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A B S T R A C T

Previous studies have cataloged social disparities in air pollution exposure in US public schools with respect to
race/ethnicity and socioeconomic status. These studies rely upon chronic, averaged measures of air pollution,
which fosters a static conception of exposure disparities. This paper examines PM2.5 exposure disparities in Salt
Lake County (SLC), Utah public schools under three different PM2.5 scenarios—relatively clean air, a moderate
winter persistent cold air pool (PCAP), and a major winter PCAP—with respect to race/ethnicity, economic
deprivation, student age, and school type. We pair demographic data for SLC schools (n = 174) with modelled
PM2.5 values, obtained from a distributed network of sensors placed through a community-university partner-
ship. Results from generalized estimating equations controlling for school district clustering and other covariates
reveal that patterns of social inequality vary under different PM2.5 pollution scenarios. Charter schools and
schools serving economically deprived students experienced disproportionate exposure during relatively clean
air and moderate PM2.5 PCAP conditions, but those inequalities attenuated under major PCAP conditions.
Schools with higher proportions of racial/ethnic minority students were unequally exposed under all PM2.5

pollution scenarios, reflecting the robustness of racial/ethnic disparities in exposure. The findings speak to the
need for policy changes to protect school-aged children from environmental harm in SLC and elsewhere.
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1. Introduction

Air pollution is an important hazard to human health, and fine
particulate matter (PM2.5) pollution is a key driver of air-pollution's
adverse health effects (World Health Organization, 2019; Anderson
et al., 2012; Brook et al., 2010). PM2.5 particles are fine, inhalable
particles that are 2.5 μm in diameter or less; thus, PM2.5 exposure poses
a serious hazard to the cardiopulmonary system of the human body
(Anderson et al., 2012; Brook et al., 2010). Although the majority of air-
pollution health studies have focused on long-term pollution exposure,
more recent studies have reported adverse health outcomes, including
mortality (Lin et al., 2017a; Lin et al., 2017b) and decreased lung
function in children with severe asthma (Yamazaki et al., 2011), asso-
ciated with increased PM2.5 levels in the previous few hours.

Children are more susceptible to the effects of PM2.5 due to their
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small body stature and growing lungs (Brockmeyer & D'Anguilli, 2016;
Landrigan et al., 2010) Children are also more often rooted in specific
local environments than are adults, and they spend substantial time at
school (Kweon et al., 2018). Increased exposure to air pollution at
school is associated with negative health effects for students (Kweon
et al., 2018; McConnell et al., 2006; Wang et al., 2009; Buthbumrung
et al., 2008; Volk et al., 2011) as well as poorer academic performance
and attendance (Grineski et al., 2020; Kweon et al., 2018; Pastor et al.,
2006; Mohai et al., 2011). This study focuses on characterizing social
inequalities in PM2.5 exposures at school under different weather sce-
narios in Salt Lake County (SLC), Utah public schools.

The effects of school-based exposure on children are troubling, and
not all children are equally exposed to air pollution at school.
Differences in the distribution of burdens, such as concentrations of air
pollutants, are considered disparities and the measurement of dis-
parities is an important feature of distributional environmental justice
research (Schlosberg, 2009; Bell and Carrick, 2017). Several distribu-
tional environmental injustice studies have found that racial and ethnic
minority children are overrepresented in schools with higher pollution
levels (Kweon et al., 2018; Pastor et al., 2006; Chakraborty and
Zandbergen, 2007; Grineski and Collins, 2018; Collins et al., 2019;
Morello-Frosh et al., 2002) including, higher levels of PM2.5 emissions
from road traffic (Gaffron and Niemeier, 2015). Schools serving eco-
nomically deprived students are also exposed to higher levels of pol-
lution on average in the US (Grineski and Collins, 2018; Collins et al.,
2019) and in several US states, such as California (Pastor et al., 2006)
and North Carolina (Salvezen and Zambito, 2010). Although age is less
often investigated, schools serving younger students have greater ex-
posures than those serving older students (Grineski and Collins, 2018;
Collins et al., 2019). While notable, these distributive environmental
injustice studies specific to schools and schoolchildren have examined a
limited set of social inequality indicators, limiting knowledge about
social disparities and exposure.

An important limitation of the distributive environmental injustice
literature on schools, as well as the extant environmental injustice lit-
erature in general, has been the long-standing reliance upon chronic,
averaged measures of air pollution (e.g., Anderson et al., 2018;
Mazaheri et al., 2013). This reliance has fostered a static conception of
exposure disparities and provided a limited basis for interventions de-
signed to reduce schoolchildren's exposures to temporally variable le-
vels of air pollution. Nearly 20 years ago, Pellow (2000) observed that
while environmental injustices are inherently temporally dynamic,
analysts have typically conceived of distributive environmental in-
justice as a static phenomenon. This critique remains relevant today
and is reflected in the still-common use of single, static measures of air
pollution exposures in many environmental injustice studies. For ex-
ample, several school-based studies have relied on measures of air
pollution from the US Environmental Protection Agency's (EPA) Na-
tional Air Toxics Assessment (NATA) (Kweon et al., 2018; Pastor et al.,
2002, 2006; Grineski and Collins, 2018; Morello-Frosh et al., 2002).
While a strength of the NATA data are the complex spatial modelling
and weighting by health risks, they do not capture temporal variability,
being that they are annually averaged and cover only four of the past 20
years (1999, 2005, 2011, 2014). Other school-based studies have used
locally generated surfaces based on state air monitoring networks (e.g.,
Gaffron and Neimeier [2015]). While these data can be used to create
temporally granular measures of exposure, environmental justice ana-
lysts have typically been averaged to create one measure of chronic
pollution (e.g., annual PM2.5) and are limited by sparseness of the
monitoring network that propagates unacceptable spatial error (Steinle
et al., 2013; Bell et al., 2011).

