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Abstract

We initiate a study of subregion dualities, entropy, and redundant encoding of bulk points in
holographic theories deformed by T'T and its generalizations. This includes both cut off versions
of Anti de Sitter spacetime, as well as the generalization to bulk de Sitter spacetime, for which
we introduce two additional examples capturing different patches of the bulk and incorporating
the second branch of the square root dressed energy formula. We provide new calculations of
entanglement entropy (EE) for more general divisions of the system than the symmetric ones
previously available. We find precise agreement between the gravity side and deformed-CFT
side results to all orders in the deformation parameter at large central charge. An analysis of
the fate of strong subadditivity for relatively boosted regions indicates nonlocality reminiscent of
string theory. We introduce the structure of operator algebras in these systems. The causal and
entanglement wedges generalize to appropriate deformed theories but exhibit qualitatively new
behaviors, e.g. the causal wedge may exceed the entanglement wedge. This leads to subtleties
which we express in terms of the Hamiltonian and modular Hamiltonian evolution. Finally, we
exhibit redundant encoding of bulk points, including the cosmological case.
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1 Introduction

In recent years, holographic dualities have developed in several important ways. In AdS/CFT,
the association of bulk regions with appropriate operator algebras in the dual ‘boundary’ theory
leads to an in-principle method for their approximate reconstruction [1-5], moving beyond the
original HKLL prescription developed earlier in [6].! This in turn leads to a lesson that the
encoding of a bulk point in the dual is redundant, as in quantum error correction [8].

Although it is an extraordinarily fruitful case study for quantum gravity, AdS/CFT is neither
phenomenologically viable nor generic in string theory, with its special asymptotic boundary and
bulk geometry being highly unrealistic. In another line of development, the TT deformation
[9-12] and its generalizations such as [13-16] enable us to isolate a finite patch of spacetime not
intersecting the original boundary [17]. This corresponds to a Dirichlet boundary condition for
the metric, and also for additional bulk fields given the prescription [14]. (A related deformation
which accounts for bulk matter intrinsically is the single-trace version developed in [13].)

Meanwhile, holographic descriptions of the realistic case of bulk de Sitter geometry [15,18-30]
have developed significantly. In particular, patches of de Sitter spacetime, including the dS/dS
patch covering more than an observer region, arise from appropriate generalizations of the TT
deformation [9-12] as explained recently in [15,28]. These are described by a trace flow equation
of the form
tr T = —iR@) —47T)\TT+%, (1.1)
with ¢ the central charge, R(? the scalar curvature of spacetime, and ¢, a constant. Additional
bulk matter fields with Dirichlet boundary conditions lead to extra terms in the trace flow equa-
tion [14], but there are still many interesting observables where such terms are not excited or are
subleading (as will be our case).

In setting up the present work in §2, we will provide two new examples of this. One is a
corollary of [15] which doubles the space of solvable and universal [9-11] deformations of 2d
quantum field theories. When interpreted holographically, this formulates the static patch of dSs
at the level of pure gravity. The other is an extension of the trajectory defined in [15] which
connects to another branch of a square root appearing in the formula for the energy levels; this
formulates the full dS/dS patch of de Sitter spacetime with one extended trajectory.

These TT + ... prescriptions for radially bounded patches of bulk (A)dS spacetime can
be viewed as another form of subregion duality. It is natural to combine the two notions of
subregion, and investigate the extension of reconstructions in [1-7] to the more general case of
CFTs deformed by T'T and its generalizations, including the realistic cosmological case. This is
directly related to the behavior of the entanglement entropy in such deformed theories, something
that we will study in detail in this work using both sides of the duality.

In order to carry this out, we must determine the effect of the deformation on the causal
and entanglement wedges defined e.g. in [31], their associated algebras, and the action of the
Hamiltonian and modular Hamiltonian. The TT+. .. deformations do not produce local quantum
field theories, and a priori one must not take for granted properties like causality and locality
of the operator algebras. We will find several specific manifestations of the nonlocality, which

See [7] for a review.



enables novel relations between the causal wedge (CW) and the entanglement wedge (EW). In
the case of the causal wedge, we find a subset of deformed theories (specific examples being the
dS/dS theory [15] and the cutoff version of Poincaré AdS) for which the original notion persists
in the semiclassical bulk theory because boundary to boundary signals travel subluminally and
fastest along the boundary.? In these cases, HKLL [6] applies to our case, and we note the
appearance of a causal shadow which somewhat limits the reconstructions. Once we include the
prescription [14], we note that the operators are local on the Dirichlet wall. In the asymptotic AdS
case, HKLL and other bulk reconstruction prescriptions become more complex as one proceeds
inward in the bulk. In the present context, having deformed the CFT via TT +. .., the operators
start essentially local on the finite Dirichlet wall. HKLL then starts to render them nonlocal as
we move inward from that locus. In essence, the complication that arose in AdS/CFT at the
radial position of the cutoff surface is replaced by the nontrivial deformation of the theory itself;
although the deformed theory contains nonlocal features, there is emergent bulk locality down to
the bulk string scale even in the presence of the Dirichlet wall. In the case of the entanglement
wedge, we specify a division of the system which semiclassically corresponds to the division across
the extremal surface of [34,35] as in [1,2].

1.1 Summary of results

Let us now describe our main results. We analyze in §3 and §4 the Rényi and Von Neumann
entropies on both sides of the duality in two case studies, generalizing the method of [36] to less
symmetric divisions of the system. This reveals two striking properties of TT. First, we find that
all contributions of the deformation to the entropy turn out to localize at the endpoints of the
entangling region

poKL
LS (L) =2 x lim (27Tn)/0 pdpndy,(trT(p)) . (1.2)

n—1

Here L is the size of the interval for which we compute the EE, n is the replica index, and p is
the radial distance to one of the endpoints. A similar expression is valid in the dS case, with
L replaced by the curvature scale. Evaluating this requires then calculating the change in the
stress tensor under a change in the replica opening angle, nd, (tr T')|,=1, near the endpoints. We
obtain this by solving the trace flow and conservation equations,
A2

Oy (tr T(p)) Ins1 = € ¢ A Clz) 570 €=1-n, (1.3)

ot (14 25C(2))

with C'(\/L?) a constant that we discuss shortly. Rotational symmetry is restored at the tips of
the replica manifold, providing a crucial simplification that is at the root of our exact results.
This, and related expressions we present for other components of the stress tensor, exhibit
the second feature we find about 7'T, namely that the deformation smooths out the singularities
from the conical defects at the endpoints. This is reflected in the nonperturbative shift in the

2The stability of Dirichlet cutoffs in semiclassical general relativity is a subject of active investigation. It would
be interesting to generalize the analyses of e.g. [32] to the full range of bulk/boundary geometries we consider here.
As observed in [15], the superluminality in [33] does not persist in the boundary dS cases.



denominator, controlled by eX. Combining these two equations gives that LS'(L) = SC(A\/L?).
So the function C(\/L?) encodes the behavior of the entanglement entropy as well as the twist
operators in the deformed theory. We show that a similar result holds in the de Sitter thermal
calculation.

These features allow us to generalize the CHM map [37], originally envisioned for CFTs, to
TT deformed CFTs. This maps the domain of the dependence of an interval in Poincaré space to
the static patch of de Sitter. Due to the localization property of T'T, the entanglement entropy
for the interval becomes the same as the thermal entropy in de Sitter. This allows us to derive
an expression for C'(\/L?) and for the entropy S(L) for an interval of size L, to all orders in the
deformation: )

LS'(L) = g —— (1.4)
1+ 3%
with A the strength of the TT deformation; see §3.3 for more details. This matches exactly the
holographic answer, and provides another instance of an exact calculation in the presence of TT
beyond e.g. the energy level formula [10] (albeit here we need to use large c).

In this way, we establish the Ryu-Takayanagi formula for a single interval in the radially
cutoff AdS Poincaré patch. This lends support to the possibility that the general proof [1] for
AdS/CFT may extend to our deformed theory, something that will be interesting to nail down
in the future. See also [38] for work in this direction.

The interval entropy (1.4) violates boosted strong subadditivity [39], indicating that additional
operators join the algebra under a relative boost of subregions. This is consistent with causality
and helps to characterize the non-locality of the theory. In the earlier work [40], a contribution
to the von Neumann entropy was also found at first order in the single-trace version of the
deformation; they were working with the opposite sign of the deformation from ours, the sign
that leads to a Hagedorn spectrum as opposed to our case of interest here with a finite entropy.?

The second example we analyze in detail in §4 is the deformed theory dual to a dS/dS warped
throat.* Here the deformation, recently introduced in [15], is defined by a coordinated flow (1.1)
that includes 7T and a 2d cosmological constant. For a a subsystem that is half of the space, we

evaluate the partition function for an n-sheeted cover of the sphere,

Oy log Z,, = —2mnr / df sin6 (trT) . (1.5)
0

We then show that the 0-th Rényi entropy (the log of the dimension of the reduced Hilbert space)

agrees with the entanglement entropy,

e cA
So(r) = S1(r) = 3 for r = 13 (1.6)
This implies that the state for the subsystem is maximally mixed. In the holographic side, the

value of r above corresponds to the central slice of dSs3/dSs, w, = 5¢. Given this result, we

3The recent works [41,42] also studied entanglement entropy in 77 deformed theories, although they did not
find this first order effect. ~
4Other recent works that studied the EE for TT on de Sitter include [43,44].



determine that states associated to subsystems with size different than half the space behave as
random pure states.

The combination of entanglement and causal wedges introduces new features in the deformed
theories as compared to asymptotic AdS/CFT, which are analyzed in §4. In particular, the causal
wedge of a region R can exceed its entanglement wedge, and can overlap with the entanglement
wedge of the complementary region R. This implies a novel commutator structure of the asso-
ciated algebras, which we describe. We argue that in this case the modular evolution in R does
not commute with the time evolution in the causal domain of the complement:

[, Upr)] # 0. (1.7)

These features of the causal wedge and entanglement wedge algebras also explain the violation
of the boosted SSA discussed above.

Finally, having characterized the subregions we return in §5 to one of the motivating questions:
does the redundancy of bulk point encoding (a.k.a. quantum error correction) [8] survive these
deformations, in particular the extended trajectory [15] that is required for the cosmological case?
We find indeed that redundant encoding continues to occur, and we indicate some requirements
for toy models of this effect that might generalize the tensor network toy examples in asymptotic
AdS/CFT, which might be used for near term simulations for quantum cosmology.

2 Setup: (A)dS patches and 7T + ... trajectories

We are interested in the the holographic formulation of various finite patches of AdS and dS
spacetime, obtained via the 7T deformation [9-12] and some of its recent generalizations [14,15].
For simplicity, we focus on three bulk and two boundary dimensions (along with appropriate
compact dimensions that arise internally in string theory), although very interesting generaliza-
tions to other dimensions are available in [14,28]. The 3d bulk case is the lowest dimensionality
in which putative spatial boundary subregions exist, and its 2d dual makes use of all the meth-
ods available in the original works on 7TT. We will consider cases where the bulk theory (in its
vacuum) is either AdS or dS, with a Dirichlet boundary that is either flat or de Sitter. These
varieties of bulk/boundary will be denoted AdS/Poincaré, (A)dS/cylinder, and (A)dS/dS. See
Fig. 1 for a depiction of the patches we will consider within the Penrose diagrams of AdS and
ds.
The warped metrics for each case in the vacuum state are as follows.

2 _ 2w 2 W 2, 42 2T 1.2
ds(A)dS/dS = dw” + sin(h) 7 (—dT + £“ cosh zdgb) w < w,
2

2 2 792\ 142 r 27,2
dS(A)dS/cylinder = _(1 = /ﬁ )dt + 1+ T2/€2 +ride” r<r.
—dt? + dz? + dz?
2 2
dSAdS/Poincaré =/ 52 Z 2 Ze

(2.1)

We note that in the dS/cylinder case, and in the version where we cover the full dS/dS region with
one bounded patch at w. = 7/, the boundary is in the infrared (most gravitationally redshifted



Figure 1: Patches we will work with depicted in purple within the AdS and dS Penrose diagrams. The top left is
dS/dS, with a fixed w = wc slice indicated by the dashed line. The purple and orange together cover the full dS/dS
patch of dS3, while the purple indicates the region that remains after introducing the cutoff at a fixed w. in the
coordinate system (2.1). The top right is dS/cylinder, with again a fixed radial position r = r. indicated by the
dashed line. The bottom left similarly depicts cut off AdS/dS and the bottom right (a slice of) cut off AdS/Poincaré.

region), something that is far from the situation in AdS/CFT. In the other cases, AdS/cylinder,
AdS/Poincaré, and AdS/dS, and dS/dS with w, < 7¢/2, the boundary is at the most UV slice
of the geometry. In the (A)dS/dS and AdS/Poincaré cases, there is another important feature:
signals travel fastest along the boundary. This is reminiscent of the feature identified in [15] that
the boundary gravitons are luminal rather than superluminal in this case. We will find that these
distinctions are significant in our studies of subregion dualities, with the examples that are most
similar to AdS/CFT being the most amenable to redundant encodings (error correction). But
they all admit a formulation in terms of specific trajectories including and generalizing T'T.

