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Abstract:  
People with superior face recognition have relatively thin cortex in face-selective brain 
areas, while those with superior vehicle recognition have relatively thick cortex in the same 
areas. We suggest that these opposite correlations reflect distinct mechanisms influencing 
cortical thickness (CT) as abilities are acquired at different points in development. We 
explore a new prediction regarding the specificity of these effects through the depth of the 
cortex: that face recognition selectively and negatively correlates with thickness of the 
deepest laminar subdivision in face-selective areas. With ultra-high resolution MRI at 7T, 
we estimated the thickness of three laminar subdivisions, which we term MR layers, in the 
right fusiform face area (rFFA) in 14 adult male humans. Face recognition was negatively 
associated with the thickness of deep MR layers, while vehicle recognition was positively 
related to the thickness of all layers. Regression model comparisons provided 
overwhelming support for a model specifying that the magnitude of the association between 
face recognition and CT differs across MR layers (deep vs. superficial/middle) while the 
magnitude of the association between vehicle recognition and CT is invariant across layers. 
The total CT of rFFA accounted for 69% of the variance in face recognition, and thickness 
of the deep layer alone accounted for 84% of this variance. Our findings demonstrate the 
functional validity of MR laminar estimates in FFA. Studying the structural basis of 
individual differences for multiple abilities in the same cortical area can reveal effects of 
distinct mechanisms that are not apparent when studying average variation or 
development. 
 
Significance Statement: 
Face and object recognition vary in the normal population and are only modestly related to each 
other. The recognition of faces and vehicles are both positively related to neural responses in the 
fusiform face area (FFA), but show different relations to the cortical thickness of FFA. Here, we 
use very high-resolution MRI, and find that face recognition ability (a skill acquired early in life) 
is negatively correlated with thickness of FFA’s deepest MR-defined layers, whereas recognition 
of vehicles (a skill acquired later in life) is positively related to thickness at of all cortical layers. 
Our methods can be used in the future to characterize sources of variability in human abilities 
and relate them to distinct mechanisms of neural plasticity. 
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Introduction 
 
Brain volumetrics are behaviorally relevant, task-independent biomarkers that can be studied in 
terms of their relation to visual abilities. Those abilities depend on both genetic and 
environmental factors, as well as on the developmental state of the brain. Importantly, many 
structural biomarkers can be measured independent of behavior, and are therefore more likely to 
reflect stable variability across individuals rather than performance during a specific task. The 
relation between brain structure and behavioral abilities can provide a useful window into the 
underlying forces that culminate into individual differences.  

The current work builds on our previous finding that differences in total cortical 
thickness (CT) of the same brain area in the same people predict different abilities in opposite 
directions: Vehicle recognition (VR) was associated with a relatively thicker fusiform face area 
(FFA), whereas face recognition (FR) was associated with a relatively thinner FFA ((McGugin, 
Van Gulick, & Gauthier, 2016). The current study extends that previous work, using ultra-high 
resolution imaging to probe laminar thickness differences underlying the differences in total 
cortical thickness, and their relationship to behavioral abilities. 
 When we reported the surprising pattern of FFA CT variations across individuals, we 
suggested that those opposing results (thinner CT associated with better FR, thicker CT 
associated with better VR, all within the same region of the brain) could be explained by 
differences in the developmental state (plasticity) of the brain at the time these visual skills were 
learned (McGugin et al., 2016). This was predicted since individuation for exemplars in the 
categories used, faces and vehicles, were likely learned at different times in development. It 
seemed plausible that learning occurring at different times in development would have different 
effects on underlying brain structure, with some of these effects being selective to specific 
cortical layers. In other words, our predictions are based on intuitions relevant to two different 
fields: the development of behavioral recognition abilities across domains and the development 
of the associated cortical underpinnings. These are two areas of study that are difficult to study, 
but we based our conjectures on the following findings. 

First, we predicted that observed differences in brain correlates of FR and VR in adults 
may reflect differential ages of acquisition for these abilities (McGugin et al., 2016). There is 
growing evidence that faces dominate the visual diet of infants. Three month-old babies see faces 
for 25% of their waking time, an amount reduced to 10% by 12 months (Fausey, Jayaraman, & 
Smith, 2016; Sugden & Moulson, 2018), and early face exposure has been found to be critical to 
the development of face-selectivity (Arcaro, Schade, Vincent, Ponce, & Livingstone, 2017). The 
age at which infants learn to individuate objects such as vehicles is less clear (Clerkin, Hart, 
Rehg, Yu, & Smith, 2016). Although face selectivity continues to develop during adolescence 
(Gomez et al., 2017; Scherf, Thomas, Doyle, & Behrmann, 2014) and FR continues to improve 
in adults (Germine, Duchaine, & Nakayama, 2011), it is reasonable to assume that FR also starts 
earlier than VR. 
 Second, we conjectured that if the earlier acquisition of FR (relative to VR) was 
responsible for a pattern where thinner cortex related to better performance, then the underlying 
structural biomarkers for the thinner cortex may be related to the early developmental pruning of 
connections critical to the acquisition of FR. The amygdala is critical to the development of FR 
(Schultz, 2005) and is connected to the occipital lobe via the inferior longitudinal fasciculus 
(ILF). Research on the connectivity between the inferior temporal (IT) areas TE and TEO (the 
monkey analog of the FFA) and the limbic system has revealed projections in the infant monkey 
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that are pruned in the adult (Webster, Ungerleider, & Bachevalier, 1991). Such connections from 
IT to limbic areas are labeled predominantly in infragranual (deep) layers of IT (Stefanacci & 
Amaral, 2000). Accordingly, if this variability in the pruning of the ILF connections from IT to 
the amygdala is relevant to FR in humans, it should be most reflected in the thickness of deep 
cortical layers. In contrast, we expect the positive correlation between VR and variability in 
FFA’s CT to reflect mechanisms that support learning-dependent structural plasticity in adults 
(Wenger et al., 2012). These mechanisms are not well understood but are proposed to include 
processes such as gliogenesis and angiogenesis that accompany synaptogenesis (Zatorre, Fields, 
& Johansen-berg, 2012). We have no reason to expect these mechanisms to be confined to deep 
layers (but acknowledge no evidence against laminar specificity).  
 It is important to note that multiple mechanisms may underlie any observed differences in 
structure that are associated with development. For example, variation in the pruning of 
connections could occur as described in the predictions that motivated the current work, affecting 
the thickness of different layers. However, the predicted pattern of laminar-specific correlations 
could be consistent with pruning but could also reflect other mechanisms. In particular, 
myelination increases during development and the effects of pruning and myelination are 
difficult to distinguish, as myelination could shift the apparent gray-white matter boundary and 
result in thinner cortical measurements, an effect that would be attributed to deep cortical layers 
((Sowell et al., 2004). It is fortuitous that both of these plausible mechanisms predict that the 
earlier development of FR would result in variance across individuals for FR to be specifically 
related to the thickness of the deep layers in our measurements. 
 In summary, here we test whether changes in CT that are associated with behavior 
(McGugin et al., 2016) are predominantly driven by changes in deep layers of the cortex, 
suggestive of developmental underpinnings. We additionally demonstrate that ultra-high 
resolution MRI can be used to image laminar thickness within the cortex, providing a potentially 
useful biomarker for probing the structure-function relationship of the brain in vivo. In testing 
our predictions, we contrasted two models (Fig. 1). The first represents a null hypothesis with 
regards to laminar specificity: it simply assumes that the effects observed in overall CT in 
McGugin et al. (2016) will replicate here but will be the same across all layers (Model 1). In 
contrast, Model 2, instantiates our predictions based on differential early development and posits 
a selective linkage between the deep MR layer and variability in FR. 
 
