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Scale-free networks well done
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We bring rigor to the vibrant activity of detecting power laws in empirical degree distributions in real-world
networks. We first provide a rigorous definition of power-law distributions, equivalent to the definition of
regularly varying distributions that are widely used in statistics and other fields. This definition allows the
distribution to deviate from a pure power law arbitrarily but without affecting the power-law tail exponent. We
then identify three estimators of these exponents that are proven to be statistically consistent—that is, converging
to the true value of the exponent for any regularly varying distribution—and that satisfy some additional niceness
requirements. In contrast to estimators that are currently popular in network science, the estimators considered
here are based on fundamental results in extreme value theory, and so are the proofs of their consistency. Finally,
we apply these estimators to a representative collection of synthetic and real-world data. According to their
estimates, real-world scale-free networks are definitely not as rare as one would conclude based on the popular
but unrealistic assumption that real-world data come from power laws of pristine purity, void of noise, and
deviations.
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I. INTRODUCTION

Scale-free and power-law are sacral words in network sci-
ence, a mature field that studies complex systems in nature and
society by representing these systems as networks of interact-
ing elements [1–4]. The most basic property of any network,
second only to the network size and average degree, is the
degree distribution, and the early days of network science
were filled with the surprising and exciting news that degree
distributions in many real-world networks of completely dif-
ferent origins are scale-free, i.e., “close to power laws.” This
property means that the node degrees in a network are highly
variable and lack a characteristic scale, with a multitude of
profound and far-reaching implications for a wide spectrum of
structural and dynamical properties of networks [1–8]. These
implications are the reason why these scale-free findings were
extremely impactful, and why they steered the whole field of
network science in the direction it has followed for nearly
two decades. They impacted essentially all the key aspects of
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network science, from the basic tasks of network modeling,
all the way down to concrete applications, such as prediction
and control of the dynamics of real-world complex systems,
or identifying their vulnerabilities [1–4].

Yet there is one glaring problem behind all these exciting
developments. The problem is that scale-free networks do not
have any widely agreed-upon rigorous definitions. Specifi-
cally, it is quite unclear what it really means for a degree
sequence in a given real-world network to be power-law
or “close” to a power law. This lack of rigor has led and
still leads to confused controversy and never-ending heated
debates [9–27]. This controversy has culminated in the recent
work [20] that concluded that “scale-free networks are rare.”
Here we arrive at quite a different conclusion based on a state-
of-the-art statistical analysis and a more general definition of
power laws.

Faced with the question whether a given real-world net-
work is scale-free or not, one first has to decide how much
the data can be trusted—how well does the measured degree
sequence reflect the actual degree sequence in the network?
We do not address this question here, and assume that we can
trust the data. Under this assumption, the next questions are:

(1) What exactly does it mean that a distribution is approx-
imately a power law?

(2) What are the correct, i.e., statistically consistent, meth-
ods to estimate the tail exponent of this power law from the
measured degree sequence?

(3) How likely is it that the measured sequence comes
from a power law with the estimated exponent?

Here we address all these three questions.
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One of the most frequently seen formula in the early days
of network science was

P(k) ∼ k−γ . (1)

It intended to say that the fraction P(k) of nodes of degree k
in a network under consideration decays with k approximately
as a power law with exponent γ . The symbol “∼” could mean
anything, but usually its intended meaning was something
like “roughly proportional.” The literature was also abundant
with plots of empirical probability mass/density functions
(PMFs/PDFs) P(k) and complementary cumulative distribu-
tion functions (CCDFs) F (k) of degrees k drawn on the loglog
scale to illustrate that these functions are “roughly straight
lines,” so that the network is power-law, thus deserving a
publication.

The first attempt to introduce some rigor into this vibrant
activity, which became overwhelmingly popular in network
science, came in [19], when network science was about a
decade old. In Ref. [19], Eq. (1) was taken literally to mean
that P(k) for k � kmin is exactly proportional to k−γ , i.e.,

P(k) = c k−γ , (2)

where c is the normalization constant.
But complexly mixed stochastic processes driving evolu-

tion of many different real-world networks are of different
origins and nature. Worse, they all are prone to different
types and magnitudes of noise and fluctuations. Therefore
basic common sense suggests that these processes can hardly
produce beautifully clean power-law dependencies void of
any deviations from (2). This is similar to how one cannot
expect Newton’s laws on Earth with friction to yield results
as beautiful as Newton’s laws in the empty space without
friction. That is why it is not surprising that if one looks
for such idealized power-law dependencies in real-world net-
works, one is doomed to find them quite rare [20]. And as
far as power-law network models are concerned, even the
most basic such model, preferential attachment, is known
to have a degree distribution with a power-law tail, but the
exact expression for the degree distribution in preferential
attachment networks is not a pure power law (2), as shown
in Refs. [28–30]. In fact, power-law network models with the
pristine purity of (2) are an exception rather than a rule.

For all these reasons, in statistics one considers the class
of regularly varying distributions [31–34] instead of the pure
power laws (2). Compared to the rather restrictive distribution
class (2), the class of regularly varying distributions is much
larger. In particular, it contains all the distributions whose
PDFs are given by

P(k) = �(k)k−γ , (3)

thus allowing for deviations from pure power laws by means
of a slowly varying function �(k), i.e., a function that varies
slowly at infinity, classic examples including functions con-
verging to constants or lna k for any constant a. The exact
definition of regularly varying distributions requires their
CCDFs to be of the form

F (k) :=
∑
k′>k

P(k′) = �′(k)k−α, (4)

where α = γ − 1, and �′(k) is also a slowly varying function.
The class of distributions that satisfy (4) is even more general
than (3): if (3) holds for a distribution, then so does (4), but
not necessarily the other way around.

Compared to (2), any distribution in the class (4) has the
same power-law tail exponent γ , but it can have drastically
different shapes for finite degrees. The exact shape of �(k) is
of much less significance than the value of the tail exponent
γ , because it is γ , and not �(k), that is solely definitive for
a number of important structural and dynamical properties of
networks in the limit of large network size [5–8,35–41]. As the
simplest example, the value of γ determines how many mo-
ments of the degree distribution remain bounded in the large-
graph limit, affecting many important network properties. Yet
we also note that some properties of finite-size networks may
and usually do depend on a specific form of �(k).

For all these reasons, and following the well-established
tradition in statistics, in Sec. II we define a distribution to
be power-law if it is regularly varying, i.e., if its CCDF
satisfies (4).

The next question, that we address in Sec. III, is how
to properly estimate the value of γ under the assumption
that a given degree sequence comes from a regularly varying
distribution. This question has attracted extensive research
attention in probability, statistics, physics, engineering, and fi-
nance [31–34,42–52], where a variety of estimators have been
developed for this task, all based on extreme value theory. We
identify the maximal subset of such estimators that, to the best
of our knowledge, are the only currently existing estimators
that (1) are applicable to any regularly varying distribution; (2)
are statistically consistent, i.e., have been proven to converge
to the true γ , if applied to increasing-length sequences sam-
pled from any regularly varying distribution; and (3) can be
fully automated by the means of the double bootstrap method
that has been proven to yield the optimal estimation of γ for
any finite sequence of numbers sampled from any regularly
varying distribution.

It is important to stress here that (2) is just one repre-
sentative of the extremely wide class of regularly varying
distributions (4). Therefore, as opposed to the methods in
Refs. [19,20] that are consistent only under the assumption
that a given degree sequence comes from a pure power law (2)
above a certain minimal degree threshold, the estimators that
we discuss in Sec. III are proven to be consistent under the
much more general assumption that the sequence comes from
any impure power law, including any distribution that satisfies
(3) or even (4) with any nontrivial slowly varying functions
�(k) and �′(k).

In Sec. IV, we evaluate these estimators by applying them
to a wide range of synthetic sequences sampled from a va-
riety of regularly varying distributions, as well as to degree
sequences in paradigmatic network models—the configura-
tion model, preferential attachment, and random hyperbolic
graphs. In all the considered cases, all the considered estima-
tors converge as expected. We also compare their performance
to that of the PLFIT algorithm from Refs. [19,20], which is
believed to represent the state of the art in network science.
We find that PLFIT tends to show much worse performance
when applied to distributions with nontrivial slowly varying
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functions. Remarkably, one example of such nontrivial distri-
butions is the degree distribution in the “harmonic oscillator”
of power laws—the preferential attachment model.

The key strength behind the estimators considered in this
paper is that most of them have been proven to be consistent
not only under the assumption that the sampling distribution
P(k) is regularly varying, but also under the even more
general assumption that it is any distribution belonging to the
maximum domain of attraction of any extreme value distribu-
tion with any index ξ , which is the main parameter of an ex-
treme value distribution. The extreme value distributions are
the n → ∞ limit distributions of rescaled maximum values
among n samples from any given distribution P(k). If P(k)
is regularly varying, then ξ is strictly positive, and the tail
exponent γ and extreme value index ξ are related by

ξ = 1

γ − 1
. (5)

If P(k) is not regularly varying, then ξ is either negative or
zero, in which case the tail exponent γ is undefined. None
of the considered estimators estimates γ directly. They all
are based on extreme value theory, and estimate the index ξ

instead.
The last question from the list of the three questions above

is about hypothesis testing. Given any degree sequence, one
can always apply to it any ξ estimator that will always return
some ξ estimate ξ̂ . How likely is it that this sequence comes
from a regularly varying distribution with exponent γ = 1 +
1/ξ̂? Clearly, if ξ̂ is either negative or zero, then this question
is ill-posed since one cannot even tell what the γ is. However,
what if ξ̂ is positive?

Section V is dedicated to the explanation that even in this
case one cannot devise any hypothesis test to answer the above
question. The popular p-value approach used often in hy-
pothesis testing is deeply problematic and should be avoided,
as has been long known and recently well documented in
a statement article by the American Statistical Association
[53], followed by a special issue of The American Statistician
[54]. However, it is not that p-values are bad, and there is
a better way. Hypothesis testing is simply impossible with
regularly varying distributions. Intuitively, the main reason
for this impossibility is the infinite number of “degrees of
freedom” contained in the space of slowly varying functions
�(k) that make the space of regularly varying distributions
nonparametric. In particular, there is an infinite number of reg-
ularly varying distributions such that for any finite sequence
length, degree sequences of this length sampled from these
distributions do not appear to be regularly varying, or the other
way around, there is an infinite number of distributions that
are not regularly varying, but such that random sequences of
any finite length sampled from these distributions appear as
regularly varying.

In view of this extremely important but badly misunder-
stood observation, which is one of the key points in this
paper, the best strategy one can follow is to consult as many
consistent γ estimators as possible to see whether they agree
on the ranges of their γ estimates on a given sequence [31],
and this is indeed the strategy we follow in Sec. V to define
what it means for a given degree sequence to be power-law. If
at least one of the considered estimators returns a negative

or zero value of ξ̂ , then we call the degree sequence not
power-law, but if all the estimators agree that ξ̂ > 1/4, then
we say that the sequence is power-law. If neither of these
conditions are satisfied, then we call the degree sequence
hardly power-law. The threshold ξ̂ = 1/4 between the power-
law and hardly power-law ranges is completely arbitrary, and
one is free to choose any nonnegative value of ξ for this
threshold, determining the value of γ above which one can
hardly call a network power-law. We chose this value to be
γ = 1 + 1/ξ = 5 for the reasons discussed in Sec. V.

