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Abstract 

People can relatively easily report summary properties for ensembles of objects, suggesting that this 

information can enrich visual experience and increase the efficiency of perceptual processing. Here, we ask 

whether the ability to judge diversity within object arrays improves with experience. We surmised that 

ensemble judgments would be more accurate for commonly experienced objects, and perhaps even more for 

objects of expertise like faces. We also expected improvements in ensemble processing with practice with a 

novel category, and perhaps even more with repeated experience with specific exemplars. We compared the 

effect of experience on diversity judgments for arrays of objects, with participants being tested with either a 

small number of repeated exemplars or with a large number of exemplars from the same object category. To 

explore the role of more prolonged experience, we tested participants with completely novel objects 

(random-blobs), with objects familiar at the category level (cars), and with objects with which observers are 

experts at subordinate-level recognition (faces). For objects that are novel, participants showed evidence of 

improved ability to distribute attention. In contrast, for object categories with long-term experience, i.e., 

faces and cars, performance improved during the experiment but not necessarily due to improved ensemble 

processing. Practice with specific exemplars did not result in better diversity judgments for all object 

categories. Considered together, these results suggest that ensemble processing improves with experience. 

However, the role of experience is rapid, does not rely on exemplar-level knowledge and may not benefit 

from subordinate-level expertise. 

Keywords: Ensemble perception, Object recognition, Diversity judgment, Experience, 

Expertise 
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Introduction 
We often encounter visual scenes containing multiple objects of the same category, such as 
faces in a classroom or a cluster of apples in a produce section. Some decisions require 
impressions of overall properties for such ensembles. For instance, a speaker may try to 
discern whether or not her audience is generally bored based on their facial expressions 
and a wheat farmer has to decide whether it is time to harvest his field based on the size 
and color of the seed heads. What determines someone’s ability to make these kinds of 
judgments about a congregation, i.e., ensemble, of objects? Based on research in object 
recognition (Gauthier, 2018), we imagine that both domain-general and domain-specific 
visual abilities would contribute to performance on ensemble judgments. Recent work 
reveals the existence of a domain-general object recognition ability, o, independent from 
general intelligence (Richler et al., 2018), accounting for a substantial amount of the 
variability in performance across tasks and object categories. This recognition ability also 
correlates with performance on ensemble judgments (Gauthier, Sunday, Tomarken, & Cho, 
in press). In addition, it is natural to wonder whether expertise with a specific category of 
objects could influence performance. Compared to individuals without specialized training, 
seasoned lecturers should excel at inferring boredom in an audience and experienced wheat 
farmers should be more likely to know whether their grains are sufficiently ripe for 
harvest. 

There is indeed evidence that performance in ensemble judgments for one category 
of objects (e.g., faces) is particularly well predicted by performance on individual 
recognition judgments with the same category (Haberman, Brady, & Alvarez, 2015), but 
other work suggests that most of this shared variability may not be specific to faces but 
rather generalizes across complex objects (Chang & Gauthier, 2020). Critically however, 
past research has not considered the importance of domain- and task-specific experience: 
the requisite experience for a specific kind of ensemble judgment might entail more than 
just extensive experience with exemplars of the relevant category. An immigration officer, 
despite having lots of exposure to individual faces, might perform no better than most 
other people in judging the average age or average facial expression within an array of 
faces because this kind of ensemble judgment is not part of the officer’s training. The same 
could be said for judging the variety among an array of cars, a judgment one is rarely asked 
to make and one that may not be facilitated by the ability to identify individual cars. 

To be sure, people can reliably judge ensemble properties of a variety of visual 
features, including simple ones such as average size (Chong & Treisman, 2003), average 
orientation (Dakin & Watt, 1997; Parkes, Lund, Angelucci, Solomon, & Morgan, 2001), 
average color (Maule, Witzel, & Franklin, 2014), size variance (Cha, Blake, & Gauthier, 
2020) as well as complex ones such as average facial identity (de Fockert & Wolfenstein, 
2009; Neumann, Schweinberger, & Burton, 2013), average emotional expression 
(Haberman & Whitney, 2007), average gender (Haberman & Whitney, 2009), and 
race/gender diversity (Phillips, Slepian, & Hughes, 2018). However, little work has 
examined the role of experience on ensemble processing. This is partly due to the way 
ensemble properties have been defined, especially when it comes to ensemble judgments 
with more complicated features. Earlier studies investigated ensemble judgments for 
simple features that can be scaled quantitatively (e.g., circle size, Gabor orientation), and 
the use of simple features allowed those studies to define ensemble properties with 
arithmetically specifiable properties, such as mean and variance (for review, see Whitney 
& Yamanashi Leib, 2018). It seems unlikely that experience with simple features would 
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vary greatly among individuals (perhaps excepting that unique population of researchers 
who explicitly deploy those features in their laboratory settings). Perhaps, then, studies of 
ensemble processing with simple features such as circle size or Gabor orientation may 
have unwittingly ignored the impact of experience in ensemble processing. 