To begin, we will review and extend the formulation of the deformed CFTs of interest in
a unified way, introducing two new examples beyond those explicitly covered in the existing



references. These are the static patch of de Sitter, and the dS/dS patch obtained via a single
extended trajectory rather than via a joining of two warped throats. As we will see shortly,
the dS static patch (a.k.a. dS/cylinder) has the virtue that its pure gravity dual, a corollary
of the deformation derived in [15], is as universal and solvable even at finite ¢ as the original
TT deformation, via the methods introduced in [9,10]. Regardless of holographic duality, this
doubling of the space of such calculable deformations may be of interest in its own right in the
study of 2d solvable models.
We will work with an integrated deformation by the irrelevant operator “T'T”

- 1
TT = S(TaT™ — (17)?). (2.2)
In some situations, this operator factorizes. This is true in all our examples at least at large c,
along with 1/c corrections that can systematically be included.® For the cylinder, the factorization
occurs for all ¢ [9]. The trajectories defining the deformed CFT can be characterized at the level
of pure 3d gravity by a differential equation for the log of the partition function:

9 _ 2 7 L—n 2
o log Z = 27T/d x\/g(ITT) + 52 /d x4\/g (2.3)

Here n = 1 corresponds to the initial trajectory starting from the seed CFT at A = 0, with
holographic dual a patch of bulk AdSs. Once we are along this trajectory, at some nonzero A,
we can join onto a trajectory with 7 # 1. As explained in detail in [15], such an extension of the
trajectory to one with n = —1 is appropriate for bulk dSs (and n = 0 for a flat bulk spacetime).
For many purposes we can formulate the trajectory via the the trace flow equation

c - n—1
T¢ = ——RP) — g \TT — 1— 2.4
@ 247TR m A (24)

where Ty, is the stress energy tensor of the 2d theory, which satisfies the conservation equations
V% =0. (2.5)
The various cases of interest are as follows:

AdS/dS : n=1, 0<-—R® <

24m
ds/ds : n=-1, % < ﬁR@) <
AdS/cylinder : n=1, ﬁR@) =0
dS/cylinder : n= -1, ﬁR@) =0, (2.6)

and again we note that in the latter two cases, factorization of the T'T operator is valid at finite
¢ via the derivation in [9]. Below we will describe two versions of the dS/dS case. The original

5The static patch of dSy appeared also in the interesting recent work [28] which provides a tractable formulation
of a 1d analogue of T'T and its generalizations such as [15] in terms of a dual quantum mechanics theory, with
connections to [26].

5The works [45,46] provide a definition of the TT deformation in curved space, which could be used to study
finite c effects.



ultimately involves a joined system of two warped throats, each cut off by a Dirichlet wall at
we = /2 and formulated by its own trajectory (2.3-2.4 ) as described in [15]. Another option, as
we will see shortly, involves a single extended trajectory to obtain the full dS/dS patch bounded
by the slice w, = wl.

There is detailed evidence from calculations of energies and entropies supporting the conjec-
tured holographic dualities between a Dirichlet wall-bounded patch of gravity with cosmological
constant A3 = —27n/¢? and the deformed-CFT trajectories. We summarize this and extend it to
our new examples in the next two subsections.

2.1 Dressed Energies and additional dualities

For the cylinder (or Poincaré) cases where the 2d curvature R = 0, the TT operator factorizes
as in [9] and for the full two dimensional space of couplings parameterized by A and n we can
calculate the energy spectrum exactly at finite ¢. This gives

L
E=-2rLT} = "
7T

- \/ _ATAA+A = ¢/12) N 4TAN2(A — A)? 27)

L? LA

Here L = 277 is the spatial size of the cylinder on which the 2d theory lives, and A, A are the
left and right moving dimensions of the state in the seed theory, which we have taken to be a 2d
CF'T. This formula agrees with the quasilocal energy of the corresponding patch of spacetime in
a theory with bulk cosmological constant Az = —2n/¢? spacetime [15,17] of either sign.

In the (A)dS/dS cases, the differential equation for the dressed energy similarly leads to a

o ROA  CoA

In this curved case (and for any boundary geometry with bulk matter excitations), one requires

solution of the form

use of large c¢ factorization in typical states on the deformed-QFT side. This corresponds to semi-
classical gravity in a finite patch of spacetime, suggesting that it can in principle be supplemented
by perturbative corrections in 1/c¢ using UV-finite perturbative string corrections. At finite ¢,
there may be ambiguities or fundamental limitations on this definition of the theory. Indeed, in
string theory de Sitter is only metastable, so its more complete formulation likely requires its de-
caying phase into a more general FRW solution, something that admits an analogous description
in terms of two coupled sectors [23]. In the present work, we will focus on the exponentially long
lived de Sitter phase although we expect some of the phenomena we derive to extend to the later
FRW phase.”

The top sign in (2.8), with C1 = 0, reproduces the quasilocal energy of one of the two warped
throats of the dS/dS patch, with w. < 7f/2 corresponding to R(?) > 24/\c [15]. At that limiting
value, the square root vanishes; on the gravity side this corresponds to the vanishing extrinsic
curvature in the central slice of the dS/dS patch of dSs. In the full dS/dS correspondence, we
construct two such warped throats, and join them on a common UV slice by integrating over
their shared metric, leading to a flat entanglement spectrum [27].

7 Another approach to extending a dS patch to a completely formulated system is analyzed in [26].



There is another interesting option at this point, however, which brings in a role for the other
branch of the square root in the energy formula (2.8). In the original 77T deformation [10, 11],
the top sign was unambiguously chosen in order to match smoothly to the seed QFT in the
A — 0 limit. We inherit this sign as well in our extended trajectory building up a dS/dS throat
as in [15]. But once we reach the end of that trajectory where the square root vanishes, we may
smoothly continue through to the other sign of the square root. It is a simple exercise to check
that this reproduces the quasilocal energy of a larger portion of the dS/dS patch; we can proceed
all the way to w. = mf in this way.

This last example, like the static patch example, has the property that the boundary is then
at one of the most infrared (highly redshifted) slices of the warped geometry. These cases, which
in this respect are farther from AdS/CFT than the other versions of the duality, will exhibit less
optimal features in terms of subregion dualities. Nonetheless they provide new examples of TT
generalizations with interesting features and with holographic interpretations.

2.2 Stress energy and entropy

It is also interesting to study the density matrix and entropies associated with various divisions
of the system. In the (A)dS/dS case this has led to another test of the duality obtained via calcu-
lations on both sides of the Von Neumann and Rényi entropies for a particularly simple division
of the system into halves. This was pioneered in [36] for the AdS/dS case and straightforwardly
generalized to dS/dS in [15].

One of our main technical points in the present work will be to generalize the entropy calcu-
lations to more generic divisions of the system as well as extending the calculations to capture
essential properties of the density matrix (or equivalently its log, the modular Hamiltonian) itself.

This is interesting in itself in the deformed CFT as a way of probing its novel properties,
independently of holography. For holography, this will enter into our analysis of the fate of
subregion dualities and the relations between bulk and boundary modular flow [2,3,5].

It is not generically easy to calculate entanglement entropy in an interacting theory. But the
original calculations of the dressed energies illustrate the special tractability of the 7T deforma-
tion and its relatives, and it is reasonable to explore to what extent that extends to calculations
of other physical quantities. Indeed the equations governing the dressed stress energy T, provide
a method to extract entanglement entropy and properties of the modular flow in some cases.
This was introduced and illustrated in a particular, symmetric example in [36]. One result of the
present work will be to extend this to new, less symmetric, examples.

At large ¢, T, is determined by the trace flow equation and stress-energy conservation

Vo Iy = 0 (2.9)
R e TN,
T = — — — (T Ty, — (T2)? =1-
a 2Un + Y 2 ( b ( a) )7 C2 n

with appropriate boundary conditions. In general, these form a quasilinear system of two partial
differential equations (PDEs); as we will see, these sometimes admit a solution via the method of
characteristics. In appendix B and §4.4.4 we will investigate the characteristics and apply them
to our problem.



We can apply the solutions for Ty, in two ways to study the physics of the reduced density
matrix p appropriate to a given division of the system. First, as in [36], if we can solve these
equations for on the n-sheeted replicated geometry arising in the path integral calculation of trp™.
Denoting the replicated partition function by Z,, the (modified) Rényi entropy is defined as

Sp(L) = (1 —ndy) log Z,,, (2.10)

where L is the overall scale of the system.® The von Neumann entropy arises as

S(L) = #_}ml Sn(L) . (2.11)
We can then use the relation
d d =
L7 log Zy = —/d%@(nﬂ s L S = —(1 —nd,) /d2x\/§<trT) : (2.12)

to obtain the corresponding entropy. We will illustrate in §3 how the trace flow and conservation
equations lead to an exact large c result for the entanglement entropy in a finite interval of
length L in Minkowski space. Then in §4.4 we will illustrate this for a dS/dS case study. These
provide interesting instances where a nontrivial partition function can be evaluated to all orders
in the deformation, something that, as we stressed already in §1, is a consequence of the special
properties of TT.

A second application of these equations pertains to the behavior of the density matrix itself,
p = e X with K the modular Hamiltonian. In a standard local theory of quantum fields ¢, with
a division of the system into a spatial region R and its complement, an entry pg ¢ (2),¢+(z) i
the density matrix (with € r) is computed by the following path integral. Starting from the
Euclidean path integral that constructs the partition function, we cut it open on the region R
and impose boundary conditions ¢* on the top and bottom of the cut. We will refer to this cut
geometry as the pac man.

In our nonlocal 2d theories, we cannot generically assume a precise division of the system
into spatial subregions. Still, for the theories which are holographically dual to an emergent
semiclassical bulk gravitational spacetime patch, the bulk effective theory is local down to the
string scale, and one can divide the system across an extremal surface as in the familiar AdS/CFT
context. This defines the density matrix via a semiclassical gravitational path integral. The
resulting prediction for the deformed-QFT side is a modification of the action of p (equivalently
K) as an operator. In §4.4 we will analyze this directly on the 2d deformed-CFT side in a special
case of interest (dS/dS with w, = 7¢/2) using the behavior of the stress energy derived from the
basic equations (2.9).

2.3 Revisiting the entropy calculation in AdS/dS

Before proceeding to our new results, we would like to revisit the calculation in [36] from a
different point of view, which will be useful in the following sections. This work computed
the entanglement entropy for a deformed CFT on dSs, when the spatial region is half of the

8For concreteness, in this paper we would think of L as the size of the interval in flat space in our AdS/Poincaré
case study, or the Euclidean de Sitter (sphere) radius for an interval in (A)dS/dS.

10



full system. This corresponds to the thermal entropy for the de Sitter static patch. The time
translation symmetry allows one to obtain the entropy at large ¢ and to all orders in (fixed) Ac,
and the result matches the holographic answer for cutoff AdS sliced by dS. This calculation also
generalized readily to the dS/dS case [15].

We will now establish a very special feature of the AT'T deformation, namely that all the
dependence of the entanglement entropy on A comes from the endpoints of the entangling region.
This will turn out to be closely related to fact that the deformation smooths out the conical
singularities introduced for the Rényi entropies.

Let us perform the Euclidean calculation of the entropy. The metric is

ds® = r*(df? + sin? 0d¢?) (2.13)

with ¢ the analytic continuation of the dSs static patch time, and r the dS radius. The system
is divided in half, R = 7/, and the region R is the locus ¢ = 0,0 < 6 < 7. For this metric, using
the Christoffel symbols

szb = —cosfsinb, FZ@ = cot (2.14)

we find that the equations (2.9) become

0 = 8¢T$ + 8p(sin® OTY) + T} cos Osin
0 = 0pTY + 0s(Ty) + (T§ — TJ) cot 0
R(2)
T+ T = _0247r +TNIITS — (T7)? sin?6) . (2.15)

In fact we need to work with the smoothed out replicated geometry, taking (inspired by [47])

ds? — 12 (sin29+n252
s*=r'| ———

70 52 dé? + n? sin20d¢2> . (2.16)

As the regulator § — 0, we recover the replicated manifold. This is an Einstein space, with

RO - 2 <152(”2_1)(1+”252)) ~ 2 <162 -1 > . (2.17)

o2 (sin2f + 62n2)2 )~ 12 (sin? 6 + §2n2)2

curvature

In particular, near the smoothed-out ends of the interval R,

1 —n?

2
R = St 0(8%), (2.18)

so we have positive curvature for n < 1 and negative curvature for n > 1. For some of our
applications, we will be interested in the von Neumann entropy, and hence take n — 1; for others
we will keep n finite and analyze the Rényi entropies in their own right.

Energy-momentum tensor

In order to compute Rényi entropies using the relation (2.12), the first step is to compute the
vacuum expectation values of the stress tensor. The space is Einstein but not maximally sym-
metric, so we do not have T,p x gqp (due to the § dependence in the curvature). We do still have
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a simplification in the equations (2.15) from the symmetry in the ¢ direction, which enables us
to set T, 64’ = 0 in the vacuum and seek a ¢-independent solution for the other components.
In terms of the variables

U=7XIj -1,V =n)Ij -1, (2.19)
one finds as in [36] that the conservation equations and the flow equation read
A
Uv = ‘23—473(”(9) +7
0pU 4+ cot (U — V) =0. (2.20)

For generality we have kept the parameter 7 in (2.9); for the present discussion we have n = 1.
The solution that is nonsingular at the tips and gives the right branch is

U——\/n+ A <1+(1_7Q)<1+n252)>. (2.21)

1272 n?(sin? 0 + n262)

This corresponds to the stress energy components

1 cA 1 1+ n242
0
Ty = m\(l—\/??—i-lz?{l—i-( e 1> sm29+n252D (2.22)

2 (n2—1)(14+n?5?)

o 1 ’7+1zr2[1*5m}

v a - cA 14-n242
N+ 132 {1*'(*_1) m}

This generalizes the expressions in [36] by including the effect of 7 as in [15], and the smoothing
parameter § which we have treated slightly differently, but consistently with the earlier results.
For n > 1, as noted in [36] we find complex energy levels, unless
4 A (sin? 0 + n?6?) > 1 ! (2.23)
sin n - — .
T 122 n?’