Materials and Methods 
Subjects. 14 right-handed men aged 19 to 29 (mean=22.46, s.d.=3.60) were recruited from the 
Vanderbilt University community based on previous participation. Only men were recruited to 
limit variability in brain anatomy. Our sample size was limited by the short period of time 
between when we developed scan protocols with sufficient resolution and before a major scanner 
upgrade. We recruited individuals with experience in the scanner, and who, as a group, offered a 
wide range of performance with faces. One subject was excluded due to excessive head motion. 
Written informed consent was obtained from all subjects in accordance with guidelines of the 
Vanderbilt University Institutional Review Board and Vanderbilt University Medical Center. All 
subjects reported normal or corrected-to-normal visual acuity, and received monetary 
compensation for participation.  

Behavioral Testing. Subjects performed a battery of matching and recognition memory 
tests outside of the scanner. First, they completed the extended Cambridge Face Memory Test 
(CFMT+; (Russell, Duchaine, & Nakayama, 2009) in which they studied several views of 
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unfamiliar male faces and were tested in forced-choice trials of three faces on which they 
selected the face that matched a studied face. Second, subjects completed various sections of the 
Vanderbilt Expertise Test (VET; (McGugin, Richler, Herzmann, Speegle, & Gauthier, 2012). 
This included 2 face tests (VET-Males, VET-Females), 2 vehicle tests (VET-Car, VET-Plane), 
and 2 animal tests (VET-Bird, VET-Butterfly). In each case, subjects studied six identities, 
models or species for as long as needed, followed by 3-alternative forced choice test trials in 
which they indicated which item was studied. Third, subjects completed the Vanderbilt Face 
Matching Test (VFMT; (Sunday, Lee, & Gauthier, 2018). On each trial, subjects studied 2 faces 
for 4000 ms, then were shown a 3-alternative forced choice and indicated which face was a new 
image of a face studied on that trial. Matching faces were different images from the original 
presentation. Fourth, subjects completed sequential matching tests using cars, planes, birds and 
butterflies (McGugin, Gatenby, Gore, & Gauthier, 2012). On each trial, an image appeared for 
1000 ms, followed by a 500-ms mask, then a second image. Subjects judged if the two images 
showed cars/planes of the same make and model regardless of year, or birds/butterflies of the 
same species. See Table 1 for mean test performance, reliability of each test, and consistency 
across tests for each category. Aggregate Face, Vehicle and Animal indices were calculated 
based in each case on standardized performance for the four relevant tests. 

MRI acquisition. All subjects were imaged using a Philips Achieva whole-body 7T MRI 
scanner with a quadrature, head only transmit coil and a 32 channel receive coil array. Imaging 
proceeded in three stages: whole brain structural imaging, functional localization, and ultra-high 
resolution susceptibility-weighted imaging (SWI).  

Whole brain structural imaging acquisition. Whole brain structural imaging consisted of 
a sagittal whole brain 3D T1 weighted MPRAGE image gathered at 1 mm isotropic resolution 
and resampled into axial and coronal orientations for accurate localization of SWI acquisitions. 
This was used to identify anatomic landmarks important to the planning of the subsequent ultra-
high resolution SWI acquisitions. 
 Functional MRI acquisition, stimuli, design and analyses. Functional localization of the 
fusiform face area (FFA) was accomplished via isotropic whole brain fMRI data. Images were 
acquired with minimal distortion using a multishot 3D gradient echo PRESTO EPI pulse 
sequence (Versluis et al., 2010). TR/TE=21.93/28.13ms, flip=12°, FOV=211.4mm, number of 
slices=30, voxel size=2.5mm isotropic, EPI factor=11, water/fat shift=6.705pix, number of 
dynamics=160, time/dynamic=2.02s). 

Experimental Design and Statistical Analysis. We presented all stimuli with an Apple 
Macintosh computer running Matlab 2014a (MathWorks, Natick, MA) using Psychophysics 
Toolbox (Brainard, 1997). Stimuli were displayed on a rear-projection screen using an Avotec 
projector. Immediately following the HR structural scan, each subject completed 1-2 runs 
(depending on time) of a functional localizer scan (160 dynamics/run). We used grayscale 
images (36 faces, 36 objects) in a 1-back detection task across 20 alternating blocks of face and 
object images. Each image was presented for 1 s, with 16 images per category block. The HR 
T1-weighted structural scans were transformed into the standard sagittal view with 1mm 
isometric voxels to facilitate coregistration of functional and anatomical datasets. Functional data 
were analyzed using Brain Voyager (www.brainvoyager.com) and in-house Matlab scripts 
(MathWorks, Natick, MA). Preprocessing in Brain Voyager included registration to the 
structural scan, slice scan time correction (cubic spline), 3D motion correction (sinc 
interpolation) and temporal filtering (high-pass criterion of 2 cycles per run) with linear trend 
removal. No spatial smoothing was applied. Regions of interest (ROIs) were defined using the 
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Face>Object contrast from the face-localizer scan. We localized an ROI that responded more to 
faces than objects in the right middle fusiform gyrus (FFA2) of all subjects.  

Right FFA2s were localized on the 3 mm3 (interpolated) statistical maps from the 
localizer scans as the peak face-selective voxel, then grown to incorporate contiguous 3-mm3 
voxels passing statistical threshold within a 4-voxel or 108 mm3 fixed volume around the peak of 
face-selectivity. Solely for the purpose of comparing the location of our rFFA2s with those 
reported in the literature and demonstrating homology of the rFFA2 across subjects, the HR T1-
weighted structural scans were normalized to Talairach space and functional data re-aligned to 
the Talairach-transformed images. Talairach coordinates for our ROIs (mm ± SD) are (X = 38.92 
± 3.86; Y = -47.54 ± 6.73; Z = -20.62 ± 3.01).  