Finally, in Sec. VI, we implement all the considered es-
timators in a software package [55] available to the pub-
lic, and apply them to the degree sequences of 115 real-
world networks with more than 1000 nodes collected from
the KONECT database [56]. The collection contains many
paradigmatic networks from different domains. Some of them
were found to be power-law in the past (the Internet, for
instance), while others were documented not to be power-
law (road networks are a classic example). We find that the
considered consistent estimators mostly agree with this clas-
sification, while overall, according to the definitions above,
these estimators report that 49% of the considered undirected
networks have degree sequences that are power-law. Among
the considered directed networks, 24% have both in- and out-
degree sequences that are power-law, while 82% have either
in- or out-degree sequence that is power-law. The bipartite
networks exhibit a similar picture according to the estimators:
35% of them have power-law degree sequences for both types
of nodes, while in 74% of them at least one type of nodes has
a power-law degree sequence.

In summary, if we relax the unrealistic requirement that
degree distributions in real-world networks must be pure
power laws, and allow for real-world impurity via regularly
varying distributions, then upon the application of the state-
of-the-art methods in statistics to detect such distributions
in empirical data, we find that one can definitely not call
scale-free networks “rare.”

II. POWER-LAW DISTRIBUTIONS

We define a distribution to be power-law if it is regularly
varying. A distribution with PDF P(k) is called regularly
varying [32,33] if its CCDF

F (k) := 1 − F (k) =
∑
k′>k

P(k′) (6)

satisfies

F (k) = �(k)k−α, (7)

where α > 0, and �(k) is a slowly varying function. A func-
tion �(x) is called slowly varying if

lim
x→∞

�(tx)

�(x)
= 1 (8)

for any t > 0. If the PDF of a distribution satisfies (3) with
some slowly varying function, then the distribution is reg-
ularly varying, i.e., its CCDF satisfies (7) with some other
slowly varying function. The converse may or may not be true,
as discussed in Appendix A.
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If a distribution is regularly varying, but its slowly varying
function �(k) in (7) does not vary at all, i.e., if it is constant,
then we call such a distribution a pure power law. If k is
integer-valued, k = kmin, kmin + 1, . . ., where kmin is a natural
number, then this pure power law is known as the generalized
zeta distribution with PDF

P(k) = k−γ

ζ (γ , kmin)
, (9)

where γ is the PDF tail exponent, and ζ (γ , kmin) is the
Hurwitz zeta function. If k = x is real and x � xmin > 0, then
this pure power law is known as the Pareto distribution whose
PDF is

P(x) = αxα
minx−γ , (10)

where α = γ − 1. In both cases, the constant slowly varying
functions are simply the normalization constants. Clearly,
pure power laws form a small subset of general power laws,
i.e., regularly varying distributions.

The definition of power-law distributions as regularly
varying distributions formalize the point that the distribu-
tion exhibits a power-law tail at high degrees, but has an
arbitrary shape at small degrees. They follow the well-
established convention in probability, statistics, physics, engi-
neering, and finance [31–34,42–52], where regularly varying
distributions are the best studied subclass of much larger
classes of distributions, such as heavy-tailed and others, see
Appendix A.

We also note that the rigorous definition of regularly
varying distributions in (7) perfectly formalizes the common
traditional intuition behind the “∼” sign in the nonrigorous
“scale-free formula” (1). Indeed, if the regularly varying
functions ln(ck)k−α and Ck−α , for example, are drawn on
the loglog scale, one would see nothing but straight lines at
large k in both cases, even though the first case is not a pure
power law. This observation is formalized by Potter’s theorem
[32, Theorem 1.5.6], stating that limk→∞ �(k)k−δ = 0 for any
slowly varying function �(k) and any δ > 0. Therefore, in
both cases, one would be tempted to write F (k) ∼ k−α , so
that the power-law definition (7) is indeed a perfect way to
hide any distributional peculiarities that do not asymptotically
influence the power-law shape of the distribution tail.

We emphasize here that due to the nature of slowly varying
functions, definition (7) is intrinsically asymptotic, dealing
with the k → ∞ limit. In particular, this implies that a dis-
tribution satisfying (7) can take any form for all degrees
k < K below an arbitrarily large but fixed threshold K > 0.
This observation, and more generally, the asymptotic nature of
power laws is the key factor responsible for the impossibility
of hypothesis testing with regularly varying distributions,
Sec. V.

The simplest and most frequently seen examples of regu-
larly varying distributions can be found in Appendix A.

III. CONSISTENT ESTIMATORS OF THE TAIL EXPONENT

We now turn to the question of how to estimate the tail
exponent of a regularly varying distribution given a finite
collection of samples (e.g., node degrees) from it. We em-
ploy three estimators—Hill [57], moments [58], and kernel

[59]—that have been long proven to be statistically consistent
at this task. Consistency means that as the number of samples
increases, the estimated values of the exponent ξ̂ are guaran-
teed to converge to the true exponent value ξ regardless of the
slowing-varying function �(k).

We note that all the considered estimators are consistent
under the assumption that the data that they are applied to
is a collection of i.i.d. (independent, identically distributed)
samples from a regularly varying distribution. There is no,
and cannot be any, hypothesis testing procedure that will
tell whether a given sequence [of degrees in a (real-world)
network] is an i.i.d. sequence from a regularly varying dis-
tribution, as we explain in detail in Sec. V. Therefore the
application of these estimators to degree sequences of real-
world networks can be justified only indirectly. In particular,
their consistency has been recently proven for a wide range
of preferential-attachment models, in which degree sequences
are not exactly i.i.d. [60]. In case of the configuration model
[61–63], it is known that a degree sequence sampled i.i.d.’ly
from a distribution with finite variance is graphical with
positive probability [5, Theorem 7.21]. This probability is
very close to 1/2 for any distribution with a finite mean that
takes odd values with positive probability, a surprising fact
proven in [64]. This means that random graphs with a power-
law degree distribution can be sampled by first sampling
i.i.d.’ly a degree sequence from the distribution, and then
constructing a graph with this degree sequence using known
techniques [65]. Such a graph exists with nonzero probability
because the degree sequence is graphical with this probability.
Applied to graphs constructed this way, the estimators are
consistent because the degree sequences in these graphs are
i.i.d. Yet proving the consistency of these estimators applied
to other network models is an open research area, which is
only tangentially related to justifying their application to real-
world networks, since there cannot be any “ultimately best”
model for any real-world network. We also note that these
estimators are actively employed in practice, in particular in
financial mathematics [43,45,66–68], where regularly varying
distributions are abundant, where the estimation of rare events
is of key importance (e.g., for portfolio or fund management),
and where the i.i.d. assumption cannot be checked to hold in
real-world data either.

All the considered estimators do not estimate either the
PDF or CCDF tail exponents γ or α = γ − 1 directly. They
are all based on extreme value theory, so that instead of esti-
mating γ or α, they estimate the extreme value index ξ of the
distribution. Given a sequence of n i.i.d. samples x1, . . . , xn

from a distribution, extreme value theory is concerned with
the behavior of the maximum value mn = maxn

i=1 xi in this
sample. In particular, one is typically interested in finding
n-dependent constants cn and dn such that the distribution
of (mn − dn)/cn has a nondegenerate limit. This limit dis-
tribution, if it exists, is called an extreme value distribution
(EVD), and the distribution of x’s is then said to belong to the
maximum domain of attraction (MDA) of this EVD. One of
the key results in extreme value theory [69] is that there are
only three families of EVDs. They are parameterized by a real
number ξ , called the extreme value index. The three families
are Weibull with ξ < 0, Gumbel with ξ = 0, and Fréchet with
ξ > 0.
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The reason why extreme value estimators are the standard
tool in statistics to infer the tail exponent of regularly varying
distribution, is the fundamental fact proven in Ref. [70]. It
states that the class of all distributions that belong to the
Fréchet MDA with ξ > 0 is exactly the class of all regularly
varying distributions, i.e., those distributions whose CCDFs
satisfy (7). Moreover, the PDF and CCDF tail exponents γ

and α are related to the extreme value index ξ in this case by

ξ = 1

γ − 1
= 1

α
. (11)

It is this intimate relation between regularly varying distri-
butions and extreme value theory that provides a rigorous
and well-explored framework to analyze regularly varying
distributions and make inferences concerning them.

We note that while the Hill estimator is consistent un-
der the assumption that a given sequence is sampled only
from a regularly varying distribution, i.e., that it is in
the Fréchet MDA, the other considered estimators—that is,
the moments and kernel estimators—are consistent for degree
sequences sampled from any distribution belonging to the
MDA of any extreme value distribution. This means that if
these estimators are applied to increasing-length sequences
sampled from distributions belonging to the Fréchet, Gumbel,
or Weibull MDAs, then in all these three cases the estimates
of these estimators are guaranteed to converge to the true
values of ξ that are positive, zero, and negative, respectively.
As a side note, while the Fréchet MDA is exactly all the
regularly varying distributions, the Weibull MDA consists of
distributions with upper-bounded supports, while the Gumbel
MDA contains all other distributions that can be either light-
tailed or heavy-tailed, but not regularly varying. Appendix B
contains all the relevant details.

The key point here, which we rely upon in the next section,
is that if the estimators, applied to a particular degree se-
quence, return either negative values of ξ , or values of ξ close
to zero, then this sequence is quite unlikely to come from the
Fréchet MDA, i.e., from a regularly varying distribution. Yet
again, there is no way to quantify this unlikeliness rigorously,
as explained in Sec. V.

Applied to n data samples x1, x2, . . . , xn, the estimators
operate by first sorting the data in nonincreasing order, x(1) �
x(2) � . . . � x(n), and then limiting their consideration only to
the κ largest data samples x(1), x(2), . . . , x(κ ), where κ is a free
parameter. Since the κ-th order statistic is a random variable
representing the κ th largest element among n i.i.d. samples
from a distribution, the κ parameter is known as the number
of order statistics. The estimators thus operate only on the κ

tail of the empirical distribution represented by the κ order
statistics. Given this tail, different estimators provide different
expressions, documented in Appendix B, for the estimated
value ξ̂κ,n of ξ , which depends on κ . These expressions rely
on different aspects of the order statistics contained in the tail,
but all these expressions are consistent, meaning that

ξ̂κ,n → ξ as κ, n → ∞, κ/n → 0, (12)

for all the estimators. The convergence above is usually in
probability, although in some cases some stronger results,
such as almost sure convergence or asymptotic normality, are
available under additional assumptions on the data.

It is important to note here that in proving this convergence,
the number of order statistics κ cannot be fixed, it must
diverge with the number of samples n to incorporate more and
more data in the tail, so that the estimated value of ξ is less
and less affected by the fluctuations in the tail. Yet κ cannot
be equal to n either, since in this case the estimated ξ would
be affected by the slowly varying function �(k). This implies
that if applied to finite-size data samples, these estimators will
not give a good estimate of ξ for either small or large values
of κ . One option to deal with this problem in practice is to
investigate the plot of ξ̂κ,n as a function of κ in order to find
the value of κ where this function is “most flat/constant.” This
subjective approach can clearly not be rigorous. Worse, on
real-world data, these functions can behave violently, see, for
instance, the figures in Chap. 4 of Ref. [31] or in Ref. [71], so
that finding such a flat region of ξ̂κ,n may be quite problematic.