At the tips, this condition implies that we cannot set the regulator § to zero for n > 1.

Now the von Neumann entropy is obtained from the modified Rényi entropy S, in the limit
n — 1; see (2.10), (2.11). We will do this by evaluating the stress tensor, and relating its integral
to the r-derivative of the entropy, as discussed around (2.12):

rS'(r) = — lim (1 — nd,) /d% Vg (trT). (2.24)

n—1

For simplicity, we will take n — 1 from below to enable us to send § — 0. Our solution then
takes the form (for n = 1, which we consider for the remainder of this section)

o0 1 _ Ac Cys
<T9> = 1 1+ 19,2 1+€sin20 (2.25)

<T¢> — i 1— L+ 121”2

¢ TA \/1+122<
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As mentioned above, there are two possible branches, and we took the one that gives the right
CFT limit as A — 0. Here Cgg can be understood as the integration constant for the bulk
differential (conservation) equation, and we have introduced the parameter

e=1-nkK1, (2.26)

which at the end we want to send to 0 for the calculation of the EE. The constant Cyg is fixed
by matching to the contribution from the conical deficits derived above, giving

Cus = 2. (2.27)
We are now ready to evaluate the entropy. From (2.22) or (2.25),
c A 1—-n? 1 1
3487 n* risinte (1+ 2% (1+ =2 ))3/2 '

1272 sin?

noy (trT) = (2.28)

This expression is valid at finite n. This vanishes at ¢ = 0 or n = 1, except at the endpoints
0 = 0, 7. So the contributions to the entropy integral

rS'(r) = r% lim (27n) /TF df sin 0 no,, (trT(0)) (2.29)

localize at the endpoints. Taking into account both endpoints,

/ _ 2 Pt .
rS'(r) = 2x27r df sin 6 0, (trT'(0))|n—1
0

¢ 1
N g e=0
\/1 +p% (1+%)
1
- 57 (2.30)
L+ 57

We note the order of limits here: in passing to the last line we took n — 1 at fixed 6y. Importantly,
the shift in the denominator that we have derived here regulates the endpoints of the integral,
leading to a cancellation of the € factor in the numerator. The shift is a nonperturbative effect,
derived from the trace flow and conservation equations. Eq. (2.30) reproduces the answer found
in [36], showing explicitly how the nonvanishing contributions to the entropy localize at the
endpoints.

Another interesting aspect of this result is that we recover the CFT answer by taking A — 0
in (2.30), rS’(r) = ¢/3. In our approach, this does not come from the delta-function singularities
at the endpoints —we could solve the trace flow equation without them away from the endpoints,
and instead they fixed the integration constant Cyg in (2.27). Physically, T'T is smoothing out the
conical deficits, as we just saw explicitly in the endpoint calculation (2.30). Below in §3 we will
argue that these properties also hold for an interval in Poincaré space. The localization property
of the T'T effects will then allow us to conformally map the dS and Poincaré cases, leading to an
all-orders result for the interval entanglement entropy which agrees on both sides of the duality,
analyzed independently.
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3 Cut off AdS/Poincaré case: violation of boosted strong sub-
additivity

In this section we study the case of a TT deformed CFT in flat space, which is dual to cutoff
AdS with Poincaré slices. In order to probe the effects of TT, we will study the entanglement
entropy. In particular, we will focus on the strong subadditive inequality (SSA), which is very
sensitive to the locality properties of the algebras of regions. Our main result will be that TT
violates the boosted version of SSA, something that we will exhibit independently in the field
theory and gravity descriptions. We will trace this to the fact that in the deformed theory the
algebra should not be associated to causal domains, but rather to smaller regions that we will
characterize. The precise agreement between the gravity and field theory calculations is one of
our main results, providing a nontrivial test of the duality in the non-symmetric cases that we
will consider.

Before proceeding to the calculations and implications of this, let us review some basic aspects
of algebras and the SSA in QFT, as well as the setup that we will use.

3.1 Algebras and strong subadditivity in QFT

Given a spacelike region R, the domain of dependence D[R] is the set of all points p in spacetime
such that every inextendible causal curve through p intersects R. For intervals in 2d Minkowski

9 we expect that an operator in

spacetime, these are causal diamonds. Given causal evolution,
the domain of dependence belongs to the algebra of the region. So it is natural to associate an
algebra of operators to D[R], and we will denote it by Apg) [48]. Locality implies that if one

spacetime region is included in another one, the corresponding algebras obey the same inclusion:

In order to introduce the strong subadditive inequality, let us review the construction of the
relative entropy. Consider a spacetime region U with its corresponding algebra Ay, and two
states or density matrices py, 0. The relative entropy between the states is

S(pulov) = tr (pv log(proy')) - (3.2)

This is a measure of the distinguishability between the states. The crucial property of relative
entropy is its monotonicity: for two regions

UCU, Ay C Ag (3.3)
we have
S(pulov) < S(pglog) - (3.4)

See [49] for a recent review with references to the original works. Intuitively, on a bigger algebra
we can perform more measurements in order to distinguish the two states, and so the relative
entropy should increase with the region.

9As discussed further in §4, the AdS/Poincaré and (A)dS/dS cases have geodesic propagation fastest along the
boundary rather than through the bulk, indicating that causality holds up to order c°.
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We are now ready to state the SSA. We take three regions X, Y, Z, a state pxyz defined on
the union, and its restrictions to the smaller subsystems. Monotonicity of the relative entropy
implies

S(pxyzlpx ® pyz) — S(pxvylpx @ py) >0, (3.5)

because the second term is obtained by doing a partial trace over Z, namely Axy C Axyz.
Rewriting this using (3.2) gives the SSA for the von Neumann entropies,

S(pxy)+S(pyz) — S(pxyz) — S(py) > 0. (3.6)

So the SSA measures the decrease of distinguishability in a 3-partite system under a partial trace.
We will often rewrite this as

S(A) + S(B) — S(AUB) — S(ANB) > 0, (3.7)

with A=XY, B=YZ AUB=XYZ ANnB=Y.

When the inequality is saturated, the state in AU B can be reconstructed from the knowledge
of the state in the smaller subsystems A, B [50]. This is called a Markov state, in analogy to
classical Markov chains. Markov states play an important role in the structure of quantum field
theory: the vacuum of a CFT saturates (3.7) for regions whose boundaries lie on a light-cone [51].

We will analyze two setups for the SSA, shown in Fig. 2. The spatial SSA is illustrated in
the left panel of the figure. Here all the intervals are spatial (¢ = 0); their corresponding causal
domains are also shown. We denote the length of AU B by Li, and that of AN B by Ls; A and
B both have length (L1 + L2)/2. Then (3.7) reads

)-sug—swgzo. (3.8)

For 1 =L+ 6L,Lo =L — 6L and dL — 0, this becomes an infinitesimal inequality
L*S"(L) <0. (3.9)

We will also study a stronger version of SSA, obtained by boosting some of the intervals [39];
the setup is given in the right panel of Fig. 2. A and B have their endpoints on a light-cone, such
that AU B and AN B are purely spatial intervals, of length L1 and Ls. In Minkowski geometry,
A and B have length \/L1Ls. The SSA now requires

25 <\/L1L2) —S(L1) — S(Ls) >0, (3.10)
and the infinitesimal version Lo — L1 becomes
L?S"(L) + LS (L) <0. (3.11)

(This was used in [39] to prove the c-theorem.)

We will find that spatial SSA is respected by TT, while the boosted inequality, in both
finite and infinitesimal versions, is violated. As we just reviewed, the SSA is a consequence of
monotonicity of the relative entropy, which follows from the locality property (3.1). So for the
deformed theory in the boosted setup, the locality property should fail.
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ANB

AUB , Ly
=

Ly

AUB

Figure 2: Setup for the spatial SSA (left) and boosted SSA (right). The causal domains of the intervals are also
shown. In both cases, the union and intersection are spatial intervals with lengths L1 and Lg respectively.

3.2 Gravity side

Let us start with the simpler gravity side calculation of the entanglement entropy. We have the
AdS3 metric with Poincaré slices and a finite cutoff at z = z.:

2 dz? — dt? + da?

d 5 , Z

> 2. (3.12)

z

At the cutoff surface we consider an entanglement interval x € (—L/2,L/2). We tentatively
assume that the bulk path integral arguments [1,2] for holographic entanglement entropy [34,35]
and its 1/c corrections persist in the cut off case, although we should not take for granted the
factorization of the Hilbert space into spatial subregions (given a lattice regularization of the
path integral) as in local quantum field theory. In §4 we will delve into the general issues which
arise in the deformed theory. However, all of our results, including both-sides calculations of
entanglement entropies, will support the conjecture that the Ryu-Takayanagi (RT) and Hubeny-
Randamani-Takayanagi (HRT) surfaces’ areas define a meaningful entropy under a division of
the system that can be associated in a certain sense with a putative subregion R, with the
corresponding algebra Apg, differing in some ways from the pure (undeformed) QFT case.
The minimal Ryu-Takayanagi (RT) surface [34] is given by extremizing the area

1 &
S=—2 @\/ 1+ (0,x)? (3.13)
4G N z

Zc

with boundary conditions
x(ze) = L/2, 0,x(2) = 0. (3.14)

Here z; is the turning point of the minimal curve.
The result is well-known; it is a half-circle

2?4 22 =(L/2)% + 2. (3.15)
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The on-shell integral for the extremal area then reads
1 *dz 1
2GN )., 2 \1=22/22

and it is easy to check that all the contribution to the entropy comes from z = z. or, equivalently

S (3.16)

in the z variable, from the endpoints of the entangling region. The entropy evaluates to

c L L\?
L= log | = + 41+ (= . 1
S(L) = glog | 5+ +<2zc> (3.17)

We used ¢ = %. As z, — 0, this recovers the CFT answer S = glog(L/z.), but here we are
interested in keeping z. finite. The entropy is then finite and, in particular, S(0) = 0.

Let us study the SSA with the goal of quantifying the effects of TT. Plugging (3.17) into the
spatial SSA (3.8), we find that this inequality is respected. In this sense, TT is not having an
important effect on local algebras that differ by spatial contractions. In contrast, we find that the
boosted SSA, both in its finite (3.10) and infinitesimal (3.11) forms, is violated.!? In particular,
the infinitesimal SSA combinations become

1
spatial SSA: L2S"(L) = —% Y <0
(1+ @)
boosted SSA: L?S"(L)+ LS'(L) = ¢z ! >0 (3.18)
(L/2)?

Note that a 2d CFT just saturates the boosted SSA (3.10), so this combination is dominated by
the deformation. What we are finding is that 7T leads to a violation of boosted SSA. In line
with this, the running C-function

or)y—rs(Ly=S——1 (3.19)

3 /1+422/12

%£ for small L. Volume-law entanglement in the vacuum is a

signature of nonlocal interactions.

exhibits a volume-law C(L) ~

These properties of the TT deformed theory are quite striking. On the one hand, spatial SSA
(3.10) is always satisfied for any sizes L; and Ls. This suggests that at ¢ = 0 we have a local
quantum mechanical system, and that we can specify the subsystem associated to a bounded
region R in the usual way in terms of the algebra of operators in the region. On the other hand,
the failure of the boosted SSA implies that locality is violated under a relative boost between
regions.

3.2.1 HRT surface for boosted intervals

In order to develop intuition for this apparent violation of the inclusion property (3.1), let us
look in more detail into the extremal surfaces associated to the intervals in the boosted SSA

0By Lorentz invariance, the entropy can only depend on the invariant length of the interval. So we can still use
(3.17) for a boosted interval.
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construction. For concreteness, we focus on the interval A in the right panel of Fig. 2, with

(t,x) = (0,—L21> , (Ll 5 ol L;) . (3.20)

We look for a geodesic that connects these points at z = z., obtained by extremizing

endpoints

s= Lo [ AT aGE e, (3.21)
4GN 2e 2

The momenta of z(z),¢(z) in (3.21) are conserved, which allows for a straightforward integra-
tion the equations of motion. The integration constants are fixed by the initial conditions (3.20),

obtaining
o = BB lie i 4221}?
wz) = L atle P ik (3.22)
2 4 LyLy
The two branches connect at the turning point
22 =22+ % . (3.23)

We can now compare the extremal surfaces of the spatial interval AU B, and the boosted one
A, and their entanglement wedges. §4 will be devoted to a detailed analysis of the entanglement
wedge (EW) and causal wedge (CW), and their connection to local algebras. For our purpose
here, we will only discuss the following aspect. In the spatial case, L1 = Lo, and (3.22) gives the
RT surface

I\ 2
t—O,x2+z2—<2> +22. (3.24)

The EW is the domain of dependence of the region bounded by (3.24) and the cutoff surface
z = z.. It is delimited by the cone

) = (5) 42222, (3.25)

obtained by shooting light-rays from the RT surface to the boundary. Note that at the boundary
z = z,, this delimits a region

L 2
t=/(5) +:2- v, (3.26)

that is inside the causal diamond. Now, it is clear that this EW does not contain the HRT
surface of the boosted interval (3.22). As a consequence, the EW of the boosted interval A is not
contained in the EW of AU B.
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In theories with gravity duals, it is natural to associate the algebra of operators to the EW. For
a boundary region R, we will denote this algebra by Ap,. In this case the EW is contained within
the CW (see §4 for more details), so the spacetime region (3.26) defined at the boundary will be
strictly smaller than the causal diamond. The holographic calculation that we just performed
then shows that for the setup just considered,

Aa, € Aau), when B X|4 auBes (3.27)

with 3 a spacelike surface. This can account for the failure of SSA. Even though D[A] C D[AUB],
the corresponding algebras do not obey the inclusion property. In other words, new operators
are being accessed in the deformed theory when there is a relative boost between the regions, as
in (3.27). When there is no relative boost between the regions, we have A4, C Aaup),, and
correspondingly the spatial SSA is respected.