When it comes to complex object features such as facial expression or the identity 
of cars, however, arithmetic formulation of properties like average and variance can be 
challenging. One popular workaround deployed in scaling complex features entails 
morphing, i.e., producing a series of transformed images comprising varying degrees of 
blends between two anchor-point images (e.g., a male and a female). Morphing can be 
implemented to create images varying along several dimensions (e.g., gender and age), and 
morphing among all pairs of three images has been used to create a circular 
emotion/identity morph space (e.g., Haberman & Whitney, 2010). Morphing, however, 
creates problems that could complicate the study of ensemble judgments (cf. 
ZeeAbrahamsen & Haberman, 2018) and the role of experience in particular. First, 
morphing two exemplars of objects other than faces can result in unrealistic images. A 
morph combining 25% of a neutral face image and 75% of a happy face image will look 
like a moderately happy face, but a morph combining 25% of a sedan image and 75% of an 
SUV image can produce a vehicle unlike anything you’ve ever seen. This limitation of 
morphing may have discouraged explorations of ensemble judgments with non-face 
complex objects (but see Chang & Gauthier, 2020; Gauthier et al., in press), because few 
categories are as homogeneous in their configuration as faces. And faces are also different 
from most categories because people have ample experience with both their individual 
recognition and the processing of their ensemble properties. Second, morphing requires 
labor-intensive manual landmark matching between pairs of anchor-point images. For this 
reason, most studies use morphs created from a few faces, and repeat them over the course 
of the experiment (Bai, Yamanashi Leib, Puri, Whitney, & Peng, 2015; Elias, Dyer, & 
Sweeny, 2017; Haberman et al., 2015; Haberman & Whitney, 2007, 2009; Im et al., 2017; 
Li et al., 2016; Wolfe, Kosovicheva, Yamanashi Leib, Wood, & Whitney, 2015; 
Yamanashi Leib et al., 2014). Repeatedly sampling stimuli from a morph continuum based 
on a few faces appears equivalent to sampling from a circular space of orientation, but in 
fact it allows only very minimal coverage of the actual multidimensional space of face 
identities or expressions, which is much larger. These two problems make it difficult to 
manipulate experience with object ensembles at both the category level (faces vs. novel 
objects) and the exemplar level (familiar faces vs. novel faces). Only a few studies have 
used non-facial object ensembles (Chang & Gauthier, 2020; Gauthier et al., in press; 
Sweeny, Haroz, & Whitney, 2013; Yamanashi Leib, Kosovicheva, & Whitney, 2016) and 
a handful of studies have used large number of face identities (de Fockert & Wolfenstein, 
2009; Neumann et al., 2013; Phillips et al., 2018; Yang, Yoon, Chong, & Oh, 2013). Note, 
however, those previous studies do not address whether learning impacts the ability to 
extract statistical properties within an ensemble of objects, and it is that question which 
motivated our experiment. 

The following paragraphs explain the line of reasoning that guided the design of 
this experiment. We begin by explaining the task used to assess people’s ability to 
distinguish arrays of objects differing in the extent of diversity among those object arrays. 
We then introduce the three object categories (between-subjects factor) we used in this 
diversity task, explaining our rationale for their selection. And we introduce the second 
between-subjects factor that could influence participants’ exemplar-specific experience, 
i.e., exemplar repetition during the experiment. Finally, we discuss one within-subjects 
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factor, i.e., spatial arrangement of items within object arrays, designed to assess whether 
improvement in diversity judgments was related to improved ability to distribute attention 
(i.e., ensemble processing; see Chong & Treisman, 2005). 

Diversity Judgment Task. 

We devised an objective, 2-interval forced choice (2-IFC) task that required participants to 
judge which one of two successively presented object arrays portrayed more diversity 
among the exemplars of those objects (Cha et al., 2020). For instance, imagine an array 
that includes six images of cars, each being different from one another. Without making 
inferences about the similarity of individual pairs of cars, such a six-item array would 
constitute a maximally diverse array. Now imagine an array of six cars in which three of 
the six are duplicates of one another, with the remaining three being unique. Such an array 
is less diverse than the array with six unique exemplars. From trial to trial, the participants’ 
task is to view two successively presented arrays of objects and then pick which one of the 
two arrays contains more discriminably different object exemplars (i.e., which array 
exhibits greater diversity). 

Why does this task involve ensemble perception? According to Whitney and 
Yamanashi Leib (2018), ensemble processing entails deriving a specified statistical 
property that characterizes a distribution of values of a given stimulus attribute within a 
stimulus array. Many ensemble perception studies have focused on central tendency as the 
property of interest, but as Whitney and Yamanashi Leib underscore, variance among 
items in a set can also reflect an important, behaviorally relevant property characterizing 
ensembles of objects. Variability (e.g., variance, range, diversity), like central tendency, is 
not specifiable based on the value of a given, single item but rather is a property that 
emerges from sampling over multiple items within a set. In that sense, the diversity task 
used in this study provides a valid, meaningful index of ensemble perception. 

Object Categories. 

In a between-subjects design, we tested diversity discrimination performance using three 
object categories that plausibly differ in terms of the extent of prior visual experience 
people have with those objects: faces, cars, and random blobs. We assume that participants 
would have considerable everyday experience making decisions about individual and 
groups of faces, whereas they would have ample experience attending to individual cars 
but less experience judging properties of car ensembles. We also assumed that participants 
would have virtually no experience viewing random blobs individually or in arrays. These 
putative category differences, to the extent that they are valid, allow us to ascertain how 
diversity discrimination varies with the familiarity with a given category (faces and cars 
relative to random blobs), and with greater expertise at the subordinate level (faces relative 
to cars)1. 

                                                
1 We note that face recognition likely differs from that of cars in at least two ways that are 
relevant: greater expertise at the subordinate level, and greater experience with ensemble 
judgments. 
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Exemplar Repetition. 

The second between-subjects factor was the variety of exemplars experienced during a 
sequence of trials. One group of participants performed hundreds of trials making diversity 
judgments about ensembles created from the same small set of images (6 exemplars; high-
repetition group), whereas another group performed the same number of trials with 
ensembles of exemplars drawn from an image set sufficiently large to ensure that no two 
arrays ever had the same combination of 6 images (low-repetition group). Through the 
experiment, category-specific experience was comparable between the high- and low-
repetition groups, but exemplar-specific experience grew much higher in the high-
repetition group. 

Spatial Arrangement of Items. 