Fortunately, for the three estimators that we consider,
the double bootstrap method documented in Appendix C is
proven to find the optimal value κ∗ of κ . Optimality means
here that the error between the estimated and true values of
ξ is minimized, Appendix C. The double bootstrap method is
also proven not to break consistency, meaning that as a func-
tion of n, the value of κ∗

n diverges sublinearly, so that in view
of (12), the estimated value of ξ , ξ̂κ∗

n ,n, converges to the true ξ :

ξ̂κ∗
n ,n → ξ as n → ∞. (13)

In addition to the Hill, moments, and kernel estimators,
the Pickands estimator [72] and its generalized versions [73]
are also often considered. However, only for one of these
generalizations has the double bootstrap method been proven
to be consistent, Appendix B. Worse, in application to real-
world data, the Pickands estimator has been shown to be
unstable and volatile [73,74] and to have poor efficiency
[59,75]. Many other ξ estimators exist, see Ref. [76] for a
review, but the proofs of consistency of the double bootstrap
method are available only for the Hill, moments, kernel, and
Pickands estimator.

Therefore, to the best of our knowledge, the Hill, moments,
and kernel estimators are the maximal subset of consistent,
stable, and efficient estimators, for which the double bootstrap
method that automatically determines the optimal value of κ ,
is proven to be both optimal and consistent. The reason we
consider not one but all such estimators is mentioned above:
since as we explain in Sec. V there can be no hypothesis test
to tell whether a given degree sequence is an i.i.d. sequence
sampled from a regularly varying distribution, the best one can
do is to consider as many consistent estimators as possible,
testing as many different aspects of the degree sequence as
possible, and see whether they agree in their estimations [31].

IV. EVALUATION OF ESTIMATOR PERFORMANCE

In Appendix D, we perform an in-depth evaluation of all
the three estimators based on extreme value (EV) theory from
the previous section. We apply them to a collection of random
sequences sampled from various distributions, as well as to
degree sequences in three popular network models—the
configuration model, preferential attachment, and
random hyperbolic graphs. We also juxtapose these validation

033034-5



IVAN VOITALOV et al. PHYSICAL REVIEW RESEARCH 1, 033034 (2019)

results against the performance of the PLFIT algorithm from
Refs. [19,20].

The results of these experiments are as expected: all the EV
estimators converge to the true value of ξ if the distribution is
regularly varying, and they do not converge if it is not. They
also converge even in the case where we sample not from a
fixed regularly varying distribution, but from a sequence of
distributions that are not regularly varying but that converge
to a regularly varying distribution—the case with a Pareto
distribution with the diverging natural exponential cutoff. On
degree sequences in network models where individual degrees
are not i.i.d. samples from a fixed degree distribution, the
estimators converge as well, even though the i.i.d. assumption
no longer holds.

For PLFIT, we find in Appendix D that if the sample
distribution is sufficiently “nice,” then the estimation accuracy
and convergence rates of the PLFIT are comparable to those of
the EV estimators. However, in cases where the distribution
is not so nice and is further from a pure power law, the EV
estimators perform significantly better than the PLFIT. This
is the case, for example, with distributions that can be fitted
by power laws with wrong exponents in the region of small
degrees. Remarkably, one example of such a distribution is
the degree distribution in the preferential attachment model,
a “harmonic oscillator” of power laws in network science
[28–30]. For these and a number of other lower-level technical
reasons, all documented in Appendix D and fully supported in
a more recent and detailed focused study [24], we exclude the
PLFIT from the subsequent considerations here.

V. POWER-LAW DEGREE SEQUENCES

There is no way to test the hypothesis that any given
number was sampled from any given distribution that contains
the number in its support. Yet if one has a long sequence
of numbers, then there is a multitude of hypothesis testing
procedures to measure how likely it is that this sequence
was sampled from the distribution. The longer the sequence,
the more reliable such procedures are, and any good pro-
cedure will give a definitive answer as the sequence length
approaches infinity. This statistical methodology is widely
known to work not only for a fixed distribution, but also for
many parametric families of distributions. In the latter case,
the testing involves one additional step: the parameters of the
distribution are first to be estimated from the sequence using
a consistent estimator.

A variation of this standard approach is at the core of
Refs. [19,20], where the parametric family of distributions
consists of pure power laws—the zeta or Pareto distributions.
Their parameters, the tail exponents, are estimated using a
combination of the likelihood maximization and Kolmogorov-
Smirnov (KS) distance minimization techniques documented
in Appendix D. Finally, the hypothesis testing procedure is the
KS test, yielding a popular p-value number reflecting roughly
how likely a given sequence comes from the pure power law
with the estimated exponent.

We now come to the key point that this or any other
hypothesis testing approach is not, and cannot be, applicable
to regularly varying distributions, simply because these dis-
tributions do not form a parametric family of distributions.
Instead, they are a nonparametric class of distributions of

an asymptotic nature with an uncountably infinite number
of “degrees of freedom” contained in the slowly varying
functions �(k) (Appendix A). Testing whether a given finite
collection of numbers was sampled from such an infinite-
dimensional family of distributions is akin to testing whether
a given number was sampled from a given distribution, which
clearly is impossible as mentioned above.

Situations of this type are quite familiar for a physicist
or network scientist. Phase transitions are a classic example:
true phase transitions occur only in the thermodynamic limit,
while for any finite system, we can only observe their signs.
The simplest example in network science is graph sparsity.
The definition of sparse graphs applies only to family of
graphs whose size tends to infinity, and one cannot say
anything at all about how sparse any given finite-size graph
is, even if this is an empty graph of n = 1010 nodes, simply
because this graph can be considered as a typical Erdős-Rényi
graph with the connection probability p = 10−1010

, which is
dense.

Yet, for a variety of reasons, these matters, including the
impossibility of hypothesis testing with nonparametric fami-
lies of distributions, as well as various consequences of this
impossibility, are routinely overlooked and misunderstood.
For these reasons, we first discuss the general picture behind
this impossibility, and then illustrate it with a collection of
examples.

First, the general picture is as follows. Recall that the
consistency of an exponent estimator means that if we sample
i.i.d.’ly increasingly larger numbers n of random numbers
ki, i = 1, . . . , n, from a fixed regularly varying distribution
with exponent γ and any slowly varying function �(k), then
the estimates γ̂n that the estimator returns are guaranteed to
converge to γ . Observe that while γ is a fixed number, γ̂n is
a random number, i.e., a random variable, because the ki’s are
random. That is why one has to be careful with statements
concerning in what particular sense the random variable γ̂n

converges to number γ . As stated in Sec. III, the convergence
is usually in probability, but in some cases one can prove that
γn converges to a normally distributed random variable with
mean γ and some vanishing variance. For different definitions
of convergence of random variables, we refer to any textbook
on probability, such as Ref. [77].

It is crucially important to recognize that the convergence
in probability does not mean that for any finite n there are any
guarantees on how close the estimate γ̂n will be to the true γ .
To see why, observe that the slowly varying function �(k) can
be arbitrarily bad, breaking pure power laws for any arbitrarily
large number of degree samples or range of degrees, while the
true tail of the distribution can be inferred only in the limit
of infinitely long sampled sequences, which one never has in
practice.

We thus see that this general picture is very different from
the one with hypothesis testing with a parametric family of
distributions, such as the normal distributions or pure power
laws. If we employ MLE, for instance, to estimate the pa-
rameters of such distributions, we usually know all we need
to tell how close our estimates are expected to be to the true
values for any given sample of size n. We often even know the
full distribution of these estimates as random variables, and
we then have the luxury to employ any reasonable hypothesis
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test of our choice, or to compute p values to quantify chances
if we wish. With regularly varying distributions, the situation
is very different because if we do not know �(k), we simply
do not know how large n must be so that our estimators
and hypothesis tests start showing any signs of convergence,
simply because �(k) can be arbitrarily bad.

To illustrate this extremely important point, we con-
sider several examples next. The first two are of artificial/
adversarial nature, while the last one is a well-studied network
model.

The first example is a regularly varying distribution with
support on [c1,∞) and PDF with γ > 1 and constants c2 >

c1 � 0 and f ∈ [0, 1]:

P(x) = �(x)x−γ , where

�(x) =
{

1− f
c2−c1

xγ , if x ∈ [c1, c2],

(γ − 1) f cγ−1
2 , if x ∈ (c2,∞).

(14)

In words, this distribution is uniform on the interval [c1, c2],
and a pure power law (Pareto) for x > c2. The parameter f is
the fraction of the distribution mass falling within the Pareto
region. This distribution is regularly varying for any constants
c2 > c1 � 0, f ∈ (0, 1], and γ > 1 because for x > c2 the
slowly varying function of its CCDF is constant, or in simpler
terms, because it has a pure power law tail. However, if
we sample n < 1/ f random numbers from this distribution,
then there is no way to infer from these samples that the
distribution is regularly varying with exponent γ because the
expected number of samples in the Pareto region is below
1, so that all samples are expected to be from the uniform
part of the distribution. Only if the number of samples n is
sufficiently larger than 1/ f , can we expect to start seeing signs
of the presence of a power-law tail. Figure 1 confirms that this
is indeed the case. Clearly, one can replace the uniform part
of the distribution with an arbitrary function, thus reflecting
the reality of degree sequences observed in many real-world
networks much more closely.

As another example, consider the Pareto distribution sup-
ported on [1,∞) with a fixed exponential cutoff at c > 1:

P(x) = cγ−1

	(1 − γ , 1/c)
x−γ e−x/c, (15)

where 	 denotes the upper incomplete gamma function. This
distribution is not regularly varying, yet if our sample size n
satisfies n < cγ−1, then we will be tempted to conclude that
the distribution is regularly varying, and that the exponent is
γ , because almost all samples will be from the Pareto part of
the distribution. Only if the number of samples n is sufficiently
larger than cγ−1, will we see signs of that this distribution does
not really have any power-law tail, as confirmed in Fig. 1.

To see that such deceiving situations can occur in quite rea-
sonable network models we refer to superlinear preferential
attachment. In this model of growing networks, new nodes
join a network one at a time, and connect to existing nodes
of degree k with probability proportional to kδ , where δ > 1.
For any such δ, the limit degree distribution is not regularly
varying: the number of nodes with degrees exceeding a certain
fixed threshold is finite [78]. Yet this threshold becomes larger
if δ approaches 1. The threshold is also a growing function of
the average degree k̄, i.e., the number of links that new nodes

FIG. 1. The extreme value index estimates for the two adversarial
examples in Sec. V. The sequences of varying length n are sampled
from the distributions defined by Eq. (14) with c1 = 1, c2 = 2, f =
2 × 10−4, and γ = 2 (blue squares), and by Eq. (15) with c = 500
and γ = 2 (red circles). The data shown are the estimates of the
moments estimator with the double bootstrap procedure applied to
these samples. The results are averaged over 100 random sequences
for each data point. In the case of blue squares, the distribution
is regularly varying with γ = 2, so that ξ = 1. However, if n is
not sufficiently larger than 1/ f , the sequences sampled from this
distribution appear as if sampled from the uniform distribution that
belongs to the Weibull MDA with ξ = −1. In the case of red circles,
the distribution is not regularly varying. It belongs to the Gumbel
MDA with ξ = 0. However, if n is not sufficiently larger than cγ−1,
the sequences sampled from this distribution appear as if sampled
from a regularly varying distribution with γ = 2 and ξ = 1. The
examples illustrate that for any finite n there is absolutely no way
to tell what distribution class (regularly varying or not) the samples
are coming from.

establish. More importantly, the larger this threshold, the more
slowly the degree distribution approaches its limit, appearing
as a reasonably “clean” power law in its vast preasymptotic
regime. For example, for δ = 1.15 and k̄ = 4, there are no
noticeable deviations from this seemingly pure power-law
behavior until the network size reaches about 1017 [78].

