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I．Introduction 

Carbon, being one of the most abundant elements, has numerous one-dimensional (1D), two-

dimensional (2D), and three-dimensional (3D) allotropic structures1-3. Although, graphite and diamond 

are the best known and studied carbon forms, in the past several decades, three other carbon forms, 

fullerenes4, carbon nanotubes5 and graphene6, have become the focus of extensive research. Studies of 

these three carbon forms, have had a large impact on both scientific and industrial communities, and 

the search for new structures and applications continues7-9 

Many important and unique properties of carbon can be attributed to its position in the Periodic 

Table. Each carbon atom has four valence electrons with an atomic configuration 2s22p2. These four 

valence electrons can in principle be engaged in sp, sp2 and sp3 hybridizations to form a variety of 

allotropes or compounds with different bonding configurations10. For example, carbon can form triple 

bonds in the sp hybridization in graphyne, double bonds in the sp2hybridization in graphene, and single 

bonds in the sp3hybridization in diamond. Because of this rich hybridization capacity, the associated 

new structures, and the high potential for applications, the study of carbon materials has been a major 

focus of material science and condensed matter physics11-13  

In the last decade, an active topic has emerged focusing on the topological behavior of electronic 

states14-18. Although many different phases of matter can be described well by the Landau symmetry-

breaking theory where phase transitions can be traced back to changes in the order parameters going 

from one phase to another, phase transitions can occur without the breaking of symmetry for the phase. 

Many of these can be classified as topological phase transitions. A well-studied example is the 

topological insulator (TI)19,20, in which the bulk solid is insulating while an edge (or surface) is 

conducting. Another class of materials of current interest is those featured by low-energy excitations 

with counterparts in high-energy physics, such as the low-energy excitations in Dirac (Weyl) 

semimetals21-23which behave just like the Dirac (Weyl) fermions. Since Lorentz symmetry is not 

guaranteed in condensed matter, there can be more types of fermions without counterparts in high-

energy physics, and these new fermions bring new understanding to condensed matter physics24,25  



 

2 

 

The study on topological phases started with topological insulators (TIs), but recently it has been 

shifted to topological semimetals and metals (TMs)22,26,27. Comparing with the TIs, the TMs have 

additional types due to their complex topological Fermi surfaces, such as nodal points28,29, nodal 

lines30-32, and nodal surfaces33. All the topological phases can be characterized by some topological 

invariants such as Chern numbers in 2D Chern insulators34,35, Z2 indices in 2D and 3D topological 

insulators36,37, topological charges in Weyl semimetal38-40, and Z indices or winding numbers in 

topological nodal-line semimetals41-44. The topological invariants are usually protected by symmetries 

including time reversal (T), parity (P), or crystal symmetries20,21,45. The fundamental difference 

between a topological material and an ordinary material is the existence of topological states, e.g., 

topological surface states on the surfaces of 3D topological materials46-48 and topological edge states 

on the edges of 2D materials49-51. The number of the topological surface/edge states are determined by 

the topological invariants. 

At present, the study of topological physics in condensed matter often involves materials made 

of heavy elements to maximize spin orbit coupling (SOC) )27,52-55, which is often a prerequisite for 

experimentally measurable topological properties. In such materials, the time reversal operation 

satisfies T2 = -1 22,26. Carbon is a counter-example. In fact, the first theoretically predicted TI is 

graphene56. However, research has since drifted away from carbon because the SOC in carbon is 

exceedingly small. It is well known that graphene is a Dirac semimetal57,58, its lowest excitation is a 

Dirac fermion. Because of the exceptionally small SOC, on the other hand, one may treat the spin 

degree of freedom of graphene as a dummy variable. As such, the time reversal operation satisfies T2 

= 159. In terms of the topological classification, the nontrivial phases in light-element materials are 

fundamentally different from those in heavy-element materials60,61. In particular, graphene should be 

viewed as a Weyl semimetal, instead of a Dirac semimetal. Previous studies have identified different 

classes of topological semimetallic carbon allotropes with Weyl points62-67, nodal loops68-75, and Weyl 

surfaces76,77 

In this review, we first give a brief summary of the development of carbon allotropes from 1D to 

3D. Next, we will discuss topological properties of carbon materials and their physical origin. Then, 

we will consider possible expansion of the topological study of carbon materials to other light-element 
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materials such as boron. Finally, we will present future prospects in pursue of topological physics 

within carbon allotropes. 

II. Carbon structures: from one to three dimensions 

In recent decades, with the development of nanotechnology, C60 fullerenes, carbon nanotubes, 

and graphene have been synthesized and have become one of the best-studied group of nanostructures4-

6. Recently, 3D graphene networks have been proposed, and some of them, such as the carbon 

honeycomb78, have been experimentally realized. With the rapid progress of science and technology 

in this area, it can be expected that more novel carbon materials will be realized in the foreseeable 

future. In the following, we will introduce typical carbon allotropes from one to three dimensions. 

2.1 One dimension: polyacetylene 

Polyacetylene: Based on a single-atom carbon chain, polyacetylene is one of the simplest 1D 

carbon systems79. Many 1D, 2D, and 3D carbon allotropes can be constructed by connecting 

polyacetylene80-82, such as carbon nanotubes, graphene and 3D graphene networks.  

Polyacetylene usually refers to an organic polymer with the repeating unit (C2H2)n, as shown in 

Fig. 1. It is a long chain of carbon atoms with alternating single and double bonds between them and 

each carbon atom has one attached hydrogen atom. Polyacetylene may also be viewed as a 

polymerization of the acetylene molecules to yield a chain of repeating olefin groups. It is 

conceptually important, as the discovery of polyacetylene and its high conductivity 

upon doping helped the establishment of the field of organic conductive polymers83. The high 

electrical conductivity of polymers led to the use of organic compounds in microelectronics, which 

was recognized by the Nobel Prize in Chemistry in 200084.  

 

Figure 1. Atomic structure of polyacetylene. 

Besides polyacetylene, there are other 1D carbon structures such as carbon threads85, carbon 

https://en.wikipedia.org/wiki/Carbon
https://en.wikipedia.org/wiki/Double_bond
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Polymerization
https://en.wikipedia.org/wiki/Olefin
https://en.wikipedia.org/wiki/Doping_(semiconductor)
https://en.wikipedia.org/wiki/Conductive_polymers
https://en.wikipedia.org/wiki/Microelectronics
https://en.wikipedia.org/wiki/Nobel_Prize_in_Chemistry
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nanowires86, graphene nanoribbons, and carbon nanotubes. The last two will be discussed later.  

2.2 Two dimensions: graphene, graphyne and Kagome graphene 

Graphene: Graphene is a 2D single-layer honeycomb nanosheet87, as shown in Fig. 2(a). There 

is no doubt that it is one of the most important nanomaterials studied in the last several decades88-92. 

Graphene receives tremendous attention not only because it is one of the first 2D nanomaterials, but 

also because it possesses numerous astonishing physical and chemical properties, such as an ultrahigh 

electron mobility93, a high mechanical strength94, and a high thermal conductivity95.  

The first method used to obtain graphene is mechanical exfoliation with scotch tape96. The 

exfoliated graphene is of very high quality, but the above method is neither high-throughput nor high-

yield. There have been numerous proposals to produce high-quality graphene with more efficient and 

scalable approaches97-100. Alternatives to the mechanical exfoliation may be classified into three 

categories: (i) chemical vapor deposition (CVD), such as the decomposition of ethylene on nickel 

surfaces101, (ii) bottom-up methods to grow graphene directly from an organic precursor102, and (iii) 

epitaxial growth on electrically insulating substrate such as SiC103. A thorough discussion of the 

various fabrication methods for graphene can be found elsewhere104-106. 

 

Figure 2. Graphene can be used to construct other carbon materials. (a) 2D graphene, (b) 0D fullerene, (c) 
1D carbon nanotube, (d) 1D graphene nanoribbon. A 1D carbon nanotube can be obtained by rolling 
up a graphene along the vector C = na1+ma2 (a1 and a2 are unit vectors).  

The uniqueness of graphene in the family of carbon allotropes is that it may be viewed as the 

parent material from which many other carbon structures can be constructed107-112. For example, it can 
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be stacked to produce 3D graphite, rolled into a 1D carbon nanotubes [Fig. 2(b)], or wrapped to 

construct a 0D fullerenes [Fig. 2(c)]. Moreover, graphene can be tailored and lithographed into desired 

patterns113,114. 

By cutting graphene along certain directions, 1D graphene nanoribbons (GNRs) with different 

edges are obtained, such as armchair-edged and zigzag-edged nanoribbons115-118. Figure 2(d) shows a 

zigzag-edged nanoribbon. The properties of GNRs can range from metallic to semiconducting 

according to the widths and edges. Zigzag-edged GNRs are metallic with peculiar edge states on both 

sides of the ribbon regardless of its widths, while the armchair-edged GNRs can be either metallic or 

semiconducting. An armchair-edged GNR with width NA = 3i+ 2 (i is an integer) is metallic; otherwise 

it is a semiconductor. Numerous approaches have been reported to produce GNRs with various 

chemicophysical properties119-122.  

By rolling up a graphene, a 1D carbon nanotube is obtained. Depending on the way the rolling 

is performed, there can be three different types of carbon nanotubes such as the non-chiral armchair 

and zigzag nanotubes and chiral nanotubes123,124. Usually a pair of indices (n, m) are used to describe 

the chiral vector C = na1+ma2 (where a1 and a2 are unit vectors) for a nanotube [see Fig. 2(a)]125-127. 

When m = 0, the chiral nanotube is reduced to a zigzag nanotube, while when n = m, it is reduced 

to an armchair nanotube. According to the number of graphic layers, a nanotube can be further 

classified as a single-wall or multi-wall nanotube128,129. Figure 2(c) shows, as an example, a single-

wall nanotube with a zigzag edge. Electrical conductivity of a nanotube depends on its chiral vector 

but is independent of its length, as determined by quantum mechanics130-132. All armchair and zigzag 

nanotubes with n - m = 3i (where i is an integer) are metallic, while others are semiconducting. Carbon 

nanotubes show superior mechanical strength along the longitudinal direction, with the highest 

known tensile strength and elastic modulus among known materials133-135. They are also known to be 

the best field emitters due to their sharp tips, which can easily concentrate an electric field, enabling 

them to emit electrons at a low voltage136,137. The carbon nanotubes originally reported by Iijima were 

multi-wall nanotubes synthesized by arc discharge methods138. These days, CVD is the most promising 

method to produce carbon nanotubes on an industrial scale123,139. 