SWI image acquisition, processing and averaging. A minimum of six ultra-high 
resolution T2

* weighted images were acquired as separate and independent acquisitions in each 
subject using slice-selective Cartesian gradient echo acquisitions. Both real and imaginary 
images were recorded. Measurement of individual differences in CT presents additional 
challenges over characterizing average laminar profiles because of the various sources of 
measurement error that can confound inter-individual variability. Thus, care was taken to plan 
image acquisitions such that the frequency encoding direction was perpendicular to the ventral 
surface of the temporal lobe underneath the right FFA, to minimize differences in partial volume 
effects across layers from subject to subject. Prior to analysis, ultra-high resolution data were 
reconstructed at 0.1875 mm in-plane resolution.  

SWI imaging parameters were as follows: FOV=240x180.194x21.9mm, yielding voxel 
dimensions of 0.194x0.194x1.00 mm, 20 slices, 0.1 mm gap, ‘shortest’ (878.8±8.29ms) 
repetition time, ’shortest’ (27.5±0.31ms) echo time, 27.26 pix water/fat shift, 55 degree flip 
angle, flow compensation, 9 min 11 ± 5.2 sec total duration. Images were acquired with a 1D 
phase navigator to correct for phase errors arising from respiration during acquisition, as has 
been previously shown to be effective in very high resolution SWI imaging (Versluis et al., 
2010). 

Real and imaginary images were used to calculate magnitude and phase images, which 
were then processed to create susceptibility weighted scans (Haacke, Xu, Cheng, & 
Reichenbach, 2004). Within each subject, each of the six resulting SWI scans were co-registered 
using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) and averaged in MATLAB 
(https://www.mathworks.com). For those subjects that had more than six T2

* weighted scans 
acquired, the optimal six were identified for analysis by calculating the normalized mutual 
information (NMI; (Studholme, Hill, & Hawkes, 1999; Viola & Wells III, 1997; Wells, Viola, 
Atsumi, Nakajima, & Kikinis, 1996) between all pairs of acquired and co-registered SWI scans, 
and ranking each according to the sum of its pairwise NMI values. The six scans with the highest 
summed pairwise NMI were kept for further analysis. This ensured that the six scans most 
similar to each other, and likely containing the least substantial run-dependent artifacts or 
misalignments, were selected for the purpose of averaging in later stages of the analysis. 

Image registration. Standard-resolution functional localizer scans were registered to 
high-resolution (1mm isotropic) structural scans in BrainVoyager (Fig. 2A). Because we sought 
to avoid unnecessary interpolations of the ultra-high-resolution (UHR) images, all intensity 
analyses were performed directly on the UHR images. We registered the high-resolution 
structural image and the functionally-defined rFFA2 to the UHR slices. Specifically, high-
resolution structural images and rFFA2 masks were converted from BrainVoyager’s proprietary 
image formats to NifTI-1 images using the NeuroElf toolbox for Matlab. Rigid-body 
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transformation matrices of the high-resolution structural images to the UHR images were 
calculated via SPM’s SPM_coreg() coregistration function, and these matrices were used to 
reslice the rFFA2 masks into the UHR space.  The 108 mm3 rFFA2 masks traversed 4 to 7 UHR 
slices depending on the subject (mean= 5.57, SD= .85). For each UHR slice, 16-bit TIFF-format 
two-dimensional slice images were saved using Matlab. 

Image Segmentation and Trace Identification. Using Adobe Photoshop, the gray 
matter/white matter (deep) and gray matter/CSF (superficial) cortical boundaries were manually 
drawn by two image analysts trained to recognize differences in brain structures but blind to the 
experimental goals (Fig. 2B). The inter-rater reliability of total rFFA2 thickness was very high 
(intraclass correlation, ICC=0.98). In addition to segmenting cortex from other tissue, blood 
vessels and image artifacts were manually marked as well. The resulting segmented data images 
were masked with the ROI images to create a series of ROI-specific cortical segmentation 
images. These segmented ROI images were next used to trace within-slice line segments through 
the thickness of cortex, along which we sampled the cortical signal intensity. Prior to tracing, 
each boundary was smoothed to avoid single-pixel concavities or convexities. Specifically, for 
each voxel that was part of the boundary, the three contiguous nearest neighbor boundary voxels 
in either direction (for a total of seven) were identified and a line segment fit to those voxels 
using linear regression. The set of such line segments was aggregated as the boundary was 
traversed, and skeletonized (to removed thickenings) and cleaned of spurs using the Matlab 
function bwmorph().   

Because of the convoluted shape of the cortical sheath, points on the deep and superficial 
boundaries of cortex do not have a one-to-one correspondence. Using custom Matlab code, we 
selected lines originating in each superficial boundary voxel and terminating in the nearest deep 
boundary voxel within that ROI in that slice (Fig. 2C). We conducted the same procedure in the 
reverse direction as well, originating in each deep boundary voxel and terminating in each 
superficial boundary voxel. The resulting traces were subject to five constraints: First, traces 
could not intersect cortical boundaries (aside from at trace origination or termination), to ensure 
that all samples were restricted to cortical tissue even in areas of high cortical convolution. 
Second, no trace could cross a previously-identified trace originating from the same boundary to 
avoid over-representing certain pieces of the cortical mantle. Third, the angle between the trace 
and boundary from which it originated could not be more than 20 degrees off perpendicular, to 
ensure that traces were approximately perpendicular to the cortical boundary. Fourth, any trace 
that was three or more standard deviations longer or shorter than the mean of all traces in a given 
slice was removed, to control for outlier paths. Fifth, no trace could cross an area marked for 
exclusion, such as a vein, since MRI intensity values are not valid indicators of gray matter 
signal in veins. For any trace that violated one of these constraints, a new trace was drawn from 
the originating voxel to the next-closest voxel in the other boundary. 
 Intensity sampling and MR layer identification. First, average CT was defined in each 
ROI in each slice per subject as the average distance between the GM-CSF border and GM-WM 
border. Next, three cortical depths were identified by the points at which gray matter intensity 
trends changed (Fig. 2D). Specifically, to estimate these depths, we fit a 4th-order polynomial to 
the set of intensity samples from each ROI in each slice. Gray matter intensity was sampled at 
500 equally-spaced points along the length of each trace. This ensured that voxel intensities were 
sampled even when a trace only crossed a corner of a voxel. The sampled intensities were 
linearly interpolated to 1/100th mm intervals. The resulting intensities were thresholded since 
pixels above or below a certain intensity are assumed to reflect partial-volume or whole-pixel 
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capture of non-grey-matter. Specifically, any intensity values three or more standard deviations 
from the mean (over the entire set of trace intensities) were not included. Subsequently, intensity 
data were de-trended.  