All these examples illustrate the point that based on any
given finite degree sequence (of a real-world network), there is
absolutely no way to tell how likely the hypothesis is that this
sequence was sampled from a regularly varying distribution.
In view of this impossibility, the best strategy one can follow
is to simply rely on the estimates of the consistent estimators
discussed in the previous section [31]. If the estimates of ξ that
these estimators report on a given sequence are all positive,
then it might be the case that this sequence comes from a reg-
ularly varying distribution. Yet if these estimates are negative
or close to zero, then the chances of that are slim. However,
there is absolutely no, and cannot be any, rigorous way to
quantify these chances, using p values or any other methods,
for the reasons above. This is the key point in our paper.

In view of these considerations, we take a conservative
approach, and propose the following definition of a power-
law degree sequences, based on the values of ξ that the
three estimators from the previous section return upon their
application to the sequence:

(1) A degree sequence is not power-law (NPL) if at least
one estimator returns a negative or zero value of ξ ;
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(2) A degree sequence is hardly power-law (HPL) if all
the estimators return positive values of ξ , and if at least one
estimator returns a value of ξ � 1/4;

(3) A degree sequence is power-law (PL) if all the estima-
tors return values of ξ > 1/4.

In purely intuitive and nonrigorous terms, the larger the ξ ,
the more likely it is that the degree sequence comes from
a distribution with a power-law tail. These chances are the
smaller, the closer the positive ξ is to zero, and we take a
conservative approach to doubt that the degree sequence is
power-law if ξ � 1/4. If ξ � 0, these chances are really slim.
Unfortunately, as discussed above, it is principally impossible
to attach any rigorous quantifiers to this intuition.

Yet we note that one important advantage of this clas-
sification scheme is that it tries to make a decision based
on information from several estimators that are known to be
consistent, instead of just one of unknown consistency. It is
also possible to include other consistent estimators to collect
more information about a degree sequence. We reiterate that
we employ the Hill, moments, and kernel estimators here
because they are the only three consistent estimators that are
known to be stable on real-world data, and for which the
double bootstrap procedure has been proven to be consistent.

We also note that the choice of the hardly power-law
ξ = 1/4 threshold is completely arbitrary, and in view of the
considerations above we should not have defined any hardly
power-law regime, and call a degree sequence power-law if all
ξ ’s are positive. Yet if ξ = 0.01, for instance, then γ = 101.
To call a degree sequence with such γ a power law is an un-
satisfactory stretch of terminology. Another reason to define
this threshold is that it is very difficult to tell whether a very
small value ξ̂ > 0 that an estimator returns is an estimation
of ξ = 0 or of a very small ξ > 0. In the latter case, the
sequence was sampled from a regularly varying distribution,
while in the latter case it was sampled from a distribution in
the Gumbel MDA. This MDA consists of all kinds of distri-
butions, including both light-tailed and heavy-tailed, but not
regularly varying. The lognormal distribution, for example,
is not regularly varying, but it is heavy-tailed and belongs
to the Gumbel MDA, see Appendix B. Yet if the task is to
tell whether a sequence was sampled from a regularly varying
distribution or not, then classifying the sequence as regularly
varying based on a small value ξ̂ increases the chances of false
positives because this small ξ̂ may be an estimate of ξ = 0, in
which case the source distribution is not regularly varying. To
minimize the chances of such false positives, we do define
the hardly power-law threshold ξ = 1/4, so that if at least
one estimator thinks that ξ � 1/4, we doubt that the sequence
is coming from a regularly varying distribution. We set this
threshold to ξ = 1/4 here by selecting the largest value of γ

that is known to us to still matter. That is, we are unaware
of any value of γ that would correspond to any critical point,
and that is larger than γ = 1 + 1/ξ = 5 in the Ising model on
random graphs in Ref. [79].

Power-law degree sequences whose distributions have di-
vergent second moments, meaning γ < 3 and ξ > 1/2, are of
particular interest to network science for a variety of reasons.
For example, networks with such degree sequences are partic-
ularly robust thanks to the absence of the percolation threshold
[6], they are ultrasmall worlds versus small worlds [80], the

degree correlations in them are unavoidable due to structural
constraints [81], etc. Therefore we also define a subclass of
power-law degree sequences with divergent second moments
of their distributions:

A power-law degree sequence has a divergent second
moment (DSM) if all the estimators return values of ξ > 1/2.

We note that we do not put any restriction on how close
to each other the estimated values reported by the different
estimators must be in the definitions above. The main reason
for that is that the speeds of convergence of these estimators
are not known. They may converge to the true ξ at different
rates. However, as discussed above, if the data size is rel-
atively large, and all the estimators report values ξ̂ > 1/4,
the chances that the degree sequence does not come from a
regularly varying distribution ought to be slim. The power-law
sequence definitions above represent one of many possible
classification schemes. However, if a degree sequence is
classified as PL or DSM according to this scheme, and if
all the estimators report values that are close to each other,
then one can be confident about the true values of ξ and γ .
Unfortunately, there is no way to quantify this confidence.
Since the convergence speeds are unknown, one cannot attach
any rigorous bounds on how close the estimated values must
be to yield any given accuracy in the estimation of the true
γ . It is also important to recognize that these considera-
tions apply not only to the estimators considered here, but
also to any other estimator, including the PLFIT [19], whose
convergence speed on regularly varying distributions is not
known.

Finally, if a network is simple unweighted undirected
unipartite single-layer and static, then it has only one degree
sequence associated with it, so that it is straightforward to call
such a network power law if its degree sequence is power law.
However, in more complicated situations, such as directed,
multipartite, multilayer, multiplex, and/or temporal networks,
there are not one but many degree sequences associated with
the network. To call such a network power law based only
on one, or all, or some percentage (as in Ref. [20]) of the
total number of its degree sequences, is purely a matter
of taste. What usually does matter is a specific question,
e.g., the spread of a disease, posed for the network, and
different degree sequences, e.g., in versus out degrees, are of
interest for different questions. Therefore we do not propose
to classify such networks as power-law or not and, instead,
report the data for each degree sequence separately in the next
section.

VI. REAL-WORLD NETWORKS

Here we apply the Hill, moments, and kernel estimators to
a collection of degree sequences in real-world networks from
the KONECT database [56]. The database is a curated collec-
tion of real-world networks categorized by several network
attributes such as size, (un)directedness, (un)weightedness,
etc. The database uses a unified edge list format to store
the data, which simplifies the automation of data processing.
Better yet, the database allows one to sort networks by their
properties, and to filter out networks with possibly incom-
plete information. This is in contrast to other large network
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collections, such as ICON [82], that link their entries to third-
party databases of various formats and origins, which makes it
quite difficult to collect and process the data in an automated
manner.

To streamline data processing, we do not consider net-
works in the database that are not downloadable in the
KONECT edge list format. We also ignore temporal networks
to avoid arbitrariness in selecting the temporal scale for data

100 101 102 103

10 4

10 3

10 2

10 1

100

F(
k)

CAIDA (IN) (a)

Hill = 1.1
Mom = 1.11
Kern = 1.12

100 101 102

10 3

10 2

10 1

Human PPI (MV) (b)

Hill = 2.04
Mom = 2.4
Kern = 2.03

100 101

10 6

10 5

10 4

10 3

10 2

10 1

100

Roads CA (RO)
(c)

Hill = 17.86
Mom = 0.34
Kern = 0.4

100 101 102 103

10 5

10 4

10 3

10 2

10 1

F(
k)

Youtube (YG) (d)

Hill = 1.79
Mom = 1.87
Kern = 1.56

100 101 102 103

10 5

10 4

10 3

10 2

10 1

100 Amazon-in (Am)(e)

Hill = 2.04
Mom = 2.58
Kern = 2.14

100 101

10 1

100

Amazon-out (Am)
(f)

100 101 102 103 104

Degree k

10 5

10 4

10 3

10 2

10 1

100

F(
k)

Stanford-in (SF) (g)

Hill = 1.15
Mom = 1.15
Kern = 1.15

100 101 102 103

Degree k

10 4

10 3

10 2

10 1

100 arXiv-in (THc) (h)

Hill = 1.9
Mom = 1.98
Kern = 2.12

100 101

Degree k

10 3

10 2

10 1

100

U. Rovira i Virgili (A@)

(i)

Hill = 5.51
Mom = 0.07
Kern = 0.08

Power-law
DSM Non-DSM

Not
power-law

Hill = 1.2 107

Mom = 1.0
Kern = 3.24

.

FIG. 2. The results of the Hill, moments, and kernel estimators applied to the degree sequences of nine real-world networks. The degree
sequences belong to different classes defined in Sec. V. [(a), (d), and (g)] Power-law DSM: (a) CAIDA, the undirected network of the Internet at
the autonomous system level; (d) Youtube, the user degree distribution of the bipartite network of Youtube users and their group memberships;
(g) Stanford, the in-degree distribution of the directed network of hyperlinks between the WWW pages at the Stanford University website.
[(b), (e), and (h)] Power-law non-DSM: (b) human PPI, the undirected network of human protein-protein interactions; (e) Amazon, the in-
degree distribution of the directed network of product recommendations at Amazon; (h) arXiv, the in-degree distribution of the directed
citation network of publications on high-energy physics theory at arXiv. [(c), (f), and (i)] Not power-law: (c) roads CA, the undirected network
of road intersections in the state of California; (f) Amazon, the out-degree distribution of the same network as in (e); (i) U. Rovira i Virgili,
the undirected email communication network at the University of Rovira i Virgili. The shown network names are their codenames used in the
KONECT database [56], and they also appear in Tables I–III. Each panel shows the empirical complementary cumulative distribution functions
(CCDFs) F (k) of the degree sequences on log-log scale. The straight lines visualize the estimated values of the CCDF exponents α = 1/ξ .
The filled circles are the optimal values of the number of order statistics κ∗ found by the double bootstrap method. The estimators operate only
on degrees larger than κ∗. The estimated values of α are α̂ = 1/ξ̂ (κ∗), where ξ̂ (κ ) is the estimated value of the tail index ξ as a function of κ .
For nonpositive values of ξ̂ (κ∗), the α̂ is undefined, so that the legends in (c) ,(f), and (i) show ξ̂ = ξ̂ (κ∗) instead. Hardly power-law examples
are not shown as they are not particularly interesting, lying somewhere in between power-law and not power-law examples.
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TABLE I. The tail exponent estimation results for the 35 real-world undirected networks collected from the KONECT database [56]. Each
network name is followed by its KONECT code in braces. The estimators return estimates ξ̂ of ξ that are translated to γ̂ = 1 + 1/ξ̂ . If ξ̂ � 0,
then γ̂ is set to ∞. The estimates are colored according to the definitions in Sec. V: (1) not power-law networks, at least one estimate is
nonpositive ξ̂ � 0 (red); (2) hardly power-law networks, all the estimates are positive ξ̂ > 0 and at least one estimate is ξ̂ � 1/4 (yellow);
(3) power-law networks with a divergent second moment, all the estimates are ξ̂ > 1/2 (green); and (4) other power-law networks, the rest of
the cases (blue).