When two monolayer graphene are overlaid, a bilayer graphene is obtained140-143. There are 

https://www.britannica.com/science/quantum-mechanics-physics
https://www.britannica.com/science/tensile-strength
https://www.britannica.com/science/electric-field
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typically two stacking sequences between the two layers144,145: one is AA stacking, while the other is 

AB stacking. Although the interlayer coupling is van der Waals-type in nature, the interaction between 

the layers can have noticeable efforts on the atomic structure145-148. For example, the layer spacings of 

the AA- and AB-stackings are different. Beside the AA- and AB-stackings, bilayer graphene can have 

other interesting structures: in particular, different “moiré patterns” are observed, depending on the 

twist angle θ149-152. These patterns, especially those at small θ, reveal a number of exciting but also 

surprising physical phenomena such as novel superconductivity153-156. Hence, twisted bilayer graphene 

has been one of the most fascinating materials to study recently157-166. 

Graphyne: Graphyne is one-atom-thick planar sheets of sp and sp2-bonded carbon atoms 

arranged in a crystal lattice167. The proposed structures of graphyne are constructed by inserting 

acetylene bonds in places of C-C polyacetylene single-bonds in a graphene lattice168, see for example, 

the three types of graphyne in Fig. 3. There is a variety of possibilities due to the multiple arrangements 

of sp and sp2 hybridized carbonatoms67,169,170. In addition, graphyne can be arranged either in a 

hexagonal or a rectangular lattice171,172. It has been shown theoretically that graphynes possess 

direction-dependent Dirac cones168,173. Among the graphynes with a rectangular lattice, the 6,6,12-

graphyne may hold the most potential for applications174,175. To date, synthesized graphyne samples 

have shown to have a melting point of 250-300 °C176  and a low reactivity in decomposition reactions 

with oxygen, heat, and light177-180. 

 

Figure 3. Three types of graphynes, (a) α-graphyne, (b) β-graphyne, and (c) 6,6,12-graphyne. 

Kagome graphene108: Kagome graphene is a monolayer carbon sheet as shown in Fig. 4(a). It 

has twice as many atoms as a regular Kagome lattice. Should the bond length between two adjacent 

https://en.wikipedia.org/wiki/Planar_crystallographic_group
https://en.wikipedia.org/wiki/Carbon-carbon_bond
https://en.wikipedia.org/wiki/Cubic_crystal_system
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different-colored atoms “shrinks” to zero, one recovers the regular Kagome lattice. By inserting 

acetylenic dimers between the neighboring triangles, a family of Kagome-like structures can be 

generated. For example, a Kagome graphyne containing one dimer between triangles is shown in Fig. 

4(b).  

 

Figure 4. (a) Kagome graphene and (b) Kagome graphyne. 

The lattice constant of the Kagome graphene is 5.19 Å. The bond length within a carbon triangle 

is 1.42 Å, while between the triangles is 1.35 Å. The former is very close to that of graphene, while 

the latter is between graphene and acetylene. Although the Kagome graphene contains carbon triangles, 

its calculated cohesive energy of 8.26 eV/atom is less than either α- or β-graphynes, 8.28 and 8.35 

eV per carbon atom, respectively. Theoretical calculations indicate that the Kagome graphene and 

graphyne are all stable108. Although Kagome graphene has not been synthesized, a possible route for 

its experimental realization is proposed108. The elemental building unit of the triangular carbon rings 

of Kagome graphene already exists in laboratory as various cyclopropane molecules. One may thus 

tailor the ligand chemistry of the cyclopropanes to realize a self-assembly of the Kagome graphene. In 

terms of the choice of the substrate, the self-assembly process may be carried out on single-layer boron 

nitride sheet108. 

Graphene and Kagome graphene are made of hexagonal and triangular carbon rings, respectively. 

Beside the two structures, a lot of 2D carbon nanosheets, made of other (tetragonal and pentagonal) 

rings have also been proposed181-186, such as T-graphene186, penta-graphene, D-graphene and TPH-

graphene. Some of them have been synthesized successfully. 
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2.3 Three dimension: graphene networks and carbon foams 

Earlier carbon materials known in literature are 3D carbon allotropes, such as naturally occurring 

graphite and diamond187,188. Diamond crystalizes in a perfect tetrahedron structure consisting of sp3 

hybrids [Fig. 5(a)], while graphite crystalizes as a stacked graphene layers consisting of sp2 hybrids 

[Fig. 5(b)]. The distinctly different atomic structures and local chemical bonding environments result 

in very different macroscopic appearance and physical properties between diamond and graphite189,190. 

Diamond is transparent, super hard and an ultimate abrasive, an electrical insulator, and a thermal 

conductor. In contrast, graphite is opaque, a very good lubricant, a good electrical conductor, and a 

thermal insulator. Besides, a lonsdaleite is a hexagonal allotrope of diamond, believed to form when 

meteoric graphite fall on to the Earth191,192. The great heat and stress of the impact transform the 

graphite into diamond, but retains its original graphite's hexagonal crystal lattice.  

 

Figure 5. Atomic structures of some 3D carbon allotropes. (a) Diamond, (b) graphite, (c) T-carbon and (d) 
Z-carbon. 

There are, however, also similarities between diamond and graphite. Noticeably, both are made 

of hexagonal carbon rings. While graphite is a 3D-stacked graphene layers bound by weak van der 

Waals interactions, diamond can also be viewed as an interlocked stacking of the graphene layers with 

intra-layer buckling due to the sp3 hybridization. Similar to the 2D structures, 3D carbon allotropes 

can also possess different types of carbon rings, such as the triangular, tetragonal, and pentagonal rings. 

http://en.wikipedia.org/wiki/Hexagonal
http://en.wikipedia.org/wiki/Diamond
http://en.wikipedia.org/wiki/Meteor
http://en.wikipedia.org/wiki/Graphite
http://en.wikipedia.org/wiki/Earth
http://en.wikipedia.org/wiki/Crystal
http://en.wikipedia.org/wiki/Crystal_lattice
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Based on this principle, a number of 3D carbon allotropes have been proposed66,193-211: for example, 

the T-carbon is made of triangular rings and tetrahedrons [Fig. 5(c)]201; the Z-carbon is made of 

tetragonal and hexagonal rings [Fig. 5(d)]211; the 3D pentagon carbon is made of pentagonal rings202; 

the M-, W-, H-, and S-carbons all contain some sort of distorted five and seven membered rings203-205. 

The diverse C-C bonding in these structures result in rich electronic, optical, and thermal properties206-

210. 

 

Figure 6. (a) CKL. The unit cell consists of six C atoms in the form of two linked triangles. Each pair of 
the (same color) atoms forms a zigzag chain in the vertical direction. (b) A schematic Kagome lattice for 
the CKL, where G-1, G-2, and G-3 denote three interlocked graphene sheets. Notice that each lattice point 
in the 2D structure here represents a zigzag chain in the perpendicular direction of the real structure. (c) 
and (d) Same plots for IGN. Notice the lack of G-3 in an IGN. 

In all carbon allotropes, graphene is the most stable. Many more 3D carbon materials can be built 

out of graphene198,204,211-217. For example, Fig. 6(a) shows a structure formed by interpenetrating 

graphene layers218. When viewed from the top, the 3D network looks like a Kagome lattice, so it is 

named the carbon Kagome lattice (CKL). Its relation with the Kagome lattice is shown in Fig. 6(b). If 

one envisions that each infinitely long zigzag carbon chain in a CKL is collapsed to a 2D lattice point, 

then the two structures become identical. Although the structure consists of triangular rings (as can be 

seen from a top view), the CKL exhibits an exceptional stability similar to C60. The reason is because 

the CKL is made of graphene sheets (as can be seen from a side view). A related structure is the 
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interpenetrated graphene networks (IGN) in Fig. 6(c)62, which is also made of two sets of interlocked 

graphene sheets [see Fig. 6(d)]. One obtains the CKL from IGN by applying a compressive stress along 

the direction indicated by the arrows in Fig. 6(c) until the threefold coordinated sp2 carbon atoms bind 

among themselves, so all the carbon bonds become sp3.  

The closely packed structures in Fig. 6 are in fact only the tip of the iceberg, as one can make a 

whole series of structures by replacing the colored dimers in the figure or a single row of zigzag carbon 

chains by GNRs of variable widths78,219. Here, (zigzag-edged or armchair-edged) GNRs are linked to 

each other either directly as in Fig. 6 or via a row of carbon atoms (see below). Figure 7 shows three 

carbon networks where two kinds of zigzag-edged GNRs of m rows (green) and n rows (purple) are 

linked together directly219. They have been classified as a triangular graphene network (TGN) [Fig. 

7(a)], a quadrilateral graphene network (QGN) [Fig. 7(b)], and a hexagonal graphene network (HGN) 

[Fig. 7(c)]. By changing the widths of green and purple nanoribbons, one arrives at three families of 

graphene networks, TGN(m,n), QGN(m,n), and HGN(m,n). 

 

Figure 7. Graphene networks made of zigzag-edged GNRs: TGN(2,2), QGN(2,2), and HGN(2,2), by a 
direct link. (a-c) Top views of the networks and (d-f) tilted views of the corresponding unit cells. 

