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Abstract

Connected N -point amplitudes in quantum field theory are enhanced
by a factor of N ! in appropriate regimes of kinematics and couplings,
but the non-perturbative analysis of this for collider physics applications
is subtle. We resolve this question for N -point correlation functions of
cosmological perturbations in multifield inflation, and comment on its ap-
plication to primordial non-Gaussianity. We find that they are calculably
N !-enhanced using a simple model for the mixing of the field sectors which
leads to a convolution of their probability distributions. This effect leads
to model-dependent but interesting prospects for enhanced observational
sensitivity.
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1 Introduction

The behavior of multi-point correlation functions and S-matrix amplitudes at
large particle number is of interest for various applications. At tree-level, there
is an N ! enhancement of large N N -point correlation functions in perturbative
quantum field theory as initially studied by Voloshin in [1] and developed by
many authors [2] [3] [4] [5] [6].

For S-matrix amplitudes that produce N outgoing quanta, this occurs be-
cause the contributions from low-order interaction vertices build up many tree
diagrams, of order N !. For some regimes of couplings and kinematics, this
enhancement is known to survive the sum over tree diagrams (which can be
derived equivalently from the classical field configuration) and to persist in the
presence of sufficiently small quantum corrections. The interaction probability –
obtained by squaring the amplitude and integrating over final particle momenta
– contains one N ! in the denominator in the phase space for identical particles,
leaving a net enhancement. For example, in λφ4 theory, the 1 → N amplitude
near threshold is of order λN/2N ! + loops, and the decay probability is of order
λNN ! + loops.
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In the setting of particle decays and scattering it is not clear to what extent
this effect survives in the quantum theory when λN is not perturbatively small.
As noted in [5], if it did persist it would have dramatic implications for Higgs
physics, leading to a large decay width for the Higgs: the Higgs would fail to be
a good quasiparticle at a relatively low energy scale. More recent analyses [7]
do not obtain such growth in somewhat similar quantities; still, by investigating
this they uncover an interesting emergent ’tHooft expansion arising from a semi-
classical approximation, related to results in large-charge quantum field theory
[8]. From this perspective, it seems interesting in contrast that we will find a
positive result for factorial growth in the setting of early universe cosmology,
where the required calculations are actually easier to control.

In time-dependent backgrounds, such as that arising in early universe cos-
mology, we may ask a similar question for 0 → N processes. A prime example
is the set of connected N -point in-in correlation functions relevant for studies
of primordial non-Gaussianity, the moments of the probability distribution for
scalar fluctuations. The main object of interest there is the wavefuntion of pri-
mordial perturbations which seed the structure in the universe. We may write
it schematically as

Ψ(ζ(x), γ(x), {χ(x)}; {λ}) (1)

where ζ and γ are the scalar and tensor perturbations, {χ} represents addi-
tional sectors of fields not directly observable, and {λ} denotes the parameters
(couplings) of the theory that generates the perturbations. The probability dis-
tribution for the observables ζ, γ is derived from this by tracing over the χ
sector,

L(ζ(x), γ(x)|{λ}) = Tr[ρ|ζγ〉〈ζγ|] =

∫
Dχ|Ψ|2, ρ = Trχ[|Ψ〉〈Ψ|]. (2)

Observations indicate that this is at least approximately Gaussian [10]. A
Gaussian distribution arises in free field theory when the system starts in its
ground state (or any other Gaussian initial state). In any other situation, the
state is non-Gaussian at some level. For a perturbative quantum field theory,
the non-Gaussianity vanishes in the limit of zero couplings {λ} → 0. But
for mildly perturbative couplings (such as those arising in particle physics at
appropriate scales, with λ ∼ 10−2), the effects of interactions are not arbitrarily
small and it is interesting to compute their effects and constrain them with data
as systematically as possible.

In situations where the quantum fields in the early universe interact arbi-
trarily weakly, one can immediately characterize this via low-point correlation
functions. These are already rich with different possible shapes in kinematic
space [9, 10] which encode various aspects of the dynamics. However, even
within the class of field theories with perturbative couplings λ < 1, interac-
tion effects can build up during inflation [12][13][14] and reheating [15]. This in
turn can lead to non-Gaussianity that is not well captured by the lowest-point
correlation function [14][15][16][17][18][19].1

1See also [20] for an interesting analysis of multifield evolution beyond the observable
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The structure of the paper is as follows: After explaining qualitatively why
theN ! enhancement is tractable in dS space in Section 2, we present the methods
in detail in section 3. We then present the enhancement for a toy theory that
is fully solvable, and prove it for a large class of theories in section 4. In section
5, we investigate implications of this for primordial non-Gaussianity searches,
and in section 6 we summarize and mention directions for further research.

2 Simplifications of dS space and local
non-Gaussianity

It is perhaps surprising that we are able to derive a general N ! enhancement
for correlation functions in an inflationary setting while no such result exists
for Minkowski space. The results on Minkowski space are accessible in specific
regimes of coupling and kinematics in the theory of interest. For example, [1]
focuses on λφ4 and [4] on the weak-coupling multi-particle limit λn → ε, with
λ being the coupling, n the number of particles produced and ε fixed.

The simplicity of dS space comes in the freezing out of the modes after
horizon crossing. In the multifield context, there remains meaningful dynamics
outside the horizon, and the dilution of gradients enables the stochastic ap-
proach to inflation [11][12] which descends from the full quantum theory as in
[13]. Those approaches are able to resum some of the loop contributions by
exploiting the fact that −kη � 1, where η ∼ −e−Ht/H is the proper time
which decays at late time exponentially in FRW time t. In QFT in Minkowski
space, one has much less control over the loop effects that could spoil the tree-
level enhancement of the correlation functions. That is why specific regimes of
the phase-space were enforced by hand in the initial investigations of the flat
spacetime problem. In the cosmological case, the accelerated expansion itself
restricts the phase space naturally.

This is not the first time this phenomenon of a greater simplicity in de Sitter
than in flat spacetime has arisen. It has even made an appearance in rigorous
mathematics (related to physics): the proof of stability of Kerr black holes [21]
pertains in de Sitter spacetime but not otherwise. This is for a similar reason,
involving the dilution of perturbations from the accelerated expansion.

The multifield inflationary scenarios that generate local non-Gaussianity
captures this simplicity. It enables us to analyze large tails of the primor-
dial scalar perturbations in a controlled way [17]. After the exit from inflation
and all the long modes are frozen out, we mix the additional field sectors with
the inflaton. As we will see, in the mixing, dS helps us again by suppressing
the momentum conjugate to the inflaton by a3 and enabling us to write the
wavefunction evolved by the mixing Hamiltonian as a simple shift in field space.

