantees that, at most flow-times,
fOL(A) dz [VK|? is small, but there can still be a small set of flow times where this quantity
is badly behaved. For each integer ¢ > 0 let us therefore identify the set of flow times, B;,

within the interval [7, %) when there is no good gradient bound:

Bii= {K2\elii+1)] /dz VKO, )2 > Crp K331 . (154)
Because of (152), B; has measure (length) satisfying the estimate

1
A

Given an integer ig > 0, denote by B;, = Uf;o B;, we get that the overall measure of the

regions with bad gradient bounds from some flow time A\ := % onward is bounded by an
A

arbitrarily small number as A\g — oo:

1 Y
IBiOISK—i—8 —e 9 . (156)

Denoting by G; the complement of the B;, i.e. the set of flow times with good gradient bounds:
G, := %[@,z + 1) — B;, we have that
A

/dz VKN, 2)|? < Ca K/?{e_%i, for every A € G; . (157)

Let us denote the total set of flow times with good gradient bound as G := J;-, G.
We now claim the following Lemma about the spatial uniformity of K at times when the
gradient bounds are good:

Lemma 7. It exists a flow time g3 such that, for X > Xg3 > 0, in those flow times with
good gradient bounds, K 1is close to Ky, i.e.:

|K — Ka| < 2K/ Ch2 e ', for every A € G; N {AA> Nost . (158)
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Proof. By Cauchy-Schwartz,

[K(2) = K(2)] < /1 0:K |dz| < (22— 21)"/? </dZ|VK\2)1/2 (159)

< (22 i 21) /2(C K3)1/2 _lz‘ 7

where in the last inequality, we have used that A € G;. Thus, if there is a point, z;, where
(158) is violated, then

K — Kp| > Kay/Crae™s? (160)
on the interval 21,z + 1/K,|. By using that K + K, > Kj, this gives

L(Y) N
/ dz |K; — K*(\, 2)| > /CiaKpe 9", (161)
0

which, together with (153) and the fact that Ki\ € [i,i + 1) imply

vV C’ngAe_éi S C’ngAe_%i s (162)
yielding the inequality i < 2 5 log (\/C&> Thus, taking
9 Clg ) 1
A3 = ——= log ( + —, 163
o=z e \ves) T He)
there cannot be such z; for A > A¢ 3, establishing (158). O

As mentioned, our strategy now is to study the spacetime metric using the MCF foliation.
Given a point p € M, the metric of the four-dimensional spacetime at p is given by

ds? = gl(fy drtdz” = —K*d\* + gjjda'da’ | (164)

where we remind that g;; is the 3-metric of the MCF hypersurfaces. This parametrization of
g™ is useful as long as the MCF foliates a large region of spacetime. This is indeed the case,
as we are going to show next.

In the subset of M©®+D that is foliated by the flow we have chosen a time function such
that the lapse is N = 1 (see the discussion below Definition 1 and [20]). Let tyin(A) be
the smallest value of t in M. By Lemma 1, ¢,,;,(A) is a locally Lipschitz function, hence
differentiable almost everywhere, and at such point of differentiability

d ot

ﬁtmin()\) ) —(xz, A) (165)

where z, € M, is a point where t,;,(A) is attained. Note that, by minimality, Vi L T, M,
and so

gf\(:m,A) = (Vt C;)\) (Vt —K(z))Vt) = K(x)) . (166)
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Note that, from (156) and (158), we can choose Ao 4 = max ()\0 3, % log ( T 1) log(4\/C’1 ))
KQ, such that, for A > X4, |By,,| < 1/K3 and, when A € GN [)\04,—1—00) K > KA/2. Here

10,4 is the integer in the interval [K/Q\/\OA 1 K/Q\)\OA) For A > Ao 4, we can therefore write

brin() = foin (Mova) + / AN K (. N) > (167)
[Xo,4,A]

K 1
> tmin(Aoa) + / dN K (zx, X') > tmin(Ao4) + A ()\ — Aoa — —2) :
Mo.sAING 2 K

We therefore conclude that the flow reaches arbitrary large ¢t as A — +00, and therefore, since
the time function has lapse equal to 1, it foliates arbitrarily large regions of the spacetime.
This guarantees that the spacetime metric we constructed from (164) is valid in such regions.