This conception of pollution as a static phenomenon is flawed when
considering the temporal dynamism of air pollution, especially in a
place like SLC, Utah, which has dramatic seasonal variability and
complex topography that periodically traps pollution in a valley sur-
rounded by high mountains (Holzworth, 1967; Whiteman et al., 2014).

During the winter, cold air settles in SLC (and many mountain valleys)
and high-pressure systems move in, acting like a lid, trapping pollution.
These episodes are known as persistent cold air pools (PCAPs), and
colloquially as inversions. The spatial distribution of peak PM2.5 con-
centrations tends to be controlled by elevation, with lower elevation
locations nearest pollution emissions sources on the valley floor having
the highest concentrations for the longest durations (Silcox et al.,
2012). The main sources of primary PM2.5 in SLC during the winter are,
in rank order, mobile sources such as vehicles, trains, and aircraft;
smaller stationary sources, like home heating, smoke from wood
burning, and emissions from small shops and restaurants; and large
industrial and commercial facilities (Call, 2018). Secondary PM com-
prises more than one half of overall PM2.5 levels in the study area
during PCAPs when gases such as sulfur dioxide, NOx, and VOCs react
with other gasses in the atmosphere, such as ammonia, to form tiny
particles. PCAPs provide ideal conditions for secondary PM2.5 to form
(Utah Division of Air Quality, 2019; Kelly et al., 2013). In any given
winter, SLC experiences PCAPs which can last for a few days or more
than two weeks. This means that a measure of annual average PM2.5

fails to capture SLC's different PM2.5 scenarios that are the focus of local
public health concerns. Studies that account for high spatiotemporal
variability are needed to advance understanding of social disparities of
air pollution exposures within this context (Collins and Grineski, 2019).

This study extends from prior EJ studies focused on SLC and
schoolchildren. First, we account for the high level of spatial and
temporal variability in PM2.5 by demonstrating how social disparities in
exposures to PM2.5 varied under three different PM2.5 scenarios asso-
ciated with low wind conditions. We leveraged data from a community-
university partnership through the University of Utah's Air Quality and
U (AQ&U) network, from which we constructed high-resolution (spa-
tially and temporally) PM2.5 estimates (Sayahi et al., 2019a; Sayahi
et al., 2019b; Becnel et al., 2019). Second, we examined school-level
variables that have not received focus in prior school-based environ-
mental injustice research, i.e., Title I status, charter school type, and
alternative or special education school types. Third, with a focus on
PM2.5, we sought to add to the small literature on social disparities in
school-level exposure to one of the most health-harming forms of air
pollution.

This study addresses the following research question: is PM2.5 ex-
posure distributed unjustly based on race/ethnicity, economic depri-
vation, student age and school type in three different scenarios, in-
cluding a relatively clean fall day, a moderate winter PCAP, and a major
winter PCAP?

2. Material and methods

2.1. Study area: Salt Lake County

SLC is the most populated county in Utah with over 1 million re-
sidents. The county has serious air quality problems; it periodically
experiences the highest PM2.5 (particulate matter less than 2.5 μm in
diameter) pollution in the US (Shenefelt, 2016). Numerous adverse
human health effects have been associated with this exposure in SLC
(Beard et al., 2012; Hammoud et al., 2010; Pope Iber, 2000; Pope III
et al., 1999; Pope III et al., 2017; Utah Division of Air Quality, 2018).
SLC residents live in a serious non-attainment area for 24-h PM2.5

pollution (Utah Division of Air Quality, 2018). PM2.5 is primarily a
concern during winter, and typically SLC exceeds the National Ambient
Air Quality Standard (NAAQS) on 18 days per year (Whiteman et al.,
2014).

Socially, SLC has a diverse populace, which runs counter to general
perception in the US that the area's population is highly homo-
geneous—i.e., overwhelmingly composed of non-Hispanic White
members of the Church of Jesus Christ of Latter Day Saints (formerly
known as Mormons). Data from the American Community Survey for
2015 indicate that although the population is predominantly (73%)
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non-Hispanic/Latino White, it also includes more than 300,000 (27%)
racial/ethnic minority residents. The only distributive environmental
injustice study conducted in SLC revealed strong patterns of injustice
with respect to race/ethnicity across a suite of chronic, averaged air
pollution measures (Collins and Grineski, 2019).

2.2. Unit of analysis: Salt Lake County public schools

We downloaded the geographic locations and demographics of all
312 public schools in SLC from the National Center for Education
Statistics (NCES) using the ElSi Table Generator tool. We selected
2016–2017 data because it was the most recent school year data
available and it aligns best with our PM2.5 data. This ElSi tool provides
users with access to the Common Core of Data (CCD), which is the US
Department of Education's primary database on public elementary and
secondary schools in the United States. These data have been used in
prior studies of school-based environmental injustice (Grineski and
Collins, 2018; Collins et al., 2019). The CCD surveys are conducted
annually at all public elementary and secondary schools throughout the
US. CCD contains general descriptive information on schools and on
their students and staff. Of relevance to this project, we downloaded the
latitude and longitude of each school, information about the racial/
ethnic make-up of the student body, total enrollment, lowest and
highest grades offered at the school, and school type characteristics. We
first removed schools that fell outside of our PM2.5 extent (n = 132),
which is discussed below, and then removed additional schools from
within our extent that had fewer than 50 students enrolled in the
2016–2017 school year (n = 6) to create more stable proportion vari-
ables, leaving 174 schools in our analysis. Fig. 1 shows the schools
included in the study, which are located across 11 municipalities and 5
school districts.