It would be interesting to explore whether single-field inflationary pertur-
bations can produce the same N!-enhanced correlation functions that we find

horizon and its relation to multipoint correlators and local inferences.
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here2. There, correlation functions would go like (assuming the tree diagrams
constructively add up)

〈ζ1 · · · ζn〉 ∼ N !λαN (1 + c1λ
βN2 + . . . ) (3)

with α and β being constants depending on the order of the interaction and λ
a dimensionless coupling constant. For example, for a cubic interaction, α = 1
and β = 2, and for a quartic interaction, α = 1

2 and β = 1. The leading loop
effects come from joining any 2 lines with a propagator, and any two lines at a
point respectively. These loop effects can be very large and require resumming.
For λφ4 in some regimes, previews work [4] was able to resum the contributions
controlled by λN2, relegating the question to the effect of those controlled by
λN . Even those may be calculable, although this case seems more similar to
the particle physics case ([7] versus [5]), something that would be interesting to
generalize to cosmological correlators. We will leave this to future work.

3 General Setup and Methods

Observations of cosmological scalar3 perturbations ζ(x) may be compared to
those predicted by a theoretical probability distribution depending on some
parameters {λ}. The likelihood, or probability of the data given the theory, is
given by squaring and tracing over the non-observable fields as in (2):

L(ζ(x)|{λ}) =

∫
Dχ|Ψ(ζ(x), χ(x); {λ})|2. (4)

Ideally we would compute this functional theoretically, and compare it to
data directly. At CMB scales, we would evaluate it on the map; large scale
structure may enable a volume’s worth of data points, and in [17] we were led
to shorter-scale probes. This determines whether, according to the theory, the
data is higher-probability with null values {λ} = 0 or for some nonzero values
of the couplings (and with what significance). That is not always tractable, so
it is useful to work with other quantities derived from the full likelihood.

The set of connected correlation functions of ζ is a useful quantity, which is
sometimes easier to compute than the full probability distribution. These are
generated by W (J), defined by

eW (J) =

∫
Dζe

∫
JζL(ζ|{λ}) (5)

by taking N functional derivatives with respect to J :

〈ζk1 . . . ζkN
〉C =

δN

δJk1
. . . δJkN

W (J)

∣∣∣∣
Jki

=0

(6)

2This goes beyond the low-point functions analyzed in e.g. [22][23][24]) following early
work including [11][25].

3From now on we suppress the tensor perturbations, which have not been detected at least
as of this writing. However, our analysis can be straightforwardly generalized to include tensor
modes.
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setting J to zero at the end. We will find that these connected correlators scale
like N ! in a wide class of inflationary scenarios with at least one additional light
field. In some cases, there is also an exponential enhancement ∼ λNr , with λr a
ratio of couplings in the model.

To simplify the analysis, we will often work with another quantity derived
from the full likelihood – the histogram of temperature fluctuations, also known
as the one-point probability density function. Given a realization of the field,
we can count points with a given fluctuation ζ̂:

Nζ̂ = k3
max

∫
dx′δ(ζ(x′)− ζ̂) (7)

where 1/kmax is the resolution of the survey, which for simplicity is assumed to
be uniform. We can compare this to the average of the histogram according to
the field-theoretic distribution (4), given by

〈Nζ̂〉 = k3
max

∫
dx′
∫
Dδζ(x)L(ζ(x)|{λ})δ(ζ(x′)− ζ̂) (8)

This is the probability of measuring a given value of ζ, ζ̂ at one point, having
traced out the field at other points. It can also be used to calculate the N point
functions at a single point. In scenarios containing one or more additional light
non-shift-symmetric fields present during inflation, this theoretical averaged his-
togram is determined by a combination of the stochastic methods of Starobinsky
as in [12], and the mixing between field sectors. In different regimes one or the
other of these may be relevant. We will review this and make use of it below.

3.1 Local non-Gaussianity

A standard form of non-Gaussianity with amplitude parameterized by f local
NL

is sensitive to the presence of one or more additional fields χ. If these are
light, they develop a variance during inflation similar to that of the inflaton
perturbations δφ. But unlike the inflaton field, their super-horizon interactions
are not constrained by symmetries, and they may imprint nonlinearities on
the scalar perturbations via a variety of mechanisms [15][26]. Their evolution
outside the horizon is ultralocal, as we will review shortly. At the level of
the bispectrum, the local shape of non-Gaussianity, which contains correlations
between long and short modes, can only be generated if at least one additional
field is present [22][24].

In this section, we will set up a class of models of this kind and determine the
relative importance of the bispectrum versus other aspects of the distribution,
including the power spectrum and higher point correlators. We will make some
special choices in specifying the scenario in order to make the calculations as
simple as possible. After deriving the factorial enhancement explicitly in a
simple example, we will show that it extends to a much wider class of models.

Consider a system with two fields, the inflaton φ and another scalar χ. We
denote the wave functional of the perturbations δφ(x) and χ(x) as Ψ(δφ(x), χ(x), t);
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we will eventually trace out χ because ζ ∼ Hδφ/φ̇ will be the directly observed
scalar perturbation. We are interested for simplicity in cases where the scalar
perturbation is dominated by the mostly-Gaussian fluctuations of δφ, but where
there is an additional, potentially very-non-Gaussian contribution, which will
dominate in higher-N N -point functions of δφ. This is somewhat analogous
to the cases in [14], although the origin of the enhanced non-Gaussianity will
be different (coming from factorial enhancements of connected correlation func-
tions). As above, the probability distribution at time t0 will be given by the
functional integral

P (δφ) =

∫
Dχ|Ψ(δφ, χ, t0)|2 = Tr[ρ|δφ〉〈δφ|] (9)

where ρ =
∫
Dχ|Ψ〉〈Ψ| is the density matrix obtained by tracing out χ.

There is a wide range of initial conditions that lead to inflation; see [27, 28]
for some recent developments. However, we will simply start from the Bunch-
Davies vacuum. This is a conservative choice for our purposes, as it avoids
introducing non-Gaussianity at the level of the initial state. We would like
to understand the possible N! enhancement of 0 → N processes in the time
dependent background, so we start in the vacuum, with no particles in the
initial state.

To separate issues we will prescribe various time-dependent couplings which
can be mediated by fields that evolve outside the horizon, e.g. at reheating,
as discussed extensively in the early literature on multifield inflation and non-
Gaussianity such as [26]. In particular, we will introduce mixing between χ and
δφ after they have evolved independently over ∼ Ne e-foldings.