Additionally, this implies that A3+ has no crushing singularities. Indeed, if there were
such a singularity, there exists a ¢ > ¢y such that the flow never reaches S, as in Definition 1.
Choose ¢; > ¢ > ¢y > 0 in our time function as defined below Definition 1. Let p € S.,
certainly ¢(p) < co. Connecting p to My by a timelike curve, ¢ must grow monotonically on
this curve and bounded above by ¢(p). But M, intersects this curve for arbitrarily large \’s
since the flow does not reach p, contradicting that the minimum time on the flow slices grows
arbitrarily large, (167). Since we are assuming that M (3+1) has only potential singularities of
the crushing kind, this implies that A/*+1 has no singularities, and is therefore future-directed
time-like and null geodesically complete.

Now, let 7 : [Ag, )] — M®B+Y be a smooth curve in MG+Y with y(\) € M,, where
Ao > max (Ag4, Ax). Here A, is from Theorem 6 and g4 is from the paragraph above. We
are interested in comparing the metric in (164) with the model metric

ds? sy = gWdade” = —K3d\? + gyjda'da’ (168)

g
where g is defined by (88). We can estimate the difference in length of the curve 7 as measured
with the actual metric (164) and with the reference metric (168). Because of the Lorentzian
nature of the spacetime, we will separately bound the difference of the evaluation of the
contraction of the tangent vector with the A-direction, and with the spatial direction. For the
time direction, letting 7o be the integer in the interval [K2)\o — 1, K2 )g), we can write

/\1 )\1
| oIl —eli= [ oIk - 6o (169)
0 0

- /‘mwdwm—wwuwu | avfim-maon o)

GN[Ao,A1]

<EB Y [ ik RGO )

i=ig ﬁ[)\o,)q

el/9 1

_7)\ i
1/9——1K_6 0+ 4+, \/ 012 Z 18 (172)

zzo
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Here, at (171), we have used the bound |K3 — K?| < K3 to bound the first integrand, and,
n (172), we used the estimate (156) to bound |B;,|, and (158) to bound the second integral.

Thus N
1 C K2
|y - gl < e (173)
A

where 013 1/11/8181 (1 + 4\/ Cl )
Considering the integral of the projection of the tangent vector on M, Theorem 6 directly
implies

/ V]9 ) — 80 3)] < v/Cre KRN / Ve, (174)

)\0 )\O

We can now obtain an expression of the length discrepancy of such a curve, when computed
w.r.t to the true metric and the comparison one. Namely, combining (173) and (174), we get

28] — Lty < /:1 dA ’\/m— VIE? - g(j/,j/”‘ _ (175)
- [ an |V =R = 06 80090 + (8 — 8,00 - y/1KE — 863.7)]| <

< [ an i = KD - (065 - gl <

<[ i (\/!(Kz “KD+ VG - g<m>>|) <

A1
< Gt ot [ VTR

A Ao

where for the second and third inequalities we have used the triangle inequality and the
inequality va + b < Va+ Vb for a,b>0.

This means that for any curve 7 such that y(\) € M,, its length w.r.t. the spacetime
metric converges exponentially, as we take Ay larger and larger, to the respective quantity
evaluated on the comparison metric g®. Note further that if such a curve is future-pointing

timelike or null w.r.t the true spacetime metric ds3, then g(¥,%) < 2K3%, as below eq. (151),
61og(100C11) )
K3

VE(H. ) <V2y/g(7,79) < 2K, . (176)

so, by Theorem 6 (provided g is large enough, say, as before, A\g >

This and (175) yield

L M - Ld82(4) ['Y]) S iR +2y/CiiKpe™ 1530 ()\1 )\0) . (177)

Chs
—e
Ky

In fact, any future-pointing timelike or null curve w.r.t the true spacetime metric ds3, with
non-vanishing velocity, can be re-parametrized so that v(\) € M. Such a re-parametrization
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Figure 3: Some of the geometric quantities that are defined in Sec. 7.

is possible since if ug is a critical point of the function A(y(u)) then 4(ug) € M., so the tangent
to - is spacelike at such a point. As the length of curves is invariant under re-parametrization,
the length of all future-pointing timelike or null curves becomes very close to the length com-
puted with the model metric (168).