2.3. Dependent variables

We utilized three dependent variables, each associated with a dif-
ferent air pollution scenario: clean air, moderate PCAP, and major
PCAP. Each dependent variable represents the mean 10-min con-
centration of PM2.5 over a 48-h period at each school. We also examined
variables for the median 10-min concentration for each of the three
scenarios, which we report in a sensitivity analysis. We selected 10-min
increments to capture the temporal and spatial variability that can
occur due to meteorology and emissions patterns over the complex
terrain of SLC. Indeed, an examination of the two DAQ sensor readings
during each two day scenario reveals substantial variability in the
hourly PM2.5 concentrations. Concentrations varied by more than a
factor of 7 for the clean air scenario and more than a factor of 3 for the
moderate and major PCAPs (see Table 1). This substantial variability
between the hourly measurements suggests that a finer temporal re-
solution is warranted. Although using the 48-h mean PM2.5 con-
centration developed from the 10-min averages would be the same as
using the hourly averages, we consider the effect of using the median
10-min PM2.5 concentrations in our sensitivity analysis.

The three sets of PM2.5 concentration measurements are generated
from the AQ&U infrastructure during three 48-h time periods (Becnel
et al., 2019). AQ&U contains more than 100 nodes, and it includes
measurements from the Utah Division of Air Quality's federal equiva-
lent methods (FEMs, 2 Sharp model 5030i monitors, ThermoFisher,
Franklin, MA), and the University of Utah's Air U and PurpleAir low-
cost sensor nodes. Community members and schools participate in the
network by hosting air-quality sensor nodes (Becnel et al., 2019). Fig. 1
shows the locations of the four different types of sensors in the study
area.

The Plantower PMS sensor provides the PM2.5 measurements in the
University of Utah's AirU nodes (PMS 3003) and the PurpleAir (PA I,
PMS 1003 or PA II, PMS 5003) nodes. The three models of PMS sensors
used in these nodes have similar configurations, operate at the same

laser wavelength, and employ the same operating principles. These
sensors and the methods used to calibrate them are described elsewhere
(Sayahi et al., 2019a; Sayahi et al., 2019b; Kelly et al., 2017). Briefly,
the PMS sensors measure 90-degree light scattering with a photo-de-
tector that converts scattered laser light into PM2.5 concentration. All of
the AirU and selected PurpleAir PM2.5 sensors were calibrated in the
laboratory prior to deployment and in the field by collocating the
sensor nodes with the Utah Division of Air Quality's FEMs and devel-
oping calibration factors for each model of PMS sensor and for each
season (Sayahi et al., 2019a; Sayahi et al., 2019b; Kelly et al., 2017).
See Table S-1 in the supplemental material for the seasonal corrections
for each sensor type.

The PMS sensors collect measurements every second, and AQ&U
average these measurements over 60 s and transmits the measurements
over the host's Wi-Fi to an Influx database (AirU) or a ThingSpeak da-
tabase (PurpleAir). The public can access sensor data through the AQ&
U website (see https://aqandu.org/) or can download raw sensor data
through an API (see http://air.eng.utah.edu/dbapi/api/dashboard). As
previously stated, we aggregated the 60-s readings to 10-min intervals.

We selected three two-day periods to represent clean air, moderate
PCAP, and severe PCAP scenarios. Table 2 shows the numbers of dif-
ferent types of sensors operating during each scenario and the percen-
tage of the study period that each type of sensor was providing data. We
used consecutive two-day periods because these were the longest time
periods in which we could capture consistent meteorological conditions
(at the two state air-quality monitoring stations) for the major PCAP.
Table 2 summarizes the PM2.5 concentrations and meteorological con-
ditions, including valley heat deficit (VHD), during these scenarios.
Using two full days also allows us to capture any diurnal wind patterns
in this region (Williams, 1969; Stewart et al., 2002). Wind roses for
each scenario are included in the supplementary material (see Figs.
S1–S3). During all three scenarios, the winds were light with 95%, 95%,
and 84% of hourly average winds at or below 4.5 mph for the major,
minor, and clean air days, respectively. Because PCAPs are associated
with low wind patterns, all three two-day periods in the study share
similar low wind patterns, which gives meteorological consistency in
our analyses. Wind speed and direction play a significant role in air
pollutant transport when wind speeds exceed 4.5 mph in urban areas
such as SLC (Kim et al., 2015). VHD was the primary indicator of a
PCAP, and it was calculated from air density and potential temperature,
collected from twice-daily rawinsonde soundings collected at the Salt
Lake City International Airport (Whiteman et al., 2014). Generally,
VHDs greater than 4 are indicative of a PCAP, with greater VHDs in-
dicating more severe PCAPs. Consequently, the major PCAP had the
highest average VHD and the highest PM2.5 concentrations. The con-
sistently low temperatures, low wind speeds, and elevated relative
humidity (RH) are also indicative of a strong PCAP (Whiteman et al.,
2014). The clean scenario is typical of the well-mixed atmosphere and
the low PM2.5 concentrations of SLC in the fall.