We sought to assess improvement in diversity judgments as participants’ exemplar-specific 
experience grew and, if so, whether the improvement was related to improved ensemble 
processing. To assess improvement, we compared accuracy of judging diversity during the 
first and second halves of an extended testing session. To test whether the improvement 
was related to improved ensemble processing, we manipulated the spatial arrangement of 
arrays in which some of the items were duplicates of the same exemplar (i.e., less diverse 
array). In clustered-duplicate trials, duplicates of the same exemplar were placed in 
spatially adjacent locations whereas in scattered-duplicate trials the duplicates were 
distributed in a more haphazard fashion within the array. Based on the Gestalt principle of 
proximity, we reasoned that the clustered duplicate items in an array were more likely to be 
grouped and the array could be easily identified as a less diverse array. Thus clustered-
duplicate trials would be easier than scattered-duplicate trials, but would not benefit much 
with improvement in the ability to distribute attention to all array items evenly. If 
participants get better at distributing attention to array items, they would show more 
improvement in the scattered- than in the clustered-duplicate trials. 
 

Methods 

Participants 

We recruited 126 participants via the Vanderbilt University SONA Systems who were 
tested in the laboratory (VU participants), and 340 paid participants via the Amazon 
Mechanical Turk who were tested online (MTurk participants). VU participants received 
either a course credit or a payment. We only recruited MTurk participants with US IP 
addresses who had been approved for more than 100 tasks and for more than 95% of the 
tasks they completed on MTurk. Six out of 126 VU participants (4.76%) and 92 out of 340 
MTurk participants (27.06%) performed no better than chance in the second half of the 
experiment (defined by 95% departure from 50% chance in a binomial distribution), and 
they were excluded from further analyses.2 We chose this criterion because it allowed for 
                                                
2 Visual inspection of the recorded click responses (described in the Procedure section 
below) suggested that a substantial number of the excluded MTurk participants may not 
have sustained sufficient attention during the task. For instance, throughout the experiment 
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participants who needed some practice to improve at the task, but it also required 
participants to keep trying for the entire experiment. Table 1 shows the number of 
participants included in analyses and their respective demographic information depending 
on the experimental group to which they were assigned and the pool from which they were 
recruited (see Design). In total, we analyzed data from 125 participants who completed the 
face diversity judgment task, 127 participants who performed the car diversity task, and 
116 participants who performed the diversity task using random blobs. Informed consent 
was obtained prior to the experiment and all procedures were approved by the Vanderbilt 
University Human Research Protection Program. 
 
Table 1. Number of participants included in analyses and their respective demographic information. 
Object Repetition VU participants MTurk participants 
Faces High 30 (24 females and 6 males; 

age: M = 19.67, SD = 1.51) 
33 (12 females and 21 males; 
age: M = 39.57, SD = 9.90) 

Low 30 (22 females and 8 males; 
age: M = 20.13, SD = 1.64) 

32 (17 females and 15 males; 
age: M = 33.67, SD = 8.72) 

Cars High 30 (19 females and 11 males; 
age: M = 20.82, SD = 2.23) 

33 (20 females and 13 males; 
age: M = 35.31, SD = 10.92) 

Low 30 (23 females and 7 males; 
age: M = 24.29, SD = 8.04) 

34 (17 females and 17 males; 
age: M = 32.88, SD = 8.88) 

Random blobs High - 57 (27 females and 30 males; 
age: M = 36.23, SD = 9.48) 

Low - 59 (34 females and 25 males; 
age: M = 41.48, SD = 13.42) 

 
Going into this project, we had little basis for deriving an expected effect size for 

the interactions among combinations of object category (face/car/random blob), exemplar 
repetition (high/low repetition), block (first/second half), and duplicate-item arrangement 
(clustered/scattered). Therefore, we used an adaptive Bayesian procedure, starting with 30 
participants per experimental group and assessing with Bayesian analyses whether we had 
enough data to claim support for or against the interactions of interest (BFinclusion < .33 or 
BFinclusion > 3; Jeffreys, 1961). We first recruited 30 participants each for the 4 
experimental groups (face/car × high/low repetition) via Vanderbilt University SONA 
Systems, and then recruited additional participants via MTurk to hasten data collection. As 
we achieved comparable reliability online as in the lab for faces and car, all participants in 
the random blob diversity judgment task were recruited via MTurk. 

Stimuli 

Face images with neutral expression were sourced from the Chicago Face Database (Ma, 
Correll, & Wittenbrink, 2015), and modified to minimize differences in non-facial features 
(hair, beard) and in low-level image properties (skin tone, contrast). For each image, facial 
landmark points were detected (Zhu & Ramanan, 2012), a facial contour was determined 
using a smoothed polygon comprising the landmark points, and an image area outside the 
facial contour was removed. We manually discarded images where this procedure failed to 
remove non-facial features, leaving 474 face images of different identities. We then 

                                                                                                                                              

some of the excluded MTurk participants clicked on random locations rather than the 
locations of response buttons (see Procedures). 
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converted color images to grayscale and matched the median luminance of all images. 
Since all non-facial features such as hair and beard were removed, median luminance 
corresponds to respective skin tone of faces shown in the images. Finally, we matched 
luminance histograms of all images using SHINE toolbox (Willenbockel et al., 2010). Six 
images were randomly selected and used in practice trials, and the remaining 468 images 
were used in experimental trials. 

Car images were downloaded from the Motor Trend© magazine website, with the 
stipulation that all images portray a front driver-side view of a car seen against a 
transparent background and that the portrayed models were manufactured within the last 5 
years. We converted color images to grayscale and composed two sets of car images based 
on the grayscale images’ luminance profiles. One set comprised 147 images of white cars 
and the other set comprised 149 images of black cars. Within each set, car images were 
divided into 6 subsets of ~25 images, grouping cars of the same brand within a subset. On 
each trial, one image was selected from each set, preventing the selection of more than one 
image from the same brand. This manipulation helped to keep car images in an array 
reasonably discriminable from one another. We used 6 images of gray cars in practice 
trials. 