This failure of inclusion under a relative boost is reminiscent of the type of target spacetime
non-locality that occurs in string theory [52-54]. In that context, under a relative boost, an
observer develops sharp enough time resolution to detect a large variance of the high frequency
modes of the string embedding coordinates. This is somewhat analogous to the increase in
accessible operators in the algebras just described. That said, we should stress that this is not a
direct analogy: in particular, the sign of the TT + ... deformation we are working with here is
the opposite of the sign for which the dressed version of a set of free scalars gives the standard
Nambu-Goto string action [12].

3.3 Deformed CFT side

We will now analyze the entanglement entropy using the deformed CFT. Since [15,17,55]

2
zg Ac
Ze — & 2
L2 120%° (3:28)
we can rewrite (3.17) in field theory terms as
1
LS'(L) = g — (3.29)
1+

Our goal is to reproduce this expression with field theory methods. To this end, we note the
striking similarity between (3.29) and the dS, result (2.30) — both agree if we identify L = 2r.!!
By generalizing the CHM map [37] to the T'T deformation, we will show that this coincidence is
not accidental.

We consider a spatial interval of length L, and compute the entropy by the replica method.
As reviewed in §2.3, LS’(L) is related to the integral of the stress tensor trace in the replicated
space, (2.12). So we begin by analyzing the expectation value of the stress tensor.

In the limit n — 1 we recover flat space, and in vacuum

<T>)\,n:1 = <T>)\,n:1 =0. (330)

"The similar holographic behavior of the interval and dS entropies was also noticed by [56].
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As we review below, these expectation values are non-vanishing at order ¢ = 1 — n. So the trace
flow equation (2.9) with n =1 gives

() = =T () L) — (T2)) ~ & (331)

2

when € — 0, and away from the conical singularities.'?> This implies that the contribution to the
EE has to come from the endpoints p — 0 of the entangling region (with p the radial direction in
polar coordinates near the endpoint): the n — 1 and p — 0 limits need not commute. If these two
limits commuted, then 97,5(L) would be independent of A, since there would be no contributions
from TT at finite A. Holographically, this localization is seen in the on-shell integral (3.16) for
the entropy, which receives its contribution only from z = z..

To obtain (tr T) near the endpoints, we note that as p — 0 we have approximate rotational
invariance in the vacuum state. This symmetry implies that (7,4) = 0 near the endpoints.
Solving the trace flow and conservation equations with this ansatz (see the next subsection for

L
)y = = (1o~ EC ) (3.32)
TA p p2 + 20

We have not included the curvature of the conical singularities. As in §2.3, the integration

more details) gives

constant C' is determined by including the (smoothed) curvature and requiring regularity as
p— 0.

In order to make manifest the limits (tr ) ~ O(\) as A — 0 and (trT) ~ O(e?) asn — 1, let
us redefine C' = ¢ )‘—5 (%) Then

C(A)?
1O (tr T) st = eg QATC (A“) - (3.33)
Tp(p?+exC(s)

Taking into account the contributions from both endpoints, the result for the entropy is

poLL
LS (L) = 2x lim(27rn)/ pdpnoy, (tr T')
0

n—1
c A 1
- §C(ﬁ 14_6&0(4) e—0
602 L2
c A
= §C(ﬁ) (3.34)

Here, pgp < L is a small value consistent with the near-endpoint estimates we have made for
tr(7"). We note an order of limits issue here: in passing to the last line we took n — 1 at fixed
po, rather than taking first a near-endpoint limit ,0(% /A — 0. We encountered a similar situation
above in (2.30). Note that the shift in the denominator that we have derived here regulates the
p = 0 endpoint of the integral, leading to a cancellation of the € factor in the numerator. We will
calculate C'(\) exactly below in §3.3.2.

12We will include their effect shortly.
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From the solution of the trace flow equation we can also understand the behavior of the twist
operators in the deformed theory. Changing from spherical to complex coordinates (z, z), the
expectation value of T'(z) near the endpoint, which we choose at z = z = 0, obtains

c C(N)

2 C
AUr2? 14500

(T(2)) = —¢ (3.35)

for n ~ 1. We will prove shortly that the undeformed result as A — 0 is C'(0) = 1, in which
case this reproduces the known CFT answer near an endpoint of the entangling region [57].
However, in the deformed theory we again find a nonperturbative denominator shift that changes
the behavior as z — 0. This can be translated into the OPE with the twist operators 7, recalling
that for an interval (u,v), we have [57]

(T(z))r, =

<T72(u, 0)7n(v,0)T(2))c (3.36)

Ta(,0)Tn(v,0))c

with the left hand side evaluated on the replicated space, and the right hand side calculated in flat
space. From (3.35) and (3.36), we see that the TT deformation changes the leading divergence
in the OPE between the stress tensor and the twist operator for the conical singularity. This is
a new instance in which the non-local behavior of the deformation is exhibited.

3.3.1 Leading calculation

Let us explain how the leading result C' (ﬁ) = 1 comes from the trace flow equation.
The effects of the curvature singularities in the replicated geometry can be taken into account
as in §2.3; near one of the endpoints,

,02 4 n252

2 __
ds® = o2

dp? +n?p?d¢? , 6 — 0, (3.37)

and the Ricci scalar evaluates to

52

RP = _2(n?—1)———
(n )(p2—|—n252)2

(3.38)
We will work with finite but small §, solve the conservation and trace flow equations, impose
regularity at p = 0, and then take § — 0. The limit will turn out to be finite in the presence of
the TT deformation.

The trace flow equation in polar coordinates reads

1
T+ TS = —iR@) - HT A (T;T$ - n2p2(T§>)2) . (3.39)

The smoothing parameter § only matters in the scalar curvature above, while we neglect it the
other terms and in the conservation equations. By rotational invariance near the endpoint, T,? =0
in the vacuum. The remaining conservation equation simplifies to

1
OpTY + 05T + ;(Tpp ~T§)=0. (3.40)
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Following steps similar to those in §2.3 gives (3.33) with C(A\/L?) = 1. This matches with
the one interval entropy LS’(L) = ¢/3 of the undeformed CFT. It is interesting that in order to
reproduce the A = 0 answer, one needs to keep e finite until the end of the calculation; this
illustrates rather explicitly that finite A is acting like a regulator for the conical singularity.

The details are interesting to display directly in the Poincaré case. The solution that is regular
as p — 0 for finite 9 is

1 1
(T = S (A+U) (T = S(1+V) (3.41)
with
n(p? +n262) + 25 (L — 1) AeR(2)
U:_\/ 12 n? ,V:M—W' (3.42)
/p2 + n2s2 U

Finally, taking § — 0, the resulting stress tensor is

) = (1— \/n+1;;2<;2 _1>>

1 1

(Ig) = —[1- (3.43)
A \/77+ 1;;2(%*1)
From this, setting 7 = 1,n = 1 — € and taking ¢ — 0, we read off the trace
Ac? 1
nOn (tr T)|p—1 = €o— ——5- (3.44)
/2
27 p (p2 + 6%)

This is of the form (3.33) with C(\/L?) = 1. Again, this indicates that \ itself regulates the
singularities, and it is consistent to maintain § < v/ throughout the calculation, so that the
regulator does not interfere with the effects of the deformation parameter .

3.3.2 All-orders result for the entropy

Let us now consider the higher-order contributions in A\. What makes the TT deformation special
from the point of view of the entanglement entropy is that all the A dependence comes from the
endpoints, where there is an enhanced rotational symmetry. This behavior is expected to be
universal, but the challenge is to extract the dependence on \/L?, that obviously cares about the
total size of the region.

Previously we remarked on the similarity between the de Sitter result (2.30) and the expression
(3.29) that we want to prove. This motivates us to consider the conformal transformation that
maps the domain of the dependence of the interval in Poincaré space to the de Sitter static patch.
This was used in [37] for CFTs, establishing the connection between the trace anomalies on the
sphere and the universal logarithmic term in the entropy, as well as providing a derivation of the
Ryu-Takayanagi formula for spherical regions. In general, this conformal map is not very useful
for QFTs away from fixed points: non-marginal couplings become spacetime dependent under
the conformal transformation. However, as we will shortly review, the conformal transformation
goes to the identity at the endpoints. The special localization property of T'T near the endpoints
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would then imply that the A dependence is not affected by such a transformation. We will now
analyze how this comes about.
We recall that the conformal map from the domain of dependence of the interval ! € (—r,r)
to the static patch is [37]
sin @ sinh(7/r) 1 cosf

0
YT Y sing cosh(t/r) "’ T T T Y s cosh(7/r) (3.45)

This transforms the metric as
ds® = —(dz°)? + (dz)? = Q(0,7)% (- sin® 0 dr? + 2 db?) (3.46)

with conformal factor 1
Q0 = . 3.47
(6,7) 1+ sin @ cosh(7/r) (347)

The size of the interval
L=2r (3.48)

becomes twice the radius of de Sitter. The domain of dependence of the interval maps to the
static patch:

T — +oo : (2% 2Y) = (£r,0); 6 = 0,7 : (2%, 2') = (0,£r). (3.49)

We will also need the euclidean version; after analytic continuation from 7/r to ¢, the conformal

factor becomes 1

20,0) = 1+sinf cos¢

As anticipated, this becomes trivial at both endpoints: Q(0, ¢) = Q(7,¢) = 1.
We would like to argue for the equality of the interval and dS entropies from the deformed

(3.50)

CFT side using this transformation. We start from the expression (3.34),

n—1

poKL
LS (L)=2x lim(27m)/ pdpndy,(trT) , (3.51)
0

localized at the endpoint. We now apply the (n-sheeted version of the) conformal transformation
(3.50) to de Sitter:

n—1

fok1
LS/(L) = 2 x lim 1 /0 06 d 0, (tx T3 2, (3.52)

with r = L/2 as found in (3.48). The conformal transformation has two effects: it produces the
Weyl anomaly in de Sitter, and it makes the 7T coupling \ spacetime-dependent. So we end up
with the new trace-flow equation

__c 2 2 (bpd o2 $\2
T = =5 =+ TAQ(0,0) (T9T¢ sin2 0 (7)) ) (3.53)

We have ignored the delta function curvature terms at the tips which, as before, will just fix the
integration constant.
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We have to solve the trace flow and conservation equations near the endpoint § — 0 (there
is a similar contribution from 6 — m). The conformal factor always goes to the identity at the
endpoints, 2,(0,¢) = 1, even in this replicated case; the problem then reduces to the symmetric
half-space division of §2.3. Note that all the dependence on the size of the region L = 2r has been
packaged into the Weyl anomaly, while the problem retains the rotational symmetry associated
to the fact that only the near-endpoint region contributes in the original problem. The solution
for 0, (trT) is then (2.28), and following the same steps as around that equation leads to

, c 1
LS (L) = 3 T (3.54)

This reproduces precisely the holographic answer.

This result is valid at large ¢ and to all orders in (fixed) Ac.!® Obtaining an exact result
for the entropy in a non-conformal theory is quite surprising and interesting in itself. As we
just discussed, the reasons for this stem from the properties of the trace flow equation and the
localization of the T'T contributions at the endpoints of the entangling region. This exact all-
orders match provides a very nontrivial test of the duality. Finally, we note that on the deformed
field theory side, we have computed LS’(L) but not S(L) itself. It will be interesting to explore
further the integration constant in the field theory side, and its potential role as a parameter in
the A deformed partition function.

Having reproduced the holographic result directly on the deformed CFT side, let us finally
return to the discussion of SSA. As in §3.2, we have that the spatial SSA is respected, while
the boosted SSA is violated, to all orders in Ac at large c. The differential version of the spatial
SSA inequality is probing very short scales near the endpoints of the region. This suggests that
we have spatial locality and a standard division of the system in terms of algebras of regions.
However, the boosted SSA behavior is consistent with time evolution, and modular evolution for
the complement, leading to highly nonlocal operators that cannot be reproduced from the local
algebra of the region. We will discuss these effects in more detail in §4.

4 Subregion dualities

Originally, when considering holographic dualities for a boundary subregion, the entanglement
wedge and causal wedge were proposed [31]. We will be interested in their fate in the deformed
theories. In this section we will review their properties in asymptotic AdS/CFT, and explain
some essential new features that arise in the deformed theories.

The entanglement wedge (EW)!* is defined as the domain of dependence of the region between
the RT surface and the boundary region R. This notion continues to exist in all the cutoff theories.
The causal wedge (CW) is defined by the bulk points which can be reached by intersecting future
directed and past directed rays thrown from the domain of dependence of the boundary region,

13Large ¢ was used in the de Sitter calculation for the factorization of 7T

MNote that the entanglement wedge is usually defined as the domain of the dependence of the region between
DIR] and the RT surface, but in our situation, part of D[R] might be time-like related with the RT surface, so we
choose this more restricted definition of the entanglement wedge.
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DIR]. This notion is tricky in the cutoff theories, as it is not always the case that signals
propagate fastest along the boundary and hence D[R] is not of clear significance [58]. However,
in the cutoff (A)dS/dS as well as the AdS/Poincaré theories, the de Sitter boundary preserves
this feature of AdS/CFT, and we will ultimately focus on these cases for our study of causal

wedge reconstruction. Again, in all versions of the deformed theory we can naturally study the
EW case.