We needed to generate a spatiotemporal map of PM measurements
from the sensors in order to generate PM values for each school. We use
the classical Gaussian process (GP) model for spatiotemporal regres-
sion, which follows a Bayesian formulation. The data from the sensors
are considered as a set of noisy measurements. The GP model assumes
that the actual spatiotemporal patterns of PM2.5 are from a class of
functions with defined correlations among points that are separated by
space (x), altitude (a) and time (t). Thus, the sensor measurements are
generated from a process, y = f (x, a, t) + ε, where ε is assumed to be
independent, zero-mean Gaussian noise, so that ε ~ G (0, σε), and σε is
estimated from the calibration of the sensors (see Table S-1, Supple-
mentary Material). The function f is itself from a multivariate Gaussian
(normal) distribution, f ~ G (μf, ∑f). The mean signal, μf, is the average
of all measurements over all space and time. The covariance of, ∑f, is
defined by a set of correlation functions, c ( × ), that describe how
correlations between disparate values decrease with increasing distance
in space, time, and altitude. For this work, we use correlation functions
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that are separable,

= +c x a t x a t c x x c a a c t t t t(( , , ), , , ) ( , ) ( , )( ( , ) ( , ))x a t0 1 (1)

+ x a t x a t(( , , ), ( , , ))2 (2)

where two locations in space and time are denoted with and without a

prime. The δ(·) term is the.
Dirac delta. The θ1δ(·) term for the time parameter adds an addi-

tional noise term and reflects the particular structure of that signal,
which is generally not observed to be smooth (even accounting for
sensor noise). The individual correlation functions are:

Fig. 1. Study area map showing locations of public schools included in the study (n = 174) and the PM2.5 sensors.
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=c where x a t( , ) exp( /(2 )) { , , }.2 2 (3)

The GP formulation provides for an estimate of the posterior of f (·),
which is conditioned on the noisy measurements, in the form of a
normal distribution over the space of functions from which f (·) is
drawn. In this way, we can compute, in a closed, linear-algebraic form,
the mean of this distribution and its covariance. In communicating the
model, we typically show the mean of the posterior, which we call the
air-quality estimate and the variance or the standard deviation at each
point in the domain, which we call the error or uncertainty.

The parameters consist of the scales in the correlations, the σ′s, for
each of the quantities (space, altitude, time), and the θ terms that
control the variation in the signals relative to the sensor noise and the
correlations between nearby estimates (i.e. smoothness). These para-
meters are estimated from the input data using maximum likelihood
estimation (MLE). We have observed that different air-quality events
have different signal characteristics. Thus, for each scenario the model
hyperparameters are estimated using MLE and the predictive posteriors
are then calculated.

Figs. S-4–S-6 (in supplemental material) compare the Gaussian process
(GP) PM2.5 predictions (excluding the UDAQ measurements) at the loca-
tions of the UDAQ stations during each scenario, demonstrating that the
model predictions generally agree with PM2.5 trends exhibited by the re-
ference monitors. The root-mean-square error (RMSE) for each of these
predictions ranged from 74% to 94% (clean air scenario) to 12–19%
(moderate and major PCAPs) (see Table S-2 in Supplemental Material).
The RMSEs are lowest (on a percent basis) for the moderate and major
PCAP, likely because PM2.5 concentrations were well above the sensor's
limit of detection (5 μg/m3, Sayahi et al. 2019a,b). The RMSEs for the GP
model predictions are on the lower edge of the range of those reported. For
example, Zikova et al. (2017) reported a RMSE of 475% for calibration of
sixty-six Speck sensors from two outdoor campaigns (7 days with an
average PM2.5 concentration of 1.45 μg/m3). Zheng et al. (2018) reported
RMSEs that ranged from 18 to 32% (hourly measurements) for linear
calibrations of co-located PMS3003 sensors and reference measurements
in Durham, North Carolina and Kanpur, India.

2.4. Independent variables

We examined five groups of independent variables. (1) For racial/
ethnic composition, we created variables for two minority racial/ethnic
groups: the percentage of students identified as Hispanic (of any race),
and the percentage of students identified as non-Hispanic and from a
racial/ethnic minority background (including black, multi-racial,
Native-American, Asian, and Pacific Islander/Hawaiian students).
These non-Hispanic minority groups were combined due to small
counts in many of the study area schools. In the multivariate models,
these two variables can be interpreted in reference to the percentage of
non-Hispanic white students, which serves as the reference group.

We employed one variable to gauge (2) economic deprivation. We
used the school's status as a Title I eligible institution as Title 1 schools
serve a high percentage of economically disadvantaged students and
receive financial assistance from the federal government in order to
help students meet academic standards. This variable has been used in
other studies to measure the socioeconomic status of schools (Grineski
et al., 2018). The percentage of students qualifying for free and re-
duced-price meals (FRPM) is a more commonly used measure of eco-
nomic deprivation (Pastor et al., 2006; Grineski and Collins, 2018;
Nicholson et al., 2014). It has been used in environmental justice stu-
dies of schools (Mohai et al., 2011; Grineski and Collins, 2018; Morello-
Frosh et al., 2002; Salvezen & Zambito, 2010) and it is available
through ElSi. While we created this variable, we could not use it in our
multivariate model due to collinearity with the percent Hispanic vari-
able. The two variables were correlated at 0.77.