In all slices, inflection points were identified as the depths at which the second derivative 
of the polynomial was equal to zero. Inflection points outside the range of depths that fell within 
cortex were discarded and the remaining points were taken as estimates of the boundaries 
between cortical layers. Thus, we operationalized three MR cortical layers as the distances 
between (1) GM-CSF border and the first inflection point (superficial cortical depth), (2) first 
and second inflection points (middle cortical depth), and (3) second inflection point and the GM-
WM border (deep cortical depth). We hypothesize that these MR layers are related to, although 
they are not a direct measure of, traditional cortical layers defined based on histological 
properties (Lifshits et al., 2018). 

In 2 of 69 slices analyzed, the variation of intensity through the cortex was insufficient 
for accurately fitting a polynomial to the underlying data. These slices were omitted from further 
analyses. 

Transcortical microvasculature. Transcortical microvasculature was segmented and 
mapped using a contour based local minimization routine. Having manually identified the deep 
and superficial boundaries of the functionally defined rFFA2, intermediary contours parallel to 
the cortical surface were drawn throughout the cortical thickness. Transcortical vessels were 
segmented by mapping local minima along each contour, and the vascular area was quantified as 
the percent of voxels within the rFFA2 labeled as belonging to transcortical vessels. The measure 
for each subject was an average from at least 4 and up to 7 slices, with a weighted average ICC 
of .80. 

 
Results 
Reliability of CT measurements.  
 Slices. We estimated the reliability of cortical measurements across slices (after centering 
them on the peak of face selectivity) using the correlation of thickness estimates for each slice 
relative to all the other slices in each subject. For total regional CT, which was based on manual 
tracings of high-contrast boundaries, correlations were higher than .8 for all slices. As a result, 
total CT measurements were averaged over all available slices. Inter-rater reliability of total CT 
was calculated using intraclass correlations for distance from GM-WM boundary to GM-CSF 
boundary, averaged across all slices for the two analysts.  

Thickness measurements of the middle MR layer were based on relatively lower contrast 
boundaries identified using an automated algorithm (see below). Correlations reached .5 for 
anterior slices but slices that were posterior relative to the peak of face selectivity showed little to 
no evidence of reliability. Inspecting individual images, this proved to be because FFA2 ROIs 
were located closer to the posterior slices of the ultra-high resolution stack of 20 images for most 
subjects. Our measurements were made after co-registration of six ultra-high resolution scans to 
increase contrast, thus the final slices of the stack were more likely to show co-registration 
artifacts due to motion or respiration. We therefore used only the 2-4 reliable anterior slices for 
each subject and dropped the 2-3 most posterior and unreliable slices, for all measurements 
involving an internal laminar boundary (thickness estimates for deep, superficial and middle MR 
layers). 

Average Thickness Measures. The white matter (WM)/grey matter (GM) boundary and 
the GM/cerebrospinal fluid (CSF) boundary were traced manually by two image analysts. Across 
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subjects, the mean total CT of rFFA2 (distance from the WM/GM boundary to the GM/CSF 
boundary) was consistent with previous work. Between the two analysts blind to behavioral 
measurements, inter-rater reliability of total rFFA2 thickness was very high: intraclass 
correlation (ICC) = 0.98). MR-defined laminar subdivisions are defined by two internal 
boundaries identified using an automated procedure (see Methods). The representation of each 
MR laminar subdivision proportional to total CT was also consistent with previous work (Fig. 
2D). Across subjects, the mean total CT of rFFA2 (distance from the WM/GM boundary to the 
GM/CSF boundary) was in the range reported in extrastriate cortex (Fischl & Dale, 2000): 
average rFFA2 GM thickness = 3.37 mm, with a range between 2.50 and 4.67 mm. Furthermore, 
the representation of each laminar subdivision proportional to total CT was consistent with MR 
microscopy in area V4 in nonhuman primates (Chen, Wang, Gore, & Roe, 2012): superficial MR 
layer (1.07 mm, range: 0.74 – 1.61 mm; 31%), middle MR layer (1.04 mm, range: 0.64 – 1.49 
mm; 31%), deep MR layer (1.26 mm, range: 0.56 – 2.72 mm; 38%). As an index of consistency 
across subjects, ICCs for the three laminar subdivisions were: superficial, 0.77, middle, 0.73, 
deep, 0.80.  

 
Association between Behavioral Measures and Total rFFA2 CT.  
 Each behavioral measure was computed as the average of the standardized values of four 
tests. ICCs were greater than .84 in all cases. We replicated previous results showing that total 
FFA CT is negatively correlated with face recognition, (r=-0.83 p<.001) and positively 
correlated with the recognition of vehicles (r=0.70, p<0.001, Table 2), with the two correlations 
significantly different (t=8.86, p<.001). Face and Vehicle performance were not significantly 
related (r=-.33, p=.27) and partial correlations with rFFA2 controlling for performance on the 
other categories were comparable in value and statistical significance to the zero-order rs (Table 
2, Fig 3A). We replicated these correlational results using the univariate observed-imposed 
bootstrap (e.g., (Beasley et al., 2007). Multiple regression indicated that both Face and Vehicle 
scores independently predicted rFFA2 thickness (both ps <= .001) and together accounted for 
60% of the variance on adjusted R2.  

As in prior work (McGugin et al., 2016), the correlation between overall CT and 
recognition of animals, which may not be acquired especially early or late, was in the same 
direction as face recognition although not significantly so (r=-0.12, p=0.34). Animal recognition 
also did not predict thickness of MR layers (superficial: r=0.15; middle: r=0.26; deep: r=-0.26). 
Our results cannot be explained by variability in vascular volume in FFA2 because such 
differences were not related to total CT (r=-.31), or behavioral performance (face, r=.11; vehicle, 
r=-.09, animal, r=.21), despite being reliable (ICC=.75). 

 
Association between Behavior Measures and Thickness of rFFA2 MR layers.  
 Correlations. In accord with predictions of the differential early development model, 
face recognition was strongly negatively correlated with the thickness of deep MR layers of 
rFFA2 (r=-0.76, p=.002, Fig. 3B, Table 2). This relation is evident when examining subject-
specific brain data listed as a function of face recognition performance (Fig. 4). There were no 
significant correlations between face recognition and thickness of superficial or middle MR 
layers (Fig. 3B, Table 2). In contrast, correlations between vehicle recognition and thickness of 
all three MR layers were consistently positive in sign (rs ranged from .44 to .48, two-tail ps 
ranging from .13 to .10), although not statistically significant. For the deep MR layer, the 
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correlations of thickness with face recognition significantly differed from that with vehicle 
recognition (t=3.69, p<.005). These effects were replicated when bootstrapping was used.  