4.1 Algebras, subregions and causality

We are working with a seed holographic CFT with emergent bulk locality, so that general relativity
and bulk effective field theory apply down to the string scale. To leading order in Gy, bulk
effective fields are free and one can use their wave equation and the extrapolate dictionary to
write them in terms of boundary operators (in the boundary at large c¢ these operators are
generalized free fields, GFF, which are gaussian fields). This allows us to map the algebra of

EFT bulk operators in some given bulk Cauchy slice to the algebra of low energy boundary
operators: APUKEFT — Abdy,GFF

4.1.1 On the definition of operators at a finite cutoff

In the deformed theories with a Dirichlet wall, we can characterize the boundary operators in
terms of the radial field momentum as in [14]. This is a natural generalization of the dictionary
for the boundary stress tensor in terms of the extrinsic curvature of the boundary [17].

In the presence of a cutoff surface, we can write a bulk operator in terms of cutoff boundary
operators by using the wave equation. Because of causality, we write the bulk operator as a linear
combination of boundary operators (one can think of this as a Bogoliubov transformation):

B(X) = /dmf(X|x)O(a:) : (4.1)

where X denotes the bulk point and x the boundary point. We can obtain an expression for the
kernel f in terms of correlators using the fact that to leading order in Gy, the bulk fields are
free, so we can just take the expectation value of the previous expression with O(z') and formally
invert the boundary two-point function'®:

f(X]a) = (@(X)0()) (4.2)
O(x) = / dz'O(@)((0(@)0('))) ™", (0(2)0(')) = 3z — ).

There are two differences between our story and the HKLL situation [6] where we have
asymptotic AdS: here f(X|z) generalizes the bulk-to-boundary correlator, containing a bulk-to-
cutoff surface correlator; and the two-point function of boundary operators will depend A. In
these expressions, we have not yet constrained the behavior of f(X|x) as X goes to the boundary
surface. In the presence of Dirichlet boundary conditions, we get the extrapolate dictionary

5Here we are using the notation O to denote the shadow operator. The shadow operator O for an operator O,
with dimension A and spin J in CFT, is defined by a dual operator with dimension d — A and spin J, where d is
the spacetime dimension. See for instance [59,60].
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by identifying the radial momenta at the cutoff boundary with O(z): IN®(X)[pay = O(x),
where N is the normal direction to the boundary. In general, the only complication of HKLL is
doing the inverse of the boundary correlator, which is only doable analytically if there is enough
symmetry to diagonalize explicitly the wave equation. The kernel f(X|z) should be though of as
a distribution. In Appendix A we lay this out for a particular case of interest.

4.1.2 Operator algebras and inclusions

Let us now discuss the algebraic properties from the point of view of the boundary theory. The
wedges CW and EW previously defined characterize bulk subregions to which we can associate
algebras of operators in effective field theory. These algebras of operators are by now well un-
derstood. In the case of the causal wedge, since it is a boundary construction, it contains all
low-energy local operators localized in D[R]:

Acw = Apr ={0(z), =z € D[R]}. (4.3)

The entanglement wedge is more complicated because it is a bulk construct, but as explained
in [5], it is constructed from local operators in R and their evolution with the density matrix:

Apw = Ar, = {p% O(z) pp", € R, s € R}. (4.4)

Here pr denotes the density matrix obtained by a division of the system which for the bulk
effective field theory is a spatial division along the Ryu-Takayanagi extremal surface. In our
deformed theories, this need not correspond to a local decomposition in the boundary theory. At
the same time, we should keep in mind that the Hamiltonian evolution is not generally local in
TT deformed theories. We will return to these aspects shortly, after deriving the commutator
structure of our algebras.

In the following, we will work directly with the boundary algebras Apg), Ar, which make no
reference to the bulk. We would like to explain some properties that they satisfy in the case of
interest with a large-radius bulk dual. First we will review the standard setup, and then come to
the deformations.

In asymptotic AdS, the causal wedge is claimed to be always contained in the entanglement
wedge [31,61]. This implies that Acw C Agw; in other words, in the effective theory there have
to be non-local operators acting within R that one is missing when considering D[R]. The natural
generator of non-local operators in R is the density matrix or modular hamiltonian Kr = —log pr
and, as shown in [5], the modular hamiltonian is enough to generate the operators in Ag, which
are non-local in D[R).

Beyond asymptotic AdS geometries, the causal wedge need not to be smaller than the entan-
glement wedge!'®. In fact, this is common for the duals of 7T deformed theories for a region R
which fills up less than half the space. We illustrate this schematically in Fig. 3.

In such a situation, the entanglement wedge of the complementary region R overlaps with
the causal wedge of R. In this setting, we are still going to consider local operators which inherit

There have been earlier works on subregions in the presence of finite boundaries. For instance, [62,63] discusses
a generalization of HRT in more generic spacetimes anchored to a holographic screen, analyzed in general relativity
(without a specific dual formulation). We thank D. Marolf for useful communication.
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Figure 3: A schematic illustration of the relationships between the regions described in the text, on a timeslice which
we can take for simplicity to be at the moment of time symmetry in the gravity-side geometry. We show both the Za
symmetric case where the interval R and its complement R are of the same size (left panel) and the case where they
are unequal (right panel). The Ryu-Takayanagi surface is indicated in blue, and it separates the bulk effective field
theory subregion r from its complement 7. The causal wedge of the smaller subregion is indicated in light green in
the asymmetric case, indicating that it exceeds the entanglement wedge (indicated by blue hatchmarks). This leads
to the intersection between the CW of the smaller subregion and the EW of the complementary region discussed in
the text. The purple arrows indicate the action of the bulk modular Hamiltonian [5] on probe bulk fields near the RT
surface near the boundary, projected to the pictured spatial slice. In the left picture, similarly to asymptotically AdS
spacetime, the RT surface intersects the boundary orthogonally, while generically in the deformed theories this is not
the case, and the modular evolution in the bulk has a component that is orthogonal to the boundary.

their locality from the extrapolate dictionary, since in the bulk we have a standard quantum field
theory. The structure of the commutators between various subregions depends somewhat on the
particular 7T + . .. theory under consideration, and we will present detailed calculations on both
sides of the duality for cutoff AdS/Poincaré and cutoff dS/dS, the cases with a well defined CW
up through order ¢. But in this general discussion, we will also note more general behaviors that
can arise (and which may be generic).

The causal wedge being larger than the entanglement wedge implies that there are 2 € D[R]
such that O(z) ¢ Ag, while for local unitary theories we are used to identifying the algebra of
operators in R with that of D[R]. We can quantify this effect by considering the largest region
E[R] such that Yz € E[R],O(x) € Ag,. In our holographic setting, one can characterize this
region explicitly. We depict that in Fig. 4. To contrast this with the standard case, it is useful
to recall that in local field theories there are operators (e.g. on point p in Fig. 4) that are not
in the algebra of R or R. This point can be causally influenced from either region. In the bulk
dual, these are points that are not included in EW[R] or EW[R]. In our case, however, a point
q is completely inside the domain of dependence D[R], but cannot be reconstructed from either
Ag, or Aj .

This has implications for the modular flow near the boundary of the region. In QFT’s, it is
standard for the modular Hamiltonian to be locally Rindler when acting on operators near the
boundary of the region dR, that is [Kg,O(z ~ OR)] = d%O(x), with & the boost generator. From
the previous discussion, we don’t expect this to be true anymore: for example, for R less than half
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Figure 4: The regions D[R] and D[R] for an asymmetric division of the system in the case of a boundary dSo
spacetime, whose Penrose diagram we depict here. The region E[R] for R the smaller subregion is indicated by
the dark blue hatchmarks. Operators at the point p can be causally influenced from either region and are not in
EWI[R] or EW[R]; this is familiar in asymptotic AdS/CFT. The point g illustrates a point in D[R] which is not in
E[R]. Operators at that point do not commute with those in the algebra ARS corresponding to the complementary
subsystem to R. We note that this point ¢ on the boundary is also not part of the EW of either R or R, since it can
be reached causally from both.

the space it is clear that this local behavior would quickly bring the operator outside of E[R]. One
can also get some guidance into this using the bulk: in the bulk, the modular hamiltonian acts
locally near the RT surface, which implies that it would act locally in the bulk near OR. In the
asymptotically AdS case, the RT surface hits the boundary orthogonally, implying that the bulk
modular flow near the RT surface near the boundary acts within R as a locally Rindler boost.
However, the generator of local bulk boosts won’t be parallel to the boundary in the deformed
theories, which implies that even close to OR, the modular hamiltonian can’t act locally in the
boundary. Because it acts locally in the bulk, we have that [Kg, O(z ~ OR)| = ﬁO(Cﬂ). Given
the presence of the holographic direction, this suggests than in addition to contributions from
the stress tensor, which generate 0y, , we will also get contributions from 7' T which generate
Ox ~ O~ This would be interesting to explore further in the future.

The EW for the complementary region R covers the rest of the bulk; the union of the entangle-
ment wedge of a region and its complement give the whole algebra Ar UA R, = Acrr,crr. These
entanglement wedge algebras, even if they are non-local in general, preserve the characteristic
property of algebras of subregions:

(Ar,, Ag,] = 0. (45)

This, combined with the previous point, implies that one can get nonzero commutators between
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elements of Ap and elements of Apg):

[Ag., Apr] # 0. (4.6)

That is, in the bulk the CW of a region can overlap with the EW of the complementary region!
This happens even in cases where the CW makes sense, such as the dS boundary example of
Fig. 4, or the AdS/Poincaré case in Fig. 5 below. We note that in this case it is possible to act
with a unitary in D[R], e.g. at point ¢ in Fig. 4, and change the entanglement entropy. This is
because the unitary involves operators that are not inside the algebra Apg, that is relevant for
the entropy of the region.

In the asymptotically AdS cases as previously mentioned, one generically encounters an EW[R]
that exceeds its causal wedge CW[R]. A clear example is the case with a region R consisting of
two disjoint intervals on the boundary, R = Ry U Rs. In those cases, the modular evolution does
not stay within Ag,, but it does act within the total region R, i.e. it acts very nonlocally within R.
However, in the asymptotically AdS case, the new feature we just described of [Ap , Aprj] # 0
does not arise. This new effect clearly requires careful consideration, and we will focus on it in
the next subsection. First let us finish laying out the various possibilities for the commutator
structure of our algebras in generality, just requiring bulk locality but no further specifications.

4.1.3 Implications of bulk locality for boundary locality

In this section, we are going to use the bulk to extract lessons about the locality of the algebras
that we are considering, in order to understand better their support. This is possible because we
just have a standard local theory in the bulk that allows us to do this.

From the bulk point of view, we have that the union of the entanglement wedge of a region
and its complement give the whole algebra Ag, U ARS = Agrr,crr- These entanglement wedge
algebras, even if they are non-local in general, preserve the characteristic property (4.5) of algebras
of subregions, even if [Ag , Ap(r)] # 0 necessarily. Let us discuss the different inclusion relations
between the entanglement and causal wedges, and their consequences.

When CW C EW for both R, R, we have a bulk region, denoted the causal shadow in [31]
that causal wedges can not reach. In other words, in these situations there are bulk operators
that can’t be reconstructed from either causal wedge: .AD[ R Y A piR) C AGFF,CFT-

However, if EW C CW for both regions, given that the union of the entanglement wedges
covers the whole bulk Cauchy slice, it is necessarily the case that there is causal intersection
Cn = CW[R] N CW[R] # 0.'7 The points in Cr, can be reconstructed from either CW[R] or
CWI(R] if HKLL continues to apply. A non-trivial Cr, implies that [AD[R],AD[ R]] # 0, or in other
words one can go faster through the bulk than through the boundary and thus the boundary
causal structure is not relevant. We will not consider this situation in the bulk of this paper.

Generically, the last possibility would be that EW[R] ¢ CW[R], CW[R] € EW|R] which could
result in either a causal shadow or a causal intersection. If there is a causal shadow as in the case
of a dS boundary described in detail in §4.4, the boundary causal structure is respected.

All these general properties lead to the following conclusion: in the presence of causal inter-

sections, the boundary causal structure becomes disrupted and the only meaningful dual of a

7In flat space, this is true upon adding the point at infinity.

29



subregion in this situation is the entanglement wedge. The entanglement wedge also has the nice
property that it divides the bulk into two pieces which correspond respectively to two boundary
subregions. We now return to the particularly subtle case (4.6) for the low energy fields, which
is realized for Poincaré and dS boundaries.

4.2 CW[R|NEW]|R] and the Hamiltonian and modular Hamiltonian evolutions

Having introduced the algebras and some general implications, we now focus on the essential
subtlety of the subregion dualities in the deformed theories identified above in (4.6). For this
purpose, we will consider our main cases of interest: (A)dS/dS and AdS/Poincaré, for which the
propagation is fastest on the boundary. The essential novelty is that [Az , Ap(g)] # 0 for finite
volume when R is smaller than half of the size of the system. That is, the causal wedge of R
intersects the entanglement wedge of R.