We created a dichotomous variable for primary versus secondary
schools to capture (3) student age, based on the grade level of students
that each school served using the variables “highest” and “lowest grade
offered at the school”. Primary schools are those with the highest grade
offered being pre-kindergarten, kindergarten, or first through sixth
grades. Schools with the highest grade offered being seventh through
twelfth were coded as secondary schools, as were schools serving all
grades.

We used two variables to examine the (4) school type. First, we in-
cluded a variable that gauged whether the public school is a charter
school or not. Charter schools are publicly funded under a legislative
contract with a governing body, such as the state or district; they are
exempt from some state or local rules and regulations that apply to
traditional public schools (NCES, 2019). Second, we included a variable
for the status of a school as an alternative or special education school
with the reference category being regular public schools. Alternative
schools serve students who are at risk of academic failure, and special
education schools serve students with learning and developmental
disabilities as well as behavioral issues (NCES, 2010). Alternative and
special education schools were combined into one variable due to small
counts.

To control for urban context, we use a (5) population density variable
(i.e., total population divided by area). This represents the population
density in the census tract containing each public school. This is

Table 1
Date range for each scenario, number of sensor nodes in the AQ&U infrastructure during the date range, PM2.5 concentrations and meteorological parameters from
Utah's Department of Air Quality's Hawthorne monitoring station.

Clean Air Moderate PCAP Major PCAP

Dates 10/23–10/24/18 1/4–1/5/2019 12/12-12/13/17
# of sensors 193* 221 56*
Mean valley heat deficit (12-hr range) in MJ/m2 1.62 (0.456–2.38) 8.36 (2.8–12.8) 13.2 (12.5–14.5)
Mean PM2.5 (1-hr PM2.5 range) in μg/m3 3.9 (1.1–8.1) 36.7 (17.8–63.5) 54 (27–80)
Mean relative humidity (range) in % 53.8 (30.7–79.4) 65 (46.4–71.6) 75 (65.9–80.3)
Mean Temperature (range) in °C 14 (7.5–21) −3.4 (−8.9–4) −1.4 (−3.9–5.0)
Mean wind speed (range) in mph 3.0 (0.6–8.1) 2.1 (0.6–5.2) 2.7 (1.4–5.5)

Note: *one sensor was removed from 10/23–10/24/18 and one from the 12/12-12/13/17 period for reading greater than 350 μg/m3 for at least 1 h and for
exhibiting a temporal pattern unlike those of its nearest neighbors.

Table 2
Summary statistics by scenario for the different model sensors.

Clean Air Moderate PCAP Major PCAP

Sensor
Model

N operating % data N operating % data N operating % data

UDAQ 2 100 2 100 1 100
AirU 3003 64 98.2 66 87.6 2 96.9
Purple Air

1003
8 100.0 0 0.0 0 0.0

Purple Air
5003

119 98.7 125 96.7 39 99.8

Total 193 193 42

Note: UDAQ=Utah Division of Air Quality; % data: percent of time that all
sensors of this model were providing measurements.
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important to control for, since greater population density is usually
associated with greater air pollution-producing activities (Chakraborty
et al., 2014).

2.5. Analysis approach

We employed generalized estimating equations (GEEs) to test for
distributional injustices and to examine how patterns of injustice varied
under the three different PM2.5 exposure scenarios. GEEs enable us to
examine environmental inequalities in reference to non-normally dis-
tributed dependent variables while accounting for geographic clus-
tering (Liang and Zeger, 1986; Collins et al., 2015). We report results
from GEEs for three separate PM2.5 exposure scenarios: clean air con-
ditions, moderate PCAP conditions, and major PCAP conditions. In the
sensitivity analysis, we replicated these analyses using median PM2.5

instead of mean.
GEEs require the specification of an intracluster dependency cor-

relation matrix, otherwise known as a working correlation matrix
(Liang and Zeger, 1986; Grineksi et al., 2018). The correlation structure
specified for this study was exchangeable, which is a specification that
assumes constant intra-cluster dependency so that all of the off-diag-
onal elements of the correlation matrix are equal. It has been used in
similar studies (Grineski and Collins, 2018; Collins et al., 2015).

To fit a GEE model, clusters of observations must be defined based
on the assumption that observations from within a cluster are corre-
lated, while observations from different clusters are independent
(Garson, 2012). For this study, we used school districts to define clus-
ters. School districts operate relatively independent of each other and
are decision-makers with respect to school-level environmental policies
(Grineski and Collins, 2019). District-level school boards can advocate
for the environmental health of children. They make decisions relevant
to environmental health, including selecting sites and designs for major
school building projects, purchasing school busses, and implementing
indoor air quality initiatives (Sampson, 2012).

To select the best fitting model, we estimated a series of GEEs by
varying the model specifications. We tested normal, gamma and inverse
Gaussian distributions with logarithmic (log) and identity link func-
tions. We considered gamma and inverse Gaussian, in addition to
normal, because there were no values less than zero among our de-
pendent variables and these seemed like reasonable options given the
histograms of our dependent variables. To compare fit between the six
models (three distributions and two link functions) for each scenario,
we reviewed the quasi-likelihood under independence model criterion
(QIC) values. We selected the model with the lowest reported QIC
value, as that indicated the best fit (Garson, 2012). Therefore, we
present results using the inverse Gaussian distribution with a log link
function, since it was the best fitting specification. The log link function
represents natural logarithmic relationships between variables, as op-
posed to the identity link function, which models relationships between
dependent and independent variables linearly.