The family of carbon honeycomb (CHC) represents 3D networks where the zigzag-edged 

nanoribbons are connected by a row of joint carbon atoms or dimers. From the top view, these 

structures look like honeycombs, as can been seen in Fig. 8(a). Here, again we use different colors to 

denote different carbon atoms: e.g., green and blue denote C1atoms with a sp2 electronic configuration, 

while orange denotes the joint C2 atoms. The C1 atoms can be further divided into two subgroups, i.e., 
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green and blue; together they form the zigzag chains along the c axis, while each subgroup resides on 

a different horizontal plane [see Figs. 8(b-c)]. The C2 atoms may form dimers to become sp3 or remain 

un-dimerized and are hence sp2. The former is termed CHC-1with the primitive cell shown in Fig. 8(b), 

while the latter is termed CHC-1’ with a 2x primitive cell shown in Fig. 8(c) for comparison. Similar 

to CKLs and IGNs, one can increase the width of the nanoribbons from 𝑛 = 1 to CHC-n with n > 1. 

Krainyukova and Zubarev obtained CHC in 2016 by a deposition of vacuum-sublimated graphite 

where carbon was evaporated in vacuum from thin carbon rods heated by an electric current220. The 

carbon films obtained have a thickness in the range of 80-100Å. They were analyzed by means of 

transmission electron microscopy (TEM) [see Fig. 8(d) (left)] and low temperature high energy 

electron diffraction. The authors claimed that a careful and thorough analysis excludes carbon 

nanotubes and other carbon forms, so the only possibility is the carbon honeycomb shown in Fig. 8(d) 

(right). To our knowledge, this is perhaps the first experimental highly-ordered 3D carbon network 

made of predominantly graphene nanoribbons. With future technological improvements, we believe 

the theoretically-predicted carbon structures such as those in Figs. 4-7 will also be realized in the future. 

 

Figure 8. Carbon honeycombs. (a-c) Atomic structures: (a) CHC-1 in a top-view perspective, where the 
carbon atoms form a 3D honeycomb. (b) Primitive cell of CHC-1 in a side view perspective, where the 
green C1 and blue C1 atoms reside on different horizontal planes with respect to the c axis. Each kind of 
C1 atoms has a threefold rotational symmetry with respect to the axes passing through the orange 
connecting C2 dimers. In (a) and (b), t0 to t5 are the tight-binding hopping parameters. (c) An alternative 
to CHC-1, namely, CHC-1’ in a 1×1×2 supercell where the C2 dimerization has been lifted. (d) An 
experimentally synthesized CHC structure (left). Both random and ordered honeycomb structures (right) 
have been claimed.  
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Besides the graphene networks or carbon foams78,221-232, other 3D carbon allotropes that have 

been proposed previously include the Mackay crystals154,205,208,209,233-248. 

III.  Topological phases in general 

The recent studies of topological properties of materials is one of the most active research areas 

currently in condensed matter physics249,250. Beginning with topological insulators and especially the 

more recent studies of topological semimetals/metals (TMs) have been the subjects of a great deal of 

research. TMs are characterized by a topologically stable Fermi surface originating from a crossing of 

energy bands. Band crossings of this kind can be associated with a topological number251-255, which 

may depend on the symmetries responsible for enforcing or protecting the degeneracy at the band 

crossing. Based on the codimension of the band crossings, three types of topological phases have been 

proposed26,256,257, i.e., nodal point, nodal line, and nodal surface. In the nodal-point semimetals, the 

conduction and valence bands cross each other at zero-dimensional (0D) discrete points28,258-266, which 

include the Weyl point258, triple point262-264, Dirac point259-261, and multifold-degeneracy points266. In 

the nodal-line semimetals267-284, the band crossings form 1D lines in momentum space, instead of 

discrete points. Because lines can be deformed into many different shapes (e.g., a ring or a knot), there 

exist diverse topological phases for the nodal lines263,285-300, such as nodal chains, nodal links, and 

Hopf chains, etc. In the third type of TMs, the band crossings form a 2D surface77,301-305, where each 

point is a crossing point whose dispersions are linear along the surface normal direction. The nodal 

surfaces can also have many variations such as being planner or spherical.  

TMs can exhibit a variety of different low-energy excitations which offer a new platform for 

fundamental studies of novel quasiparticles which differ from the known particles in high-energy 

physics305-307. Due to the nontrivial topology of bulk and surface electronic states, TMs are expected 

to exhibit some novel properties43,308-312, such as nearly flat drumhead-like surface states308, unusual 

magnetoresistance311, and a chiral anomaly312, which have attracted attention from both theoretical and 

experimental perspectives. Moreover, TMs are of broad interests due to their potential applications in 
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chemical catalysis313,314, quantum computation315,316, and spintronics317-319, to name a few. In the 

following, we will introduce some typical topological phases.  

3.1 Topological insulators 

 

Figure 9. Comparison between (a) trivial insulator and (b) topological insulator. The surface states of trivial 
insulator are trivial, while those of topological insulator are protected by topological invariants. 

A normal insulator has a fully occupied valence band and a fully empty conduction band, 

separated by a band gap. There is no state available for the conduction of electrons. Only the surface 

states of the insulator, see Fig. 9(a), can support such a conduction. A topological insulator is also an 

insulator. Similar to a normal insulator, electrons can only conduct through its surface states18,320. In 

spite of the similarities, however, there is an important difference: the conductive surface states in a 

TI is topologically-protected by its topological invariant to result in characteristic surface bands that 

continuously connect the bulk conduction with valence bands, as illustrated in Fig. 9(b)321-323. Due to 

such connections, the surface states of the TI are always conductive as they always pass the Fermi 

level. In contrast in a normal insulator, a sufficient surface modification can often eliminate the 

conductive surface states. According to the topological invariants, TIs can also be classified into a Z2-

index insulator and a Chern insulator36,324. 

3.2 Nodal-point TMs 

As mentioned above, there are three classes of degenerate points in nodal-point semimetals. 

According to the band dispersions, these points can be further classified into type I and II325-327.  
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Dirac point: 

The Dirac point is the first-proposed topological element in TMs327-334. In a Dirac semimetal, the 

linear (conduction and valence) bands cross only at discrete (Dirac) point(s) of the Brillouin zone (BZ), 

at which the two bands have the same energy, i.e., doubly degenerate. In a 2D material, the energy 

dispersion near each of the critical points, according to the low-energy effective mass theory11,335,336, 

takes the Dirac form, H(𝐤) = 𝑣(kxσx
+ kyσy

) where 𝑣 is a velocity, 𝛔 = (σ
x
,σ

y
,σ

z
) is the 

Pauli matrices. Note that these Dirac points are not robust, because a perturbation proportional to σ
z
 

will inevitably open a band gap at the Dirac point. 

 

Figure 10. Three basic types of nodal points. (a) Weyl point, (b) triple point, and (c) Dirac point.  

In 3D materials, the Dirac Hamiltonian can be expressed as a 4×4 matrix115:  

𝐻(𝒌) = 𝑣𝒌 ∙ 𝝈𝜏𝑥 + 𝑚𝜏𝑧 = (
𝑚 𝑣𝒌 ∙ 𝝈

𝑣𝒌 ∙ 𝝈 −𝑚
) ,               (1)                                 

where k = (kx, ky, kz) is the momentum, and m is the mass; 𝝈 and τ = (τx, τy, τz) are both Pauli matrices. 

When the sign of m is changed, the topology of the ground state transitions from a normal insulator to 

a topological insulator. At the critical point of the transition (m = 0), the Hamiltonian is gapless at k = 

0, corresponding to a point node with fourfold-degeneracy and linear dispersion337. Therefore, a 3D 

Dirac semimetal exists at the transition between a topological and a normal insulator phase25,244. It is 

robust only when protected by an additional space-group symmetry47,338-343. Figure 10(c) shows the 

Dirac point for a massless Dirac equation. In most cases, however, the Dirac semimetal only acts as a 

parent state of a 3D topological insulator - it turns into either a 3D strong topological insulator or a 3D 
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topological crystalline insulator where the Dirac point acquires a mass gap, because of a symmetry 

breaking. 

Weyl point: 

In Eq. (1), when m = 0, the Dirac Hamiltonian decouples into two separated Weyl equations given 

by ±𝑣𝒌 ∙ 𝝈 . Each Weyl equation describes a two-component chiral Weyl fermion with chirality 

±147,344,345. In general, a two-component Weyl fermion described by the Weyl equation arises when 

two non-degenerate energy bands in a solid touch at a point k0 in momentum space [see Fig. 10(a)]346-

350. Clearly, this cannot happen when Kramers degeneracy holds at every momentum k. Therefore, 

time (T) and parity (P) symmetry cannot be simultaneously satisfied; at least one of them must be 

broken351-355. In this sense, Weyl-point TMs may only occur in noncentrosymmetric or magnetic 

materials. The topology of Weyl fermions follows from the fact that Weyl points are monopoles of 

momentum-space Berry curvature356-358. Therefore, in a system with only chiral Weyl fermions, the 

Weyl points must come in pairs of opposite monopole charges38,347,359. This explains, for instance, why 

the massless Dirac equation [cf. Eq. (1)] decouples into two Weyl equations with opposite chirality. 

The opposite monopole charges act as the point sources and sinks of the Berry curvature field. When 

a Weyl-point TMs has surfaces in real space, there must be a surface state connecting each pair of Weyl 

points in the momentum space, which appears in the surface energy dispersion plot as a Fermi 

arc347,360,361. 

Triple point: 

In solid state systems, three-, six-, and even eight-fold band crossings can be observed which 

yields low-energy fermionic excitations that cannot be described by a Dirac or Weyl equation266,362-364. 

Instead, their dispersions have to be described by a more general Hamiltonian365. The departure from 

the (low-energy) description of familiar relativistic free fermions (i.e., Dirac and Weyl fermions) is a 

consequence of the less-restrictive nature of crystal symmetry. On the other hand, it allows for the 

realization of more low-energy fermions (which otherwise do not exist). These TMs, characterized as 

“multifold” (i.e. three-, six-, and eight-fold) fermions are symmetry-enforced semimetals, as their very 

existence relies on the fundamental constraints originated from the space group symmetry366, possibly 
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combined with T symmetry. For example, a crystal having a threefold rotational axes and point-group 

symmetry C3v can be a “triple-point” semimetal367-372. The origin of the triple-point semimetals is 

rooted in the band inversion between a single and doubly degenerate bands (see Fig. 10(b)). There 

exist unique physical phenomena associated with these quasiparticles263,264,343,362,373,374, such as the 

occurrence of topological surface Fermi arcs, transport anomalies and topological Lifshitz transitions. 