To begin, for each mode k, there is a time tc,k ∼ log(k/k∗)/H at which it
has just exited the horizon. Let us denote by tc the time at which all modes
accessible in the CMB have exited the horizon. At this time, as just mentioned,
we have a direct product state

Ψ(δφ, χ, tc) = ψG(δφ, tc)ψ⊥(χ, tc) (10)

where we are neglecting slow-roll corrections and hence ψG is the approximately
Gaussian state of the inflaton fluctuations, of the form

ψG(f) ∼
√

det(C) exp(−fC−1f) (11)

with covariance matrix

C ∼ δ(k + k′)Pδφ(k), Pδφ(k) ∼ H2

k3
(12)

encoding scale invariant perturbations.
There are in principle many choices for the state of the transverse sector

and its dynamics. We will consider a light field χ, of mass mχ � H, starting
in its ground state. For the full range of χ , we take its potential energy V (χ)
to be subdominant to the inflaton potential in sourcing inflation; the slow roll
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conditions are satisfied separately in the χ directions. The interactions in the
χ sector build up over a large number of e-foldings Ne, with each mode outside
the horizon affected by a stochastic distribution of shorter modes [12][11]. In
the next section, we will illustrate this buildup of nonlinearities. In some cases
we may focus on the late-time limit, and its equilibrium 1-point probability
distribution. Here each ‘point’ is a patch of size the correlation length, RS
described below, and the distribution obtained by tracing over the other patches
is the equilibrium solution to the appropriate Fokker-Planck equation [12]∫

Dχ(x 6= x0)|Ψ⊥(χ)|2 → ρeq ∼ Neqe−4π2V (χ(x0))/3H4

(13)

where Neq is a normalization factor. This was worked out in detail, with a
focus on the λχ4 theory in [12]. Subleading corrections to this classical stochas-
tic approximation and its derivation from the full quantum field theory were
examined in [13].

Similar results hold for multiple χ fields, and other potentials, but with an
interesting subtlety. To explain what we mean by this, let us focus on potentials
of the form

V (χ) = µ4−p|χ|p (14)

This is a particular family of models motivated by the potential-flattening effects
of multiple, generically massive, fields as we review further below [29]. The
behavior at the origin in (14) may be smoothed out by integrating in additional
fields, but for the present discussion this will not be necessary and in fact the
form (14) leads to a very simple analysis.

The Fokker-Planck equation for the one-point pdf of the long modes of χ
takes the form

∂ρ1

∂t
=
H3

8π2

∂2ρ1

∂χ2
+

1

3H

∂

∂χ
(V ′(χ)ρ1) (15)

The equilbrium solution arises from setting ∂ρ1/∂t = 0. To capture the ap-
proach to equilibrium (when it pertains), we need more general solutions. It is
useful to work as reviewed in [17] in a basis of eigenstates of the operator on
the right hand side, which gives an analogue Schrodinger problem [12](
− ∂

∂χ2
+ [v′(χ)2 − v′′(χ)]

)
Φn(χ) =

(
− ∂

∂χ
+ v(χ)

)(
∂

∂χ
+ v(χ)

)
Φn(χ) =

8π2Λn
H3

Φn(χ)

(16)
with v(χ) = 4π2V (χ)/3H4. The effective potential w(χ) ≡ v′(χ)2−v′′(χ) in this
problem leads to a vanishing lowest eigenvalue, Λ0 = 0; this corresponds to the
solution ∝ e−v(χ) (13) as can be seen immediately from the middle form of (16).
When the nonzero eigenvalues Λn>0 are gapped, as we approach equilibrium
the non-equilibrium terms are suppressed exponentially, ∼ e−Λn(t−t0).

In the family of models (14), the effective Schrodinger potential w(χ) has a
delta function potential well at the origin which holds the ground state (or a
smoothed version with Λ∗ turned on). (This comes from the v′′(χ) term, with
the derivatives acting on the cusp at the origin.) For p > 1, w(χ) → ∞ as
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|χ| → ∞ and the energy levels are discrete. For p = 1, w(χ) approaches a
positive constant at large field values: there is a continuum above a gap, with
Λgap/H ∼ (µ/H)6. For p < 1, w(χ) → 0 as |χ| → ∞, leading to an ungapped
continuum of excited states. It is straightforward to verify in this formalism
that the p = 0 case reproduces free field theory fluctuations.

3.2 Mixing with φ and the probability distribution for ζ

Finally at a late time t0, to convert χ to δφ, we introduce a mixing interaction

Smix =

∫
dt

∫
dx a(t)3Fmix(χ)φ̇2 (17)

with support between times t0 and t0 + ∆t. We can understand the effect of

this interaction by noting that during inflation, φ̇ = φ̇(t) + δφ̇(x, t), where the
first term is the leading homogeneous piece. Thus, the interaction is, to leading
order

Smix ∼
∫
dt

∫
dx φ̇[a(t)3δφ̇]Fmix(χ) (18)

We can write this in terms of the conjugate momentum to the inflaton fluctua-
tion δφ, Πδφ = a(t)3δφ̇ leading to a mixing Hamiltonian

Hmix =

∫
dx φ̇ΠδφFmix(χ) (19)

that dominates over the free Hamiltonian, as described in [17]; for completeness
we briefly summarize the setup here. The operator Πδφ is the generator of
translation in field space and so the evolution over ∆t is just a shift of the
wavefunction:

Ψ(χ, δφ, t0 + ∆t) = Ψ(χ, δφ+ φ̇∆tFmix(χ), t0) (20)

Putting all this together, the likelihood for δφ ∼ ζφ̇/H is then given to good
approximation by

L(δφ|{λ}, κ) =

∫
Dχ0 |ψ⊥(χ0, t0)|2 |ΨG(δφ+ κFmix(χ0))|2 (21)

up to 1/Ne corrections. Here we have defined κ ≡ φ̇∆t. After this step of evolu-
tion, we postulate that reheating quickly leads to a local thermal distribution,
with δφ ∼ ζφ̇/H distributed according to the likelihood (21). Given this, ζ
remains constant during the remaining evolution outside the horizon, and (21)
contains the primordial non-Gaussianity.

For the case where we reach the equilibrium distribution in the χ sector,
the one-point pdf for δφ, defined as in (8), is easily computed by Gaussian
integration

〈Nδφ̂〉 =

∫
d~χ0Neq exp(−4π2V (~χ0)/3H4)

exp(−(δφ̂+κFmix(~χ0))2/2σ2)√
2πσ

,

(22)
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where we used (13), and we have allowed for the possibility of multiple χ fields.
Here the width σ is given by

1

2σ2
= C−1

x′,x′ + 4C−1
x′,⊥(C−1

⊥,⊥)−1C−1
⊥,x′ (23)

where C is the covariance matrix in position space, and ⊥ denotes points not
equal to x′. This width is of order H. Again, (23) can be traded for the

ζ̂ ∼ Hδφ̂/φ̇ histogram.