We can express this succinctly in the following way. Given EW reconstruction of EW[R)]
and HKLL reconstruction of CW[R], we have the formula for the reconstruction of some bulk

operator ®(X,) in this region

B(X cEWIRINCWIR) = [ dog [ ds 18, (X.o5) 070 (og)
R
= /D[R]J‘T(X#ED[R])UT (tprr),tr) O (xr) U (tpry tr)  (4.7)

We used [5] in the top line, and our version of HKLL [6] in the bottom line. We stress that
this notation for the bulk operators includes both the fields ¢ and their conjugate momenta 7y,
and as above we focus on their leading behavior as free fields without backreaction at order .
In the first line, we formulate the bulk operator via modular evolution; in the second line, we
have used Hamiltonian evolution to write it in terms of an operator at ¢t = tp, with U = Te i H
in terms of the Hamiltonian H.

Consider formulating a bulk field ¢ in the overlap region using the top line, and its conjugate
T4 at the same point using the bottom line of (4.7). First, we use the fact that [O(zr), O(xz)] = 0.
Thus in order to obtain the required nonzero canonical commutator in the bulk, [7(X), ¢(X’)] =

i6(X — X'), it must happen that

[pR7 O(xR)] 7é 0, [UD[R]v O(xR)] 7& 0, or [pR’ UD[R]] 7& 0, (48)

where we recall that R is a region with size less than half of the system (a finite interval in
AdS/Poincaré). Both pg and U are potentially subtle in our deformed theories. As noted above,
we cannot a priori assume that the Hilbert space behaves as in local quantum field theory, which
in the presence of a lattice regulator factorizes along the nominal boundary subregions R, R.
A priori this raises the possibility that there is no such division of the system in the deformed
theory, so that pp may act beyond the putative region R. Indeed, the bulk modular flow heads
into the bulk rather than staying at the boundary in our cases of interest (see Figs. 3 and 5),
because in the cutoff theories the RT surface does not intersect the boundary orthogonally as
discussed above.

However, by construction Ky 7 does not act in EW[R], including at the boundary R where
the local operators O(xg) reside. This we inferred above already in writing [Ar,, Az ] = 0. So it
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appears that the first commutator in (4.8) vanishes. In general we also cannot assume that the
Hamiltonian evolution acts within D[R]. But at least within low energy effective theory of the
vacuum in the boundary dS and Poincaré cases of interest, here we do have causal Hamiltonian
evolution, up to and including order ¢? effects on probe bulk fields. This suggests that the second
commuator in (4.8) vanishes. We stress that non-locality and acausality are not identical, as in
string theory, and the fact that propagation is fastest along the boundary in the present examples
is consistent with causality. This leaves the third commutator in (4.8),

R, Upr)] # 0. (4.9)

In any case, regardless of whether the nonlocality is to do with p, U or both, we can package the
novelty in the need for a nontrivial commutator (4.9).

In the bulk of this paper, we provide new computations of entanglement entropy, and of the
behavior of the stress energy on the Euclidean geometries relevant for the Rényi entropies and for

the density matrix itself. The ultimate interpretation of the intersection CW[R] N EW[R] must
respect all these results. We will return to discuss this briefly in the conclusions.

4.3 Case study: an interval in cutoff AdS

The simplest example of EW > CW is cutoff AdS. Recalling the discussion in §3.2, the entangling
surface is the same as in vacuum AdS, in Poincaré coordinates:

P2 =L2422 2€ (2e,/ L2+ 22). (4.10)

The difference is that it is anchored to z = z.. On the other hand, the causal wedge is delimited
by a semicircle centered at z = z.:

(z—2)2 +a2?=L% z2€(2e,L+2). (4.11)

We see that the CW contains the entanglement wedge because the causal wedge reaches further,
VI?+ 22 < L+ z.

In this situation, it is easy to get the EW and E[R] (defined around Fig. 4). One can get the
boundaries of E[R| by shooting light-rays from the RT surface towards the boundary. Since the
lightrays just follow the equation t = |\/L? + 22 — r|, the region E[R] is bounded by

t=4(/L2+ 22 — /22 + 22). (4.12)

The description of this phenomena is shown in Fig. 5. In this case, the proof that works for
asymptotic AdS, saying that EW should always be not smaller than CW [31,61,64], does not
apply for cutoff AdS. ¥

There are no caustics, so we expect that the algebra of the entanglement wedge is the same
as the algebra of E[R]: Agr, = Agir) C Apjg)- It would be nice to understand this in terms
of the modular flow, but we leave this for future work. Note that in this case, the analogue of

8The proof based on the inequality of expansions of surfaces in GR [61,64], does not hold for cutoff surfaces in
general. The reason is that there might exist causal wedges with negative expansions, which violate the assumption
we made for asymptotic AdS. We thank A. Wall for discussions.
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CW vesus EW in cutoff AdS

U

Figure 5: CW vesus EW in cutoff AdS. When we move the boundary from z = 0 to z = z., CW becomes larger
than EW. The modular Hamiltonian evolution near the boundary is given by the inward pointing red arrow for R,
and points outwardds for R.

the causal wedge if we replace D[R] with E[R] is the same as the entanglement wedge. In this
situation one can’t travel faster through the bulk than through the boundary, since outgoing light
rays thrown through the boundary will never make it back the boundary unless they are parallel
to it; equivalently, we have that [Apg|, Ap(z)] = 0.

Given these results, let us return to the violation of boosted SSA above in §3. Along the
lines of what we just discussed, we can compute the EW associated to the boosted intervals
A, B, in Fig. 2. This shows that EW[A] ¢ E[A U B], and hence we do not have the inclusion
property for the corresponding algebras, Aa, € Aaup),- This explains why the boosted SSA
does not have to hold: we do not have (3.3), so we cannot use the monotonicity property (3.4).
In contrast, CW[A] C CW[A U BJ, and hence Ap(4 € Apaup) in the low energy theory of
the bulk gravitational fields. For these algebras we would have a violation of boosted SSA. For
this reason, it is more natural to associate the algebra of local operators with Ag, and not with
Ap(r)-

A closely related aspect is that a unitary transformation localized inside D[R] can change
the entropy. From the holographic dual, this is a simple consequence of EW[R] ¢ CW[R]. A
perturbation in CW[R] but not in EW[R] can causally influence the extremal surface and hence
change the entropy.
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4.4 Case study: dS/dS w, =%

In this section, we make a more detailed study of subregions and entropy for a full throat of
dS/dS, with w. = 7£/2, dual to a trajectory TT + Ay + curvature. .. as described in §2. We will
provide both gravity-side and field theory side calculations, finding explicit agreement. First, in
the next section we introduce the geometry of the CW and EW, both for more general w,. and for
the special case w. = 7¢/2. Then in the following two sections we analyze the entropy and the
structure of the density matrix at large ¢ by analyzing in two ways the equations for the stress
energy (2.9).

4.4.1 The subregions and algebras

For general w,, we find the phenomenon noted above that the CW can exceed the EW, that the
CW of one region can intersect the EW of the complementary one, and that there can be causal
shadows. This is depicted in an example via numerically sampling the solution of the geodesic
equations passing through domain of dependence in Fig. 6.

2D EW/CW

-1.5f

Figure 6: A more general example. We consider region |R| = ¢ /2 and w. = 7¢/3. We define z = w/{ cos ¢ and
y = w/fsin ¢ in the dS/dS slicing. Red region: causal wedge in R; Blue region: causal wedge of R; Black curve:
extremal surface (entanglement wedge); Green curve: the boundary w = w.. The causal wedges in the plot are
made by sampling numerically several initial conditions for geodesics starting from the domain of dependence.

We can understand the (A)dS/dS causal shadow very simply geometrically, as follows. Con-
sider the boundary dSo depicted above in Fig. 4. If the whole diamond is contained in the dS
patch, the causal wedge is just the trivial bulk extension. However, if the diamond gets truncated
into a hexagon at the spacelike future boundary of the dSs (as happens for R > 7/ at t = 0), the
causal wedge is the union of causal wedges that derive from the union of diamonds which live
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inside D[R]. Since there is no entanglement shadow, we will focus on the entropies and properties
of modular Hamiltonian evolution below.

In the particular case w. = wf/2, these features become extreme. The extremal surface,
which is always a great circle, is now located along the boundary for any unequal division of the
system: R # mf. As a result, the corresponding E[R < m/] only contains R itself. That in turn
implies that the modular Hamiltonian acts trivially on the operators in R < wf. Conversely,
the entanglement wedge of a region R > 7w/ covers the entire bulk space r at time t = 0. The
modular flow points straight inward from the RT surface in this case. These features were also
noted in the earlier work [65]. Below in §5 we will comment on the implications for quantum
error correction and redundancy of the encoding of the bulk into the operator algebras of the
dual deformed CFT.

4.4.2 Entanglement and the modular Hamiltonian in the 2d dual via the deformed
stress energy

In this section we will consider in detail the density matrix and entanglement structure of the
dS/dS w. = wf/2 theory. Dividing the boundary at 7 = 0 along an interval of proper size R (see
Fig. 3), we distinguish three main cases. If R is half the space, i.e. R = nf = R, there is additional
symmmetry in the problem: the equal division into R and R implies that D[R] and D[R] are
complementary static patches in the boundary dSs, preserving the corresponding time translation
symmetry. In this special case, CW = EW. The calculation of the entanglement entropy was
completed on the deformed CFT side in [15] (for any w. < 7¢/2), matching the bulk entropy
obtained via Ryu-Takayanagi. We will shortly generalize this to obtain more information from
the Rényi entropies in this case, showing that the system is maximally mixed for R less than or
equal to half the system. That indicates that the modular flow is trivial, since the density matrix
is proportional to the identity. In fact, as we will see shortly, this example exhibits the effect
already at large ¢, and we will show that it persists to the next order under a small deformation.
In order to analyze this, we will require the stress energy tensor satisfying (2.9) in the appro-
priate geometry. Let us start with the pac man diagram for pg, for arbitrary interval R. This
is two hemispheres, sewn together along R and with independent Dirichlet boundary conditions
for the fields at R on each half. We will be interested in the solutions for T,; both on this pac
man geometry for pg itself, as well as the replicated geometry obtained by stitching together n

copies of this in order to compute tr(p}%) and the Rényi entropies.

The euclidean metric is

ds® = r?(d6* + sin? 0d¢?) (4.13)

with ¢ the analytic continuation of the dSs static patch time. When the system is divided in half,
R = 7{, the region R is the locus ¢ = 0,0 < 8 < 7, and similarly for a smaller region R < 7/
which covers a smaller range of . For R greater than half, the region extends to include both
the above and the locus ¢ = 7,0 < 6 < (R — 7wl) /7.

Using the Christoffel symbols,

ngj = —cosfsinb, ngg = cot 6 (4.14)
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we find that the equations (2.9) become
0 = 8¢T$ + g (sin® HTf) + Tg) cos @ sin 6
0 = 00T] +04(Ty) + (Tj — T) cot 6

w0 o _ _RY e TNTET? — (T9)? sin? ) (4.15)
0 ¢ 24T WA 07¢ 0 '

with appropriate boundary conditions for a given application. For a calculation of the Rényi
entropies, one needs a boundary condition which specifies that the theory is in the desired state,
e.g. the vacuum. This condition is straightforward in the R = 7w/ case with extra symmetry,
as well as in the AdS/Poincaré case analyzed above in §3, but we have not implemented it in
general. For the pac man itself, we may consider different entries in the density matrix, which
correspond to different choices of boundary conditions.

In the next two subsections, we will apply these equations determining the large-c stress
energy tensor in two ways. First, we will calculate the zeroth and first Rényi entropies in the
symmetry case, R = wf. Then, we will analyze the behavior of solutions on the pac man, with
different choices of R. In both cases, we find that the independent dual deformed-CFT calculation
matches the gravity side.

4.4.3 Rényi entropies and maximal mixing

In §2.3 we revisited the calculation of the Rényi entropies for the half and half division of the
system, R = 7/, in the TT and TT + A3 theories on dSs in [36] [15]. We will now use those
results to compute the Rényi entropy.

Rényi entropies and maximal mixing

We need to evaluate
log trp" = e lo Zn (4.16)
T—n WP =1 8z '

with Z,, the partition function on the replicated manifold. This is determined by the VEV of the
stress tensor trace, via (2.12)

Sp =

Oy log Z, = —2mnr / df sin 6 (T + T(f) (4.17)
0

As a check, for n = 1 the angular integral is trivial, and we reproduce the result for the dS/dS
sphere partition function [15]

8y log Zy (r) = —877" (1 — 0+ 122) . (4.18)
The simplest Rényi entropy to evaluate is for n = 0, and we will use this to establish that the
density matrix is maximally mixed at large ¢ and for dSs at w. = 5£. In this case, we will also
be able to obtain the entropies for smaller intervals, and match with the gravity side result.
We have
Sp = logtrgl = logdimHr = log Z . (4.19)
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At n = 0, our expressions in §2.3 for the stress energy tensor give, up to terms that vanish as

6 — 0,
21 e
0= T\ / TR (4.20)

If we fix the integration constant via the gravity side, so that the partition function vanishes at

Oy log Zy = —2mr / df sin 0 (ntrT)
0

r = 0, we obtain
_ 27 A

o 421
V12" (4.21)

We will choose the integration constant this way in general in this section. It will interesting

So(r)

to analyze the integration constant directly in the deformed QFT, but we leave that for future
work.