3.3 Nodal-line TMs 

In 3D, two bands can cross each other along a closed curve or at a surface at discrete Dirac or 

Weyl points, as discussed above. When it is a curve, the curve is called a nodal line375-383, which may 

either take the form of an extended line running across the Brillouin zone (BZ), whose ends meet at 

the BZ boundary267, or wind into a closed loop inside the first BZ381, or even form a chain consisting 

of several connected loops (nodal chains)299. Topological semimetals with such line crossings are 

called topological nodal-line semimetal384-389. The ideal Fermi surface of a nodal-line TMs is a nodal 

line or a self-enclosed ring at half-filling, which may be obtained only if there is a particle-hole or a 

chiral symmetry that pins all the points of the nodal line exactly at the Fermi energy. Along the line or 

ring, the nodal line should be flat or dispersionless. As such, many-body effects, such as long-ranged 

Coulomb interactions and topological superconductivity267,390,391, may exist in nodal-line TMs. Nodal-

line degeneracies can take place when energy bands of different crystal symmetries cross along a 

rotational axis, or on a mirror- or glide-invariant plane of the BZ295,392-395. In addition, nodal lines can 

also occur as a result of band topology, in which the nodal lines are associated with a topological 

invariant396-398. A variety of topological nodal-line semimetals have been identified with distinct 

characteristics (unique to each class) such as topological invariants, degeneracy at the band crossing, 

Fermi surface geometry, and the linking structure of the multiple nodal lines399-403. 

Compared with nodal-point semimetals, nodal-line semimetals have more subtypes because a line 

can deform in many ways, such as forming a ring or a knot294,404-406. If there are two or more lines/rings 

of different origins in momentum space, they can construct even more topological phases407-414. Figure 

11 depicts several basic topological elements made of nodal rings. For example, Fig. 11(a) is an 

isolated nodal ring; Figs. 11(b-c) are intersecting nodal rings (INRs), in which all the rings share a 
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common center; Fig. 11(d) is a nodal chain, where the nodal rings contact each other in a sequential 

manner and extend across the BZ to form a chain; Figs. 11(e-f) show nodal link and Hopf link, 

respectively, in which the nodal rings are topologically linked together. Note that one of the rings in 

the Hopf link crosses the boundaries of the BZ, making it distinct from the standard nodal link in Fig. 

11(e).  

For nodal-line semimetals, there are surface states which appear inside the projections of the nodal 

line states. These surface states are also very flat and are hence dubbed the ‘drumhead’ 

states342,370,379,415,416. They can be considered as a higher-dimension analogy to the flat band on the 

zigzag edge of graphene. However, these surface states are not topologically protected; a small change 

on the surface may destroy their ‘flatness’ or even push them into the bulk continuum. Due to the lack 

of a surface signature, people turn to use bulk probes for nodal-line semimetals: for example, the 

special behaviors of these materials in quantum oscillation have been predicted and measured273. There 

are also zero modes in the spectrum of Landau levels385,417, leading to a peak in the density of states at 

the Fermi level. 

 

Figure 11. Topological elements consisting of nodal lines (or nodal rings). (a) An isolated nodal ring; (b-c) 
intersecting nodal rings (INRs) of two and three rings, respectively; (d) a nodal chain; (e) nodal link, and 
(f) Hopf link. 
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3.4 Nodal-surface TMs 

Besides points and lines, band crossing in a 3D BZ can also take the form of a 2D nodal 

surface76,77,304,418,419. On such a surface, each point is a crossing point of two linear bands in the 

direction normal to the surface. The nodal surface is distinct from the ordinary Fermi surface, because 

the coarse-grained quasiparticles excited from a nodal surface have an intrinsic pseudospin degree of 

freedom (representing the two crossing bands), behaving effectively like a 1D massless Dirac fermions 

along the direction normal to the surface, and may therefore have interesting physical properties.  

In the absence of the SOC, there are two different classes of symmetry-protected nodal surfaces420. 

The first class, shown in Fig. 12(a), is protected by the space-time inversion symmetry and sublattice 

symmetry, and is characterized by a Z2 topological index. The second class is guaranteed by a 

combination of a twofold screw-rotational symmetry and the time-reversal symmetry. It is noteworthy 

that the band structures of the two classes are distinctly different due to their qualitatively different 

physical origins. Nodal surfaces in the first class have the nontrivial Z2 topological charge, and 

therefore appear in pairs in the BZ, conforming the Nielsen-Ninomiya no-go theorem421,422. Those in 

the second class exist, due mainly to the two-fold nonsymmorphic symmetry. In contrast to the first 

class, however, the second class exists alone in the BZ, instead of in pairs and hence without the 

topological charge. The topological uniqueness of the second class has been revealed in Ref. [304]. 

 

Figure 12. (a) A planner and (b) a spherical nodal surface. 

The nodal surfaces can be planar surfaces or have a spatial shape such as forming a sphere418, as 

depicted in Fig. 12(b). Around the surfaces, low-energy quasiparticles can be described by an effective 
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Hamiltonian77 

𝐻(𝑘𝑧) = 𝜏𝑧𝑣𝑘′𝜎𝑧,                             (2) 

where 𝑘′ = 𝑘 − 𝑘0 is the wave vector component normal to the nodal surface with 𝑘0 the vertical 

distance from the surface to the center of the BZ, 𝑣 is the Fermi velocity, and 𝜎𝑧 (the Pauli matrix) 

denotes the two bands crossing at the surface. In addition, nodal surface could also be a tube, a crossbar 

or any other surfaces.  

IV Topological properties of carbon 

4.1 Orbital physics in the graphene-based structures 

Electrons in an isolated atom are characterized by their charge, spin, and orbital character423. 

When these atoms form a solid, mutual interactions and entanglements of these can lead to the 

determination of material properties. One can manipulate one or more of the above to achieve desired 

goals. For example, charge is associated with electrical conductivity and spin with magnetism424. 

Usually, electrons in the outer-shell orbitals are most important to most of the physical and chemical 

properties of a solid. Due to the orthogonality requirement in quantum mechanics, different atomic 

orbitals must have different wave functionsshapes425. For instance, while an s orbital is spherical and 

an even function with respect to the origin, the next higher-energy p orbitals are non-spherical and odd 

functions with respect to the origin. The spherical symmetry of an atom determines that there are only 

three such p orbitals degenerate in energy, which form the basis for the topological properties of carbon. 

From an electronic structure point of view, within the tight-binding model426,427, all the band structures 

are determined by the interplay between the s and p orbitals of the valence electrons inside the crystal 

and the spatial symmetry of the crystal.  

Carbon has six electrons, of which the four outer-shell electrons 2s22p2 are the valence electrons. 

A carbon atom can thus have sp, sp2, or sp3 hybridization to form a variety of allotropes of different 

bonding configurations428. Graphene may be viewed as a 2D -conjugated material, in which the sp2-

hybridized carbon atoms are arranged such that they form a 2D hexagonal lattice composed of 

http://www.baidu.com/link?url=tueCqY680RWYyRPh18zprdHYdKyT5kILzc4pPjq_qF8D9d6ZZPytXitJmJzBKUNr7wH6wXQMTITXQnMRJUexIW1CZ0Y58nRIo3dDOClGZFhXLBAJF0i1R6pxIU_AoDzN
http://www.baidu.com/link?url=tueCqY680RWYyRPh18zprdHYdKyT5kILzc4pPjq_qF8D9d6ZZPytXitJmJzBKUNr7wH6wXQMTITXQnMRJUexIW1CZ0Y58nRIo3dDOClGZFhXLBAJF0i1R6pxIU_AoDzN
https://en.wikipedia.org/wiki/Valence_electron
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benzenoid rings429 [see Fig. 13(a)]. On the other hand, its delocalized -conjugated electrons in the 

hexagonal lattice yield a unique band dispersion, i.e., a Dirac dispersion near the Fermi level (EF)430,431. 

This is important for our discussion, because in most graphene-based 3D structures, the electronic 

properties are dominated by atomic p orbitals similar to the pz orbital in graphene69,77,78,432,433. For 

example, Fig. 13(b) shows the wavefunctions of electrons near the EF in a 3D IGN62, where the pz 

orbitals of graphene become px and py orbitals if we take the perpendicular direction out of page as the 

z axis. Other lattices can also accommodate the pz orbitals of graphene in a similar manner to produce 

rich physical properties as the interactions among these orbitals will be lattice- and atomic structure-

dependent77,434. To envision such situations, especially when the relative phases between neighboring 

orbitals matter, it makes sense to treat these p orbitals as a rank-1 tensor (or vector) with a clearly-

defined polarity (e.g., pointing from its negative lobe to positive lobe), in analogy to a spin vector435,436. 

If these vectors are placed in a Kagome lattice (such as in the CKL discussed earlier), the so-called 

“spin frustration” will occur218. In other words, these p orbitals will not be able to arrange themselves 

to yield a long-range “antiferromagnetic” ordering in their respective phases185.  

 

Figure 13. (a) An in-phase pz orbital configuration in graphene. (b) The distribution of p orbitals in an IGN. 

4.2 Topological properties of graphene nanoribbon junctions and carbon 

nanotubes  

Graphene nanoribbon junctions: Like graphene, the electronic structure of 1D GNR has 
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interesting topological properties437-442. The exact electronic topology is, however, determined by the 

spatial symmetry and termination at the edges. Hence, GNRs of different widths, edge shapes, and end 

termination geometries belong to different topological classes437. 

 
Figure 14. Heterojunctions formed between two topologically (a) equivalent and (b) inequivalent N = 9 
and N = 7 armchair GNRs (9AGNR/7AGNR). Red dashed lines denote the interfaces. The carbon-carbon 
and carbon-hydrogen bonds are colored black and gray, respectively. The color scale shows the charge 
density of the localized midgap junction state. The charge density is integrated along the out-of-plane 
direction [in units of 1/(a.u.)2 ]. 