Network name n k̄ γ̂Hill γ̂mom γ̂kern

CAIDA (IN) 26 475 4.03 2.1 2.11 2.11
Skitter (SK) 1 696 415 13.08 2.38 2.36 2.43
Actor collaborations (CL) 382 219 173.28 3.71 6.7 × 103 2.36
Amazon (CA) 334 863 5.53 3.99 3.48 3.44
arXiv (AP) 18 771 21.1 4.41 5.78 7.29
Bible names (MN) 1773 10.3 3.09 3.36 2.88
Brightkite (BK) 58 228 7.35 3.51 3.8 2.96
Catster (Sc) 149 684 72.8 2.09 2.06 1.98
Catster/Dogster (Scd) 623 748 50.33 2.1 2.11 2.04
Chicago roads (CR) 1467 1.77 77.92 ∞ ∞
DBLP (CD) 317 080 6.62 6.59 13.99 3.06
Dogster (Sd) 426 816 40.03 2.15 2.15 2.12
Douban (DB) 154 908 4.22 4.42 6.88 1.86
U. Rovira I Virgili (A@) 1133 9.62 6.49 ∞ ∞
Euro roads (ET) 1174 2.41 4.73 44.48 29.57
Flickr (LF) 1 715 254 18.13 3.94 4.29 5.02
Flickr (FI) 105 938 43.74 6.18 1.79 1.65
Flixster (FX) 2 523 386 6.28 53.63 1.93 1.95
Gowalla (GW) 196 591 9.67 2.8 2.8 2.86
Hamsterster (Shf) 1858 13.49 4.45 8.09 3.51
Hamsterster (Sh) 2426 13.71 4.57 25.39 6.32
Hyves (HY) 1 402 673 3.96 2.98 2.23 1.99
LiveJournal (Lj) 5 203 763 18.72 3.86 4.04 3.15
Livemocha (LM) 104 103 42.13 9.13 ∞ 2.39
Orkut (OR) 3 072 441 76.28 3.58 2.65 3.35
Power grid (UG) 4941 2.67 6.62 7.76 9.2
Proteins (Mp) 1846 2.39 3.09 3.31 3.87
Reactome (RC) 6229 46.93 4.86 34.33 ∞
Roads CA (RO) 1 965 206 2.82 18.86 ∞ ∞
Roads PA (RD) 1 088 092 2.83 18.24 ∞ ∞
Roads TX (R1) 1 379 917 2.79 21.83 ∞ ∞
Route views (AS) 6474 3.88 2.13 2.16 2.14
WordNet (WO) 146 005 9.00 2.86 2.68 2.61
Youtube (CY) 1 134 890 5.27 2.48 2.58 2.17
Human PPI (MV) 3023 4.07 3.04 3.4 3.03

aggregation. Among database entries that possibly represent
the same real-world network [for example, Wikipedia (EN)
hyperlinks and Wikipedia (EN) links, both representing the
English Wikipedia], we select only one entry. We also ignore
networks that are marked as incomplete in the database. Fi-
nally, since the estimation of ξ cannot be reliable for networks
of a small size, we only consider networks consisting of at
least n = 1000 nodes.

The KONECT database contains not only undirected net-
works, but also directed and bipartite. For the latter two
classes, we obtain not one, but two degree sequences for each
network: the in- and out-degree sequences for directed net-
works, and one degree sequence for each of the two types of
nodes in bipartite networks. We also remove all self-loops and
multiedges from each collected network. After these filtering
steps, we are left with 115 networks of three different types:

undirected (35), directed (49), and bipartite (31). The degree
sequences of these networks are available at the software
package repository [55].

We then feed the obtained degree sequences to the three
estimators. Figure 2 shows the exponent estimation results
that the estimators produce on some paradigmatic real-world
networks in different domains, while Tables I, II, and III
contain the full lists of these estimations for the undirected,
directed, and bipartite networks, respectively. We see that
many networks that were found to be power-law in the past
have degree sequences that are classified as such by these
estimators as well. These include the Internet, WWW, human
protein interactions, social group memberships, citations, and
product recommendation networks. The other way around,
degree sequences of networks that are known not to be
power-law are classified as not power-law—the California
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TABLE II. The tail exponent estimation results for the 49 real-world directed networks collected from the KONECT database [56]. The
style and notations are the same as in Table I. The estimators and coloring are applied to the in- and out-degree sequences separately. Since
the operation of the estimators is undefined on zeros, the zero entries in the in- and out-degree sequences are removed, explaining the different
lengths of the in- and out-degree sequences nin and nout for the same network, as well as the different values of the in and out average degrees
k̄in and k̄out .

Network name nin nout k̄in k̄out γ̂Hill
in γ̂mom

in γ̂kern
in γ̂Hill

out γ̂mom
out γ̂kern

out

Adolescent health (ME) 2441 2313 5.31 5.61 6.68 ∞ ∞ 501.0 ∞ ∞
Advogato (AD) 4422 4009 10.66 11.76 3.16 3.35 3.0 3.29 3.43 4.37
Air traffic control (TC) 1210 1083 2.16 2.41 6.0 ∞ 7.58 4.28 23.22 8.3
Amazon (Am) 403 312 402 439 8.4 8.42 3.04 3.58 3.14 1.2 × 107 ∞ ∞
arXiv (PHc) 28 226 32 153 14.93 13.11 3.51 4.16 4.18 3.79 4.89 6.46
arXiv (THc) 23 176 25 055 15.22 14.08 2.9 2.98 3.11 4.09 9.13 3.84
Baidu (BAi) 1 241 374 1 654 404 14.33 10.75 2.47 2.51 2.57 4.58 5.22 5.57
Baidu (BAr) 277 991 394 482 11.81 8.33 2.72 2.79 3.26 19.52 2.73 2.59
Berkley Stanford (BS) 617 094 680 486 12.32 11.17 2.09 2.08 2.06 334.33 3.25 3.36
Blogs (Mg) 990 1064 19.21 17.88 3.27 4.11 6.1 5.15 14.7 7.21
CiteSeer (CS) 194 959 336 024 8.95 5.19 3.46 3.84 3.31 4.08 5.55 4.23
Cora (CC) 13 879 21 201 6.59 4.32 3.03 3.2 2.95 5.1 4.94 6.68
DBLP (Pi) 11 564 3158 4.3 15.75 3.1 3.4 2.98 3.42 2.81 2.84
Edinburgh thesaurus (EA) 22 675 8210 13.75 37.98 6.13 3.94 4.97 30.41 ∞ ∞
Ego Google Plus (GP) 23 591 131 1.66 199.56 5.83 4.21 4.83 3.91 11.75 ∞
Ego Twitter (TL) 22 964 938 1.44 35.29 4.46 3.4 3.79 7.45 ∞ 48.62
Epinions (ES) 51 957 60 341 9.79 8.43 3.43 4.38 3.62 3.54 3.77 3.98
FOLDOC (FO) 13 309 13 356 9.03 9.0 3.16 2.67 2.5 5.42 7.9 10.01
Gnutella (GN) 62 283 16 387 2.37 9.02 5.85 ∞ 3.67 8.14 3.15 2.3
Google (GO) 714 545 739 454 7.14 6.9 2.5 2.55 2.68 5.1 3.34 2.97
Google (GC) 15 762 12 447 10.81 13.68 2.16 2.17 2.04 3.12 2.71 2.23
Hudong (HUi) 798 202 1 725 741 18.39 8.51 3.23 3.65 2.34 3.72 2.53 2.63
Hudong (HUr) 991 745 2 232 238 19.01 8.45 3.29 3.46 3.07 126.0 3.62 2.64
JDK dependencies (DJ) 2375 6369 63.57 23.71 2.07 2.07 1.71 10.62 2.36 2.52
JUNG/JAVAX dependencies (Dj) 2208 6055 62.82 22.91 2.0 2.07 1.71 10.62 2.4 2.54
Libimseti (LI) 168 791 135 359 102.85 128.25 4.21 2.57 2.67 2.54 2.49 2.56
Linux (LX) 12 013 25 619 17.77 8.33 1.97 1.96 2.03 4.42 11.75 5.39
Notre Dame (ND) 325 729 136 934 4.51 10.73 2.05 2.57 1.99 2.55 2.73 2.26
Open flights (OF) 3418 3409 19.8 19.85 6.38 3.63 1.84 6.21 4.72 1.84
Pokec (PL) 1 519 452 1 432 693 20.15 21.37 4.97 6.95 7.76 4.1 4.94 6.52
Slashdot Zoo (SZ) 65 220 45 598 7.9 11.3 2.99 3.34 4.02 29.57 ∞ ∞
Standford (SF) 261 588 281 731 8.84 8.21 2.15 2.15 2.15 63.5 5.55 3.09
TREC WT10g (WT) 1 295 841 1 532 051 6.22 5.26 2.98 3.67 2.53 2.19 2.17 2.27
Twitter ICWSM (Ws) 465 016 2502 1.8 333.65 2.54 2.57 2.64 1.6 × 104 ∞ ∞
Twitter MPI (TF) 49 395 940 43 983 853 39.75 44.64 2.02 2.31 2.01 1.91 1.99 2.34
Twitter WWW (TW) 35 689 148 40 103 281 41.14 36.61 1.93 2.01 2.43 2.04 2.03 1.98
US airports (AF) 1504 1478 18.77 19.1 13.2 ∞ 2.46 14.89 ∞ 2.26
US patents (PC) 3 258 983 2 089 345 5.07 7.91 4.28 4.6 4.52 3.43 3.6 3.82
Wikipedia links DE (Wde) 2 262 745 3 221 527 36.06 25.33 2.42 2.4 2.15 5.17 4.25 3.22
Wikipedia links EN (Wen) 7 549 312 12 114 964 50.08 31.21 2.78 2.79 3.03 4.94 8.58 5.9
Wikipedia links FR (Wfr) 2 127 693 2 993 436 48.11 34.2 2.4 2.37 2.54 4.0 5.24 3.61
Wikipedia links IT (Wit) 1 488 860 1 855 986 61.47 49.31 2.88 2.76 3.17 6.81 5.46 2.93
Wikipedia links JA (Wja) 1 253 659 1 609 718 56.67 44.14 2.48 2.47 2.68 5.37 3.73 4.27
Wikipedia links PL (Wpl) 1 196 546 1 528 795 48.04 37.6 2.59 2.59 2.95 3.82 4.46 4.12
Wikipedia links PT (Wpt) 1 137 929 1 591 426 43.07 30.8 2.58 2.51 2.72 14.7 4.03 4.5
Wikipedia links RU (Wru) 1 834 424 2 852 544 44.72 28.76 2.48 2.46 2.62 7.8 251.0 4.89
Yahoo ads (YD) 194 317 653 260 15.09 4.49 2.2 2.18 2.23 4.02 3.98 ∞
Human PPI (MF) 2033 338 3.17 19.09 27.32 ∞ ∞ 2.4 2.86 2.04
Human PPI (MS) 1698 1597 3.63 3.86 4.62 2.44 2.57 6.75 2.42 2.63

road network or the out-degree distribution in the directed
network of Amazon product recommendations, for instance.