Random blob images were generated with MATLAB (MathWorks, Natick, MA) 
using the following procedure. First, we made 900 frequency-filtered noise images whose 
pass band was centered at 3.6 cycle/image. These noise images were saturated to have the 
Michelson contrast of 40%, and windowed using a circular aperture with blurred edges. 
Then, we created 6 subsets using k-means clustering on a pixel-by-pixel basis. This 
clustering procedure assigned 900 images into 6 subsets while maximizing pixel-by-pixel 
similarity among images within the same subset and minimizing the similarity among 
images across different subsets. For each subset, we selected 25 representative images, i.e., 
25 images that were most different from images in the other subsets. The remaining 750 
images were discarded since they bear similarity with images in more than one subset, 
compared to any of the selected images. This procedure ensured that images in different 
subsets were easily discriminable from one another. The subsets were used in the same 
way as the car image subsets. Technical details on each procedure, along with runnable 
MATLAB codes, are available in the OSF repository (https://osf.io/96gf7/). 

Procedure 

In the diversity judgment task, participants viewed two successively presented arrays of 
objects (faces/cars/blobs), and then judged in which one of the two arrays of objects was 
more diverse (Fig. 1A). The two arrays contained 6 items portraying objects of the same 
category, each presented for 700 ms with a 600 ms blank interval separating the two 
presentations. This exposure duration was chosen based on pilot testing aimed at finding a 
duration sufficient to promote reasonably high but non-asymptotic percent-correct 
performance on this difficult task; the blank interval duration was selected to preclude 
masking interactions between the two successive exposures. Following each trial 
participants received visual feedback in the form of a brief message (“correct” in green text 
or “incorrect” in red text). For both intervals of each trial, 6 items were arrayed around a 
virtual circle centered in a fixation mark, with the exact positions of the items jittered to 
prevent participants from selectively attending to given locations. On each trial, one of the 
two arrays had 6 different exemplars (more diverse array; Fig. 1B, left) and the other array 
had 6 items among which 3 or 4 items were identical (less diverse array; Fig. 1B, middle 
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and right). To make less diverse arrays, we selected one item from the more diverse array 
and replaced 2 or 3 items with the selected item (duplicate item), and then item locations in 
the less diverse array were shuffled while duplicate-item locations were constrained by the 
spatial arrangement condition. Thus in a single trial, exemplars in the less diverse array 
were always a subset of six exemplars in the more diverse array, and the locations of the 
same exemplars varied between the two arrays. Participants were not informed about either 
the number of different exemplars or the number of duplicate items in each array, but they 
were given examples of more diverse and less diverse arrays during practice trials, to 
ensure that they understand what was meant by the more diverse array. 
 

 
Fig. 1. Examples of displays and stimuli. Random blobs are shown in examples; other stimulus conditions 
were the same in terms of configuration except that six faces or six cars were shown rather than six random 
blobs. (A) Participants viewed two arrays of six items, and then responded which array had more diverse 
items. (B) On a given trial, one array was the more diverse array, and the other array was the less diverse 
array. The less diverse array could have two different arrangements depending on whether or not duplicate 
items were clustered together. 
 

With this 2-IFC task, participants must decide in which of two successive 
presentations a more diverse set of exemplars was portrayed. To make that judgment 
requires mental comparison of the impression acquired from the first and the second 
presentations. The task, in other words, involves short-term memory. We preferred this 
task rather than a 2-alternative spatial forced choice version wherein two pairs of six-item 
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arrays are presented simultaneously on either side of a central fixation point. That 
procedure would have introduced other challenges including variable spatial resolution at 
different retinal eccentricities and the necessity for participants to treat simultaneously 
presented items from the same object category as members of two separate ensembles. The 
2-IFC procedure and display layout we designed avoid those problems. Moreover, learning 
to maintain information from multiple items in working memory may be part of learning to 
perform ensemble judgments, as suggested by Dubé and Sekuler (2015). 

VU participants performed the task individually on a Mac mini (Apple, Cupertino, 
CA) computer housed inside a quiet room. Stimuli were presented using MATLAB with 
Psychophysics Toolbox Version 3 extension (Brainard, 1997; Pelli, 1997), and participants 
responded using a computer keyboard. VU participants completed 4 blocks of 96 trials 
each, with mandatory short breaks between blocks. Prior to the experiment, participants 
were given 2 practice trials with display-by-display instructions followed by 4 more 
practice trials. 

MTurk participants performed the task using a web browser on the computer of 
their choice, and they responded using a computer mouse by clicking on one of the 
response buttons (Fig. 1A). During the task, locations of clicks anywhere in the web 
browser were recorded. MTurk participants completed 4 blocks of 64 trials each, with 
mandatory short breaks between blocks. We decided to reduce the number of trials to keep 
the duration of the online experiment under 30 minutes. Since reducing the number of 
trials might influence statistical power by reducing the correlation between the different 
conditions of a repeated factor (Faul, Erdfelder, Lang, & Buchner, 2007), we based our 
decision on the correlations between percent-correct performance of scattered- and 
clustered-duplicate trials performed by VU participants (Fig. 2). At the start of the 
experiment, participants were given 2 practice trials with display-by-display instructions 
followed by 4 more practice trials. 
 

 
Fig. 2. Correlations between percent-correct performance of scattered- and clustered-duplicate trials. For VU 
participants who completed 384 trials, we estimated correlations twice, first with all 384 trials, and then with 
the first 256 trials. MTurk participants completed 256 trials, and all 256 trials were used to estimate 
correlations. 
 

Design 

In each diversity judgment task (face/car/random blob), participants in the high-repetition 
group viewed object images sampled from a pool of 6 images, and participants in the low-
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repetition group viewed object images sampled from a pool of 351 face images (VU 
participants), 468 face images (MTurk participants), 147 white car images, 149 black car 
images, or 150 blob images. To analyze all the data together, we used the first 256 trials 
from VU participants and all 256 trials from MTurk participants. We analyzed the results 
after splitting 256 trials into two blocks of 128 trials each (first and second halves). 

There were two types of duplicate-item arrangements. In the scattered-duplicate 
trials, one or two items were placed in-between the duplicate items (Fig. 1B, middle), and 
in the clustered-duplicate trials, all duplicate items were spatially clustered together (Fig. 
1B, right). If performance improved in the second half and the improvement was larger for 
the scattered- than for the clustered-duplicate trials, we could interpret that as evidence of 
improved ability to distribute attention to array items (i.e., improved ensemble processing). 
On the other hand, if the improvement was similar for the scattered- and clustered-
duplicate trials, the improvement would not be necessarily related to improved ensemble 
processing. 