3.3 Regime of applicability of the equilibrium distribution

Let us now spell out the regime of applicability of the equilibrium distribution.
This depends in part on the relative size of various relevant patches.

In the derivation of the equilibrium distribution, following [12] let us denote
the correlation length as

RS ∼ H−1eH/Λ1 . (24)

As reviewed in [17], this can be read off from the two point correlation function.
We must compare this to two other scales. First, we have the size of the

observable patch of the universe,

Robs =
1

H
ene (25)

where ne < 60 is the total number of efoldings of phenomenological inflation.
The third scale of interest is the scale of resolution of the CMB, or of some
shorter-scale probe such as PBHs. This we will parameterize as

Rres ∼
1

H
ene−∆ne (26)

The number of independent patches is

NP =

(
Robs
RS

)3

(27)

To have more than one patch in the observable universe, each of which larger
than the resolution, we need

ene−∆ne < RSH < ene (28)

In other words, the equilibrium distribution applies in a straightforward way
for

1

ne
<

Λ1

H
<

1

ne −∆ne
(29)

where the eigenvalues Λn depend on the model parameters as determined by

(16). For example, for the p = 1 model V (χ) = µ3χ we find Λ1

H ∼
µ6

H6 , while for

the p = 4 model V (χ) ∼ λχ4 we have Λ1

H ∼
√
λ [12].
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If we restricted attention to the CMB, then this particular scenario, with
the χ sector reaching the equilibrium distribution, pertains for a rather partic-
ular value of the coupling in this family of models (although one which might
arise in a rich potential landscape). Moreover, once it reaches equilibrium, the
contribution χ makes to the fluctuations is very blue. For shorter scale probes,
such as primordial black holes, there is a wide window of applicability as de-
scribed in [17]. However, at least in that context the stochastic evolution of χ
is only applicable to the leading observables if the potential drifts outward, for
reasons explained in [17]. As we will review further below, the mixing interac-
tion itself can introduce strong non-Gaussianity associated with the tail of the
distribution.

3.4 Flattened directions in field space and Non-Gaussian
tails

The effect of ~χ on the histogram for δφ̂ can be understood analytically to some
extent. We will be particularly interested in the tails of the distribution. To
see whether or not the Gaussian tail dominates for δφ̂ � H, consider field
configurations where the Gaussian suppression is canceled by the ~χ0 field:

F (~χ0,tail) ' −δφ̂/κ. (30)

In that regime, the probability is suppressed by exp(−4π2V (~χ0,tail)/3H
4). If

in this direction (or directions) in field space, the potential V (~χ0,tail) is flatter

than quadratic in δφ̂, then the Non-Gaussian tail dominates over the Gaussian at
sufficiently large δφ̂. In order to be potentially observable, the overall probability
of this tail must be larger than 1/NP where NP is the number of independent
data points in the survey volume: roughly,∫

tail

dδφ̂
Neq√

2π
exp(−4π2V (~χ0,tail(δφ̂))/3H4) >

1

NP
(31)

Flattened potentials arise naturally from adjustments of heavier fields as
in [29] as well as for other reasons such as those studied in [31][32]. In fact,
constraining the Non-Gaussian tail in our scenario gives us a new way to probe
large field ranges, in the χ sector rather than the inflaton sector. The less
efficient our conversion is (i.e. for smaller mixing κ), the larger the field range
is that we probe.4 Here, we probe the field range via the quantum (effectively
stochastic) fluctuations of χ rather than the classical motion of χ, and via non-
Gaussianity rather than the tensor to scalar ratio.

Of course, the distributions differ in other ways than asymptotically on the
tail. In some cases, including an axionic χ field, the Non-Gaussian histogram
contains an intermediate region where it exceeds the Gaussian, before rejoining
the Gaussian tail further out. When probability moves to a region away from
the origin in δφ̂, this is made up by a suppression of probabiliy near the origin.

4This is somewhat reminiscent of observations in [26].
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Low-point moments are sensitive to the latter effect, and it is a quantitative
question to determine which measurements best capture the difference in the two
distributions. PBH formation is directly sensitive to the tail, as we analyzed in
[17]. But other parts of the distribution may lead to other signals and constraints
to take into account. We will comment on this briefly after deriving the factorial
enhancement in a wide class of multifield models.

4 The generating functional for connected N-
point functions and N ! enhancement

One tractable probe of the distribution is its moments, the N -point correlation
functions. Also from a purely theoretical point of view, we would simply like to
deteremine the fate of the factorial enhancement [1] in our cosmological setting.

We can estimate the N dependence of the N -point functions by first extract-
ing the connected ones by computing the generating functional

Z(J) = e−W [J] =

∫
Dδφ L[δφ|λ, κ] e−

∫
Jδφ (32)

with the connected N -point function given by

δNW

δJk1
. . . δJkN

∣∣∣∣
Jki

=0

∼ 〈δφk1
. . . δφkN

〉C . (33)

and the disconnected diagrams obtained from a similar formula with W (J)
replaced with Z(J). For our case, the likelihood takes the special form (21), so
we get

e−W [J] =

∫
Dχ0|ψ⊥[χ0]|2

∫
DδφPG[δφ− κF (χ0)]e−

∫
Jδφ (34)

The path integral over δφ is a Gaussian, and gives

e−W [J] ∼ eJCJ
∫
Dχ0|ψ⊥[χ0]|2e−

∫
κJF (χ0) (35)

where C is the Gaussian covariance (12). We will discuss saddle point estimates
for the χ0 integral below, working with the 1-point pdf (histogram).