We emphasize again the importance of using as many
consistent estimators as possible: on any finite degree

sequence, different estimators are not guaranteed to return
the same ξ estimation, as they may explore different parts of
the distribution, especially if the slowly varying function �(k)
is nontrivial, Appendix C. That is why we use the maximal
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TABLE III. The tail exponent estimation results for the 31 real-world bipartite networks collected from the KONECT database [56]. The
style and notations are the same as in Table II. The estimators and coloring are applied to the degree sequences of nodes of types 1 and 2
(domains 1 and 2) separately.

Network name nd1 nd2 k̄d1 k̄d2 γ̂Hill
d1

γ̂mom
d1

γ̂kern
d1

γ̂Hill
d2

γ̂mom
d2

γ̂kern
d2

Movies/Actors (AM) 383 640 127 823 3.83 11.5 4.92 7.67 5.24 6.13 11.99 6.13
arXiv (AC) 22 015 16 726 2.66 3.5 9.33 12.9 13.99 5.33 6.05 6.75
Book Crossing implicit (BX) 340 523 105 278 3.38 10.92 3.54 2.26 2.31 3.08 3.37 1.88
Book Crossing ratings (Bx) 185 955 77 802 2.33 5.57 2.35 2.39 2.43 2.83 2.82 2.86
Countries DBPedia (CN) 2302 590 112 276.77 1.08 1.43 1.44 1.93 9.77 3.03 ∞
DBLP (PA) 4 000 150 1 425 813 6.07 2.16 5.22 4.3 6.75 2.22 2.23 2.14
Discogs labels/artists (Dl) 270 771 1 754 823 53.24 8.21 2.08 2.15 1.93 3.12 3.11 3.29
Discogs genres/artists (Da) 15 1 754 823 1.3 × 106 10.85 7.67 2.72 1.0 3.12 3.07 3.21
Discogs genres/labels (Dr) 15 270 771 2.8 × 105 15.32 1.9 2.56 7.76 2.2 2.2 2.17
Flickr (FG) 103 631 395 979 82.46 21.58 2.66 3.7 2.85 5.22 6.52 6.29
Genres DBPedia (GE) 7783 258 769 59.55 1.79 2.16 2.57 ∞ 5.61 12.49 ∞
Github (GH) 120 867 56 519 3.64 7.79 2.08 2.07 2.07 2.77 4.07 3.31
Jester100 (J1) 100 73 421 4.1 × 104 56.34 4.3 × 104 ∞ ∞ 5.1 × 105 ∞ ∞
Jester150 (J2) 140 50 692 1.2 × 104 34.1 3.26 3.32 5.46 251.0 3.29 2.73
LiveJournal (LG) 7 489 073 3 201 203 15.0 35.08 1.78 1.8 1.8 1.0 × 103 ∞ 4.32
Locations DBPedia (LO) 53 407 172 079 5.5 1.71 2.02 2.02 2.05 6.52 3.9 38.04
Movies DBPedia (ST) 81 085 76 098 3.47 3.7 3.94 4.85 5.98 5.52 13.35 8.69
Occupations DBPedia (OC) 101 730 127 571 2.47 1.97 1.73 1.74 1.73 6.56 19.18 1.0 × 103

Orkut (OG) 8 730 857 2 783 196 37.46 117.5 1.88 1.89 1.89 53.63 2.4 2.63
Producers DBPedia (PR) 138 839 48 833 1.49 4.24 3.69 3.89 4.13 4.09 4.58 2.12
Labels DBPedia (RL) 18 421 168 268 12.66 1.39 2.05 2.08 2.09 5.95 5.18 6.05
Reuters (RE) 283 911 781 265 213.34 77.53 6.38 1.55 1.56 6.46 ∞ ∞
TREC (TR) 1 173 225 551 787 71.28 151.56 1.61 1.63 1.6 3.93 8.87 2.94
TV tropes DBPedia (DBT) 87 678 64 415 36.86 50.18 3.18 3.73 3.37 3.34 3.07 2.97
Teams DBPedia (TM) 34 461 901 130 39.65 1.52 8.46 12.76 2.2 21.83 ∞ ∞
vi.sualize.us images/tags (Vti) 495 402 82 035 4.64 28.02 3.15 3.34 2.97 1.81 1.85 1.86
vi.sualize.us tags/users (Vut) 82 035 17 122 28.02 134.26 1.81 1.85 1.85 2.54 2.57 2.13
vi.sualize.us images/users (Vui) 495 402 17 122 4.64 134.26 3.15 3.31 2.98 2.49 2.58 2.51
Web trackers (WT) 12 756 244 27 665 730 11.02 5.08 2.03 2.03 2.04 2.62 2.1 2.05
Writers DBPedia (WR) 46 213 89 355 3.12 1.62 3.77 4.1 4.06 5.88 7.62 15.08
Youtube (YG) 30 087 94 238 9.75 3.11 2.31 2.36 2.45 2.79 2.87 2.56

subset of stable and efficient estimators for which the double
bootstrap method to determine the optimal number of order
statistics κ∗ is proven to be consistent.

Finally, Fig. 3 summarizes the estimation results for γ̂ =
1 + 1/ξ̂ in Tables I–III by classifying the degree sequences
of all the considered networks into the not power-law (NPL),
hardly power-law (HPL), and power-law (PL) classes, the
latter containing the subclass of power-law networks with
divergent second moments (DSM), defined in the previous
section. We see that the percentages of power-law and DSM
degree sequences in undirected networks are 49% and 29%,
respectively. Among the considered directed networks, 24%
and 6% have both in- and out-degree sequences that are
power-law and DSM, while 82% and 45% of these networks
have either in- or out- degree sequence which is power-law
and DSM, with a majority of those being in-degree sequences.
The bipartite networks exhibit a similar picture: 35% and
13% of them are power-law and DSM according to both
types of nodes, while 74% and 55% are power-law and DSM
according to at least one type of nodes.

While one cannot directly compare these results to the ones
in Ref. [20], they present quite a different picture than painted
there.

VII. CONCLUSION AND DISCUSSION

In summary, we call a distribution power-law if it is
regularly varying. The pure power laws—the Pareto and
zeta distributions—are a small subset of this more general,
realistic, and well-studied class of distributions. This class
constitutes the most inclusive theoretical framework capable
of formalizing all the aspects of the “straight line on log-
log scale” intuition behind power-law observations in real-
world networks. Utilizing the connection between this class
of distributions and the maximum domain of attraction of the
Fréchet distribution in extreme value theory, we identify state-
of-the-art statistical tools to estimate the tail exponent γ in a
given degree sequence. These are then deployed to design a
classification scheme for degree sequences. The application of
this scheme to a representative collection of degree sequences
in real-world networks reveals that significant fractions of
these networks have power-law degree sequences.

We note that the problem of classifying a given degree
sequence as power-law or not has nothing to do with possible
mechanisms that may lead to the emergence of power-law
distributions in real data, and that are of great interest to
network science in general. The reason why such mechanisms
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FIG. 3. The breakdown of the degree sequences of the considered real-world networks into the three classes defined in Sec. V: not power-
law (NPL), hardly power-law (HPL), and power-law (PL), the latter containing the divergent second moment (DSM) subclass, shown in green.
The full data appear in Tables I–III. The data are shown for (a) undirected, (b) directed, and (c) bipartite networks. The numbers in the boxes
are the numbers of networks falling within the corresponding (sub)class. In directed networks, the in- and out-degree sequences are classified
separately. Similarly, in bipartite networks, the degree sequences of nodes of types 1 and 2 (domains 1 and 2) are classified separately as well.
The numbers of networks with all possible combinations of the two classifications are then shown in the squares, along with the marginals
outside of the squares. The color shading in the squares shows the fraction of directed and bipartite networks in each category.

are a completely different subject altogether is simple. We can
think of different mechanisms as different network models
approximating stochastic processes that drive the evolution
of real-world networks, and it is quite well known that com-
pletely different network models and thus completely different
network formation mechanisms may lead to networks that
have exactly the same degree distribution. That is, these
networks may certainly be very different in all respects other
than the degree distribution [83]. Therefore the question of
what mechanism causes this or that degree distribution is
completely irrelevant and ill-posed, as it is impossible in
principle to infer it based only on the degree distribution.

The impossibility of hypothesis testing for regularly vary-
ing distributions is the reason why one cannot attach any
statistical weight, such as a p value, to the statement that a
given finite sequence is regularly varying or not. Yet many
other aspects of the current state of affairs in statistics related
to detecting power laws in empirical network data do allow
for improvement, so we comment on some of them here.

Fundamental limitations of estimators based on extreme
value theory. The existing consistent estimators of tail ex-
ponents are based on extreme value (EV) theory. These
estimators cannot generally differentiate between heavy-
tailed and light-tailed distributions, simply because the max-
imum domain of attraction of the Gumbel EV distribution
contains distributions of both types—the light-tailed nor-
mal and heavy-tailed lognormal distributions, for example,
Appendix B. Since for many applications in network science
an important question is whether a degree distribution is
heavy- or light-tailed, versus regularly varying or not, it is of

particular interest to devise other estimators, not based on EV
theory, that would be capable of differentiating between these
two types of distributions. Some initial steps in this direction
have recently been made [84]. Even more generally, it is often
of interest whether a given degree sequence comes from a
distribution with an infinite or finite second moment, versus
power-law or not, so that it would be desirable to develop
statistically consistent methods to test the infiniteness of the
second moment. Such tests cannot be based on EV theory
either.

Yet even for EV-based estimators there are many paths to
improve their applicability and rigorous guarantees, which we
discuss next.

The i.i.d. assumption. First, it would be nice to relax the
i.i.d. assumption for these estimators, and to prove their con-
sistency in application to network models. The first step in this
direction was made in Ref. [60]. We saw in our experiments in
Appendix D that all the considered estimators converge in all
the considered network models, but there are no proofs for this
convergence for any network model other than preferential
attachment, to the best of our knowledge.

Convergence speed. Another important open problem is
the convergence speed. All we currently know is that the
considered estimators converge to the true value of the power-
law exponent γ on sequences of random numbers of in-
creasing length n sampled i.i.d.’ly from any regularly varying
distribution with this γ , but we do not know how quickly this
convergence occurs, so that, for instance, there is no way to
tell how close the estimates of different estimators on the same
finite-n sequence are supposed to be, even if this sequence
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is sampled i.i.d.’ly from a regularly varying distribution. The
speed of this convergence depends not only on γ but also on
the slowly varying function �(k). Thus the problem is to obtain
bounds, as functions of n, on the error of estimation of γ for
a given γ and �(k). Can such bounds be obtained for certain
classes of �(k)’s?