We tested for multicollinearity using the multicollinearity condition
index (MCI), which we calculated for the combination of explanatory
variables included in the GEEs. The MCI was smaller than 6.0, in-
dicating the absence of serious collinearity problems. The statistical
significance of the independent variables was estimated on the basis of
the Wald's chi-squared test. Continuous independent variables were
standardized before inclusion in these models in order to make coeffi-
cients directly comparable. For the purposes of this study, we define
statistical significance as p < 0.05.

3. Results

Table 3 presents descriptive statistics for all of the analysis vari-
ables. In regards to the dependent variables, shifting patterns of PM2.5

under the three scenarios are evident. For the clean day, the average
PM2.5 concentration was 4.25 μg/m3, for the moderate PCAP it was

32 μg/m3, and for the major PCAP it was 45 μg/m3. The averages bely
the spatial variability in PM2.5 concentrations, which are depicted at
each school in Fig. 2. When the air was cleanest, the areas of highest
PM2.5 were in the north and central-west portions of the study area.
During the moderate PCAP, the highest PM2.5 concentrations were in
the central and west-central portions of the study area, along the In-
terstate Highway-15 corridor. During the major PCAP, the pattern was
similar to the moderate PCAP with the exception of the southeast near
the loop freeway; that region had low PM2.5 concentrations during the
major PCAP and high PM2.5 concentrations during the moderate PCAP.
In all three scenarios, the lowest PM2.5 concentrations were on the
south and east side of the study area along the bench where elevation
ascends from the valley floor.

Fig. 3 depicts the standard deviations of the PM2.5 levels at each
school. For the clean air scenario, the lowest standard deviations are
associated with higher elevations and more residential areas. The
greater standard deviations are associated with more urban areas and
areas with less ground cover (including the Salt Lake County Landfill)
(Collins and Dronova, 2019). Urban areas are more likely to experience
diurnal differences in traffic-related PM2.5 than higher elevation, re-
sidential areas, and the clean air scenario included wind-speeds ranging
from 0.6 to 8 mph, which could result in larger variations in wind-
generated PM2.5 in areas with less ground cover. The moderate and
major PCAP scenarios show a similar pattern for standard deviation,
with larger standard deviations associated with higher elevations and
regions near the outflows of mountain canyons. PM2.5 concentrations
during a PCAP event exhibit diurnal patterns, associated with clean,
cold air flowing into SLC from mountain canyons and with variations in
the mixing height that cause elevated areas to oscillate between being
within the PCAP and being above it (Silcox et al., 2012).

Table 3 shows the demographics of each school. The average school
had a student body that was 31% Hispanic, 15% non-Hispanic minority,
and 54% white. For the economic deprivation indicator, of 174 public
schools in SLC, 45.4% were Title I eligible (i.e., economically deprived).
Just over half of the schools were primary schools and 16.1% were
charter schools; 5.2% were alternative or special education schools. The
average population density in our study area was 1945 persons per
square kilometer.

Table 4 presents results from the three GEEs predicting PM2.5 at SLC
Public Schools. In what follows, we present the results in order from the
relatively clean day, to the moderate PCAP, to the major PCAP. The
exponentiated coefficient values for the proportion variables in the
multivariate models shown in Table 4 are interpretable as the percent
change in the dependent variable (after the Exp (Coeff.) is subtracted
from 1 and multiplied by 100) for each one standard deviation above
the mean increase in each independent variable. That value can be
converted into the change in PM2.5 concentration by subtracting the
Exp (Coeff.) from 1 and then multiplying by the range (maximum minus
minimum) in PM2.5 concentrations.

When predicting PM2.5 concentrations during the relatively clean

Table 3
Descriptive Statistics of Analysis Variables (n = 174 schools).

Continuous Variables N Min. Max. Mean Std. Dev

PM2.5: Clean Air (mean) 174 1.52 6.05 4.25 0.891
PM2.5: Moderate PCAP (mean) 174 19.7 36.8 32.0 3.34
PM2.5: Major PCAP (mean) 174 30.4 57.5 45.0 5.49
% Hispanic Students 174 0 93.7 31.1 21.4
% Non-Hispanic Minority

Students
174 0 69.3 15.1 8.936

Population Density (pers/km2) 174 14.2 50,405 1945 940
Dichotomous Variables N Yes (N) Yes (%) No (N) No (%)
Primary school 174 103 59.2 71 40.8
Charter School 174 28 16.1 146 83.4
Alternative/Special Ed School 174 9 5.2 165 94.8
Title I Eligible 174 79 45.4 95 54.6
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Fig. 2. Mean 10-min PM2.5 levels for each 48-h scenario at Salt Lake County public schools (n = 174).

Fig. 3. Standard deviation of PM2.5 estimates at selected SLC public schools (n = 174) in the three scenarios.
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air scenario, schools with higher minority student composition were
disproportionately exposed to higher concentrations. Specifically, at the
school-level, a one standard deviation increase in the proportion of
Hispanic students was associated with a 12% increase in concentration
of PM2.5, which is equivalent to a 0.55 μg/m3 increase. The effect size
for percent non-Hispanic minority was smaller, at 4% (p = 0.010),
equivalent to a 0.18 μg/m3 increase. Charter schools were exposed to
concentrations of PM2.5 that were 20% higher than non-charter schools,
indicating a 0.92 μg/m3 increase (p = 0.008), and alternative/special
education schools had concentrations that were 9% higher than regular
schools, equaling a 0.41 μg/m3 increase (p < 0.001).