But first, we will derive W (J) for a special choice of ψ⊥ and F (χ) which is
nontrivial but completely calculable in the full quantum field theory. For the
transverse state, we will simply take a Gaussian ψG(χ0) (11). For the mixing
interaction, we consider

F (χ0) =
χ2

0

M
+ χ0 (36)

This form arose from interesting (p)reheating dynamics in [15]. If the mass
parameter M is of order H, this is fully nonlinear; the effective coupling is
H/M .
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4.1 Full field theory calculation in a special case

For this case, the result is

W [J ] ∼
∫
dkdk′

√
Pδφ(k)Jk

[
δk,k′ + κ2

(
δkk′ + κ

J−k+k′

M

√
Pδφ(k)Pδφ(k′)

)−1
]√

Pδφ(k′)Jk′

− 1

2
Tr log

(
δkk′ + κ

J−k+k′

M

√
Pδφ(k)Pδφ(k′)

)
+ const

(37)

Evaluating the derivatives (33) after expanding W [J ] in a power series in J
gives us the following result for the N -point function. From the top line of (37)
we obtain, for N > 2, 5

〈δφN 〉|0 ∼
κN

MN−2
δ(
∑

k)Pδφ(k1)Pδφ(|k1 + k2|)Pδφ(|k1 + k2 + k3|) . . . Pδφ(|k1 + · · ·+ kN−2|)Pδφ(kN )

+ permutations

∼ κNN ! (38)

which has the structure of a tree diagram. From the second line we obtain

〈δφN 〉|1 ∼
κN

MN
δ(
∑

k)

∫
d3kPδφ(k)Pδφ(|k1 + k|)Pδφ(|k2 + k1 + k|) . . . Pδφ(|kN−1 + · · ·+ k1 + k|)

+ permutations

∼ κNN ! (39)

This has the structure of a loop diagram. These contributions both have the ex-
pected scaling with momenta for a nearly scale-invariant theory. The amplitude
is enhanced by N !. The overall level of non-Gaussianity of the map is naively of

order 〈δφ(x)N 〉c
〈δφ(x)2〉N/2 ∼ N !κN

(
H
M

)N−2
from (38), but this does not generally reflect

the actual observable level.
For more general ψ⊥(χ) and F (χ), we can obtain similar results, now using a

saddle point approximation to the integral. Shortly we will see that for a rather
generic (but not entire) nonlinear function, the order N term in the expansion of
W [J ] has no factorial suppression. Hence, N -point correlators obtained by Nth
functional derivative will be factorially enhanced. To make this clear, we can
study a 1d integral version of the problem, the histogram of scalar fluctuations
defined above. We will show this in the next subsection.

4.2 More general theories and the factorial enhancement

We would like to understand how general the factorial enhancement is given
a more generic model than the one just analyzed. Clearly small perturbations
around the example above will not change the conclusion. More generally, we

5The N -point functions for ζ are obtained by the rescaling ζ ∼ Hδφ/φ̇.
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~k1
~k2

~kN−1
~kN· · ·

~k1

~k2

~k3

~k4

~kN

· · ·

Figure 1: A diagrammatic representation of the two contributions to the N -
point function described in the text, (38) on the left and (39) on the right.

can analyze this by considering the histogram version of the integral (35). This
suffices to capture the N-point functions at coincident points, and hence it is
enough to determine the factorial structure. (However, it does not necessarily
capture the strongest tails in the full quantum field theory.) For this exercise, let
us consider the histogram arising from the equilibrium distribution [12] discussed
above:

Z(J) = e−W (J) ∼
∫
d~χ0 exp

(
−4π2V (~χ0)

3H4
− κJF (~χ0)

)
. (40)

We have not included the eJC
−1J term here as it only contributes to the 2-

point function, or the normalization since this drops out of the N point function
growth. The N -point functions are obtained by taking N ordinary derivatives
of W (J), which still captures the combinatorial factors. These depend on the
behavior of the coefficients in a series expansion of W (J) (or Z(J) for the
disconnected diagrams).

We can assess the combinatorial factor using the structure of the integrals
that arise in the expansion with respect to J . The disconnected diagrams are
generated by

Z(J) =
∑
n

znκ
nJn (41)

The corresponding disconnected N point functions go like zNN !κN . So these
have a factorial enhancement if the coefficients zn are not suppressed by 1/n!, in
which case the series has a finite radius of convergence (possibly zero, meaning
the series is only asymptotic). For that to be the case, the function Z(J)
should not be entire. One way that a function can fail to be entire is if it
diverges somewhere in the complex κ plane. This in turn depends on whether
the potential V (~χ0) grows more quickly than F (~χ0) in every direction in field
space. If not, then the disconnected diagrams have a factorial growth, and the
distribution has a non-Gaussian tail at sufficiently large δφ̂, as discussed above.

For the connected N point functions derived from W (J) we have a similar
criterion for a factorial enhancement. This may have an enhancement even when

14



the disconnected correlators do not (one can see an example of this simply from
the fact that taking the logarithm leads to non-analyticity at the zeros of (40)).

We proceed by evaluating the integral by saddle point. The saddle point
equation for χ∗0I is:

4π2∂IV (~χ∗0)

3H4
+ κJ∂IF (~χ∗0) = 0 (42)

It will be useful to express the function F evaluated on the solution to this
equation by a power series

F (~χ∗0(J)) =
∞∑
n=0

anJ
n (43)

The saddle point value of W (J) is

W (J) =
4π2V (~χ∗0)

3H4
+ κJF (~χ∗0). (44)

Differentiating W (J) with respect to J and using (42) we obtain the differential
equation

dW

dJ
= κF (~χ∗0(J)) (45)

which upon integration gives

W (J) = κ
∞∑
n=0

anJ
n+1

n+ 1
(46)

after we impose that W (J = 0) = 0. The N -point functions are thus ∼ aNN !.
The main question is then how the coefficients aN scale. If they cancel the N !
enhancement then clearly the power expansion of F (~χ∗0(J)) must converge for
all complex J and thus the function must be entire. This is a very stringent
requirement and is not true in general.

To simplify the analysis, let us now specialize to the case of a single variable
χ0. Equation (42) can be viewed as an inversion problem. We are given J =
g(χ∗0), where the function g is

g(x) = − 4π2V ′(x)

3H4κF ′(x)
(47)

and we want to show that F ◦g−1 is not entire. Consider, for example, F (x) ∝ x.
Then, a sufficient (but not necessary) condition is that g′ has finite roots in the
complex plane as that would imply that the derivative of g−1 has a pole at that
point. Furthermore, for this particle example for F , this corresponds to the
question of whether V ′′(x) has roots in the complex plane.
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4.3 Example of non-analytic W (J)

It is possible for the saddle point equation to have a solution which is not
Taylor expandable. A simple but important example is a potential of the form
V (χ0) = |χ0

M |
p, with p > 1 and F (χ0) = χ0. The integral is then (neglecting all

constants as they can be absorbed in the definition of J)

Z(J) = e−W (J) ∼
∫ ∞
−∞

dχ0 exp (−|χ0|p − Jχ0) = 2

∫ ∞
0

dxe−x
p

cosh(Jx) (48)

To conclude that the connected correlation functions exhibit an N ! enhance-
ment, it suffices to show that there exists a J0 ∈ C such that Z(J0) = 0. Then
W has a logarithimic branch cut at J = J0 and is thus not analytic everywhere.