Joining two GNRs of different topological classes leads to localized junction states at their 

interfaces442. Here, the bulk-boundary correspondence in armchair GNR heterojunctions is shown, 

which are experimentally accessible by bottom-up synthesis with precursor molecules. Figure 14(a) 

show two possible types of junctions formed by an N = 7 armchair GNR and an N = 9 armchair GNR. 

For the nonsymmetric junction, both N = 7 and N = 9 armchair GNR segments have a zigzag 

termination, and they are topologically equivalent. As a result, no localized junction states can be found 

at the interface. For the symmetric junction [Fig. 14(b)], however, the termination of the N = 7 armchair 

GNR changes, so the two GNRs become topologically inequivalent. As a result, one localized junction 

state emerges in the band gap442. 

Carbon nanotubes: Most carbon nanotubes can be nontrivial one-dimensional topological 

insulators in the absence of a magnetic field and are characterized by a Z-topologically invariant 

winding number443,444. This number determines the number of edge states localized at the ends of the 

tube ends. When applying a magnetic field along the tube axis, on the other hand, a topological phase 
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transition could take place at which the band gap closes except for the armchair nanotubes for which 

so such a transition can occur. This phase transition enables the identification in experiment of the 

topology of the nanotubes before the gap closure445. 

4.3 Dirac points in 2D carbon sheets 

Graphene is perhaps the most well-known 2DDirac material with two Dirac points located at K 

and Kꞌ points of the BZ, energy EF, as shown in Fig. 15(a) for K167,446,447. Near the EF, electrons behave 

as if they have no mass, resulting in energies that are proportional to the momentum of the electrons. 

There have been different classes of materials possessing such distinctive electronic properties: besides 

graphene, noticeably the high-temperature d-wave superconductors448,449 and topological 

insulators249,450. 

 

Figure 15. Band structures of graphene and graphyne: (a) graphene, (b) α-graphene, (c) β-graphyne, and 
(d) 6,6,12-graphyne. All exhibit characteristic Dirac points at EF. 

In this regard, it is worth noting that the three graphynes in Fig. 3 are also Dirac materials451-454, 

as can be seen in Figs. 15(b-d). By examining Fig. 3, we conclude that the introduction of the triply-

bonded sp carbon atoms do not affect the Dirac cones, which originate from the sp2 carbon networks. 
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Thus, similar to graphene, Fig. 15(b) shows that hexagonal α-graphyne has a nearly isotropic electric 

property near the EF at K point167. However, such an isotropy is lost when the symmetry of the crystal 

is altered as in the case of β- and 6,6,12-graphynes where the Dirac points do not reside at any high 

symmetry points of the BZ167. In the case of rectangular 6,6,12-graphyne, the symmetry change even 

alters the relative energy positions between the Dirac point along X’-  and that along X-M167. This 

energy shifts make one Dirac cone slightly above the EF, while the other slightly below the EF, which 

enables a self-doping of the graphyne to result in spontaneous electron and hole pockets. This self-

doping effect can be further tuned by applying an in-plane strain.  

 

Figure 16. (a) Band structure of the Kagome graphene in Fig. 4(a). (b) Band structure of the Kagome 
graphene in the √3 × √3 supercell as a result of hole doping with a filling factor for the flat band of 1/6. 
(c) Charge density contour for states in the occupied flat band in panel (b), showing a Wigner crystallization. 

In a Kagome lattice in Fig. 4(a), there exist the so-called Kagome bands, each of which consists 

of two Dirac bands plus a flat band as can be seen in Fig. 16(a)108. Here, the flat band appears right 

below the 𝐸𝐹. The two Dirac bands, which connect the flat band at the Γ point, cross each other at the 

K point, forming a Dirac point but at a considerably higher energy. The flat band is fully occupied 

while the two Dirac bands are empty. Interaction in a flat band is magnified due to the divergence in 

the density of states, which gives rise to a variety of many-body phenomena such as ferromagnetism, 

Wigner crystallization, and anomalous quantum Hall effect108. Upon hole doping, the flat bands will 

split into spin-polarized bands of different energies to result in a flat-band ferromagnetism [see Fig. 

16(b)]. In particular, at a half filling 𝜈 =
1

2
, the splitting reaches the maximum value of 768 meV. At 

https://en.wikipedia.org/wiki/Doping_(semiconductor)
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smaller fillings, e.g., when 𝜈 =
1

6
, on the other hand, a Wigner crystal spontaneously forms, as shown 

in Fig. 16(c), where the electrons form closed loops localized on the grid points of a regular triangular 

lattice108. As expected, it breaks the translational symmetry of the original Kagome lattice.  

4.4 Topological properties of 3D carbon allotropes 

Dirac/Weyl loops and points in IGN 

Figure 17(a) shows that each primitive cell of an IGN contains six C atoms, which form two 

separate obtuse triangles symmetrically placed with respect to the inversion center of the cell62. 

Chemically, the six atoms also belong to two different groups: the two near the inversion center 

(marked grey) are fourfold coordinated; and the other four (marked red) are threefold coordinated.  

In the band structure in Fig. 17(b), linear dispersions near the EF along the Γ-Z, Y-T, and Y’-T’ 

symmetry lines are observed. A closer examination of the BZ in Fig. 17(c) reveals that the linear band 

crossings take place along two closed loops traversing the BZ in the (110) mirror invariant plane 

around 𝑘𝑐 = ±0.45𝜋/𝑐, as shown in Fig. 17(d). The two loops are in fact time-reversal and inversion 

images of each other.  
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Figure 17. Electronic structure of IGN. (a) Primitive cell, (b) energy dispersion, (c) the first BZ, (d) 
Dirac/Weyl loops on the k = ka= kb surface, and (e) Fermi arcs between Weyl points. 

A charge analysis [see inset of Fig. 17(b)] reveals that the bands near EF are mainly made of the 

px and py orbitals of the π-bonds, spatially located on only one type of the atoms, i.e., the four (orange) 

peripheral carbon atoms in Fig. 17(a)62. Thus, the local atomic structure, the linear dispersion, and the 

π-bond character of the states are all reminiscent of the 2D graphene. If we ignore the small dispersion 

along k = ka= kb in Fig. 17(d), the energy spectrum near EF may be viewed as derived from a 

superposition of non-interacting 2D graphene sheets stacked in the [110] direction. 

To capture energy dispersions near the EF, one may construct a minimal tight-binding model that 

includes the four peripheral carbon atoms with one p orbital each (either px or py depending on the 

locations)62,  

ℋ(𝒌) = [
0 𝑄(𝒌)

𝑄†(𝒌) 0
] ,         with  𝑄(𝒌) = [

𝑓14 𝑓13

𝑓24 𝑓23
] ,                   (3) 

where 𝑓𝑖𝑗(𝒌) = ∑𝜇𝑡𝑖𝑗𝑒
−𝑖𝒌∙𝒅𝑖𝑗

𝜇

 , 𝑖, 𝑗 ∈ {1,2,3,4}  are the site labels in Fig. 17(a), 𝑡𝑖𝑗  is the hopping 

strength between sites 𝑖  and 𝑗 , 𝒅𝑖𝑗
𝜇   is the vector directed from 𝑗  to 𝑖 , and 𝜇  runs over all 

equivalent lattice sites under translation. The spectrum of the energy band is symmetric about zero 

energy because of the presence of a chiral (sublattice) symmetry 𝒞 = 𝜎𝑧⨂𝜎0 in Eq. (3), such that 

𝒞𝐻𝒞−1 = −𝐻 is independent of k, where 𝜎𝛼 are the Pauli matrices. It is easy to show that zero-

energy states would appear if the following two conditions are met: (1) 𝑘𝑎 = 𝑘𝑏  and (2) 

cos(𝑘𝑐𝑐/2) = √𝑡13𝑡24/(4𝑡14𝑡23) . The first condition restricts the zero-energy states to the mirror 

invariant plane, whereas the second one further restricts them onto two separate loops at ±𝐾𝑐 =

(2/𝑐)arc cos[√𝑡13𝑡24/(4𝑡14𝑡23)].  

The inversion symmetry of the IGN may be destroyed by inserting (chemically inert) helium 

atoms into the interstitial sites or holes in Fig. 17(a), with a filling of one He per primitive cell62. This 

will result in four Weyl-like points. We use the phrase Weyl-like here, because in our discussions the 
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spin degree of freedom never enters due to the exceedingly small spin-orbit coupling of carbon. Once 

the Weyl-like points are created, they are topologically protected by the Chern number of any constant-

energy surface enclosing these points. If we have an open system with surfaces, surface Fermi arcs 

must emerge, connecting the surface-projected Weyl-like points of opposite chirality. This is indeed 

the case as can be seen in Fig. 17(e) where the Fermi arcs on the (100) surface are shown62.  

Classification of nodal rings: the case for armchair graphene networks 

Figure 18(a) shows an atomic structure of the carbon networks formed by connecting armchair 

GNRs, named AGNW-(m,n)451. Variations in m and n produce a series of networks. At the shared 

atomic lines are the gray atoms, which are all sp3 hybridized, while inside the nanoribbons are the 

unshared blue C1 and pink C2atoms, which are all sp2 hybridized. The space groups of AGNW-(3,2) 

and (1,2) are both IMMA with a mirror plane Mz normal to the z axis. 

 

Figure 18. (a) Atomic structure of AGNW-(m,n), (b) type-I, (c) type-II, and (d) type-III nodal rings. All 
three types can be found in AGNW-(3,2) and (1,2) under a strain. 
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First-principles calculations of AGNW-(3,2) and (1,2) reveal three different types of nodal rings, 

whose characteristic energy dispersions are schematically shown in Figs. 18(b-d)451. Both type-I and 

II rings may be viewed as a crossing line between two paraboloids as indicated by the green lines in 

Figs. 18(b-c). The opening of the paraboloids is always along the energy axis, either positive or 

negative: if they are in the opposite directions, one gets a type-I ring, if they are in the same direction, 

however, one gets a type-II ring, in accordance with the definitions of type-I and II Dirac points. On 

the other hand, a type-III ring emerges when a crossing between a paraboloid and a saddle surface 

takes place, as shown in Fig. 18(d), in which along ky the Dirac point is type-I but along kx the Dirac 

point is type-II. 