To compare lengths with the exact de Sitter space, we need to use Theorem 7. To do
so we need to prove that time-like and null curves remain inside the ball where the theorem
applies. This is given by the following simple lemma (see Fig. 3).

Lemma 8. Let v : [A\g, M\i] = MGV be a smooth curve in MG+ where

610g(1OOC’11))
K% ’
and such that v(\) € My. Assume further that v is timelike or null, and denote p = (o)
and py the evolution of p along the flow. Then, for each A,

Ao > max (A*, (178)

Proof. Consider u € M), be the curve obtained by, for each A, following () by MCF back
to M,,. Then

A1 A 172
I = [ Ve = [ e O BIE S < 2 (80

Ao
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where, in the last inequality, we have used (176) (which requires both inequalities (178)).
Therefore, for every X € [Ag, A1, letting ;" be the curve obtained by following v(\) by MCF
forward to M, for each A € [A\g, X'], we get

)\/
D) = [ RV < A0 [T < e
)\0 )\O
(181)
where in the last passage we used (180). Since on a given flow time slice, g and g lengths are
close to each other (by Theorem 6, which requires both inequalities (178)), we get that
12

—Z s KR —20), (182)

L] < 4=

Since p* is a curve in M,/ connecting py with v(\') of length < é—ie%Ki(’\,’)‘O), the result
follows. o

Now, let v and A be as in the above lemma, and assume further that

121og(12
Ag > max ()\**, Ao,45 #) ; (183)
) KA

where A, is from Theorem 7, Ao > Aoa guarantees the validity of the metric (164) over
12log(12)
are contained in the balls of applicability of Theorem 7. Therefore, the Lemma above and

Theorem 7 imply that

large spacetime regions, see (167), and Ay > ensures that the balls of Lemma 8

19(A) — gas(N)] |y < 16~ 1253 (184)

along 7, where gqs is given by (132), defined using the point p = (o). Setting the space-time
exact de Sitter metric,

ds2g = gly) := —K3d\? + (gas)ijda'da’. (185)

Arguing as in (175), (176) and (177), we get that for every future-pointing timelike or null
curve v : [a,b] — MGV with Ao := A(y(a)) > max ()\074, Ay 1210g(12)>’ setting Ay = A\(y(b))

KX
we get
2 2 C
L&) = L] < 222 e RN 4 8K e A () — ). (186)

We therefore conclude that the length of any future-oriented, timelike or null curve between
two points converges exponentially fast to the same quantity evaluated with the de Sitter
metric, as we take the lowest time of the two points, g, larger and larger.
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8 Dilution of Matter

We now show that the stress tensor goes to zero almost everywhere. We can bound the
integral over z of |T},,n*n”|. One can use eq. (24) and the WEC to write

167Gy [ dz |T,,,n*n"| =16nGN [ dz T, n"'n" = 187
1 7
2
- /dz <(3)R + 3 (K? = K3) - 02) < CyKpe s8N

where in the last step we used the bounds (68) and (72) together with Theorem 5. We defined
014 = <C5 + 06)(1 + 5)KAL(O>

Because of the DEC, T,,n#n” is at least as large as the absolute value of any other
component of the stress tensor in an orthonormal frame where n* is the timelike vector ®.
We therefore define a vierbein e,*, such that g,(fy) = euaeyb%b, with 74, being the Minkowski

metric. We choose e,° = n,. By DEC, we have
167TGN/dZ ‘Tuye““e”b‘ < 167TGN/dZ Tntn” < CMKAe’%K/z\)‘ ) (188)

Since, by the symmetries of the problem, 7T}, is uniform on the slices at constant z, we see
that in almost-all of the ever-growing z-direction, G T}, has to be at most of order K3 -

O(G%Ki)‘) — 0, while it can be of order K% only on a shell of z-thickness that shrinks as
_ L2y

e 3N (
e_gK/%)‘

or even faster if 7},, gets larger) and therefore this shell is just a fraction of order
of the extension of the z direction.