To that end, let J be purely imaginary and define J ≡ iy. Then,

Z(iy) = 2

∫ ∞
0

dxe−x
p

cos(yx) (49)

This as a function of y is purely real and continuous. Therefore, if we can
prove that it takes a negative value, it would imply that it also has a zero. For
concreteness, take y = 2π

Z(2πi) = 2

∫ ∞
0

dxe−x
p

(1− 2 sin2(πx)) = 2Γ

(
1 +

1

p

)
− 4

∫ ∞
0

dxe−x
p

sin2(πx)

(50)
We can make a series of approximations to the final integral∫ ∞

0

dxe−x
p

sin2(πx) >

∫ 1

0

dxe−x
p

sin2(πx) >

∫ 1

0

dx(1− xp) sin2(πx)

>
1

2
−
∫ 1

0

dxxpπ2(x− 1)2 =
1

2
− 2π2

(p+ 1)(p+ 2)(p+ 3)
(51)

to conclude that

Z(2πi) < 2Γ

(
1 +

1

p

)
− 2 +

8π2

(p+ 1)(p+ 2)(p+ 3)
(52)

which is negative for p > 6.4 and goes as − 2γ
p for large p.

For values close to p = 2, we can numerically Taylor-expand Z(2πi) around
p = 2. This gives

Z(2πi) ≈ 9.17× 10−5 − 3.85× 10−2(p− 2) (53)

which is negative for p > 2.003. We can fill in the intermediate regime by taking
more terms in the approximations above. The result is that Z(2πi) is negative
for all p > 2.003.
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5 Comments on observational implications

It is interesting to apply these results to primordial non-Gaussianity searches.
It sharpens the question of systematically mapping out the ideal probe of Non-
Gaussianity (low point functions versus the histogram or higher moments).6 In
the present context, this may be model-dependent as a result of the exponential
dependence of the tail of the distribution on the fields and parameters.

In [17] we focused on primordial black hole production, which occurs on
shorter scales than the CMB. In this section, we will consider the histogram
(8) which might be applied to the CMB or large scale structure. As described
above in section 3.3, the applicability of the stochastic nonlinearities is limited
to a narrow (but nonvanishing) window in coupling (29). However, the mixing
itself introduces heavy tails of the distribution in appropriate cases, and in those
examples there is no such limitation.

5.1 Signal to Gaussian noise formula and its limitations

In the collider physics version of this quantum field theory problem [1][2] [3]
[4] [5][7], the quantity of physical interest is the cross section (squared N point
function amplitude). This is factorially enhanced at tree level, sufficiently close
to threshold. The analogous squared quantity in our case, formally, would be
signal to noise estimate for an N point function estimator.

In all examples with a factorial enhancement, the ratio of the non-Gaussian
mean and the Gaussian variance, which we review shortly, is similarly factorially
enhanced. This by itself would naively indicate a generic new discovery window
for non-Gaussianity. However, it is necessary to analyze the full distribution of
the estimator to determine how likely such a discovery would be, and this turns
out to be model-dependent.

By working in the cosmic variance limited regime of CMB observations, we
can focus on the noise introduced by the quantum fluctuations of the fields
themselves. In general, this is highly nontrivial, with a covariance matrix

C
(N)
{k1,...,kN},{k′1,...,k′N}

= 〈ζk1 . . . ζkN
ζk′1 . . . ζk′N 〉 (54)

which is a 2N -point function.
Including only the noise from Gaussian fluctuations, and including only con-

nected contributions to the N -point functions, this matrix is diagonal and leads
to a relatively simple expression

(S/N)2 =

∫
{k} ,{k′}

〈ζ1 . . . ζN 〉∗C C(N)({k}, {k′})−1 〈ζ1′ . . . ζN ′〉C (55)

→
∫
{k}

|〈ζk1
. . . ζkN

〉C |2

N !
∏
P (ki)

≡ (S/N)2
G

6As mentioned above, the dominance of higher point functions has arisen previously in ex-
amples [15][16][17][18][14][19]. Another previous incarnation of this question led to a negative
result in a different context as explained in [33].
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where

P (k) ∼ H4

φ̇2k3
(56)

is the power spectrum for ζ. Here the N ! in the denominator compensates for
the unrestricted momentum integrals over the N identical fields in the final
state This is similar to the 1/N ! arising in the multiparticle density of states
for scattering with identical final particles. The integrals over phase space are
restricted to

kmin < {|k|} < kmax (57)

where kmin ∼ 1/L with L the size of the survey, and kmax is the largest momen-
tum scale we can probe. One can analyze this quantity, finding that it has an
interesting enhancement related to the N! growth of correlators. Nonetheless,
the probabilility of a detection for a given Npix is model-dependent within this
class. The reason that the nominal S/N is not a good guide is that the distribu-
tion of the estimator may be highly non-Gaussian. We see that explicitly below
in figure 3.

5.2 Basic estimates of observational sensitivity

One diagnostic of the information available to distinguish the Non-Gaussian
probability distribution from the Gaussian one is the relative entropy (also
known as the Kullback—Leibler divergence), an average of the log of the ra-
tio of likelihoods at two values of some theoretical parameter λ:

Srel ≡
∫
DζP (ζ) log

(
L(ζ(x)|{λ})
L(ζ(x)|{0})

)
(58)

Here, P (ζ) may be taken to be either of the two probability distributions; Srel
is not symmetric. The first term in its Taylor expansion about {λ} = 0 is the
Fisher metric Fλλ. As we will see, in some cases, the relative entropy (58) is
well approximated by the first term in the Taylor expansion, the constraint on
λ is well estimated by the inverse of the Fisher metric, and low-point correla-
tion functions suffice to achieve this constraint. In other cases, this first term
is subdominant, and there is more information available (e.g. on the tail of
the distribution). Moreover, certain observables (such as primordial black hole
production [17]) are specifically sensitive to the tail.