 Regression Models Predicting Behavioral Measures From MR Layer-Specific CT.   
While correlations revealed bivariate relations among pairs of variables, they do not address the 
degree to which the combination of MR layer-specific CT measures predict individual 
differences in behavior. To address this question, we conducted multiple regression analyses in 
which CT in the superficial, middle, and deep MR layers predicted face recognition and vehicle 
recognition scores. According to adjusted R2, the combination of superficial, middle, and deep 
MR layer thickness accounted for 65% of the variance in face recognition (FR; overall regression 
F(3,9) =8.29, p =.006; unadjusted R2=.73). Both standard and bootstrapped confidence intervals 
indicated that the thickness of the deep layer was the only statistically significant predictor of 
face recognition. We also computed semi-partial correlations indicating the correlation between 
FR and each CT measure with the latter adjusted for the other CT measures. Only the semi-
partial correlation for the deep MR layer (r = .72, p =.0125) was significantly greater than 0 
(superficial r = -.29, p = .40; middle r = -.25, p = .45). Squared semi-partial correlations 
quantifying the proportion of variance uniquely contributed by each predictor indicated that the 
thickness of the deep MR layer accounted for slightly over half the total variance of FR (deep sr2 
= .52, superficial and middle sr2 = .08 and .06 respectively). 

The multiple regression analyses with vehicle recognition (VR) as the dependent variable 
had a different pattern of results. In this case, the overall regression model was significant (F(3,9) 
= 3.98, p < .05) although none of the regression coefficients for the three predictors were 
significant (ps ranged from .07 to .12). Although the latter result could be due to the relatively 
small sample size, this result also suggests that it was the shared variance among the three 
predictors rather than the unique variance of each predictor that accounted for effects on VR.  
 Regression Models Predicting CT of MR Layers from Behavior.  Our most extensive 
analyses used a multiple regression framework to assess alternative models of the effects of face 
recognition and vehicle recognition on CT measures. We emphasized these analyses because 
they allowed us to test alternative hypotheses about the complete pattern of associations between 
the two behavioral measures and thickness of the three MR layers.  
 Our regression models used a repeated measures framework, with the 3 MR layer-
specific CT measures per person serving as the repeated dependent measure. Predictors were 
layer, FR, and VR. We created two new variables that decomposed the overall effect of the layer 
factor into two orthogonal (i.e., uncorrelated) contrasts. As noted above, we hypothesized that 
the association between FR and thickness would be more strongly negative in the deep MR layer 
relative to the superficial and middle MR layers. To capture this difference, we gave one contrast 
variable (denoted LDvSM) a code of -1 for observations from the deep MR layer and codes of .5 
for observations from the superficial and middle MR layers. The second contrast variable for 
layer (denoted LSvM) was orthogonal to the first and assigned a code of 0 to the deep layer, 1 to 
the superficial layer, and -1 to the middle layer. When both contrast variables are included in a 
model as a set, they estimate the overall (2 degree of freedom) main effect of MR layer.  
 We compared six different regression models that imposed different restrictions on the 
association between measures of the CT of MR layers (hereafter “layers” for short in the model 
descriptions) and FR and VR.   
 
Model 0 (M0): Baseline Model.  
In this model, the only predictor of CT levels was the overall main effect of layer:  
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0 1 2Model 0:  CT L L ,  

where i denotes subject (1 through 13), j denotes layer (1 through 3), and 
 denotes the prediction error for the CT measure in the jth layer for the ith subject

ij DvsSM SvM ijB B B ε

ε

= + + +

.
 

We used M0 simply as a baseline comparison to verify that FR and VR measures, introduced in 
subsequent models, were significantly associated with CT. 
 
Model 1(M1): Equal Coefficients Across Layers.  
The next two models reflected our two primary alternative hypotheses. Model 1 predicted CT in 
a given layer from the two contrast variables for layer, FR, and VR:  

0 1 2 3 4Model 1:  CT L L FR VR   ij DvsSM SvM i i ijB B B B B ε= + + + + +  
M1 is a “main effects only” model with no interaction terms. As a result it specifies that the 
regression coefficient denoting the effect of FR on CT ( 3B ) is equal (i.e., invariant) across all 
three layers and the coefficient for the effect of VR on CT ( 4B ) is also equal across layers (see 
Figure 1). This model is the most parsimonious extension of our previous finding using overall 
CT (McGugin et al., 2016).  

 
Model 2 (M2): FR Differentially Predicts Deep vs Superficial/Middle MR Layer CT.  
Model 2 tested the hypothesis that: (1) The association between FR and CT is more pronounced 
(i.e., more negative) in the deep layer than the middle and superficial layers; but (2) Layer does 
not moderate the relation between VR and CT measures. To embody this specification, an 
interaction (i.e., product) term between FR and the Deep vs. Superficial/Middle contrast variable 
(LDvsSM ) was added to Model 1:  

( )0 1 2 3 4 5Model 2:  CT L L FR VR B FR L

    
ij DvsSM SvM i i i DvsSM ijB B B B B ε= + + + + + × +  

In model 2, three unique regression coefficients are sufficient to account for the linkages 
between FR and VR and CT across layers: the coefficient for the regression of CT on FR within 
the deep layer (equal to 3 5B B− ); the coefficient for the regression of CT on FR within the middle 

and superficial layers 5
3 equal to 2
BB⎛ ⎞+⎜ ⎟

⎝ ⎠
; and, the single coefficient for the regression of CT 

on VR within each of the three layers ( 4B ). Thus, this model specifies a constant effect of VR 
across all three layers and the hypothesized variable effect for FR.  

 
The remaining models are designed to assess patterns of association other than those directly 

hypothesized in Models 1 and 2: 
 
Model 3 (M3) extended Model 2 by adding an interaction term between the second Layer 
contrast variable (LSvM ) and FR. This addition relaxes the assumption that the regression 
coefficients for FR in the middle and superficial layers were equal to one another. Thus, M3 goes 
beyond M2 by allowing all three regression coefficients for FR to differ from one another. Like 
M2, however it restricts all three regression coefficients for VR to be equal. 
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Model 4 (M4) added the full VR X Layer interaction to Model 1. This model specifies that the 
regression coefficients involving FR are all the same but allows for unique regression 
coefficients for VR in each layer.  
 
Model 5 (M5) extended M3 and M4 by adding in both the overall FR X Layer interaction and the 
overall VR X Layer interaction. This model allows for 6 unique regression coefficients (FR/VR 
x Superficial/Middle/Deep) to capture the association between FR and VR and CT measures. 
Support for this model would imply that layer moderates the relation between both FR and VR 
and CT.  
 We conducted analyses using the gls function (Gałecki & Burzykowski, 2013) in the 
nlme package (Pinheiro et al., 2018) in R (R Core Team, 2018). For all models, we accounted for 
the dependence among the three observations for each subject by imposing an unstructured 
covariance matrix among the residuals. Maximum likelihood (ML) estimation was used (e.g., 
(Gałecki & Burzykowski, 2013). We evaluated the relative fit of the models using several 
indices. When models were nested, we used likelihood ratio tests to compare models. We also 
used three information indices to compare all models: The Akaike Information Criterion (AIC; 
(Akaike, 1973), the small-sample corrected AIC (AICc; (Sugiura, 1978), and the Bayesian 
Information Criterion (BIC; (Schwarz, 1978)). These indices reward model fit but penalize for 
model complexity, and thus are designed to prevent overfitting. Lower values indicate better fit. 
We also report -2 X the log likelihood (-2LL) value of each model computed at the maximum 
likelihood estimates. -2LL values are used both in the computation of likelihood ratio tests (for 
which the difference in the -2LL values of two models are distributed as chi-square variables 
with degrees of freedom equal to the difference in the number of parameters estimated by each 
model) and of information indices.  