Since the classification only requires knowledge on the curvature of the energy bands, it can be 

straightforwardly obtained by a k•p model up to quadratic terms in k, in this case at the Γ point451: 

                 (4) 

where  is the band gap, and A1, B1, A2, B2, and C are band parameters obtained by fitting to the DFT 

results. By a change in the signs of these parameters, all three types of nodal rings (discussed above) 

are obtained.  

Note that the electron hole pockets arising from the Hamiltonian in Eq. (4) exhibit a rich variety 

of patterns, which can serve as a platform to study fundamental electronic and magnetic properties of 

the rings such as anisotropy in electron/hole transport and collapse of Landau levels451. It is known 

that the nodal rings are subject to a (Lifshitz) phase transition, through which the electron hole pockets 

gradually evolve from one to the other – a phenomenon that may be used to study electron-hole friction 

and strongly-correlated Coulomb interactions in the flat-band region as a result of the transition452.  

Interlocking nodal chains 

Dirac/Weyl surfaces 

Three types of graphene networks, TGN(2,2), QGN(2,2), and HGN(2,2), have been discussed in 
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Fig. 777. All of them are TMs with nodal-surfaces. Here, we will take the simplest case, QGN(2,2) in 

Fig. 19(a), to explain the electronic properties for all of them. One observes from the band structure in 

Fig. 19(b) that linear crossings at the Weyl-like points appear along each of the symmetry lines, Γ-Z, 

A-M, and X-R in the BZ, which are in fact the EF. There are three of them, all marked on in the inset 

of Fig. 19(b) as red dots. Interestingly, all three points have a common kz = 0.39/c. In other words, 

they all lie on a flat Weyl surface, denoted in the inset by the pink-red plane. Because of time reversal 

symmetry, there should be another Weyl surface at kz = -0.39 /c. It should be noted that here the Fermi 

surface passing the Weyl points is different from that of an ordinary metal in the sense that the low-

energy quasiparticles here must be described by a two-component Weyl spinors77.  

 

Figure 19. QGN(2,2). (a) Atomic structure and (b) energy dispersion near the Fermi level, where the pink-
red-color-shaded planes are Weyl surfaces in the BZ. 

The existence of Weyl surfaces in graphene networks can be explained by orbital-orbital 

interactions77. In particular, the electronic states near the EF originate from green-color nanoribbons in 

Fig. 19(a), which, together with the purple-color corner carbon atoms, may be viewed as deformed 

nanotubes with a square cross section, separated by the purple-color nanoribbons which have no 

contribution to the electronic states near the EF. As such, the network can be viewed as a 3D bundle of 

carbon nanotubes. It is known that the nanotubes are 1D Weyl semimetals with a linearly crossing at 

EF in their respective band structures455. It turns out that, when forming the carbon networks, the inter-

tube coupling between the  electrons in the x-y plane is rather strong, leading to significant dispersions, 

but that between the  electrons in the same x-y plane is negligible. The latter leads to the Weyl surfaces 

in the x-y plane, which are almost dispersionless, as can be seen in the inset in Fig. 19(b). 
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The Weyl surface is usually unstable unless it is protected by symmetry and/or topology. In the 

current case, the stability of the Weyl surface is guaranteed by sublattice symmetries originated from 

crystalline mirror symmetries along the x and y axes, inherent to the structure, or a combination of the 

two. Such carbon systems, due to a negligible spin-orbit coupling, fall within the BDI topological class 

with a 0D ℤ2 topological invariant defined at any point in the BZ with a local gap456-458. The ℤ2 

invariant just indicates whether the gap is inverted or not, when referenced to the normal band ordering 

in the atomic limit. In the graphene networks, the band gap is inverted (ℤ2 = 1) near the central region 

of the BZ, while un-inverted (ℤ2 = 0) near the Z-point at the boundary of the BZ. The Weyl surfaces, 

which separates these two regions of different band topologies, cannot be gapped, as long as the 

sublattice symmetry is maintained77. 

Triple points and linked nodal rings in 3D pentagon carbon networks 

 
Figure 20. (a) Atomic structure and (b) the first BZ of a 3D pentagon carbon. (c) The corresponding band 
structure by DFT (black lines) and TB (red dashed lines), and (d-f) the band structures of 3D pentagon 
carbon under 1%, 0.1% and 1% uniaxial strain along z-direction. (g) The zoom-in view of band structure 
around the Γ point in (c) along N-G-X. The two degenerate valence bands at Γ belong to the 2D irreducible 
representation Eg, and the lowest conduction band belongs to the one-dimensional A1u representation. (h) 
The charge density distribution for states near the Fermi level in (c), indicating these states are mainly 
from p orbitals of the sp2 hybridized atoms. (i-n) The 3D band structures on the N-G-X and the X-G-Z 
planes corresponding to (d-f), respectively.  

Another class of carbon allotropes are the 3D pentagon carbon networks, one of which is shown 
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in Fig. 20(a)202. It can be viewed as being formed by interlinking two orthogonal arrays of pentagonal-

ring nanoribbons (red and blue, respectively), which are then stacked along the z direction. Upon 

linking, the two nanoribbons share one atom marked by green in Fig. 20(a). Similar to most of the 3D 

carbon networks, in the pentagon lattice, there are two kinds of carbon atoms, i.e. the sp2-hybridized 

red and blue atoms and the sp3-hybridized green atoms. The structure has the nonsymmorphic D4h
19  

space group (No. 141, I41/AMD), of which an important symmetry element is the screw  𝐶̅4z, which 

is a four-fold rotation along z, followed by a factional translation of 𝑐𝑧̂/4 , where 𝑐  is the lattice 

parameter in the z direction202.  

The pentagon carbon networks are unique in topological physics because they produce a series of 

topological fermions beyond the usual Dirac and Weyl fermions260,344. For example, the band structure 

in Fig. 20(c) shows that, under equilibrium, the network is a narrow-gap semiconductor. At Γ point 

and near EF, there are two degenerate valence band states (heavy-hole and light-hole) and a single 

conduction band state only 21.4-meV higher in energy. In the vicinity of Γ, the light-hole valence band 

and the conduction band nearly cross linearly. The degeneracy of the two valence band states is a result 

of symmetry as they both belong to the 2D irreducible representation Eg of the D4h group. In contrast, 

the conduction band state belongs to the 1D A1u representation of the D4h group. The two valence bands 

remain degenerate along Γ-Z (i.e., along the 𝑘𝑧-axis). This is because there is a smaller group C4v 

along the screw axis, such that the 2D representation does not split. From an analysis of the 

wavefunctions and projected density of states (PDOS), one see that the band-edge states are mainly 

derived from the π orbitals of sp2 carbon atoms.  

Since the band gap is small, applying a tensile strain can increase the gap to produce a 

semiconductor, while a compressive strain can close the gap towards a semimetal [Figs. 20(d-f)]. Of 

particular interest is the latter case when the band gap between the A1u singlet and Eg doublet at Γ is 

closed, i.e., at the transition point. Due to the different symmetry characters, however, A1u and Eg 

cannot hybridize with each other, which leads to the formation of the triplet point at Γ, as shown in Fig. 

20(e)202. Figures 20(i-n) present 3D band structures on the N-G-X and the X-G-Z planes corresponding 

to Figs. 20(d-f), respectively. Figure 21(a) exhibits the topological triplet point in the first BZ. 

After the transition point, if one applies strain further, the band order at Γ becomes inverted, while 



 

31 

 

the order at Z remains the same. Such a band topology implies that the two bands must now cross each 

other between Γ and ±Z. Furthermore, because the two bands belong to different representations along 

the screw-axis, they must cross in a linear manner, with two triply-degenerate points: one on each side 

of Γ as shown in Fig. 21(b). Therefore, the metallic phase of the pentagon carbon networks represents 

a novel TM phase with a pair of triply-degenerate band-crossing points near EF.  

 

Figure 21. Schematic of the band-crossing evolution in reciprocal space, from (a) a single isospin-1 triplet 
fermion point at the BZ center, to (b) two triply degenerate fermion points along kz-axis (one on each side 
of Γ point), further to (c) two inter-connected (Hopf link) Weyl loops (with one Weyl loop being centered 
at Γ point, while the other loop crossing the first Brillouin zone boundary). In (a-b), the red line along the 
kz-axis marks the (twofold) band degeneracy line protected by the fourfold screw-rotational symmetry. 
Note that the dispersion transverse to this line (that is, in kx–ky plane) is of quadratic type (which can be 
observed from Fig. 20).  

To describe the above topological quantum phase transition near the band edges, a k∙p model at 

Γ up to quadratic order is sufficient202:  

𝐻(𝐤) = (𝐶 + 𝐷1𝑘𝑧
2 + 𝐷2𝑘⊥

2) + [

𝛥 + 𝐵1𝑘𝑧
2 + 𝐵2𝑘⊥

2 −𝑖𝐴𝑘𝑥 −𝑖𝐴𝑘𝑦

𝑖𝐴𝑘𝑥 0 𝐵3𝑘𝑥𝑘𝑦

𝑖𝐴𝑘𝑦 𝐵3𝑘𝑥𝑘𝑦 0

],          (5) 

where the coefficients A, B1, B2, C, D1, D2, and 𝛥 are determined by fitting the DFT results. At the 

transition point, 𝛥 = 0, the three bands cross at a single point. To see what happens qualitatively, we 

may keep only the k-linear terms in Eq. (5). The following equation will result:  

ℋ(𝐤) = 𝐴𝐤 ∙ 𝛌,                                (6) 

where 𝐤 = (𝑘𝑥, 𝑘𝑦, 0), and  
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𝜆𝑥 = [
0 −𝑖 0
𝑖 0 0
0 0 0

] , 𝜆𝑦 = [
0 0 −𝑖
0 0 0
𝑖 0 0

] , 𝜆𝑧 = [
0 0 0
0 0 −𝑖
0 𝑖 0

] 

are three of the eight Gell-Mann spin-1 matrices459, describing isospin-1 triplet fermions moving in 

the xy-plane202,362. The fermions are helical with a well-defined helicity of ±1 or 0, corresponding to 

the eigenvalues of a helicity operator 𝐤 ∙ 𝛌/𝑘. The two branches with a helicity of ±1 are massless, 

while the one with a helicity of 0 has a flat dispersion (= infinite mass).  