Let us compare this with the entanglement entropy,

Si(r) = garcsin(h) =
12

(4.22)

For n = 1, corresponding to bulk AdS, the entropy is the arcsinh, and S;(r) < Sp(r) for all r. So

the state is not maximally mixed. However, for n = —1 (bulk dS), we have
So(r) = $1(r) = ™ for r= /2 (4.23)
o(r) = 51(r) = & for 7=/ .

In gravity language, this corresponds to the central slice w. = 5/.

Recall that S; < Sp always, and S; = Sy if and only if the state is maximally mixed,

~ dimHp

PR (4.24)

So we learn that for bulk dS at the central slice, the density matrix corresponding to tracing over
half of the system is maximally mixed. This also implies that the entanglement spectrum is flat,
and all the Rényi entropies have to be the same. This is quite different from what happens in the
AdS case, where the Rényi entropies for n > 1 are different (but we also do not have maximal
mixing, so there is no contradiction).

Perturbation away from large ¢

Moreover, we can see in general that this statement of maximal mixing will survive a small
deformation, at least at the first order in the deformation. First, to make sure to keep track of
the normalization, let us introduce the following notation and conventions. Note that the order
c and full density matrices will in general have different rank since we will get some correction
081 = 51— S%O) to the (finite) entropy from stringy and/or quantum effects. (Recall that the
entropy is finite because we truncate to real energy levels in the dressed theory.) We can embed
the smaller of these two matrices in the larger one by adding at least el?S!l rows and columns
with entries 0 to the one with the smaller entropy. The leading order density matrix is diagonal,

(0)
with a block of the form 6*510 1 0 o- The full density matrix p; has a block of dimension
el Xe"l

e x €51, So in this notation, they are matrices of the same dimension but different rank.
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Then for the perturbed Rényi entropies, we can write:
n 0)\n—
str(pf) = ntr((pt”)"6p1). (4.25)

For n = 1 this must vanish, since the normalized density matrix has tr(ép;) = 0. In fact, for
higher n any potential contribution to (4.25) would be second order in the deformation: the
matrix pgo) is proportional to the identity, and the difference in its rank from the full rank is
part of the deformation. Since we have one power of dp; in (4.25) already, that difference in
rank would arise only at second order. Thus we can ignore the difference in rank, and use that
(,ogo))" x 1 to conclude that (4.25) vanishes for all n at least to first order in the deformation.
This means that the flat entanglement spectrum persists at least to first order in the correction.

This result depended crucially on the flat entanglement spectrum at leading order.

Entropies for non-symmetric subsystems and random pure states

For dS/dS with w. = 7¢/2, and division into half (R = n/), we have just found a maximally
mixed state (4.24) in the large ¢ approximation. This means that the same should be true
for smaller subsystems, since the density matrix is the identity in every basis of the Hilbert
space. Physically, since every degree of freedom inside the subsystem is maximally entangled
with something outside, doing a further partial trace will not change this. So (4.24) (and as a
corollary the flat entanglement spectrum) should also hold for smaller systems with R < 7/.
The large-c and perturbative maximal mixing agrees with the gravity-side result. The ex-
tremal curve collapses to the boundary, consistent with a trivial modular Hamiltonian for smaller
subregions, R < wf. So in this case we also match the boundary and bulk modular Hamiltonians.
From the gravity side, the entropy is
mc Af
6 T
and Af is the angular size of the subsystem. This is just the length of the geodesic inside the

S(AG) = (4.26)

great circle at w. = /.

For a subsystem that is larger than half of the system size, we use that the global state is
pure, and hence its entropy should equal the entropy of the complement, for which we established
the maximal mixing. Combining both results obtains

c Af , A<
S(4) = 6 {27‘(’ —-A0 , A>T (4.27)

This also follows simply from the length of geodesics on the sphere.

For a small subsystem this gives a volume law; so small subsystems behave as (approximately)
maximally mixed. However, once the size of the subsystem reaches half of the system size, the
density matrix contains enough information to realize that the complete state is pure. These
properties identify the de Sitter vacuum state as a random pure state [66]. This aspect was
already noted in [65]. A similar behavior is observed in the holographic mutual information,
which changes from zero to a nonzero value as more than half of the system is probed. It would
be interesting to understand in more detail how the random pure state structure arises from the
TT + Ay flow.
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4.4.4 Properties of the modular Hamiltonian from stress energy on the pac man

In order to understand the behavior of the modular Hamiltonian for R # 7¢, we must exhibit
its novel action on D[R] for R > 7/ as well as its reduced action for R < 7f. In the previous
section, we derived the latter statement via a calculation of the maximally mixed density matrix
for R < wf. In this section, we will study the 2d theory’s stress energy directly on the pac
man geometry relevant for computing the density matrix (or equivalently K) itself, finding new
behaviors for R # w.

In this approach, we will study our differential equations using the method of characteristics,
focusing on the present example of dS/dS at w, = wf/2. First, let us analyze this in more
generality to see the effect of the curvature and the Ay ~ (1 — n)/m\ term in the trace flow
equation. Following the method briefly reviewed in Appendix B, we find a system of equations

of the form

dsU + BoyU = C . (4.28)
The eigenvalues of B which determine the reality of the characteristics are
A ! (X (cos(26) — 1)) + si 9\/ 1 — cAR/24 )
= ———— | A\ug(cos - sinfy/ca —1—c 0
+ (1= ) 2 2
1 - .

= — </\u2(cos(20) —1)) £sinfy/—n — c)\R/247r>
(1 — )\ul)
do

= — 4.29
o’ (4.29)

where A = 7\, uy = T(f and ug = Tf . In the last step we used equation (B.2). This formula
cleanly distinguishes different cases. For n = 1 (the AdS/dS case) it is elliptic: A+ are complex.
For the dS/dS theory, in our special case w. = 7f/2 of interest in this section, it is parabolic and
we have real characteristics. For dS/dS with w, < 7¢/2 cutoff, however, it is elliptic. As in our
discussion of the causal wedge, the boundary dS case is generally closer to the original AdS/CFT
duality than the boundary cylinder case; in comparing our results in this section with those in
Appendix B, we see another manifestation of that.

Let us continue to focus on the w, = wf/2 case. As explained in the previous subsection, we
have an effect on K that arises first at large ¢, where these equations for T, apply. We want to
understand the effect on the modular Hamiltonian of changing R from half the system R = 7/
to above or below this. This is a question only about the locus A on which we put boundary
conditions: in all cases we are considering the same set of PDEs on the same space (here a 2-
sphere). One gets a well posed initial value problem if the set of characteristics have the property
that they each cross A precisely once. If some characteristics cross A more than once, this can
lead to singularities or discontinuities in the solution. If they don’t all cross A, then the problem
is underdetermined.

From this, we can now explain the essential difference between R = nf, R > n/{, and R < 7w/
in this language. To do that in a very simple way way, let us consider in particular the set of
characteristics that we get by setting us = T, (j’ = (0. These are very simple, going around the
sphere in the ¢ direction, along curves of constant 6 (since uy = 0, they satisfy Ay = j—g =0 as
easily seen from (4.29) recalling that the square root term is zero).
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First, consider region R = w¢/2. In this case, the characteristics cross R precisely once each.
So putting the boundary condition on R in this case constitutes good initial data. Now we see
exactly what happens in the R # 7/ cases. If we extend the region to R > 7/, some of these
characteristics cross twice. This is the case that corresponds to there being discontinuities arising
from the crossing of different characteristics. To see that here, consider boundary conditions
as above on the original half-space locus, but on the extra portion of R we can put different
boundary conditions. The characteristics that emanate from that additional region within R > 7/
generically inersect the first set which emanate from the original half space region.

The crossing of characteristics is a harbinger of discontinuities in the solution, requiring
additional data to define it. This occurs precisely in the situation noted above in §4.2 where a
nontrivial commutator (4.8) must arise. The fact that this introduces discontinuities, requiring
extra data to define patchwise solutions for T,;, may be tantamount to extending the mouth of
the pac man, indicating an action of the modular Hamiltonian beyond R. However, this is a
Euclidean calculation, and in general the crossing of the characteristics can occur away from the
equatorial slice containing R and R (although for some entries of the matrix, the crossing might
occur on this locus).

Conversely, if we consider R < 7f, then the PDEs are underdetermined. In sum, these
deformed-CFT side calculations fit with the gravity-side predictions for novel behavior of the
modular Hamiltonian in our system when R deviates from half the space.

5 Comments on quantum error correction

In the previous sections, we derived some features of subregion dualities and algebras for the
nonlocal 7T + . .. deformed theories which are holographically dual to patches of (A)dS, probing
them with explicit calculations of entropy in key cases. We will now make more explicit some
implications for redundant encoding and quantum error correction, making contact with related
literature. We will also discuss the potential of quantum simulation for quantum cosmology. Let
us begin by reviewing some of the basic ideas.

5.1 Redundant encoding and quantum error correction

The phenomenon of redundant encoding in holography is closely related to quantum error cor-
rection in quantum information theory —see for instance [4,8,67,68]. In the language of quantum
error correction, the effective field theory of gravity in the bulk is described by the code subspace,
which corresponds to the low energy Hilbert space in the dual CFT. The whole Hilbert space
in the CFT, whose qubits are called physical qubits, is used to redundantly encode quantum
information, while qubits in the code subspace are called logical qubits. In this formalism, if one
could recover the bulk points from a region R in the boundary, then it equivalently says that
the bulk point is protected from erasing Hilbert space in the region R, while it is not protected
from erasing the Hilbert space in region R. The error here is understood as the erasing error,
and the modular flow or HKLL formula is understood as the recovery map from the boundary
to the bulk. Thus, the language of (operator) quantum error correction codes is identified with
redundant encoding of bulk points in the gravity side description of the system.
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One starting point of holographic error correction is from the commutator puzzle: considering
a bulk operator ®(X) where X is at the center of pure AdS, and a boundary operator ¢(x) where
x is an arbitrary boundary point on the same time slice, since X and x are space-like separated
we expect

[@(X), p(2)] = 0. (5.1)

However, this formula is only valid in the code subspace. In fact, if it holds as an operator
equation for all points x on the boundary, by Schur’s lemma we see the operator could only
be the identity, which is a contradiction since we expect holographic duality should work for
all operators on each side. A simple example of this phenomenon is the three-partition (see for
instance, a recent review in [7]). In Fig. 7, the operator in the middle is protected by the quantum
error correction code and cannot be recovered from any of the three boundaries Ry, Ro, R3, but
it could be recovered by any of two of these three regions, equivalently by any one of the three
boundaries Ri, Ro, R3 by CW or EW reconstruction.

A toy model for this from quantum error correction theory is the Three-Qutrit Code, which
has a 27 dimensional physical Hilbert space and a 3 dimensional code subspace. The commutator
is only vanishing in the code subspace [4,7,8,68].

Three—Qutrit Code

Figure 7: The Three-Qutrit Code example.

5.2 The level of redundancy in our reconstructions

First, consider CW reconstruction based on the HKLL prescription which we generalized to our
case in (4.1) and §A. A clear feature of this in our geometries is the existence of the causal
shadow. In EW reconstruction, in contrast, the entangling surface divides the bulk into two
complementary regions, and any point in the bulk at ¢ = 0 could either be recovered by the
algebra Apg, associated to region R, or by Apg associated to region R. This is called geometric
complementarity [65]. However, coming back to CW reconstruction, which is based on geodesics
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shooting from domain of dependence of D[R], there can exist the shadow region in the bulk,
CS[R; R], whose elements can neither be recovered by Apir) nor Ap g

The existence of the causal shadow is generic in the geometries we are considering; for instance,
this occurs in dS/dS as illustrated in Fig. 6. This indicates that there are some bulk points inside
the code subspace that are protected both from erasing Apgj or A DIR]" This corresonds to them
not being reconstructable using these algebras. Moreover, if we take the three-partite example,
see Fig. 8, the region of the causal shadow CS[Ry; Ry] is shown in red. The operator of the purple
point in the bulk could not be recovered by the HKLL formula by any of Ry, Rs, R3 or Ry, but
it could be recovered by Ry and Rs.

On the other hand, we may use EW reconstruction, or a combination of EW and CW
reconstruction, in our problem. We could perhaps optimally work with the reconstruction
max(EW[R], CW[R]), namely, choosing the larger of the two bulk regions between CW and
EW associated to a given boundary region R. Thus, in the dS/dS slicing, for R smaller than
half of the boundary, we may choose CW[R] for R and EW[R] for R. As we stressed in §4.2, the
intersection between CW|[R] and EW[R] is not empty. This means that quantum information in
the causal shadow is reconstructable overall. This overlap is an interesting violation of geometric
complementarity as defined in [65].

Given this violation of geometric complementarity, it would be interesting to investigate the
quantum no-cloning theorem in cutoff holography.!® The fact that one can recover the same state
from both R and R suggests that the encoding maps based on CW[R] or EW[R] can be used
to copy states. However, we are using two different maps which, due to (4.9), do not commute,
and so the no-cloning theorem need not be violated. We hope to return to these issues in future
work.

Causal shadow

Figure 8: A schematic plot for causal shadow. This figure is only illustrative and the causal wedges may not be
precise.

9We thank K. Kato for asking about this, and J. Preskill for useful discussions.
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5.3 Local correctability

Let us now discuss local correctability, a stronger criterion for error correction codes than that
they correct errors. We begin by reviewing the condition studied in the recent work [65]; it
starts from the following structure which arises in a lattice system with a factorized Hilbert space
defined on different spatial regions. Consider a holographic error correction code and a connected
region R given by three disjoint intervals R;, H, Ro. Now we consider erasing the middle region
H. If we could erase it and could still recover the information in the bulk from R’ = R;URs, then
there is a recovery map R based on CW or EW reconstruction that could correct the error. Now
we could demand a stronger condition: that the error in H could be corrected by a recovery map
that only acts on a region that is only a little bit larger than H. This is called local correctability
and it is stronger than the usual error correcting criterion.