Thus, for the main analysis, we had two between-subjects factors, object category 
(face/car/random blob) and exemplar repetition (high/low), and two within-subjects 
factors, block (first/second half) and duplicate-item arrangement (clustered/scattered). 
Between-subjects factors were used to manipulate participants’ prior experiences and 
experience over the time course of the experiment, and within-subjects factors were used to 
assess improvement in diversity judgments and whether the improvement could be related 
to improved ensemble processing. 

In addition to the design described above, we manipulated one more aspect of the 
face diversity judgment task, for VU participants. Participants viewed face images sampled 
from a pool of either 6 images (high-repetition group) or 351 images (low-repetition 
group) in the first 3 blocks (totaling 288 trials), and then in the fourth block, participants in 
both high- and low-repetition groups viewed face images sampled from a new pool of 117 
images. Accordingly, participants in the high-repetition group learned the diversity 
judgment task with only 6 exemplars for 3 blocks, and then performed the task with 
completely different exemplars in the fourth block. We compared results of the high- and 
the low-repetition groups between the third and fourth blocks (i.e., before/after switching 
the stimulus pool) to determine whether repetition influenced performance. It should be 
noted that this manipulation did not influence our main analysis, since the first 256 trials 
were completed before switching the stimulus pool. 

Analysis 

We used JASP statistics software (JASP Team, 2020) to conduct Bayesian analyses. To 
address whether performance improved over the time course of the experiment and 
whether the amount of improvement differed between the clustered- and scattered-
duplicate conditions, we split the 256 trials into two equal blocks of trials, and focused on 
the interaction terms that include block (first/second half) and duplicate-item arrangement 
(clustered/scattered). To assess the strength of support for or against statistical terms of 
interest, we report BFinclusion calculated across matched models, and we evaluated whether 
the statistical terms of interest were included in the best model from Bayesian repeated-
measures ANOVA. In addition, we report the top-3 models and their BF10 for comparison 
purpose. 
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Results and Discussion 

Correlations among Repeated Measures 

We assessed the quality of the online and the laboratory-based data by computing 
correlations between percent-correct performance of the clustered-duplicate and the 
scattered-duplicate conditions, i.e., the within-subjects factor in our experiment. Those 
percent-correct values were derived from 256 trials and from 384 trials per participant for 
the lab-tested participants and from 256 trials for the MTurk participants. Our decision to 
reduce the number of trials in the MTurk implementation was based on the correlations 
measured in the in-lab part of the study which was completed before we started the MTurk 
data collection. This decision was guided by knowledge of the reliance of statistical power 
of Bayesian inferences with repeated-measures ANOVA design (Nathoo & Masson, 2016). 
The correlations calculated with the first 256 trials from the VU participants (.70 for faces, 
.82 for cars) were comparable to the correlations calculated with the whole 384 trials (.80 
for faces, .88 for cars), and the data from MTurk participants achieved similar levels of 
correlations (.76 for faces, .79 for cars, .86 for blobs; Fig. 2). 

Results Overview 

The graphs in Figure 3 summarize percent-correct performance for the conditions of 
interest in this experiment, and several conspicuous patterns of results emerge. First, as 
seen in all four panels, performance improved significantly (BF10 = 4.01 × 1030) in the 
second half (M = 80%, SD = 9%) relative to performance in the first half (M = 75%, SD = 
9%) for all object categories and in both high- and low-repetition groups. Experience 
mattered, which does not surprise us given the similarity of items within each object 
category and the challenging nature of the diversity task. Second, performance in the 
clustered-duplicate condition (M = 80%, SD = 10%) was significantly better (BF10 = 4.94 × 
1051) than was performance in the scattered-duplicate condition (M = 75%, SD = 8%). 
Again, not a surprising result because clustered duplicate arrays are likely to be more 
salient owing to the potency of proximity as a force in object grouping (e.g., Palmer, 2002) 
which is known to promote ensemble integration3. 
 

                                                
3 Grouping cues including color (Brady & Alvarez, 2011), similarity, proximity, and 
common region (Corbett, 2017), surface properties (Cha, Blake & Chong, 2018), and 
category membership (Elias & Sweeny, 2020) all serve to improve the precision of 
ensemble formation. 
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Fig. 3. Participants’ performance from the first 256 trials of VU participants and all 256 trials of MTurk 
participants. (A) Participants’ accuracies are plotted against the block. Separate plots show accuracies for 
scattered- and clustered-duplicate conditions, and separate lines in each plot show accuracies for different 
object categories (between-subjects factor). (B) Participants’ accuracies are plotted against the block. 
Separate plots show accuracies for scattered- and clustered-duplicate conditions, and separate lines in each 
plot show accuracies for high- and low-repetition groups (between-subjects factor). Note that the whole set of 
data is used to plot (A) and the same set of data is used to plot (B). In all plots, error bars indicate 95% 
confidence intervals. 

 
Turning next to the results for different object categories, we found that 

participants’ overall performance (i.e., percent-correct for all conditions in all blocks) was 
better with random blobs (M = 81%, SD = 9%) than with cars (M = 77%, SD = 9%; BF10 = 
13.18), and better with cars than with faces (M = 74, SD = 7%; BF10 = 4.32). However, we 
refrain from interpreting those differences because we made no attempt match the three 
categories in terms of overall difficulty or discriminability. Instead, we used pilot testing of 
the stimulus conditions for each condition separately to ensure that items within each 
separate category yielded performance that avoided ceiling or floor effects in both first and 
second halves. Thus, any comparisons across object categories must be contingent on 
interaction effects with other manipulated variables (i.e., interaction among Factor(s) of 
interest × Block × Duplicate-item arrangement). In terms of exemplar repetition, overall 
performance (i.e., percent-correct for all conditions in all blocks) achieved by participants 
who repeatedly viewed a small number of exemplars on every trial (M = 77%, SD = 9%) 
was indistinguishable (BF10 =.13) from the performance of participants who viewed 
numerous different exemplars throughout testing (M = 78%, SD = 8%). 