 Passing the critical point, the isospin-1 triplet splits into two triply-degenerate points at 𝑘𝑧 = 𝜏𝐾𝑐, 

respectively, where 𝜏 = ± and 𝐾𝑐 = √−∆/𝐵1 according to Eq. (5). Note that to reproduce the DFT 

band structure in Fig. 20(e), one must have ∆ < 0 and 𝐵1 > 0. The linearized model of Eq. (5) in 

this case becomes202: 

                           𝐻𝜏(𝐪) = [

2𝜏(𝐵1 + 𝐷1)𝐾𝑐𝑞𝑧 −𝑖𝐴𝑞𝑥 −𝑖𝐴𝑞𝑦

𝑖𝐴𝑞𝑥 2𝜏𝐷1𝐾𝑐𝑞𝑧 0
𝑖𝐴𝑞𝑦 0 2𝜏𝐷1𝐾𝑐𝑞𝑧

],   (7) 

where the wave vector 𝐪  is measured from the crossing point. One notes that in the direction 

perpendicular to the screw axis, i.e. in the 𝑞𝑥-𝑞𝑦 plane, the dispersion is the same as that for the 

isospin-1 triplet fermion in Eq. (6). In other words, the triply-degenerate fermions basically inherit the 

structure of the triplet fermion but acquire one more degree of freedom, i.e., motion along the z-

direction. Meanwhile, their helicities are no longer strictly defined.  

We stress that the two fermions discussed here, i.e., the isospin-1 triplet fermion and triply-

degenerate fermion, are new quasiparticles. Unlike the Dirac and Weyl fermions, these fermions do 

not have a direct analogue in relativistic quantum field theory. Also, the isospin-1 triplet fermion point 

is not topologically protected, except that it marks the onset of a quantum phase transition. In contrast, 

the two triply-degenerate fermion points are protected by the nontrivial band topology as a result of 

the fourfold screw axis.  

If one breaks the screw-rotational symmetry, the double-degeneracy of the E band will be lifted 

and the triply-degenerate fermions will disappear. However, the original A and E bands still have 

different characters under the mirror operations, Mxz and Myz. As such, crossings between each of 

the split E band and the A band in the mirror-invariant 𝑘𝑥-𝑘𝑧 and 𝑘𝑦-𝑘𝑧 planes will still be protected, 

as long as the respective mirror symmetry is intact. For instance, by an additional uniaxial strain along 
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x or along diagonal in the x-y plane, the resulting band crossings form two orthogonal concatenated 

Weyl loops with the topology of a Hopf-link. As an example, consider a tensile strain along x. Figure 

21(c) shows that one Weyl loop is centered at Γ point lying in the 𝑘𝑥-𝑘𝑧 plane, while the other is 

centered at Z point lying in the 𝑘𝑦-𝑘𝑧 plane. It needs to be emphasized that a band crossing here only 

results in Weyl loop fermions, but not Weyl fermions, because the inversion symmetry is still intact. It 

should also be noted that there is no symmetry to pin these Weyl loops at a fixed energy, and indeed, 

along a loop the energy varies202. 

Nexus network in carbon honeycomb structures 

The CHC structures in Fig. 8 also exhibit exotic fermions, as can be seen in Fig. 22, where Fig. 

22(a) shows the band structure of CHC-1 along Γ − A (in the kz-direction)434. At position α (kz = 

0.07 π/𝑐 and E = 0.50 eV), the green and black bands cross. Again, here we will treat the real spin as 

a dummy variable because of its negligibly-small spin-orbit coupling. As such, the green band is a 

doublet, while the black band is singlet. Therefore, α is a triply degenerate point (TP).  

There is another TP at kz = - 0.07 π/𝑐, due to the inversion symmetry249. The (green) doublet is 

a topological nodal line, which connect the two TPs. Due to the crossing at the TPs, however, the solid 

and dotted (green) doublets belong to different band index: solid = (-1, 0) and dotted = (0, +1), 

respectively. As can be seen in the schematic plot in Fig. 22(b), the solid nodal lines connect the TPs 

from the interior of kz, while the dotted nodal lines connect the TPs from the exterior, namely, passing 

BZ boundaries in the kz direction. Moreover, Fig. 22(b) shows that there are three mirror planes 𝑘𝑦 =

0, ±√3𝑘𝑥 and hence there are three sets (denoted by different colors) of equivalent nodal lines 120° 

apart from each other. To zoom in, Fig. 22(d) shows the (0, +1) nodal lines in one mirror plane (ky = 

0), which form a nexus network. This is a standard connectivity for a nexus phase where the two TPs 

[to be denoted as nexus points (NPs)] are connected by four solid nodal lines, as well as by four dotted 

nodal lines.  

Seen from Fig. 22(e), there are four (0, +1) nodal lines between the two NPs434. Considering 

periodicity of the BZ, all the lines are actually linked each other and form a closed path. Therefore, the 



 

34 

 

two NPs are not only connected by a straight line throng Γ (corresponding to the solid green line in 

Fig. 22(a)), but also by a curved line. The curved line, which goes from one TP through β, Γ, β′ and 

to the other TP, winds along the entire BZ torus as shown in Fig. 22(e). This kind of connectivity 

between the two NPs is called winding connectivity. The solid lines in Fig. 22(b) show schematically 

the NPs and the connecting (0, +1) nodal lines in the first BZ, which form a novel 3D nexus network.  

 

Figure 22. Topological properties of CHC-1 (a, b, d, e) and CHC-1’ (c, d). (a) Band structure of CHC-1 
along Γ − A consisting of a green doublet and a black singlet band near the EF. The blue point α is a TP 
at which the doublet and singlet cross each other. The doublet is the nodal line. Going from Γ to A and 
before the TP, the nodal line (green solid line) is made of two lower bands, denoted as (-1, 0). After the TP, 
however, the nodal line (green dotted line) is made of two higher bands, denoted as (0, +1). From the point 
of view of topology, however, they are two different classes of nodal lines. (b) Schematic illustration of 
the nexus network of CHC-1 in the first BZ. Solid lines correspond to the (-1, 0) nodal lines, while dotted 
lines correspond to the (0, +1) nodal lines. Orange planes are three mirror planes. (c) Schematic illustration 
of nodal lines of CHC-1′ in the first BZ. Here due to the structural change, the nexus network in (b) is 
replaced by two simple sets of nodal lines along Γ − A. However, additional nodal lines (ANLs) emerge 
primarily in the kx-ky plane (i.e., being “planar”): besides the planar nodal lines associated with three 
(orange) mirror planes, there is equal number of planar nodal lines associated with three (light-blue) glide 
planes. They intersect with the nodal lines along Γ − A at kx-ky plane. Due to crystal symmetry, these 
planar nodal lines are also symmetric with respect to kz axis. (d) Contour map of the energy difference on 
the ky = 0 mirror plane of the (0, +1) bands for CHC-1. Red lines are where the energy difference is zero, 
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i.e., on the nodal lines. The map shows a standard connectivity between the two TPs (also known as NPs). 
(e) Same as in (d) of the (-1, 0) bands. The zoomed-in view for kz = (-0.2, 0.2) shows a winding connectivity 
between the two NPs. (f) Same as in (e) of the (-1, 0) bands for CHC-1′. The zoomed-in view shows that 
the nodal lines from the two TPs intersect with two ANLs. 

When carbon dimerization in CHC-1 [see the orange atoms in Fig. 8(b)] is removed, the structure 

becomes CHC-1’ in Fig. 8(c). To see the effect of the de-dimerization, the couture map of CHC-1’ is 

plotted in Fig. 22(f) for ky = 0 in a 1×1×2 supercell to match that of CHC-1. The map reveals a pair of 

triple points at kz = ±0.07 π/2𝑐′ (where 𝑐′ is the lattice constant of CHC-1’), which are connected 

by the (-1, 0) nodal line. Interestingly, besides the nodal line along kz, two additional nodal lines along 

kx can be seen around kz = ±0.02 π/2𝑐′. Here, the structure has a 6-fold screw rotation symmetry. 

There are therefore 5 additional pairs of equivalent nodal lines on the two mirror planes 𝑘𝑦 = ±√3𝑘𝑥 

and on three glide planes 𝑘𝑥 = 0, ±√3𝑘𝑦. The total number of nodal lines not crossing the TPs are 

therefore 12, as schematically illustrated in Fig. 22(c). 

Constrained by the symmetry group and the time reversal symmetry for a spinless system, one 

obtains a 3×3 k ∙ p model around the Γ point434:  

𝐻(𝒌) = [

𝐴1𝑘∥
2 + 𝐵1𝑐𝑜𝑠𝑘𝑧 + 𝐶1 𝛼𝑘+𝑠𝑖𝑛𝑘𝑧 + 𝛽𝑘−

2 𝐷𝑘−

𝛼𝑘−𝑠𝑖𝑛𝑘𝑧 + 𝛽𝑘+
2 𝐴1𝑘∥

2 + 𝐵1𝑐𝑜𝑠𝑘𝑧 + 𝐶1 −𝐷𝑘+

𝐷𝑘+ −𝐷𝑘− 𝐴2𝑘∥
2 + 𝐵2𝑐𝑜𝑠𝑘𝑧 + 𝐶2

],   (8) 

where 𝑘± = 𝑘𝑥 ± 𝑖𝑘𝑦 , 𝑘∥
2 = 𝑘𝑥

2 + 𝑘𝑦
2 , and 𝐴1,2 , 𝐵1,2 , 𝐶1,2 , D, 𝛼 ,𝛽  are real constants. When 𝛼 =

𝛽 = 0, it describes the triple point phase. When 𝛼 = 0 and 𝛽 ≠ 0, it describes the triple points and 

nodal lines phase. Therefore, the effect of the 𝛽𝑘±
2  term is to generate additional nodal lines on the 

mirror/glide planes. While the effect of the 𝛼𝑘±𝑠𝑖𝑛𝑘𝑧 term is splitting the trivial line in the triple 

point phase, as this term decreases the structural symmetry. When 𝛽 = 0 and 𝛼 ≠ 0, it describes a 

standard nexus-point phase. The nexus network is generated only in the case of 𝛼 ≠ 0 and 𝛽 ≠ 0. 