Table 3 shows the values of -2LL and the information indices for the six models. The values 
for M0 very clearly fit worse than all other models (e.g., all LR tests comparing other models to 
M0 ps < .005), thus indicating that FR and VR contributed significantly to the prediction of CT. 
Most importantly, Table 4 indicates that M2 (“FR Differentially Predicts Deep vs 
Superficial/Middle CT”) is clearly the best-fitting model. It has the lowest values for all three 
information indices. Likelihood ratio tests comparing M2 to other models yielded a pattern 
consistent with the information indices. M2 fit significantly better than M1 ( )2

1 5.94, .02pχ = = . 
Although M2 is a restricted version of M3 and M5, neither fit any better than M2

( )2 2
2 3 1 2 5 3M vs. M : .01, .90;  M  vs M : .20, .97p pχ χ= > = > . These results indicate that M2 is the 

model that best combines fit to the data with parsimony. Table 5 shows the unstandardized and 
standardized regression coefficients for the regression of CT on FR and VR that are implied by 
M2. FR has a stronger (negative) effect on CT in the deep MR layer relative to the superficial and 
middle MR layers. This difference is statistically significant (t(33) = 2.53, p < .02).  

Although the fit indices discussed so far clearly indicate that M2 is the best-fitting model, 
they do not precisely quantify the strength of the evidence for M2 relative to the other 
hypotheses. For this reason, we additionally computed Bayes factors (BFs; (Jeffreys, 1961; Kass 
& Raftery, 1995)) using the BayesFactor package in R (Morey & Rouder, 2018). We specified 
the same six regression models. Instead of correlated residuals, we specified a random effect for 
subject to model the correlation among the CT values for each person. For all models, we used 
the Jeffreys-Zellner-Snow mixture of g-priors specification introduced by (Liang, Paulo, Molina, 
Clyde, & Berger, 2008) (see also (Rouder & Morey, 2012). Because BFs can be sensitive to prior 



 

 14 

distributions, we used three alternative specifications of the scale parameter of the inverse 
gamma distribution that, in turn, is used to specify the variances of the prior distribution for the 
regression coefficients. All three specifications produced identical conclusions. Below, we report  
the results for the default “medium” values of the scaling parameters. For each pair of models, 
BFs were computed as the ratio of the marginal likelihood of the first model to the marginal 
likelihood of the second. Although we caution against rules of thumb, Jeffreys’ criteria specify 
that BFs in the range 1-3,3-10,10-30, 30 to 100, and > 100 indicate, respectively, weak, 
substantial, strong, very strong, and decisive support for the hypothesis linked to the numerator 
of the BF. Reciprocal values indicate degree of support for the model in the denominator.  

An examination of the BFs yielded by the 15 pairings of models indicated that M2 was 
clearly the best-fitting model (i.e., for each of its 5 comparisons, M2  had the best fit). The final 
column in Table 3 displays the Bayes Factors comparing M2  to each of the other models. 
Perhaps the most important index here is the BF of 38.85 for the M2 /M1 comparison. This value 
indicates that the evidence in the data for M2 is over 30 times as strong as the evidence for M1 . 
All other comparisons yielded what Jeffrey’s termed “strong” support for M2 except that 
involving M3. This is not surprising given that both models are highly similar. Both allow for a 
difference in the association between FR and CT between the deep and the  superficial layers, 
and both specify that the regression coefficients for VR are the same across layers. Unlike M2, 
however, M3 allows for differences between the FR coefficients in the superficial and middle 
layers. That the evidence favoring M2 is over three times stronger indicates that the superficial 
and middle layer coefficients can be constrained to be equal. Thus, the best-fitting model in both 
the regression and Bayesian analyses (M2) required only three unique regression coefficients to 
capture the relation between CT and FR and VR across the three MR layers: the coefficient 
denoting the effect of FR on CT in the deep MR layer, the coefficient denoting the effect of FR 
on CT in the superficial and middle MR layers, and the coefficient denoting the effect of VR on 
CT in all three MR layers.  

 
Discussion 
 We used susceptibility-weighted MRI in a 7T magnet to measure the thickness of deep, 
middle and superficial MR layers, distinctions that cannot be resolved with conventional MRI 
approaches at 3T or below. While new developments in MRI have allowed some visualization of 
intracortical layers, validation of their functional relevance has been reserved to primary visual 
cortex (Trampel, Ott, & Turner, 2011). We were constrained to a single region of interest due to 
a limited field of view and the fact that accurate measurement of laminar CT with non-isotropic 
voxels depends upon careful alignment of slices perpendicular to the cortex of a targeted brain 
area. We selected the rFFA2 based on earlier robust functional expertise effects for non-face 
objects (McGugin, Van Gulick, Tamber-Rosenau, Ross, & Gauthier, 2015).  

Here, we replicate and extend the finding that vehicle recognition is positively correlated 
with CT of FFA (McGugin et al., 2016), whereas face recognition is negatively correlated with 
FFA thickness (Bi, Chen, Zhou, He, & Fang, 2014; McGugin et al., 2016). This surprising 
pattern of correlations led us to postulate different mechanisms of plasticity behind these effects, 
with the mechanism relevant to face recognition operating earlier and selectively influencing the 
deep layers of rFFA2.  

To measure the thickness of MR layers, we applied an automated algorithm to define 
borders between layers using signal intensity shifts along perpendicular traces through rFFA2 
(Methods and Fig. 2). We postulate that the three most prominent intensity differences are 
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related to observed laminar divisions in the fusiform (Lorenz et al., 2017), corresponding to the 
densely-packed deep/infragranular layers (layers V-VI), middle/internal granular (layer IV), and 
superficial/supragranular (layers I-III). We successfully visualized laminar structure in rFFA2 
and our measurements of the thickness of MR layers were reliable.  