Local correctability could be guaranteed by the quantum Markov condition [69]. As we
discussed above in §3, for three disjoint regions A, B and C, the quantum Markov condition says
that

0= I(A;C|B) = S(AB) + S(BC) — S(ABC) — S(B) . (5.2)

If this condition is satisfied, meaning that strong subadditivity is saturated, then there exists a
recovery map RZPBC that takes pap towards papc known as the Petz map. In the holographic
setting, we need to set A = R, B = R’ and C = H, so that the Petz map if it exists would
achieve the recovery while only acting on R/, i.e. acting locally near the excised region H. It is
now straightforward to show that if the quantum Markov condition (5.2) is satisfied, then

S(H)+S(R) =S5 (R) . (5.3)

One can check this in the large ¢ approximation to the entropy provided by Ryu-Takayanagi,
something that we have reproduced on the deformed QFT side in the case studies we analyzed
in this work.

The work in [65] finds that generically local correctability is violated for flat space and a
hemisphere, the latter being essentially our dS/dS case at w. = 7f/2. Here we will describe
the status of this criterion in our two main case studies of cutoff dS/dS and AdS/Poincaré. In
dS/dS geometry with boundary w. (2.1), we denote |Ri| = |Ra| = $A¢ and |H| = (1 —7)Ad.
Demanding the quantum Markov condition (5.3) for w. = 7/2 would require

(1 =r)A¢+ [rA¢+ (1 —r)A¢] =rA¢ (5.4)

since the entropy is given by the RT surface length, which is just the great circle along the
boundary in this case. This only allows r = 1, i.e. H = 0, implying the absence of local
correctability [65]. One can analyze this similarly for w. < 7¢/2. Another example of this occurs
in our other case study of cutoff AdS/Poincaré using our expression (3.17) for the entropy. This
is likely generic; indeed the absence of local correctibility in the bulk flat space case [65] applies
to sufficiently strongly cut off (A)dS models, once the boundary goes beneath the (A)dS radius
scale. We expect that the violation of local correctability might be a generic feature providing
another probe of the nonlocality of the corresponding dual TT + ... deformed quantum field
theories.
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5.4 Quantum simulation

The proposal of cutoff (A)dS/TT duality is not only useful for probing integrable trajectories
deforming quantum field theory, but also helpful for understanding novel holographic dualities.
This is particularly relevant for de Sitter space and cosmology, where we would like to characterize
connections between quantum gravity as it arises in nature, and quantum information. The study
might benefit from the rapid development of quantum information technology (see, for instance
[70,71]).2° We hope that this work might inspire future research for designing corresponding
novel toy models of quantum error correction codes. Based on the results in this paper, the
corresponding toy models should satisfy the following properties:

e Finite entanglement entropy given by the RT formula for entanglement entropy at large ¢
and large seed theory 'tHooft coupling. In this work, we obtained the derivative LS’(L)
explicitly on both sides of the duality. It would be interesting to nail down the integration
constant in the 2d description; the RT prescription yields a finite entropy.

e Violation of the boosted SSA, indicating that new operators become accessible to a boosted
observer (as in string theory) as described in §3.

e Violation of geometric complementarity if we consider both CW and EW reconstruction,
i.e. the overlap described in §4.2.

e Violation of local correctability.

The above list summarizes the level of non-locality that we find in the cutoff (A)dS/TT hologra-
phy. We leave the development of constructing the corresponding quantum information theoretic
codes to future research.

5.5 Final comments

Finally, we note some potential connections to other recent developments in quantum gravity.
Recently, important progress has been made in another direction by deriving the Page curve
for black hole evaporation using entanglement wedge reconstruction (for instance, see [75-81]).
It would be very interesting to understand if these results generalize to the deformed theories
which characterize finite bulk patches of spacetime. As mentioned in [75], combining these
developments may help generalize the results to more realistic spacetimes (see also [80]). Isolating
a radially cutoff portion of the bulk seed AdS theory, in addition to being essential for the further
deformation to a de Sitter bulk, may also facilitate decomposition of the system into different
sectors (including the islands related to Hawking radiation).

In general, there is a wide variety of important dynamical effects in realistic quantum gravity,
some of them dominating over Euclidean quantum gravity contributions. It would be interesting
to understand the generalization of our results beyond large ¢, something that likely involves the
decay of de Sitter to a more general FRW evolution [23] where the precision of the holographic
description grows asymptotically at late times.

20Related research includes time dependent brane dynamics [72,73] or toy models for bubble collision and cosmic
phase transition [74].
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A HKLL formula in dS/dS slicing

As an example of the generalized HKLL [6, 82] formula, we describe a reconstruction in dS/dS
where the Dirichlet wall is at %e,

ds3_y = dw? + sin? (%) (—d7'2 + ¢% cosh? %dg{)?) . (A.1)

We consider a scalar field ® moving in the dSs spacetime with a dSs slicing. The scalar field ¢
follows the Klein-Gordon equation

1 v 2 _
<\/_—95u (vV=99"'8,) —m ) ®=0, (A.2)

where m is the mass of the scalar field. We solve this equation by separation of variables. We
assume

® o< x(w)p(7, 9) (A.3)

where we assume ¢ could solve the Klein-Gordon equation in d = 2, with the metric,

ds?_, = —dr?® + (2 cosh® %dqﬁ? . (A4)
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Thus we reduce the original equation to the following two equations
925+ ~sech? (T) 026 — Ltanh (1) 0,6 — m3_pp =
—orp+ 725e¢ (Z> bP — Ztan (Z) o —mg_op =0,

X + %cot (%) DwX + csc? (%) mi_ox —mix =0, (A.5)

where mg—s is the mass from the Klein-Gordon equation in d = 2. Here we choose the following
solution

(bn,p,(wa T, ¢) = OuXu(w)yn,u(T)Sn(¢) ) (A.6)

where A, n are labelling different modes. pu is continuous and n is discrete. The functions and

constants are defined by
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where
1
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and the function P and @) are generalized Legendre functions, which are related to the hyperge-
ometric function by

1 [14z]"? 1—x
H — (- 1:1 —
l/(x) F(l—/.l,) |:1—.ZL':| 2 1( v,v+ 1 13 9 )7
P2 T(u4+v+1) 1 l+pu+v 24+pu+v 31
u _ 14/2 K H e
Q ( ) Qu+1 F(V+3/2) x#+y+1(1 1') ( 9 ; 92 ,V+2 2) . (Ag)

The choice of the above wavefunction satisfies

e Consistent normalization. The normalization is fixed by the Klein-Gordon inner product

(@ ®np) = =i [ a5 (60,800%) = Buadln =) (4.10)

where ¥ is an arbitrary time slice and the indices a are labelling spatial coordinates. The
normalization is fixed by some integral formulas of P and @ used in [83,84]. Here we assume
that € R.

e Dirichlet wall. The condition ®(w = 7f/2) = 0 is satisfied, in order to fix the ratio between
the prefactors of P and Q.

According to the above quantization, we could write down a formal form of the HKLL formula,
using the language of [85]. Denoting boundary coordinates by = and bulk coordinates by X, the
scalar field quantization for the bulk field ® and the boundary field ¢ are given by

B(X) = [ dkarFu(X)
o(x) = /dkakfk(x) . (A.11)

Here for simplicity, we only write down the annihilation operator part, and the full expression
should contain its conjugates. In our case, we also have k = (n,u) and [dk =Y, [ du. Note

that
/ drp(z) [ (x) / da / dkay fi(z / dkViepay - (A.12)

Vo = [ defi(@)f @) (A13)

If the matrix

could be inverted, namely, we could find V! such that

/ dpVip(V) ™y = Okg » (A.14)
then we have

ag = /dp(V)lpq/dxw(x)f;(x) ) (A.15)
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Then we find the existence of the HKLL formula
o(x) = [ dkorBo) = [k [ apv) ", [ g (a)eta) 0)
= /de(X|x)<,0(x) , (A.16)
where
K(Xla) = [ ko (@)(V) ™ Fu(X) (A7)
Specifying our case, we have X = (w,z) and = = (7, ¢). The function F, f and V are listed as

Fn,u(X) = CuXu(w)yn,u(T)Sn(¢) )

/
fn,u(x) = Cuanu (w = 7;) yn,u(T)Sn(¢) = Cﬂé(% V)yn,u(T)Sn(¢) )
14

(T (3(=ip+v+1))T (3(ip+v+1)) +2cot (3m(v+ip)) T (5(—ip+v+2)) T (3(in+v+2)))
T (3(~ip— ) T(3(~ip+ v +1))°T (3(ip +v +1))

Vn,,u;ﬁ,ﬂ =C C’—E(,u, )5*(,&7 V)(Snn/dTyn,,u(T)y;,ﬁ(T) ) (A'18)

and the HKLL kernel is given by

K(X[2) = ZFWMU(%WﬂMW (A.19)

In this dS/dS slicing example we are studying, we find it is not easy to obtain a full analytic
form of the HKLL kernel. Due to the study of [86], the HKLL kernel should be understood as a
formal distribution in the sense of algebraic quantum field theory, considering that this integral
might be divergent.

This is an example showing that the HKLL formula in the geometries we are studying in
the main text, is analytically trackable. We leave more detailed studies of the HKLL formula in
Fourier space, or other patches, or cutoff AdS to future works.

B Characteristics for Stress Tensor PDEs and additional exam-
ples

As discussed in the main text, it is of interest for various tests and applications of the dualities
to understand the dressed stress energy as defined by the trace flow and conservation equations
(2.9). After solving for one of the three components of Ty, using the trace flow equation, the
conservation equations take the form of a system of two quasilinear PDEs for two functions [87],
which we will denote by the 2-vector U.
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In any system of coordinates x1, x2, the PDEs take the form
8301(7—1—3((7,3:1,3:2)812(7:5(ﬁ,m1,x2) (B.l)

with the 2 x 2 matrix B and 2-vector C depending on the coordinates and U (but not depending
on derivatives of U/).

If the eigenvalues \; of B = PAP~! A = diag(\1, \2) are real, the PDEs define real charac-
teristic curves. This corresponds to either hyperbolic or parabolic PDEs; if the characteristics
are complex the system is elliptic. These are useful for constructing solutions by tracing out the
behavior of U on each characteristic. This yields a well defined problem if we specify initial data
on a curve which crosses each characteristic once.

We define two families of characteristics as [87]

dx dxo dx2

=1 = i =\ B.2
& = ds = dn, (B.2)

with the functions u1, us evolving according to the equation

n

Y P M“ zy%%r (B.3)

j=1

In the main text, in section §4.4.4 we analyze this for dS/dS, finding a useful set of real
characteristics for the case w. = m¢/2. For the remainder of this appendix, we will similarly
analyze the case of a flat 2d spacetime. This is a simple example which will also provide a
consistency check of the A\ — 0 limit.

In Euclidean flat coordinates d72 + dz? (which could apply to either the cylinder or Poincaré,
depending on whether we compactify x), we have the conservation equations

0. T +0,TF = 0
T 8Tla'j xr 8Txm T _
OT] + GO TE + GredeTT = 0 (B.4)

where we use the trace flow equation to eliminate 7). Defining the shorthand
7 =uy, TF = ug, A=A, co=1—n (B.5)

the trace flow equation is 3 3
ug + Aud — co/ A\

T2 (ur,u2) = — = B.6
v (u1,uz) - (B.6)

at the level of pure gravity. Defining U= (u1,us9), our system of PDEs is
0.U + Bo,U =0 (B.7)

with
B =

0 1
o T @ﬂgl' (B.8)
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It is straightforward to calculate the eigenvalues and eigenvectors of this matrix B, diagonalizing
it as B = PAP~! with A = diag(\1, \2). In the present case of flat geometry, we have zero on
the RHS of (B.7) and the equations for the two sets of characteristics labeled by ¢ = 1,2 is

dr .
il - -1°% .0 —
s, 1, li = i, E Pw ds U 0. (B.9)
We find that B has eigenvalues
1 1 ~
A Mg+ ves —1) =Ap = ——— (Aug £ /1) . B.10
£ = ) M E Ve 1) = e = e G V) (B10)

These enter into (B.9).

We note that in the pure CFT case, ¢o = 1 —n = 0 = ), these eigenvalues are always complex,
corresponding to elliptic PDEs. It is a (minor) check to see that the solutions are indeed smooth
in that limiting case. This persists to A # 0 for any ¢z < 1. In holographic theories, this
corresponds to the bulk-AdSs case.

Next, we notice that in contrast, the Ay deformation corresponding to bulk 3d Minkowski
space (ca = 1) or bulk dS3 (c2 > 1) has real eigenvalues for all values of uj,us. In these cases,
each of the two sets of characteristics are generically real.

The nonlinearities of the PDEs — which were introduced by the deformation via the trace flow
equation — may be expected to generically lead the characteristics to cross, indicating disconti-
nuities. We leave a more detailed investigation of this flat 2d case and its implications to future
work, focusing on the dS/dS w. = 7¢/2 example in the main text. For now, we just note the
precise correspondence we obtained from the simple formula (B.10) between the bulk geometry
in the holographic case and the ellipticity (or not) of the boundary theory stress energy equations
(2.9).
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