This illustrates that the nexus network is a result of the interactions between the standard nexus point 

phase and additional nodal lines. Note that the k ∙ p Hamiltonian above not only reproduces the nexus 

network in CHC-1, but can also be used to generate other nexus networks which may exist in other 

real materials as detailed in Ref. [321]. 
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So far, various topological phases have been found in 3D carbon allotropes, from (Dirac, Weyl 

and triple) nodal points to nodal lines/rings/chains to nodal surfaces. We should also point out that 

topological phases in 3D carbon allotropes have also been discussed in the studies of Bernal graphite460, 

Mackey-Terrones crystal248, body-centered orthorhombic C16
70 , body-centered tetragonal C16

69 and 

m-C8
73. 

4.5 Extension to boron and beyond  

   The topological classification of carbon allotropes different from the conventional topological 

materials is primarily originated from the negligible spin-orbit coupling in carbon materials. Generally 

speaking, materials consist of light elements should have the same topological classification461. For 

example, the Dirac points or nodal line also can be found in boron, silicon and germanium allotropes462-

467. 

Very recently, Feng et al. discovered the Dirac fermion in 12 boron sheet with the aid of angle-

resolved photoemission spectroscopy and first-principle calculations465. Chen et al. set out to 

determine whether a monolayer boron sheet with Dirac fermions was experimentally feasible, and they 

identified a new boron monolayer consisting of hexagon as well as rhombus stripes463. The boron 

monolayer, which has been called hr-sB, has an exceptional stability and unique Dirac fermions, as 

shown in Fig. 23(a). Dirac nodal lines and tilted semi-Dirac cones coexist around the EF, and the Dirac 

points in the nodal lines are crossed by two linear bands corresponding to two 1D channels in the 

hexagon and rhombus stripes, respectively. The tilted semi-Dirac cones are present at the tilted axis 

and anisotropic band crossings, which produces a new kind of Dirac fermions. The unique electronic 

properties, as a result of the special bonding characteristics, indicate that this boron monolayer may be 

a good superconductor463. 

By means of systematic first principles computations, Chen et al. also discovered another stable 

3D boron allotrope, namely 3D-α' boron, which is a nodal-chain semimetal as shown in Fig. 23(b)462. 

In momentum space, six nodal lines and rings contact each other and form a novel spindle nodal chain 

[Fig. 23(c)]. The band structure in Fig. 23(d) and PDOS in Fig. 23(e) indicate that the electronic 

properties of the 3D-α' boron are also dominated by π bonds, similar to the case in 3D graphene 
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networks. This 3D-α' boron can be formed by stacking 2D wiggle α' boron sheets, which are also nodal-

ring semimetals. In addition, our chemical bond analysis revealed that the topological properties of the 

3D and 2D boron structures are related to the π bonds between boron atoms, although the bonding 

characteristics are qualitatively different from those in 2D and 3D carbon structures462,463. 

 
 

Figure 23. (a) A single layer boron sheet hr-sB possessing Dirac nodal line and tilted Dirac cone. (b) 
Atomic structure of a boron allotrope 3D-α' boron, which can be formed by stacking 2D wiggle α' boron 
sheets. (c) Nodal lines in the first BZ of 3D-α' boron. (d-e) Band structures and PDOS of 3D-α' boron, 
respectively. The inset in (d) shows a charge density for a state at point F.  

Silicon and germanium are both belong to group IV elements in the periodic table, same as carbon. 

Thus, they often have similar physical properties. For example, in the absence of SOC, monolayer 

freestanding silicene and germanene are both Dirac semimetals468-471, same as graphene. Because of 

the relatively heavier cores as well as a structural buckling, however, silicene and germanene have 

much larger SOCs than that of graphene. As a result, silicene and germanene are both topological 

insulators472-474. Beside the monolayer structure, other silicon and germanium allotropes have also 

been proposed. Some of them also show topological properties475-484. For example, in the absence of 

SOC, a 2D monolayer T-Ge485, made of periodic squares and octagons, is a nodal-line semimetal, 

whose nodal loops are protected by a combination of the spatial inversion P and time reversal T 
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symmetries. When SOC is considered, it is still a nodal line semimetal, although a small gap is opened 

along the nodal loop, which is characterized by a nontrivial Z2 invariant and by the existence of 

topological edge states at the boundaries. Moreover, the nodal-line semimetal states are robust against 

biaxial strains. Another 2D monolayer silicon allotrope in the literature486, named Si-Cmma, is also a 

nodal loop semimetal in the absence of SOC. The nodal loop, protected by a glide mirror, belongs to 

AI + R within the Altland-Zirnbauer symmetry classes. As to 3D structures, silicene networks similar 

to the graphene networks with non-trivial topological properties468,487,488, such as so called cubic 

diamond Si, AHT-Si24 and VFI-Si36, have also been proposed. 

V.   Final remarks 

 
Figure 24. Preparation of the (a) MXene/F127 unimer/resol mixture, (b) MXene-F127 micelles@resol 
composite, (c) MXene-OMC composite and (d) MDC-OMC composite. 

(1) While most of the 3D carbon structures discussed here have not been experimentally 

synthesized thus far, except for the CHCs, we note that the advancement in MXene-derived carbon 

[Fig. 24]123 and MOF-derived carbon [Fig. 25]139,338,489 may hold the key for the eventual experimental 
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realization of 3D topological carbon materials, as such processes may maximally maintain the atomic 

structures of the carbon skeleton or its derivatives in an orderly fashion. This is especially encouraging 

given the fact that there are many thousands of MOFs and COFs available to explore. Even the variety 

of the MXene is considerable. One the flip side, the large variety also calls for a future theoretical 

investigation of the exotic topological properties of the MOF- and MXene-derived carbon networks 

and their potential applications.  

 

Figure 25. Crystal structures (a-c) and simplified framework structures (d-f) of MOF-5 (Zn4O(1,4-
benzenedicarboxylate)3; left), Al-PCP (Al(OH)(1,4-naphthalenedicarboxylate); middle), and ZIF-8 (Zn(2-
methylimidazolate)2; right). 

 

Figure 26. (a) Twisted bilayer graphene, where 𝜃  is the twisted angle. (b) A schematic view of 𝑝𝑧 
orbitals in twisted bilayer graphene. 

(2) We note the recent significant surge in the interest and study of twisted graphene154,490-497. In 

retrospect, twisted graphene shares the same orbital physics as the carbon networks elaborated on in 
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this review article. In particular, both start with the non-trivial orbital topology that manifest as the 

Dirac cones of a single-layer graphene. However, twisting results in a (more complex) Moiré pattern 

of the 𝑝𝑧 orbitals (see Fig. 26) than what we have here. It has been speculated that in the twisted 

graphene bilayer a strong interlayer resonance leads to an in-plane localization and hence a flat 

band165,498,499. We, however, feel that the physics of the twisted graphene may resemble the flat band 

physics of monolayer carbon Kagome lattice discussed in Secs. 2.2 and 4.3, although the exact origin 

for the wavefunction phase cancelation may differ. Recently, it has been experimentally shown that 

Kagome lattice indeed form as a result of twisting of a silicene bilayer [Fig. 27], in spite that the twist 

angle is considerably larger than what has been reported for the twisted graphene bilayer352. 

 

Figure 27. Kagome lattice in twist silicene bilayers. 

(3) Besides the topological properties discussed here, which are also known as the first order, 

recently higher-order TIs has also attracted considerable interests. While the higher orders are 

classified by different Chern numbers from the first order, physically they represent an expansion of 

the gaped states at the expense of the gapless states. For example, for a 3D bulk, in the first order, the 

gapless states cover all the surfaces. In the second order, the gapless states only cover all the edges. 

On the other hand, in the third order, the gapless states cover only all the corners. For a 2D bulk, in 

contrast, the first order is featured by gapless edge states, while the second order is featured by gapless 

corner states. It has been proposed that some of the graphynes discussed earlier are in fact the first 
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second-order TIs [Fig. 28]. If this is true and since the materials are already been synthesized, they 

could be the first example of second-order TIs to be experimentally synthesized. Hence, not only the 

very first-order TI was born in a carbon material, i.e., the graphene, but the second-order TL was born 

also in a carbon material. 

(4) Last but not least, we would like to stress the vital importance of understanding the topological 

physics in carbon materials, not only because of the unique position of carbon in many technologically-

important applications, but also because of its cleanest topological electronic states. Here, only one 𝑝 

orbital participates in the topologically nontrivial gapless states over a wide energy gap of almost 10 

eV. In contrast in most of the known topological materials, not only the composition of the gapless 

states is more than one, but also topological trivial states often dominate over the energy spectrum near 

the Fermi level. No wonder their silent topological properties must wait for nearly 80 years after the 

birth of quantum mechanics and 20 years after the quantum Hull effect to be uncovered. Hence, from 

the point of views of both applications and a thorough understanding of the band topology in condensed 

matter, we ought to fabricate 3D carbon networks in high quality and characterize them, and the time 

has come. 

 

Figure 28. Corner states in graphdiyne. (a) Energy spectrum of the hexagonal-shaped GDY nanodisk 
shown in (b). The energy levels are plotted in ascending order. (b) also shows the charge distribution of 
the six zero energy modes, demonstrating that they are localized at corners. 

In summary, we have reviewed topological properties and topological phenomena in carbon 

structures. One can expect that other materials made of light elements possess similar exotic 

characteristics. In addition, for materials having a larger SOC, if they have the same topological class 

as the light-element structures in the absence of the SOC, the effects of the SOC may go beyond just 



 

42 

 

opening band gaps at the band crossings possibly leading to new topological phases unexplored so far. 

While the review has been focused on topological phases of carbon materials, we can expect that the 

topological phases will influence other physical properties. 
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