The analysis above establishes factorial enhancement of N point functions
for the families of models described above in (59), and it is clear that this ex-
tends to many others. We note that the factorial enhancement of the connected
diagrams is universal in this class, while that of the disconnected diagrams is
model dependent. For example, we can parameterize a class of models by

V = µ4−p(Λ2
∗ + χ2)p/2, F (χ) = H

( χ
H

)m
−−−−→
m→∞

He2χ/M∗ (59)

The tail becomes stronger with larger m/p. Small values of p emerge from
the flattening mechanism discussed in [29]; moreover, with more generic kinetic
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terms, the possibilities proliferate, at least in some cases leading to a flatter
distribution for different reasons [31][32]. Large integer values of m do not
appear particularly well-motivated a priori, but the m → ∞ limit leads to a
Wilsonian-natural model of a hyperbolic field space

F (χ) ∼ He2χ/M∗ (60)

similar to the structure of the kinetic terms considered in e.g. [34]. As mentioned
in [17], this has a very heavy tail compared to the Gaussian case. We can think
of the first expression in (59) as an ad hoc parameterization of the slope of the
potential in the direction giving the strongest contribution to the tail. In this
class, the heavier than Gaussian tails only arise for p < m. So for example, the
χ4 theory with mixing m ≤ 4 has a Gaussian tail asymptotically, but still has
factorial-enhanced connected N point functions. One can also analyze fields with
an underlying periodicity, something also considered in [19]. In the case (60), the
dominant contribution to the non-Gaussianity is from the mixing interaction,
liberating us from the condition (29) as anticipated above.

5.2.1 Corrections to the power spectrum (N = 2)

Before considering the tail of the distribution, it is interesting to ask what the
effect of the mixing is on the power spectrum. At order κ2, we get a correction
to the 2 point function. First, we note that

〈δφ〉 = κ〈F (χ0)〉+O(κ3) (61)

Let us shift away the unobservable zero mode, defining

δφ = f + 〈δφ〉 (62)

where 〈δφ〉 ' κ〈χ0〉. We then have a probability distribution

L(f |κ) =

∫
Dχ0|ψ⊥[χ0]|2PG[f + 〈δφ〉 − κF (χ0)], (63)

the likelihood of measuring a fluctuation f given κ.
Let us define Pχ0

(k) by

〈F (χ0)k1
F (χ0)k2

〉 =

∫
Dχ0|ψ⊥[χ0]|2F (χ0)k1

F (χ0)k2
≡ Pχ0

(k1)δ(k1 + k2).

(64)
Expanding the likelihood in κ, we find

L(f |κ) = L(f |0)

(
1 +

1

2
κ2

∫
dk

Pχ0(k)

Pδφ(k)2
fkf−k + . . .

)
(65)

with

L(f |0) = exp

(
−1

2

∫
dk

1

Pδφ(k)
fkf−k

)
(66)
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At order κ2, this simply means

Pδφ(k)→ Pδφ(k) + κ2Pχ0
(k) (67)

The χ sector modifies the power spectrum at order κ2.
In the regime we are focused on, with couplings satisfying λn2

e ≥ 1, the
function Pχ0

(k) will have a fully nonlinear dependence on log(k). In other
words, it will not be a simple perturbative expansion in tilt, running, etc., in
contrast to minimal single-field slow roll inflationary models. In the absence of
non-Gaussianity, this could potentially provide an upper bound on κ of order

∆κ|2pf ∼
1

N
1/4
P

√
Pδφ
Pχ0

(68)

which in itself is an improvement over the bound from the bispectrum constraint

on f local
NL , which scales like N

−1/6
p in this regime. Conversely, there is a similar

improvement in the discovery potential in the two point function given (68).

5.2.2 Information in the tail for a family of models

Here we analyze the Non-Gaussian histogram quantitatively for the family of
models defined in (59). Although the factorial enhancement of connected N
point functions is general, the accessible information beyond the 2 point function
is model-dependent. We will classify the regimes according to the behavior of
the histogram and the various N point functions. (Even the 2 point function is
informative, especially for theories with λn2

e > 1 , as there is no suppression of
the running versus the tilt and so on.)

Analytic estimates for the size of the tail

Before getting into detailed analysis, we can estimate the size of the tail at
the upper bound on κ that could be inferred from a bound on corrections to the
2-point function. Let us consider the class of models described above (59). For
these, we can write the histogram as

〈Nδφ̂〉 =

∫
dχ0Neq exp(−4π2µ4−p|χ0|p/3H4)

exp(−(δφ̂+κH(χ0/H)m)2/2σ2)√
2πσ

,

=

∫
dχ̃0 Ñeq exp(−|χ̃0|p)

exp(−(δφ̂+κ̃Hχ̃m0 )2/2σ2)√
2πσ

(69)

where the only parameter that enters is

κ̃ =
κ

(µ(4π2/3)1/(4−p)/H)m(4−p)/p (70)

To estimate the size of the tail, we use the relations

χ̃m0,tail ∼
δφ̂/H

κ̃
∼
χ̃
p/2
0,tail

κ̃
(71)
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The first relation here is (30), and the second is the crossover between the

dominance of the Gaussian in δφ̂ and the dominance of the tail, ∼ exp(−χ̃p).
Putting these together, we have a suppression of the tail by a factor

exp(− 1

κ̃p/(m−p/2)
) (72)

In this section, we will imagine that we have observational access to all
N point functions, and work out the information content of the tail versus low
point correlators. In [17] we focused on an application to PBH formation, which
is specifically sensitive to the tail (although even in that context, the variance
can play a role as in [35]).

In that spirit, if we evaluate κ̃ at the bound it is possible to obtain from the
2 point function

κ̃2
Γ( 1+2m

p )

Γ( 1
p )

<
1√
NP

(73)

this scales like

exp{−Np/(4(m−p/2))
P

(
Γ( 1+2m

p )

Γ( 1
p )

)p/(2m−p)
} (74)

For the special model described around (36), we effectively have p = 2,m =
2. (In this case, we are not working with the equilbrium Starobinsky distribu-
tion, but the model is equivalent to the one with these values of p and m.) With
NP = Npix ∼ 106, this evaluates to exp(−

√
NpixΓ(5/2)/Γ(1/2)) ' 10−326,

hence nowhere near observable in the CMB. But relatively small changes in
parameters make a big difference; larger m (e.g. of order 10) leads to much less
suppression. Formally, smaller values of p would also do this, but dialing p in
that way introduces the need to satisfy (29).

For the analysis in this section, we will illustrate the information content by
considering different ratios of p/m. This captures the effect of dialing up the
parameter m, which is motivated by the fact that large m matches onto the
natural model (60) on a hyperbolic field space geometry.

Numerical analysis

Here, we construct realizations of the Non-Gaussian distributions discussed
in the above section. We evaluate whether low point correlation functions are
in principle best for detecting them, or whether instead other aspects of the dis-
tribution such as the tail or higher point correlators contain more information.

For the purposes of this section, we will use the following family of distribu-
tions:

P (−∞ < φ <∞) =
1

2
√

2πΓ
(

1
p + 1

) ∫ ∞
−∞

dχ exp

(
−|χ|p − (φ− k

1
pχm)2

2

)
(75)
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The relation between k and κ̃ ∝ k1/p can be read off from (69) above. With this
normalized distribution and a numerical analysis, we will check the estimates
made above for models with accessible information on the tail.