Not one sequence but many sequences. More pertinent to
networks, and also closely related to the convergence speed,
is the question of dealing with not one sequence but with
sequences of sequences. For some real-world networks, there
exist data not only on one snapshot of the network but also
on a historical series of such snapshots. In this case, we have
not one degree sequence but a series of degree sequences. One
can then apply the estimators to these series, obtaining a series
of estimates. Given such an estimate series and the length
of the sequence attached to each element of the series, i.e.,
the network size, can one extract any additional information
about the convergence of the series, and possibly devise some
tests of the hypothesis that the series comes from a regularly
varying generative process? To the best of our knowledge,
these questions are wide open.

Integer-valued sequences. Another network-specific issue
is that degree sequences are integer-valued, while the consid-
ered EV estimators were designed with real-valued data in
mind. As a consequence, these estimators are known to be
unstable and to converge quite slowly in the case of integer-
valued regularly varying distributions, Appendix C. We cir-
cumvent this issue in our experiments by adding symmetric
uniform noise, but it would be nice to design estimators that
work reliably on integer-valued data directly.

The second-order condition. Another down-to-earth issue
is the second-order condition needed to prove the consis-
tency of the double bootstrap method, Appendix C. This
condition is violated by pure power-law distributions, the
Pareto and zeta distributions. We saw in our experiments in
Appendix D that the estimators equipped with the double
bootstrap method converge in these cases as well, but there are
no proofs of the consistency of the double bootstrap method
in these cases.

Cutoffs. Finally, we comment on the important issue of
cutoffs that often causes much confusion. Here we have to
differentiate between many possibilities of what a cutoff might
mean. Two classes of such possibilities are finite-size effects
and true cutoffs. In the first case, a cutoff is just an illusion due
to a finite sample size. If one samples an insufficiently large
number of i.i.d. samples from a regularly varying distribution,
the empirical distribution of these samples may appear to have
a cutoff, even though the distribution we are sampling from
does not have any cutoffs by definition of it being regularly
varying. In simple terms, the tail of the empirical distribution
may bend downwards, but this effect is simply due to the
insufficient number of samples. In such cases, if one explores
the empirical distribution tail, one finds only a few data points
there. We note that EV theory gives not only the expected
value of the maximum among these samples, but also the exact
distribution of this properly rescaled maximum in the limit,
Appendix B.

In networks, however, this maximum can simply not be
greater than the network size n which is equal to the degree se-
quence length, and there are other kinds of degree correlations

and degree sequence constraints that are forced by the network
structure, many documented in Ref. [81], for instance. These
constraints can be such that the degree distribution does have
true cutoffs. More generally, it may very well happen that
the process driving the evolution of a given network is such
that its degree distribution does converge to a distribution
with true cutoffs, sharp or soft. Examples are the preferential
attachment model with a preference kernel which is constant
above a certain degree threshold [85, Sec. 4], or the causal set
of the universe [86].

In these cases, one has to further differentiate between the
following two possibilities. First, the cutoff can be constant,
that is, independent of the network size/degree sequence
length. In this case, the distribution is not regularly varying
by definition, so that one cannot call it power-law. If one
still wishes to estimate γ in samples from, for example, the
distribution class P(k) = �(k)k−γ e−k/c where �(k) is a slowly
varying function, and c > 0 a constant, then it is yet another
open problem since EV-based estimators can clearly not be
employed for this estimation, simply because the distributions
in this class are not regularly varying. Neither are we aware of
any consistent estimators that can do this estimation. In fact,
such estimators are quite unlikely to exist, simply because this
task appears to be ill-defined. Indeed, �(k) can be arbitrarily
bad for any finite k. All we know about this function is that
it varies slowly at infinity. However, we also know from the
shape of the distribution that it is exponential at infinity.

The other possibility is that the cutoff diverges with the
network size. In this case we have a scenario that can possibly
be modeled by random sequences of varying length n sampled
from a sequence of distributions parameterized by n. If their
cutoff diverges with n, then the latter sequence may or may
not converge to a regularly varying distribution in the n → ∞
limit. In Appendix D, we considered an example of this sort,
diverging natural exponential cutoffs, where the n-dependent
distributions Pn(k) = Cnk−γ e−k/nξ

do converge to the regu-
larly varying Pareto distribution. We saw there that even in this
case, the considered estimators converge to the true values of
γ , even though the key assumptions behind the proofs of their
convergence are violated. Proving the consistency of these and
other estimators for sequences of random numbers sampled
from sequences of distributions converging to regularly vary-
ing distributions, is thus yet another open problem.

Notwithstanding these open problems, the consistent esti-
mators considered in this paper represent the current state of
the art in the rigorous detection of power laws in empirical
data. Their implementation is available in Ref. [55], and their
application to a representative collection of degree sequences
in real-world networks confirms that scale-free networks are
not rare.
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FIG. 4. Schematic overview of the landscape of heavy-tailed
distributions, containing regularly varying distributions.

APPENDIX A: CLASSES OF DISTRIBUTIONS
WITH HEAVY TAILS

Here we briefly review the taxonomy of distributions with
heavy tails and provide the definition of the simplest and
most frequently seen regularly varying distributions. All the
distribution classes mentioned here are characterized by the
key property that their tails decay more slowly than expo-
nentially. The most general class is that of the heavy-tailed
distributions. We note that “fat-tailed” distributions are also
mentioned sometimes in the literature, but do not appear to
have any rigorous definition. We focus on distributions with
support on R+. Chapters 2 and 3 in Ref. [33] contain further
details.

1. Heavy-tailed distributions

A distribution with cumulative distribution function (CDF)
F (x) is said to be heavy-tailed [33, Theorem 2.6] if its
complementary CDF (CCDF) F (x) satisfies, for any t > 0,

lim sup
x→∞

etx F (x) = ∞.

In words, this definition literally says that the tail of the
distribution F (x) decays more slowly than exponentially.

The class of heavy-tailed distributions is quite vast and
general which makes it rather difficult to work with them
in their full generality. Therefore many different narrower
and more tractable subclasses of heavy-tailed distributions
have been defined and studied, see Fig. 4 for an overview of
the landscape of heavy-tailed distributions. For completeness,
we briefly discuss two important subclasses that encapsulate
regularly varying distributions, which are our main interest.

a. Long-tailed distributions. A distribution with CDF F (x)
is called long-tailed [33, Definition 2.21] if its CCDF satisfies,
for any fixed y > 0,

lim
x→∞

F (x + y)

F (x)
= 1, (A1)

meaning that any finite shift does not asymptotically affect the
tail of the distribution. This property is nice and useful as, for
instance, if X is a random variable which has a long-tailed
distribution, and Y a random variable that only takes values

on a finite set, then the tail of the distribution of X + Y is
asymptotically equivalent to that of X [33, Corollary 2.32].

Long-tailed distributions are heavy-tailed [33, Lemma
2.17], but not all heavy-tailed distributions are long-tailed.
A simple example of a heavy-tailed function which is not
long-tailed is

f (x) =
∞∑

k=1

2−k1{2(k−1) � x < 2k},

where 1 is the indicator function. Indeed, for any t > 0,

lim sup
x→∞

etx f (x) � lim sup
k→∞

et2k
2−k = ∞,

so that f is heavy-tailed, but

lim inf
x→∞

f (x + 1)

f (x)
� lim inf

k→∞
f (2k + 1)

f (2k )
= 1

2
�= 0,

so that f is not long-tailed.
b. Subexponential distributions. Let (F ∗ F )(x) be the con-

volution of CDF F (x) with itself. That is, F ∗ F is the CDF of
X + X ′, where X and X ′ are independent random variables
with CDF F . A distribution with CDF F (x) is said to be
subexponential [33, Definition 3.1] if

lim
x→∞

(F ∗ F )(x)

F (x)
= 2. (A2)

This definition means that if X and X ′ are independent sam-
ples from a subexponential distribution, then the CCDF of
X + X ′ is asymptotically twice as large as the CCDF of the
original distribution. This property implies, for instance, that
if the sum

∑n
i=1 Xi of n independent samples from a subex-

ponential distribution exceeds some large threshold, then it
is because just one Xi has exceeded this threshold. This is in
contrast to independent samples from a Poisson distribution,
for instance, as their sums exceeding a large threshold do
not contain, with high probability, any terms exceeding this
threshold.

The class of subexponential distributions is contained in
that of long-tailed distribution [33, Lemma 3.2], hence they
are heavy-tailed. In fact, it is strictly contained. However, un-
like the case for heavy-tailed versus long-tailed distributions,
examples of long-tailed distributions that are not subexponen-
tial are more involved, see Sec. 3.7 in Ref. [33].

Our main interest is in regularly varying distributions,
which form a subclass of subexponential distributions [33,
Theorem 3.29]. This hierarchy endows regularly varying dis-
tributions with all the nice theoretical properties of the subex-
ponential and long-tailed ones, but in contrast to these more
general classes, regularly varying distributions are equipped
with a concise and tractable representation that makes them
very convenient to work with in statistical inference settings.

2. Regularly varying distributions

A function f (x) is said to be regularly varying at infinity
with index α [32,33] if there exists a slowly varying function
�(x), such that

f (x) = �(x)x−α, (A3)
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where a slowly varying function �(x) is defined to be a
function satisfying, for any t > 0,

lim
x→∞

�(tx)

�(x)
= 1.

The simplest examples of slowly varying functions are func-
tions converging to constants or lna(bx) for any a ∈ R and
b > 0.

The full class of slowly varying functions is of course
much richer, and it is fully characterized by Karamata’s
representation theorem [31, Corollary 2.1] stating that

�(x) = c(x) exp

{∫ x

1
t−1ε(t ) dt

}
,

for some functions c, ε : R+ 	→ R+ satisfying

lim
x→∞ c(x) = c ∈ (0,∞), lim

x→∞ ε(x) = 0.

The theory of regular variations is a rich and well-developed
one, and for further details we refer to Ref. [32].

A distribution is defined to be regularly varying if its CCDF
F (x) is a regularly varying function. In Sec. II, we also define
a power-law distribution to be a regularly varying distribution.

We note that if the PDF of a distribution is regularly
varying, then so is its CCDF with another slowly varying
function �′(x),

P(x) = �(x)x−γ ⇒ F (x) = �′(x)x−α, where α = γ − 1,

according to Karamata’s theorem [31, Theorem 2.1] in the
case of continuous distributions, and to [87, Lemma 9.1] in
the case of discrete ones. The converse is not generally true,
and depends on the exact form of the slowly varying function
�′(x). A simple example of a distribution whose PDF is not
regularly varying but whose CCDF is, is given by the PDF
P(x) = c sin(x)2 x−3 with support x � 1, and c the normaliza-
tion constant. This PDF is not regularly varying since �(x) =
c sin2 x is not slowly varying. However, the CCDF of this
distribution F (x) = �′(x) x−2, where �′(x) = (c/2)(sin2 x +
x sin(2x) − 2x2Ci(2x)) and Ci(x) = − ∫ ∞

x cos(t )/t dt is the
cosine integral, is regularly varying because �′(x) is slowly
varying: it converges to the constant c/4 at x → ∞.