Although we compared several different models of the data, our primary focus was on 
two specific alternatives (see Fig. 1). The first (M1) specified that the pattern of correlations 
observed in total CT (negative for faces and positive for vehicles) is constant across all laminar 
subdivisions. The second (M2) specified that the association between individual differences in 
FR and the thickness of the deep MR layer was stronger (i.e., more negative) than the association 
between FR and thickness of the superficial and middle MR layers. Like M1, M2 specified that 
the association between VR and CT was invariant across layer. Regression analyses consistently 
favored M2 relative to M1 and to the other models that we specified, across multiple indices 
(likelihood ratio tests, three information indices, and Bayes Factors). Comparisons of regression 
coefficients yielded by M2 indicated that the association between FR and the deep MR layer was 
significantly stronger than the association between FR and the superficial and middle MR layers. 
The thickness of the deep MR layer accounted for a much higher proportion of variance in FR 
than the thickness of the other two MR layers. Indeed, when considered in isolation, CT of the 
deep MR layer accounted for 58% of the variance in FR, which is 84% of the variance accounted 
for by all the layers together (using total CT). Thus, the strong association between total CT and 
FR is largely, if not exclusively, due to the deep MR layer. In contrast, for VR there was no 
evidence that the relation was moderated by layer, and the clearly best-fitting regression model 
(M2) constrained the regression coefficients for VR to be equal across layers. 

The sample size of the present study (N=13) was small. Accordingly, we focused on 
regression models that specified the overall pattern of association across layers and behavioral 
measures, to increase power and precision (e.g., see (Hoijtink, 2011). In the present case, for 
example, while the individual correlations between VR and CT in the superficial, middle, and 
deep layers were not significantly greater than 0, our regression models yielded significant 
effects for VR on CT when these were constrained to be equal across layers. More generally, that 
our analyses indicated the clear superiority of M2 even given the relatively small sample size is 
an indication of its strength as a representation of the underlying pattern of associations.  

These results are amongst the most structurally precise correlates of behavioral ability to 
date, and an important validation of the functional relevance of our in-vivo laminar 
measurements. Future development of these methods to a larger field of view should allow 
exploration of how these fine structural effects relate to correlations of face recognition ability on 
a much more distributed scale (Elbich & Scherf, 2017). Our results also represent perhaps the 
most striking difference to date between face and non-face recognition. Face recognition has 
often been deemed special relative to the recognition of other categories (Farah, Wilson, Drain, 
& Tanaka, 1998), but many behavioral hallmarks of face expertise, such as the inversion effect 
or holistic processing, are observed with non-face objects like cars in expert subjects (Bukach, 
Phillips, & Gauthier, 2010; Curby, Glazek, & Gauthier, 2009). Face and car recognition also 
show similar degrees of heritability (Shakeshaft & Plomin, 2015) and similar correlations with 
domain-general object recognition ability (Richler, Wilmer, & Gauthier, 2017). In fMRI studies, 
car recognition ability correlates positively with selective neural responses to images of cars in 
FFA (e.g.,(McGugin, Gatenby, et al., 2012), while face recognition ability also correlates 
positively with selective responses to faces in the same area (McGugin, Ryan, Tamber-Rosenau, 
& Gauthier, 2018). Despite these similarities, our results suggest that behaviors supported by 
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common circuitry in a brain region may have developed at different times, with variability in 
structure as a footprint of the different acquisition history.  

Our predictions were inspired by the idea that face recognition ability begins earlier than 
vehicle recognition and that a skill acquired during this period would be influenced by the 
pruning of connections from IT to limbic areas, though this is not the only possibility. We do not 
know whether the relevant period of influence on FFA’s structure occurs before about 5 years of 
age (by that age, children show many signs of the expertise adults display with faces (Jeffery et 
al., 2011)), when pruning may be more important, or in later childhood and adolescence, when 
myelination may dominate developmental changes (Natu et al., 2018). An alternative explanation 
is that greater myelination near FFA during childhood and adolescence is associated with better 
face recognition. Recent work has questioned the prevalent theory that pruning is the main force 
behind cortical thinning during development, with more evidence for myelination than for 
pruning after 5 years of age in the fusiform gyrus (Natu et al., 2018). Also unknown are the 
specific mechanisms of plasticity that would support structural effects of visual learning in 
adults, leading us to assume the null hypothesis of no laminar specificity of the positive 
correlation with CT observed for vehicles. Importantly, the mechanism driving the largest 
amount of average change in CT in an area may not be the same mechanism driving individual 
differences in CT. 

It is unknown whether negative correlations between CT and performance will prove to 
be specific to deep MR layers for other kinds of abilities and other brain regions. It is also 
unknown which of the two patterns (positive correlation with total regional CT or negative 
correlation with thickness of deep MR layers) is more representative of the majority of object 
categories. Here, as in prior work at 3T (McGugin et al., 2016), there was no significant 
correlation with animal recognition but the trend was more similar to effects found with faces 
than vehicles (a negative correlation for thickness of deep MR layers). Future studies should 
explore how laminar CT in FFA relates to a more extensive set of visual abilities, and how this 
relation is affected by sex. Indeed, as of now, the cross-over interaction between CT and visual 
recognition abilities has only been described in men, yet there are sex differences in the 
recognition of living and non-living objects (McGugin, Richler, et al., 2012), and sex also 
moderates CT effects (Plessen, Hugdahl, Bansal, Hao, & Peterson, 2014). 

By the time CT is measured in adults, effects in any given brain area will reflect a 
complex history of changes due to both experience- and non-experience-dependent 
developmental factors. This complicates interpreting relationships between behavior and local 
brain structure, including how structure underlies various neurological disorders. For example, 
both abnormal thinning of fusiform cortex over development (Raznahan et al., 2017) and lack of 
developmental improvements in face recognition (O’hearn, Schroer, Minshew, & Luna, 2010) 
have been reported in Autism Spectrum Disorders. The study of the laminar specificity of 
structural correlates of behavioral abilities may provide a useful window into these complex 
dynamics. 
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Table 1. Behavioral results across twelve independent tests. For one subject, performance on 
VET-Male was near chance and an outlier relative to other subjects and his own other scores, so 
this data point was dropped. The ICC4 (with 95% HPD interval) for the aggregate of Face tests 
was .89 (.77,.96), for the aggregate Vehicle tests, .83 (.66,.95) and for the aggregate Animal 
tests, .85 (.70,.96). 
 

  Mean (std dev) Cronbach's Alpha 

Fa
ce

s 

CFMT+ 0.65 (0.13) 0.88 
VET-Male (Acc) 0.83 (0.17) 0.78 

VET-Female (Acc) 0.83 (0.12) 0.86 
VFMT (Acc) 0.6 (0.07) 0.86 

V
eh

ic
le

s 

VET-Car (Acc) 0.73 (0.18) 0.93 

VET-Plane (Acc) 0.76 (0.12) 0.93 
Matching-Car (d') 1.79 (1.00) 0.75 

Matching-Plane (d') 1.57 (0.77) 0.86 

A
ni

m
al

s 

VET-Bird (Acc) 0.68 (0.17) 0.80 
VET-Butterfly (Acc) 0.56 (0.17) 0.83 
Matching-Bird (d') 1.46 (0.39) 0.92 

Matching-Butterfly (d') 1.65 (0.52) 0.82 
 
 
 
Table 2. Pearson’s correlations between behavioral performance and cortical thickness and 
laminar depth measurements. Zero-order Pearson correlation coefficients are shown for Face 
and Vehicle categories correlated with total regional thickness and cortical depths 
operationalized by the 4th order polynomial and its 2nd order derivative. Partial-order Pearson 
correlation coefficients are given for each behavioral category regressing out the other two 
(including Animals), correlated with total regional and laminar cortical depths. Significant 
correlations bolded. 
 