Notice that, by Einstein’s equations, this means that a similar bound applies to R,,. In
fact, we can take the Einstein equations and contract them with e#®e*®

, 1
R, e e = [87TGN (TW — %T) + gK?\g,w] etrert (189)

Let us write R, as R, = Rasu + 0R,,, where Ryg,, = %Kﬁgw, is the Ricci tensor of de
Sitter space with cosmological constant A. We obtain

(5Rm,e““e”b = 887Gy (TW — %T) ehaeht (190)
We can now use the bound (188) to write
3
/dz ‘5Ru,,e”“e”b| = /dz G N |Tw,e““e”b - Tn“b| < §Cl4KAe_%K/2\)‘ . (191)

It is hard to imagine that one can achieve a control on 7), which is better than this,
without additional assumptions on the stress tensor and using arguments similar to the ones
presented in [20]. In particular one cannot hope for a pointwise convergence of the stress

8This is actually an equivalent definition of the DEC [46] as it is straightforward to verify.
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tensor (and thus of the Ricci tensor), since it is easy to come up with counterexamples.
Indeed, one can imagine an alien population living in spaceships and whose main purpose
in life is to prevent pointwise convergence to de Sitter space. While, by the symmetries of
the problem, these aliens are constrained to be uniformly distributed on expanding surfaces,
nothing prevents them from squeezing their spaceships fast enough in the z-direction, in order
to keep the energy density constant in their surface-like ships. Therefore the stress tensor and
the Ricci tensor do not need to go to zero everywhere. Furthermore, no physical law seems to
prevent these aliens from splitting each of their spaceships into smaller ones at each Hubble
time, 1/K,, creating thinner spaceships but keeping constant their energy density. In doing
so and distributing the spaceships in the z-direction one can always have one spaceship in
each region in the z-direction of size ~ 1/K,. Thus one in general does not have pointwise
convergence in any large portion of space.

The fact that 7, does not converge pointwise is not in contradiction with the pointwise
convergence of the spatial metric ®. For instance, if one considers an infinitesimally thin
layer of matter localised at a certain value of z, the solution of the Einstein equations across
this thin wall gives the so-called Israel junction conditions [47]. The metric of this 2+1
dimensional surface is continuous across the wall and the jump in the extrinsic curvature of
the wall, K;ﬁ, — K4, is fixed by the surface stress tensor Sus (the stress tensor integrated
over a small interval in z across the wall):

Kf,— K, = 87Gx (Saﬁ - 9%5975575) . (192)

(The indices «, 3, ... span the (2+1)-dimensional space at fixed z and g,s is the induced
metric on this space.) The expansion of the thin wall in the directions orthogonal to z will
make the surface stress tensor go to zero, so that also the jump in the extrinsic curvature
vanishes asymptotically, in agreement with the pointwise bound (91), which applies to the
components of the extrinsic curvature on M. In particular one can check that when the
thin wall saturates the SEC, so that its surface stress tensor goes to zero as slowly as possible
within our assumptions, the bound (91) is also saturated, as expected °.

9This is peculiar of the setup we are discussing, where T}, can only depend on z. In a generic case without
symmetries, a point-like localised mass, no matter how small, will affect the metric if one goes sufficiently
close to it.

19An isotropic surface stress tensor, S;; = diag(c,IL,II), saturates the SEC if Il = —1/2 - . This can
be understood starting from an object with a finite extension in the z direction. One can prove, using
the conservation of the stress energy tensor (see for instance [48]), that [ dzT,, = 0, independently of the
internal dynamics of the wall. In 3+ 1 dimensions for a diagonal stress tensor the SEC implies p+ p; > 0 and
p+ >, i >0, where p; are the pressures in the three spatial directions. If we now apply this to the integral
over z of the stress tensor we obtain the limit the saturates the SEC. In de Sitter space the surface energy
density dilutes as a consequence of the conservation of the stress tensor: & = —2 - %(0 +1I) = —%K AT,
when SEC is saturated. This gives o o exp(—3K3\). Using (192), this is indeed the same behaviour as the
pointwise bound (91).
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9 Summary and Physical Equivalence to de Sitter