Improvements Depending on the Object Category and Exemplar Repetition 

We designed the conditions of this experiment to learn whether improvement in diversity 
judgments varied with the nature of the objects comprising arrays (i.e., cars vs. faces vs. 
random blobs). The answer to this question is evident in left panel of Figure 3A, where we 
see that the solid gray line (blobs) shows steeper slope than the other two lines (faces and 
cars) in the scattered-duplicate condition. At the same time slopes of all three lines in the 
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right panel are comparable to slopes of the solid and dashed black lines (faces and cars) in 
the left panel, suggesting that improvement in diversity judgments for blobs, not for faces 
and cars, could be better explained by improved ensemble processing. To assess this trend 
statistically, we submitted data from all three tasks to Bayesian repeated-measures 
ANOVA, with and two between-subjects factors, Object category (face/car/blob) and 
Exemplar repetition (high vs. low), and two within-subjects factors, Block (first vs. second 
half) and Duplicate-item arrangement (clustered vs. scattered). All top-3 models include 
Object category × Block × Duplicate-item arrangement interaction term (Table 2, shown in 
italic), and Bayes factors of the models including this interaction term were 72.59 times 
larger on average across matched models, implying that a larger improvement in the 
scattered- than in the clustered-duplicate condition was found with blobs, but not with 
faces and cars. This interaction was driven by different improvement depending on 
duplicate-item arrangements (i.e., interaction between Block and Duplicate-item 
arrangement) in the random blob diversity judgment task. Performance improvement was 
similar in the scattered- and clustered-duplicate conditions for the face diversity judgment 
task (BFinclusion = .14) and for the car diversity judgment task (BFinclusion = .15). For the 
random blob diversity judgment task, however, participants showed larger improvement in 
the scattered- than in the clustered-duplicate condition (BFinclusion = 963.87). In other 
words, this relatively unfamiliar stimulus set enjoyed larger benefit in the scattered-
duplicate condition only, suggesting that this benefit was related to the improved ability to 
distribute attention. For ensemble judgments of simple features, it has been proposed that 
pooling across early-stage representations of individual items could have the virtue of 
dampening the impact of uncorrelated noise within those representations and, thus, 
improving ensemble perception (Alvarez, 2011; Sweeny et al., 2013). Perhaps, novel 
objects have noisier representations than familiar objects, with more room for 
improvement in ensemble perception. 
 
Table 2. Top-3 models from Bayesian repeated-measures ANOVA (all participants). 
Model terms BF10 
Object category + Block + Duplicate-item arrangement + [Object category × 
Block] + [Object category × Duplicate-item arrangement] + [Block × Duplicate-
item arrangement] + [Object category × Block × Duplicate-item arrangement] 

3.10 × 10101 

Object category + Exemplar repetition + Block + Duplicate-item arrangement + 
[Object category × Block] + [Object category × Duplicate-item arrangement] + 
[Exemplar repetition × Block] + [Block × Duplicate-item arrangement] + 
[Object category × Block × Duplicate-item arrangement] 

1.37 × 10101 

Object category + Exemplar repetition + Block + Duplicate-item arrangement + 
[Object category × Block] + [Object category × Duplicate-item arrangement] + 
[Block × Duplicate-item arrangement] + [Object category × Block × Duplicate-
item arrangement] 

6.66 × 10100 

 
In contrast, exemplar repetition did not influence diversity discrimination, as 

illustrated by the black and gray lines almost overlapping in both scattered- and clustered-
duplicate plots in Figure 3B. Performance improvement was similar in the scattered- and 
clustered-duplicate conditions regardless of the exemplar repetition (BFinclusion for 
Exemplar repetition × Block × Duplicate-item arrangement = .10). In addition, we found 
evidence against a four-way interaction among Object category, Exemplar repetition, 
Block, and Duplicate-item arrangement (BFinclusion = .08). One might surmise that the 
effects of exemplar repetition would be more pronounced in the random blob diversity 
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judgments where we found evidence of improved ensemble processing. We repeated the 
same analyses with data from the random blob diversity judgment task only, and found that 
participants who learned the diversity judgment task with a limited number of blobs 
showed very similar patterns of results to participants who learned the task with a large 
number of blobs (BFinclusion for Exemplar repetition × Block × Duplicate-item arrangement 
= .19). 

Evidently, the ability to discern diversity among arrays of objects does not benefit 
from seeing the same sets of specific exemplars during testing. This finding may strike 
some readers as remarkable (e.g., “how can seeing the same faces over and over again have 
essentially no impact on perception?”). We surmise that this seemingly counterintuitive 
finding is attributable to the basis of the diversity judgment task. The majority of ensemble 
perception studies assess some aspect of central tendency, i.e., a property indexed by a 
particular stimulus quality (e.g., average size or most predominant color). Diversity, the 
ensemble property we have focused on, is a property based on the incidence of differences 
among items. It is not essential, we conjecture, for one to discern the particulars of array 
items to gain a global impression of the diversity of those items. This conjecture seems in 
line with the finding that people viewing two successive arrays of faces, some of which 
change in facial expression from the first to the second presentation, can derive a statistical 
sense of how those arrays differ in expression without being able to specify which 
particular faces in those arrays have changed (Haberman & Whitney, 2011). 