When predicting PM2.5 concentrations during a moderate PCAP,
schools with greater proportions of minority students had higher con-
centrations of PM2.5 exposure. When the proportion of Hispanic stu-
dents was one standard deviation above the mean, PM2.5 concentrations
were 5% higher (a 0.86 μg/m3 increase) than when that proportion was
at the mean (p < 0.001). The increased exposure based on the pro-
portion of non-Hispanic minority students was smaller, at 1%, in-
dicating a 0.17 μg/m3 increase (p < 0.001). Charter schools had
concentrations of PM2.5 that were 3% higher (equal to a 0.52 μg/m3

increase) than non-Charter schools (p < 0.001). Title 1 schools
(schools serving low-income children) were also disproportionately
exposed to higher PM2.5 concentrations during the moderate inversion.
PM2.5 concentrations were 2% higher at Title 1 schools vs. non-Title I
schools, equivalent to a 0.34 μg/m3 increase (p < 0.001).

During a major PCAP, PM2.5 exposure concentrations were higher
for schools with greater proportions of minority students. When the
proportions of Hispanic and non-Hispanic minority students were one
standard deviation above the mean, PM2.5 concentrations were 2%
(p < 0.001) and 2% (p= 0.001) higher, respectively, than when each
variable was at the mean; a 2% increase in PM2.5 corresponds to a
0.54 μg/m3 increase. Lastly, in terms of the control variable, schools in
neighborhoods with greater population density had higher concentra-
tions of PM2.5 during the major inversion (p < 0.001).

As a sensitivity analysis, we predicted median PM2.5 values instead
of the mean PM2.5 values reported in Table 4. The use of mean PM2.5

yielded identical results in terms of direction and significance
(p < 0.05) to the median PM2.5 models. This indicates that findings
were generally robust with respect to an alternative specification of the
dependent variable.

4. Discussion

Improving upon Gaffron and Neimeier’s (2015) bivariate analysis in
California, our multivariate analysis findings reveal disparities in PM2.5

exposure based on the characteristics of schools and schoolchildren in
SLC. Increases in several of the sociodemographic variables were as-
sociated with increased concentrations of PM2.5. Even small increases in

PM2.5 can have important health effects. For example, relatively small
increases in weekly exposure to PM2.5 (1 μg/m3) increases inhaler use
by asthmatics by 0.82% (Williams et al., 2019).

The two racial/ethnic minority composition variables emerged as
the most consistently significant indicators of disparate air pollution
exposures under all three air pollution scenarios. Even during the re-
latively clean air scenario, we found that schools with higher propor-
tions of minority students were exposed to higher levels of PM2.5 than
schools with higher proportions of white students. The robustness of
these racial/ethnic inequalities indicates a pattern of environmental
injustice that aligns with the findings of previous studies of schools
and/or schoolchildren (Kweon et al., 2018; Pastor et al., 2006;
Chakraborty and Zandbergen, 2007; Grineski and Collins, 2018; Collins
et al., 2019; Morello-Frosh et al., 2002; Gaffron; Niemeier, 2015). Note
that we found evidence of racial/ethnic disparities in our models while
controlling for the economic status of the school student body, which
indicates that racial/ethnic minority student status was powerfully
predictive of greater PM2.5 exposures independent of the economic
status of students. The persistence of racial/ethnic disparities in our
findings suggests that race/ethnicity shapes patterns of unequal air
pollution exposure for schoolchildren within SLC. Our results indicating
greater PM2.5 exposure for Title I eligible school status align with prior
findings that schools serving economically deprived students were ex-
posed to higher levels of pollution (Pastor et al., 2006; Grineski and
Collins, 2018; Collins et al., 2019; Salvesen and Zambito, 2010), though
this variable was only significant during the moderate PCAP.

Charter school status was associated with significantly higher PM2.5

in the relatively clean and moderate PCAP scenarios. Over the last 20
years, charter schools have come to serve a population that is increas-
ingly Hispanic and Asian; enrollments are also on the rise (NCES, 2019).
Nationally, charter schools also serve a disproportionately low-income
population. Specifically (in Fall, 2016), 34% of students enrolled in
charter schools attended high-poverty schools (i.e., schools with>75%
of students qualify for free or reduced-price meals), compared to 24% in
traditional schools (NCES, 2019). Given that charter schools serve
students who are more likely to be minority and of low income, this
variable is important to future environmental injustice studies of
schools, and should be included in a national evaluation.

Our results indicate shifting patterns of injustice between the pol-
lution scenarios. Table 5 provides a summary of significant findings,
which allow the reader to examine how patterns shifted between each
scenario. These findings shed light on the variability associated with air
pollution exposure in SLC. The environmental injustice of air pollution
exposure in this study emerged as an unstable phenomenon, with the
exception of findings for race/ethnicity. Across the three scenarios, the
two race/ethnicity variables are the only ones for which there were no
changes in directionality or significance. The unchanging nature of
those associations reveals how persistent those inequalities are in

Table 4
Results of GEEs predicting PM2.5 at Salt Lake County Public Schools (n = 174) under three different scenarios.