Summary: We have considered 3+1 dimensional cosmologies satisfying the Einstein equa-
tions with a positive cosmological constant and matter satisfying the dominant and the strong
energy conditions. We have assumed that the only potential singularities are of the crushing
kind, and that the spatial slices have homogeneous but potentially anisotropic 2-surfaces.
We used the mean curvature flow to probe the geometry: spacetime is foliated by the mean
curvature flow surfaces and the flow parameter runs orthogonal to them. We proved that the
spatial part of the resulting metric converges pointwise to the one of de Sitter space in flat
slicing on balls whose radius becomes arbitrarily large, growing as e%KA’\, as the flow time A
goes arbitrarily large. The lapse function converges to the one of de Sitter almost everywhere.
The gradient of the lapse function converges to zero almost everywhere only once averaged
over an arbitrarily small, but non-vanishing, time. We have then shown that these results
imply that the length of any future-oriented, timelike or null curve between two points at
late enough time converges exponentially to the same quantity computed with the de Sitter
metric. We have also shown that all components of the stress tensor go to zero almost every-
where. Let us now explain in which sense our findings imply physical equivalence to de Sitter
space at late enough times.

Physical Equivalence to de Sitter Space: Let us start by discussing the role of the
residual matter, which, by (188), does not necessarily go to zero pointwise. However, the fact
that future-oriented null geodesics, at late enough times, behave as in de Sitter space tells
us that at late times there is a cosmological horizon approaching the one of de Sitter space.
Therefore, fixing a late enough time Ay, an observer will be able to gather information in the
future only from points that, at A, are contained in a ball, B.(A2) C M,,, of radius 4-3/Kj;
the de Sitter horizon is 3/ K. (The extra factor of 4 is included to account for the difference
between the actual size of the horizon and the one of de Sitter space and also for the motion of
the observer. These corrections decay exponentially in Ay, and we are taking A\, late enough.)
At any time A > ), the integral on My N yx(yy,' (B.(A2))) of any component of the stress
tensor in an orthonormal frame, is bounded by

167Gy / T, e’ n”?| < 167Gy / T,n*n” <
Manya(yy, (Be(A2))) Manya(yy, (Be(A2)))
7T(12>2014e—%1(12\)\ < 7(12)201467%1@»2

where we used (188) at time A\. We therefore see that the overall energy and momentum

(193)

contained at any time A > Ay in the ball of points that are causally connected to the center
goes to zero as we send Ay — +00. Since any experiment has some finite energy or momentum
threshold below which no measurement can be done, we conclude that the residual matter
content is equivalent to vacuum for all physical purposes.

Let us now discuss in what sense our results show that the geometry is physically the same
as the one of de Sitter space. We have shown that future-oriented timelike and null geodesics
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converge to the ones of de Sitter. The equivalence principle states that free-falling parti-
cles follow geodesics of this kind, so that from this point of view the spacetime is effectively
asymptotically de Sitter. However the equivalence principle is only a low energy approx-
imation: particles can be directly coupled to the Riemann tensor (consider for instance a
coupling of a scalar field ¢ of the form [ d*z+/—g® R**?0,0,¢0,0,¢/ A with Ayg being
some high-energy scale) and we do not have control of the Riemann tensor. This kind of ef-
fects are suppressed at low energy by powers of the ratio of the energy scale of the experiment
over Agg: at long enough distances they can be neglected. Therefore the equivalence with
de Sitter space holds in the low-energy regime, when the effects that violate the equivalence
principle can be neglected. On top of this, on extremely large distances, larger than a ball

whose radius grows as e%Ki’\, with A arbitrarily large, the geometry is indeed not the one of
de Sitter, but, since there is a cosmological horizon, these are causally disconnected regions

and a local observer cannot experience this departure from de Sitter .

Outlook: We have offered a proof of a de Sitter no-hair theorem in 341 dimensions for the
case where the spacetime manifold has spatial slices that can be foliated by 2-dimensional
surfaces that are the closed orbits of a symmetry group. Concerning the inflationary ‘initial
patch problem’; these results, together with the ones that we discussed in the introduction, and
in particular the numerical ones, substantially resolve it: one does not need quasi homogeneous
initial conditions on a volume whose linear size is of the order of the Hubble radius of the
inflationary solution for inflation to start.

Clearly, it would be nice to get rid of some of the symmetry assumptions we made here,
to consider initial surfaces that are not expanding everywhere, and to include in the setup a
dynamical inflaton. Work is in progress in these directions [49].
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1Tf, instead of a cosmological constant, we had an inflationary field, the approximately de Sitter phase
would end at some time, and sufficiently long time after that moment, these long distance regions would
become observable again.
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