Effect of Switching the Stimulus Pool During Testing 

In addition, we asked whether learning the diversity judgment task with a very small 
number of repeated exemplars (6 faces) would impact participants’ diversity judgments 
upon being tested with an entirely new set of exemplars. Recall that 60 VU participants 
tested with faces experienced a switch in block 4, after the first 3 blocks, to a new, large 
pool of faces. First, we looked at the overall performance in blocks 3 and 4, and found the 
same patterns as in the main analysis: better performance (BF10 = 1553.25) in the 
clustered-duplicate condition (M = 79%, SD = 9%) than in the scattered-duplicate 
condition (M = 75%; SD = 8%) and no difference (BF10 = .27) between the high-repetition 
group (M = 77%; SD = 8%) and the low-repetition group (M = 77%; SD = 8%). We then 
submitted the data from these VU participants to Bayesian repeated-measures ANOVA, 
with one between-subjects factor, Exemplar repetition (high vs. low), and two within-
subjects factors, Block (block 3 vs. block 4) and Duplicate-item arrangement (clustered vs. 
scattered). Participants in the high-repetition group performed as well after switching the 
stimulus pool (i.e., in block 4 compared to block 3) as participants in the low-repetition 
group (BFinclusion for Exemplar repetition × Block = .21), they showed similar magnitudes 
of improvement for the clustered- and scattered-duplicate conditions regardless of the 
exemplar repetition (BFinclusion for Exemplar repetition × Block × Duplicate-item 
arrangement × = .23), and none of the top-3 models include any interaction term (Table 3). 
In other words, participants exposed to a very limited set of face images during the initial 
trials of testing nonetheless maintained their level of performance when switched to a new, 
much larger set of face images, and that level of performance was equivalent to that 
achieved by the group of participants exposed to that large set of face images from the 
outset. This finding, too, may seem surprising, but it is consistent with our tentative 
conclusion concerning the absence of an exemplar repetition effect: people are basing their 
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diversity judgments on the perceived variety of items without recourse to the identities of 
the individual items. 
 
Table 3. Top-3 models from Bayesian repeated-measures ANOVA (VU participants tested with faces). 
Model terms BF10 
Duplicate-item arrangement 2728.15 
Exemplar repetition + Duplicate-item arrangement 981.15 
Block + Duplicate-item arrangement 390.08 
 

Because we were surprised that switching from a small to a large set had so little 
effect, we collected some data from 18 participants4 so that we could ask them about their 
impressions after the experiment. They performed one block of 96 trials using 6 faces, 
followed by 96 trials where we switched without warning to a different set of 117 faces. 
Participants were asked at the end to estimate how many faces were used before and after 
the break. One outlier estimated 100 followed by 92 faces. The estimates of the other 
participants were higher for the second block than the first (block 1: M = 5.24, SD = 2.05; 
block 2: M = 13.18, SD = 7.42; BF10 = 397.20). These estimates suggest that participants 
may be able to notice a difference between few vs. many, at least with faces, but that they 
greatly underestimated the number of different faces when a large number of faces were 
used – that is, as we increased the number of faces almost 20-fold, participants estimated 
the increase to be less than 3-fold. In other words, participants appear to get a gist for the 
diversity of faces in this task despite poor memory of, and no benefit from, repetition of 
specific faces. 

Comparison between VU and MTurk Participants 

We compared performance achieved by VU and MTurk participants (only relevant for 
faces and cars, as performance with random blobs was only tested on MTurk participants). 
For the face diversity judgment task, VU and MTurk participants showed very similar 
overall performance levels (VU participants: M = 75%, SD = 7%; MTurk participants: M = 
74%, SD = 7%; BF10 = .29). We submitted the face diversity judgment task data to 
Bayesian repeated-measures ANOVA with two between-subjects factors, Pool (VU vs. 
MTurk) and Exemplar repetition (high vs. low), and two within-subjects factors, Block 
(first vs. second half) and Duplicate-item arrangement (clustered vs. scattered), and found 
evidence against any interaction with Pool (all BFinclusion < .33). For the car diversity 
judgment task, VU participants (M = 80%, SD = 8%) performed better than MTurk 
participants (M = 75%, SD = 8%; BF10 = 55.02), and the pattern of results is more 
complicated (Fig. 4A). We submitted the car diversity judgment data to Bayesian repeated-
measures ANOVA and found that Bayes factors favor the inclusion of two interaction 
terms, Pool × Exemplar repetition × Block (BFinclusion = 2.58, see Fig. 4B) and Pool × 
                                                
4 We ran this experiment with the same apparatus used for the face diversity judgment task 
ran in the lab, with three exceptions. All participants were assigned to the high-repetition 
group. The experimental program ran block 1, and then after the break, jumped to block 4 
(i.e., block after the switch). After that, participants were given two text input boxes and 
required to type in the total number of different faces they saw before and after the break. 
Informed consent was obtained prior to the experiment and all procedures were approved 
by the Vanderbilt University Human Research Protection Program. 
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Exemplar repetition × Block × Duplicate-item arrangement (BFinclusion = 2.00). Since 
support for both interaction terms was anecdotal (BFinclusion < 3), we will not dwell on these 
interactions. However, it is interesting to consider a potential reason why testing with cars 
might be more sensitive to the source of participants. 
 

 
Fig. 4. Car diversity judgment task performances for VU and MTurk participants. (A) Separate plots show 
performance for participants recruited from different pools, and separate lines in each plot show performance 
for different experimental conditions. (B) VU and MTurk participants’ performance are plotted together, 
without considering different arrangement conditions. In all plots, error bars indicate 95% confidence 
intervals. 
 