  

Total 
Regional 

Thickness 

Superficial 
Cortical 

Subdivision 

Middle 
Cortical 

Subdivision 

Deep 
Cortical 

Subdivision 
Zero-Order 
Correlations 

Faces -0.83 -0.38 -0.28 -0.76 
Vehicles 0.70 0.44 0.48 0.45 

Partial 
Correlations 

Faces -0.90 -0.28 -0.15 -0.73 
Vehicles 0.83 0.37 0.43 0.33 

 
 
Table 3: Fit Indices for Regression Models Predicting Cortical Thickness. -2LL =  -2 * log  
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likelihood  of the model. This index is used in the computation of likelihood ratio tests comparing 
nested models and information indices. AIC = Akaike Information Criterion. AICc = AIC with small-
sample correction. BIC = Bayesian Information Criterion. As lower values of information indices 
indicate better fit, all favor M2 (in bold). Bayes Factors compare M2 to each of the other models. All 
BFs indicate greater support for M2 than all other models.  
 
 

 
Table 4: Unstandardized and Standardized Regression Coefficients from Model 2. Model 2 
is the best-fitting regression model that predicts that the Face Recognition is selectively 
associated with CT in the deep layer but that Vehicle Recognition has the same association with 
CT in each layer. Unstandardized regression coefficients are on top and standardized regression 
coefficients are below in parentheses. *= p < .001 
 

 
 
 
 
 
 
 
 
 

 
 

  

Model Description -2LL AIC AICc BIC 
M2/M# 

Bayes Factor 
M0 Layer Only 43.97 61.97 68.18 76.95 161.04 

M1 
M0  +  
Main effects for FR and VR 13.51 35.51 45.29 53.81 38.85 

M2 M1 +LDvsSM 7.56 31.56 43.56 51.53 ------- 
M3 M1  + Layer x FR Interaction 7.54 33.56 48.12 55.18 3.07 
M4 M1  + Layer x VR Interaction 12.52 38.52 53.09 60.15 139.52 

M5 
M1 +   
Layer x FR +Layer x VR Interactions 7.34 37.34 58.21 62.29 19.90 

Layer 
Face 

Recognition 
Vehicle 

Recognition 

Superficial 
-.07 

(-.10) 
.18* 
(.27) 

Middle 
-.07 

(-.10) 
.18* 
(.27) 

Deep 
-.62* 
(-.57) 

.18* 
(.27) 
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Figure 1. Composite Models tested.  Model 1 specified that correlations and regression 
coefficients between face recognition and cortical thickness are negative in sign and equal across 
MR cortical layers and that correlations and regression coefficients between vehicle recognition 
and cortical thickness are positive in sign and equal across layers. Model 2 specified a layer-
specific pattern for the associations between face recognition and cortical thickness across layers, 
with the deep MR layer having a stronger, more negative pattern of association than the 
superficial and middle MR layers. Like Model 1, Model 2 specified an invariant of association 
between vehicle recognition and CT across layers. As described in the text, we also tested three 
additional substantive models positing different patterns of association.  
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Figure 2. Trace acquisition, intensity sampling and layer identification. (A) rFFA2 was 
defined functionally with a Face > Object contrast and at a fixed size of 108 mm3 in each subject, 
then co-registered onto the ultra-high resolution slices. Color bar and values represent the face 
selectivity measured from the 3mm scan. (B) The edges of the rFFA2 were traced (magenta) 
over the underlying cortical mantle. Boundaries between grey matter (GM) and cerebrospinal 
fluid (CSF) (superficial layer boundary), and between GM and white matter (WM) (deep layer 
boundary), were manually drawn (green). (C) Traces were acquired as the series of lines 
originating at each superficial boundary voxel and terminating in each deep boundary voxel, and 
vice versa. Gray matter intensity was sampled across the length of the trace. (D) The line plot 
visualizes all traces shown in varying colors contributing to one slice of one subject’s rFFA2. A 
4th-order polynomial (bold black curve) was fit to an average trace, with points of inflection 
defining the depths at which image intensity changed. 
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Figure 3. The relation between grey matter thickness of rFFA2, or its laminar subdivisions, 
and behavioral performance. Behavioral performance on the x-axes and cortical thickness and 
depth measurements on the y-axes show residualized values (see text for actual values in mm). 
The scatterplots on the left (with face icons) show partial correlations with Face recognition 
controlling for performance with Vehicles, while scatterplots on the right (with car icons) show 
partial correlations with Vehicles controlling for Face recognition.  (A) The brain is tilted as a 
result of slices being aligned perpendicular to the rFFA2. Shown is one slice for one subject 
showing the average of six susceptibility-weighted scan acquisitions. The dashed box is centered 
on the functionally-defined rFFA2. Below the whole brain slice are scatterplots depicting the 
relation between total regional CT of rFFA2 and behavioral performance with Faces (left) and 
Vehicles (right). Error bars represent the 95% confidence intervals. (B) The central inset shows a 
magnified view from the box in (A), centered on rFFA2 for one slice in one subject, with the 
three laminar subdivisions perceivable to the naked eye. Scatterplots represent partial 
correlations between the thickness of Deep, Middle or Superficial MR layers as a function of 
face and vehicle recognition, controlling for performance with the other category. Error bars 
show the 95% confidence intervals. 
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Figure 4. Plots of the 4th order polynomial fit to the average rFFA2 intensity curve of the 
center-most slice for each subject. Subjects are rank-ordered from highest (S1) to lowest based 
on face recognition performance, regressing out performance with vehicles. Inflection points 
marking the transitions from deep MR layers (red shading) to middle MR layers (no shading) to 
superficial MR layers (grey shading) are marked with red dots. Axis labels: white matter (WM), 
cerebrospinal fluid (CSF). For every other subject, the centermost slice of rFFA2 is shown to the 
left. The spread of face-selective activation along the fusiform gyrus is outlined in grey. Labels: 
Occipital temporal sulcus (OTS), Collateral Sulcus (CoS), Middle Fusiform Sulcus (MFS). The 
rFFA2 most often fell on the lateral aspect of the fusiform gyrus, between MFS and OTS, 
corresponding to cytoarchitectonic FG4. 
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