Clean Air Moderate PCAP Major PCAP

Coeff. Exp (Coeff.) 95%
CIs

P Coeff. Exp (Coeff.) 95%
CIs

p Coeff. Exp (Coeff.) 95%
CIs

p

(Intercept) 1.416 < 0.001 3.458 < 0.001 3.793 <0.001
% Hispanic .109 1.115 1.093–1.137 <0.001 .044 1.045 1.028–1.063 <0.001 .019 1.019 1.011–1.026 <0.001
% Non-Hispanic minority

students
.037 1.038 1.009–1.067 0.010 .013 1.013 1.008–1.018 <0.001 .020 1.020 1.008–1.033 0.001

Pop Density -.030 0.970 .940–1.001 0.058 .005 1.005 .996–1.014 0.247 .011 1.011 1.005–1.017 0.001
Primary School -.002 0.998 .940–1.059 0.946 .004 1.004 .995–1.012 0.366 -.010 0.991 .970–1.011 0.361
Charter School .092 1.196 1.024–1.173 0.008 .027 1.028 1.020–1.035 <0.001 .008 1.008 .973–1.045 0.658
Alt./Special Ed. .082 1.086 1.024–1.173 <0.001 .028 1.028 .988–1.070 0.174 .024 1.024 .982–1.069 0.266
Title I Eligible .001 1.095 .916–1.095 0.975 .024 1.024 1.017–1.032 <0.001 .010 1.010 .980–1.041 0.531

Note: Models use an inverse Gaussian distribution with a log link function, an exchangeable correlation matrix and school district clusters. Statistically significant p-
values are highlighted in bold font. CI = confidence interval.
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exposure to PM2.5. This could be due to the role of residential segre-
gation in increasing exposures to pollution, which has been docu-
mented in the US-based distributional environmental justice literature
(Taylor, 2014). SLC was subject to segregated housing patterns that
forced Hispanic and black minorities to cluster in specific residential
areas within the urban core (Iber, 2000; Bringhurst, 1981). Those areas
are located on the SLC valley floor at topographically low elevations,
which are subject to relatively higher concentrations of PM pollution
(Pope et al., 1999). Thus, racial segregation patterns across a steep
elevation gradient could explain the robust associations of our racial/
ethnic minority variables with increased PM2.5 exposures across all
scenarios.

Our analysis of the major PCAP yielded the fewest statistically sig-
nificant results. This suggests some dimensions of social disparity wash
out when PM2.5 pollution is at its worst in SLC. Specifically, the findings
for economic deprivation (i.e., Title 1) and charter school status, which
were statistically significant predictors under moderate PCAP condi-
tions, diminished in significance when PM2.5 was at its peak, adjusting
for clustering and effects of other variables in the GEE.

Our study design has limitations. While the use of AQ&U data was a
strength, it reduced the spatial extent of the study area to the central
portion of SLC. The spatial extent excludes the far west side of the
county where air quality and environmental justice issues are of con-
cern. Our PM2.5 measurements pertain to 48-h in each pollution sce-
nario. While we believe this timeframe was adequate for capturing
differences in pollution scenarios in SLC, the potential exists that 48-h
does not fully capture air pollution exposure during each scenario. In
this case, we were not able to explore longer scenarios. Since we began
collecting data in late 2017, there has been only one major PCAP event,
and during that event, there was only one consecutive 2-day period
with PM2.5 levels and meteorological conditions indicative of a severe
PCAP (See Fig. S-7 in supplemental material).

While we accounted for variability between scenarios by using 48-h
periods with similar low wind patterns and systematically demon-
strated that patterns of environmental injustice varied, relatively clean
air conditions occur under other types of weather conditions. It is also
the case that PM2.5 can spike during high wind conditions or during
forest fires. Future studies could explore a variety of scenarios and
weather conditions, as our study was a first step in this line of research.
In addition, our study does not fully capture children's exposure. Their
school is not the only site of their air pollution exposure, and thus, we
only assessed exposure disparities in one relevant location. We also
lacked measures of air quality inside schools, and some schools are
likely more porous than others, increasing exposures in some schools
relative to others. While Table 5 portrays how the patterns of disparity
varied among the three scenarios, future research is needed to examine
the historical development of those patterns.

5. Conclusions

This study illustrates the value of community-university partnership

centered on air quality. Through a partnership between SLC residents
and some co-authors of this study, We were able to utilize data from
many PM2.5 sensors due to a partnership between SLC residents and the
co-authors of this study. Had we relied on the Utah Division of Air
Quality's air monitoring network, we would have been limited to two
air monitors in our case study area, greatly limiting our ability to
construct accurate air pollution surfaces in SLC's complex topography.

Disproportionate exposure in public schools based on race/ethnicity
and socioeconomic status is concerning given that air pollution has
negative impacts on children's health and academic performance
(Kweon et al., 2018; McConnell et al., 2006; Wang et al., 2009;
Buthbumrung et al., 2008; Volk et al., 2011; Pastor et al., 2006; Mohai
et al., 2011). Public schools are considered a governmental responsi-
bility, and it is a federal policy that all children in the U.S. participate in
the educational system (Grineski and Collins, 2018). Therefore, it
should be the responsibility of the government to protect the well-being
of children while they are attending public school in the U.S. The
findings of our study speak to the importance of policy changes for
protecting school-aged children from environmental harm in SLC and
elsewhere.
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