It is well established that expertise impacts object recognition of single items. For 
example, relative to car novices, car experts recognize specific cars more rapidly than do 
novices (Curby & Gauthier, 2009), they process cars holistically (Bukach, Phillips, & 
Gauthier, 2010) and they exhibit higher visual short-term memory capacity for arrays of 
cars (Curby, Glazek, & Gauthier, 2009). While we made no effort to manipulate or to 
measure car expertise in our participants, there is some evidence that the younger pool of 
participants (age of the VU participants: M = 20.80, SD = 3.44; MTurk participants: M = 
38.72, SD = 11.26; see Table 1), were better overall in the car task. Our comparison of 
performance with faces for similar pools of participants from VU and MTurk point to no 
difference between groups, suggesting that the testing platform (lab vs. online) and the 
response mode (pressing a key vs. clicking) cannot account for the differences found with 
cars. Prior work using a different task with cars suggested that an older sample of 
participants tested online was likewise disadvantaged relative to younger participants, 
presumably because familiarity with different models of cars may be highly dependent on 
age (Sunday, Lee, & Gauthier, 2018). The car images that we used in the present 
experiment were all drawn from vehicles manufactured during the last 5 years. Perhaps the 
older MTurk participants would have performed better with car models on the road when 
they started driving or bought their first car. In any case, regardless of the reason for the 
difference in performance, it had limited (inconclusive) effects on the patterns of learning. 
There was a trend for older participants to improve more over the course of the experiment 
in the high-repetition than in the low-repetition group, whereas repetition had no influence 
on learning for younger participants. While this was neither predicted nor strongly 
supported by inferential statistics, it suggests that an explicit manipulation of expertise in 
the future could be informative. 
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Implications and Limitations 

One implication of the present study is that our version of the diversity judgment task 
could be a valuable tool for studying object ensembles. Participants were able to perform 
this task with categories that vary greatly in terms of prior experience, and they improved 
over the course of the experiment with all categories. Importantly, the diversity judgment 
task allows the use of objects that vary over multiple dimensions, instead of being 
artificially constrained by morphing. The diversity task, in other words, allows a more 
realistic object space within which to work, one that better taps into natural domains of 
faces or cars. With morphed images, features in every dimension change monotonically 
and altogether as the morphs progress from one exemplar to the other. Thus, these 
morphed images only occupy a thin vector within a multi-dimensional object space. This is 
likely to allow observers to attend to a single feature dimension even with complex objects. 
In other work on category learning, critical results depend on the kind of morph space used 
in the experiments (Folstein, Gauthier, & Palmeri, 2012). 

Finally, we want to mention two limitations of the present study. First, we relied on 
larger improvement in the scattered- than in the clustered-duplicate condition to test 
whether performance improvement was attributable to the increased ability to distribute 
attention to all items evenly. There are, multiple possible concomitants to ensemble 
processing any of which might be amenable to improvement with experience. For instance, 
participants might have become better at manipulating incomplete representations of 
individual items. This ability would be important in ensemble judgments, especially with a 
task limited by short presentation durations such as ours, but our manipulation of spatial 
arrangement could not capture improvement in this ability. It is possible that participants’ 
improvement in diversity judgments of faces and cars could be related to changes in 
ensemble processing that could not be captured with our spatial arrangement manipulation. 
Second, as we used the diversity judgment task, where incidences of differences among 
exemplars are important, we cannot tell whether or not our findings will apply to other 
types of ensemble tasks, such as those requiring average judgments. To explore this 
question will require a task that allows deriving visual representation of central tendency 
from object exemplars residing in multi-dimensional space. As we used the “diversity” 
judgment task to test people’s ability to estimate variability, perhaps one may devise a task 
where participants report the “mode” of objects, which will serve as one type of central 
tendency. 

Conclusion 

We asked participants to judge the diversity of exemplars within ensembles of objects. 
This is a rather different judgment from the one employed in the majority of ensemble 
perception studies, which typically require judgments of the central tendency for arrays of 
objects. One might imagine that estimating central tendency involves the extra steps of 
pooling and compressing information not required in estimates of variability. But this 
difference does not invalidate ‘variability’ as an ensemble process, and one that could be 
quite useful in real-world settings (see Whitney & Yamanashi Leib, 2018 for examples). 
We recently found evidence that in the case of object size, judgments of diversity and of 
central tendency rely partially on a common ability (Cha et al., 2020). With this in mind, 
we sought to learn whether diversity judgments improve with practice, whether 
improvements vary depending on category- and/or exemplar-specific experiences and, if 
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so, whether the improvements could be related to improved ensemble processing. Thus we 
compared improvements in performance with three categories of objects for which people 
have varying degrees of familiarity: faces, cars, and random blobs. We also manipulated 
the redundancy of exemplars for diversity judgments throughout a series of trials: 
participants in one group viewed visual images sampled from a very small pool (6 images), 
and participants in another group viewed visual images sampled from approximately 150 
images or more. What did we find? 

Larger performance improvement in the scattered-duplicate condition compared to 
the clustered-duplicate condition occurred only for the random blobs and not for cars or 
faces, suggesting that improvement in diversity judgments for cars and faces were not 
necessarily associated with improved ensemble processing (i.e., improved ability to 
distribute attention). We surmise that experience during the experiment did not facilitate 
ensemble processing of faces or cars because participants were already quite familiar with 
these two categories of stimuli before being exposed to them in the experiment. 
Furthermore, the fact that participants’ diversity judgments of random blobs improved 
steeply in the scattered-duplicate condition during the course of a one-half hour experiment 
suggests that category knowledge useful for diversity judgments can be acquired fairly 
rapidly. 

At the same time, we found that repeated exposure to the same six exemplars did 
not afford participants a special advantage for diversity judgments of these exemplars. 
Among the three different object categories we tested, performance on diversity judgments 
was comparable between the participants who experienced high- vs. low-repetition 
exposures. Importantly, we found evidence supporting a null effect of repetition, even for 
novel objects. Moreover, participants who repeated diversity judgments with the same six 
faces showed no sign of degraded performance when they were subsequently tested with 
completely new sets of faces. 

Altogether, our results suggest that participants’ diversity judgments are performed 
without reliance on detailed knowledge of specific exemplars experienced over the course 
of the task. Instead, this ability may be based on abstract properties of an object category 
derived from exemplars that are not necessarily familiar. Ensemble processing is believed 
to enrich and facilitate our visual experience, promoting representations of redundant 
information from groups of objects (Alvarez, 2011; Oliva & Torralba, 2006). Still, our 
results, supported by conclusive Bayesian support for a null effect of repetition, suggest 
that for complex real-world objects, it may not make a difference whether a few exemplars 
or many form the basis for learning to judge diversity within object ensembles. 
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