If we focus for simplicity on N-point functions, we can determine which N
would be best for detecting the non-Gaussianity. We generate a large number of
Gaussian and non-Gaussian realizations (data sets), each containing NP points.
We evaluate the even N-point function estimator on each simulated map. For
each N , we find the range in which 90% of the Gaussian results fall, starting
from zero. In other words, for each correlation function, we find where the
90th percentile lies in the Gaussian realizations. We then compute the per-
centage of Non-Gaussian realizations that are above that 90th percentile. For
tail-dominated models, such as the hyperbolic model (60), this can be a large
percentage as we will see in an example below. We also do this for the likelihood.

To be more specific, we consider the following estimators for the N-point
functions:

ÊN =
1

NP

NP∑
i=1

φNi (76)

where φi are the NP data points drawn from either a Gaussian or a Non-
Gaussian distribution. We can also define an estimator by evaluating the log-
likelihood on the map as follows:

ÊL =

NP∑
i=1

log

(
PNG(φi)

PG(φi)

)
(77)

The relative entropies are just the expectation values of this estimator over the
two distributions:

〈S〉NG ≡ E[ÊL]NG =

∫
dxPNG(x) log

(
PNG(x)

PG(x)

)
(78)

〈S〉G ≡ −E[ÊL]G = −
∫
dxPG(x) log

(
PNG(x)

PG(x)

)
(79)

If we Taylor expand around κ = 0 in our distributions, the first surviving
term is of order NPκ

4, matching the two point function constraint. One can
compare this to the full relative entropy, computed with respect to either the
Gaussian or non-Gaussian probability. If these do not agree, then this indicates
that the 2 point correlation function does not contain all the information.

As was discussed in the above section, the dominance of the tail is very
sensitive to model parameters. As one particular example, we expect the distri-
bution with m = 3 and p = 0.7 to be tail dominated. Figure 2 shows the results
of the first 10 even N-pt functions for that particular distribution, with k = 1/6.
The dashed line is the result of using the likelihood as our observable. Clearly,
the 2-pt function does not do a good job of detecting the Non-Gaussianity. The
optimal N-pt functions are the 6-th and the 8-th in this case. Conversely, in
a non-tail dominated model, the 2-pt function would essentially be lying on the

22



Figure 2: The horizontal axis is the even N-pt functions up to N = 20 for the
distribution with m = 3 and p = 0.7, with NP = 1000. The vertical axis is the
fraction of samples that are above the 90th percentile of those in the Gaussian
distribution as described in the text. The dashed line is the likelihood. The low
point correlators are not optimal in this example.

likelihood 2-point function 6-point function

likelihood 2-point function 6-point function

Figure 3: The likelihood and the distributions of the 2-point function and 6-
point function estimators, for the Gaussian distribution (in yellow), and a non-
Gaussian distribution (in blue). The first row is the model with m = 1, p = 4,
k = 1/20, NP = 1000 and the second row with m = 3, p = 0.7, k = 1/6,
NP = 1000.
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m p k 〈S〉G 〈S〉NG Best N-pf
1 1/16 1/29 0.86 73 8-12
1 1/8 1/17 0.86 35 6-10
1 1/4 1/10 1.1 5.8 4-6
1 1/2 1/6 1.9 2.5 2-4
1 1 1/5 1.4 1.5 2
1 4 1/20 1.3 1.4 2
3 0.7 1/6 1.0 13.7 6-8

Table 1: Numerical results for different distributions with NP = 1000 and 10000
samples. S is the relative entropy, computed either with respect to the Gaussian
or Non-Gaussian distribution as indicated in the columns, including the factor
of NP . We chose this to be order 1, i.e. a barely detectable difference between
the two distributions, according to the Gaussian-weighted relative entropy. For
tail-dominated models, we find a discrepancy between the two relative entropies,
with a large relative entropy weighted with the non-Gaussian distribution.

likelihood line with the successive N-pt functions decreasing and plateauing for
large N.

In Figure 3 the distribution of the likelihood, 2-pt function and 6-pt function
are plotted. For the case with m = 1 and p = 4, the 2-pt function distribu-
tion is essentially the same as the likelihood, while the 6-pt function has a
significantly more tailed distribution. This non-Gaussian distribution of the es-
timator illustrates why the naive signal/noise analyzed in section 5.1 – which
is generically factorial enhanced – is not by itself an indicator of observational
sensitivity. However, in the m = 3 and p = 0.7 model, the 2-pt function is very
different from the likelihood. This behavior is model-dependent, but applies to
interesting models such as (60).

Our results for different parameters are summarized in Table 1. The results
for models with m 6= 1 and p are similar to those with m = 1 and p′ = p

m , and a
large ratio of m/p should be a good guide to the natural hyperbolic model (60)
[17].

6 Conclusions and future directions

In this work, we showed that in the multifield inflationary context, factorial en-
hancement of N point correlation functions survives quantum effects and applies
in the regime of kinematic interest. This is a basic question in quantum field
theory motivated by the factorial enhancement known in particular parameter
and kinematic regimes. It is simpler to analyze more fully and exploit in the
regime of physical interest in our cosmological setting than in collider physics
(although in that context this question has stimulated a number of interesting
results [1][2] [3] [4] [5][7]). The basic reason for this is the dilution of gradients,
along with the calculably stochastic behavior of the system that applies in some
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regimes of couplings.
Specifically, we derived and applied the enhanced amplitude of these large

N -point functions in the study of primordial non-Gaussianity. We encountered
some subtleties along the way, but were left with interesting model-dependent
possibilities for substantially enhanced sensitivity beyond low point correlators.
It would be interesting to explore in more depth the phenomenological impli-
cations, beyond that of enhanced primordial black hole production addressed
recently in [17].

The models we analyzed in this work contain additional fields during infla-
tion, which is reasonable given the multiple fields in the Standard model as well
as hidden sectors that often arise in string theory. This enabled us to apply the
theory of stochastic inflation for certain windows of couplings, as well as mixing
interactions among field sectors in all cases. A natural question that arises is
whether this effect persists in the case when any additional fields are too heavy
during inflation to have such effects, reducing the system effectively to a single-
field model of the primordial perturbations. We leave these questions to future
work, perhaps building from recent progress on the calculation of multipoint
correlators in other areas of quantum field theory [7]. In the present work, the
kinematic simplicity and resulting calculability of the ultralocal multifield dy-
namics in early universe inflation enabled us to settle the factorial enhancement
question in the affirmative in this context.
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