Another important property of regularly varying distribu-
tions is that if the sum X + Y of two random variables is
regularly varying, and limz→∞ FY (z)/F X+Y (z) = 0, then X is
regularly varying as well, and the tail exponents γ of X + Y
and X are the same [88, Lemma 3.12]. In application to
directed networks, this means for instance that if the total
degree distribution is regularly varying and either the in-
degree or out-degree distribution is not heavy-tailed, then the
other distribution must be regularly varying with the same
exponent as the total degree distribution.

As a subclass of heavy-tailed distributions, regularly vary-
ing distributions can model data with high variability, yet here
we stress again that they are far from being as general as
heavy-tailed distributions, which means, in particular, that if a
given data fails to be regularly varying, it does not necessarily
mean that it is not heavy-tailed or even subexponential. The
simplest example of a subexponential distribution which is
not regularly varying is the lognormal distribution. Yet on
the other hand, regularly varying distributions are a vast

generalization of pure power laws exclusively considered in
Refs. [19,20], i.e., of the Pareto distribution (10) if x is
continuous, or of the generalized zeta distribution (9) if x is
integer-valued.

3. Simplest examples of regularly varying distributions

To make the definition (A3) more concrete, here we give
the simplest examples of regularly varying distributions, both
continuous and integer-valued ones.

The simplest example is the continuous Pareto distribution
with scale x∗ and shape α, or exponent γ = α + 1:

PPareto(x) =
{

α(x∗)αx−γ if x � x∗,

0 else.

Here the slowly varying function is simply the constant
�Pareto(x) = α(x∗)α , which does not vary at all.

There are two simple ways to turn a continuous regularly
varying distribution into a integer-valued one, both of which
again belong to the class of regularly varying distributions. In
the first example, we simply take the integer k to be the floor
of the continuous value x: k = �x�. If x is Pareto-distributed,
then since P(k) = F Pareto(k − 1) − F Pareto(k), it follows that
for all k � �x∗�

PfloorP(k) =
(

k − 1

x∗

)−α

−
(

k

x∗

)−α

= �floorP(k)k−γ ,

where �floorP(k) converges to α(x∗)α as k → ∞. We note that
in this example the slowly varying function is not a constant.
Yet it approaches a constant asymptotically.

The second example is a mixed Poisson distribution [89]
with Pareto mixing. The easiest way to define a mixed Poisson
distribution is via the procedure to sample from it: as its name
suggests, first sample x from the Pareto distribution, and then
sample k from the Poisson distribution with mean x. The
resulting PDF of k is thus

PmPois(k) =
∫ ∞

x∗

xke−x

k!
PPareto(x) dx

= α(x∗)α
	(k+1−γ , x∗)

	(k+1)
= �mPois(k) k−γ , (A4)

�mPois(k) = α(x∗)αkγ 	(k + 1 − γ , x∗)

	(k + 1)
,

where 	(k, x) is the upper incomplete Gamma function. The
function �mPois(k) is slowly varying, and its k → ∞ limit is,
as in the previous example, α(x∗)α .

Mixed Poisson distributions appear often as exact degree
distributions in network models with hidden variables [90],
also known in mathematics as inhomogeneous random graphs
[91], or more generally, graphon-based W -random graphs
[92]. Both the expected value and the tail exponent of mixed
Poisson k are equal to those of Pareto x, versus floored Paretos
in which the expected value of k is 〈k〉 = ζ (〈x〉), where ζ is
the Riemann zeta function.
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APPENDIX B: CONSISTENT ESTIMATORS FOR TAIL
EXPONENTS OF REGULARLY VARYING DISTRIBUTIONS

Here we give the definitions of the three consistent estima-
tors of the tail of a regularly varying distribution that we use
to infer the tail exponents in synthetic and real-world degree
sequences. The two other consistent estimators that are also
included in our software package [55] are defined here as well.

Although we work only with regularly varying distribu-
tions, the used estimators are actually designed to estimate the
index of an extreme value distribution. In fact, the consistency
results are proven under the assumption that the distribution
belongs to the maximum domain of attraction of an extreme
value distribution. It turns out that any regularly varying
distribution satisfies this assumption. Therefore we start with a
brief review of extreme value distributions and their maximum
domains of attraction, and then explain how these concepts are
employed by the consistent estimators of tail exponents.

1. Extreme value distributions and their maximum
domains of attraction

Let x1, . . . , xn be an i.i.d. sequence sampled from some
distribution P(x), and denote by mn = max1�i�n xi the largest
value in the sequence. Extreme value theory is concerned
with the properties of the distribution of mn, whose CDF is
given by the order statistics F n(x). The typical question is
whether there is a nondegenerate limit law, i.e., a distribution
which is not a delta function, for μn = (mn − dn)/cn for some
appropriately chosen n-dependent constants cn > 0 and dn ∈
R. A degenerate limit for μn exists for any distribution as one
can always select dn = 0 and any cn growing with n faster
than the expected value of mn, in which case the distribution
of μn would approach the delta-function distribution centered
at zero. However, a nondegenerate limit exists [43, Theorem
3.1.3] if and only if the CDF F (x) of the distribution satisfies

lim
x→XF

1 − F (x)

F (x) − F (x−)
= 1 and F (XF −) = 1, (B1)

where XF = sup{x ; F (x) < 1} is the right endpoint of the dis-
tribution, which can be infinite, and F (x−) = limt→∞ F (x −
1/t ) is the left limit of F at x. In words, this requirement
states that F (x) must be sufficiently flat at its right end
and must not jump there. Many distributions frequently ap-
pearing in practice do satisfy this requirement, but not all.
Notable examples of distributions that do not satisfy it, are
the Poisson [43, Example 3.1.4] and geometric [43, Example
3.1.5] distributions. Indeed, for a distribution with support
on non-negative integers, the limit in (B1) is equivalent
to limk→∞ F (k)/F (k − 1) = 1. For the Poisson distribution
with mean λ, we have

F (k)

F (k − 1)
� 1 −

(
1 + λ

k − λ

)−1

,

which tends to 0 as k → ∞, while for the geometric distri-
bution with success probability p, F (k)/F (k − 1) → 1 − p,
violating (B1) in both cases.

If a distribution P(x) does satisfy (B1), so that a nonde-
generate limit distribution of μn = (mn − dn)/cn does exist,
this latter distribution P (μ) is called an extreme value dis-
tribution [93,94]. An important result [69] (see also Ref. [93,

Proposition 0.3]) states that extreme value distributions are pa-
rameterized by an index parameter ξ ∈ R, and that the class of
extreme value distributions consists of just three subclasses—
Fréchet, Gumbel, and Weibull distributions—corresponding,
respectively, to ξ > 0, ξ = 0, and ξ < 0. The CDFs F (μ) of
these three distributions can be grouped into the CDF of the
generalized extreme value distribution

F (λ) = e−λ, where

λ =
{

(1 + ξν)−1/ξ , if ξ �= 0,

e−ν, otherwise,
where (B2)

ν = μ − l

s
,

where l ∈ R and s > 0 are known as, respectively, the location
and scale parameters. The supports of the distributions are
ν � −1/ξ for ξ > 0, ν � −1/ξ for ξ < 0, and ν ∈ R for
ξ = 0.

A distribution P(x) is said to belong to the maximum
domain of attraction (MDA) of an extreme value distribution
P (μ) if there exist n sequences of constants cn > 0 and dn ∈
R such that the distribution of μn = (mn − dn)/cn converges
to P (μ). The crucially important fact, originally proven in
[70], is that the regularly varying distributions are exactly all
the distributions comprising the MDA of the Fréchet distribu-
tion, see also Refs. [93, Proposition 1.11] and [94, Theorem
1.4.20], so that any regularly varying distribution with PDF
and CCDF tail exponents γ and α belongs to the MDA of a
Fréchet distribution with index

ξ = 1

α
= 1

γ − 1
. (B3)

The sequences dn and cn in this regularly varying/Fréchet
case are [93, Proposition 1.11]

dn = 0, cn = F−1

(
1 − 1

n

)
,

where F−1 is the inverse CDF of the distribution P(x), while
the location and scale parameters of the Fréchet distribution
in (B2) are

l = 1, s = ξ,

so that the distribution of the largest values mn among n
i.i.d. samples from any regularly varying distribution has the
following limit upon rescaling by cn:

lim
n→∞ F n(cnμ) = F (μ) = e−μ−1/ξ

(B4)

with support μ � 0.
If the distribution P(x) is Pareto, for example, then

cn = F−1

(
1 − 1

n

)
= x∗nξ , (B5)

related to the known observations that the expected maximum
degree among n samples from a power-law networks with
exponent γ is proportional to n1/(γ−1) [81].

We note that the expressions above specify not only the
expected values but also the full limit distributions of such
maxima. We also note that the mean of the limit Fréchet dis-
tribution F (μ) = e−μ−1/ξ

is 〈μ〉 = 	(1 − ξ ) if ξ < 1 (γ > 2),
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and that this mean is infinite if ξ � 1 (γ � 2), so that if γ > 2
and n is large, one can approximate the expected value of mn

in Pareto by

〈mn〉 ≈ 〈μ〉cn = 	

(
γ − 2

γ − 1

)
x∗n1/(γ−1). (B6)

To complete the picture of the classification of distributions
based on their MDAs, the MDA of the Weibull distribution
consists of all distributions with an upper-bounded support,
XF < ∞, and CCDFs satisfying F (XF − 1/t ) = �(t )t1/ξ for
t → ∞, some slowly varying function �(t ), and ξ < 0, which
is the same ξ as in (B2) [43, Theorem 3.3.12]. This re-
quirement says that the CCDF approaches its right end as a
regularly varying function. Examples are the uniform or beta
distributions on [0,1].

By exclusion, all other distributions satisfying (B1) are in
the MDA of the Gumbel distribution. However, there are more
insightful characterizations of the Gumbel MDA (roughly,
it consists of all von Mises functions and tail-equivalent
distributions) [43, Theorems 3.3.26-3.3.27]. Examples are the
normal [43, Example 3.3.29] and exponential [43, Example
3.3.19] distributions, which are not heavy-tailed, but also
heavy-tailed distributions that are not regularly varying—
the subexponential lognormal distribution, for example [43,
Example 3.3.31].

The key point, however, is that if a distribution is regularly
varying with tail exponent γ , then it is in the MDA of the
Fréchet distribution with index ξ = 1/(γ − 1) which all the
following estimators actually estimate.

2. Hill’s estimator

Hill’s estimator [57] was introduced to analyze the tail
behavior of a distribution without any assumptions about its
shape, other than that it belongs to the Fréchet MDA. Given
an i.i.d. sample xi, i = 1, . . . , n, and its order statistics x(1) �
x(2) � · · · � x(n), the estimator is defined by

ξ̂ Hill
κ,n = 1

κ

κ∑
i=1

ln

(
x(i)

x(κ+1)

)
(B7)

Theorems 4.1 and 4.2 in Ref. [31] prove that if κ/n → 0
and κ → ∞ as n → ∞, then this estimator is statistically
consistent, i.e., satisfies (12), for any distribution in the MDA
of the Fréchet distribution. In other words, the estimator is
statistically consistent for any regularly varying distribution
with any tail exponent γ > 1, or equivalently any index ξ > 0.

3. Moments estimator

The moments estimator [58] is a modification of Hill’s
estimator that is statistically consistent not only for distri-
butions from the MDA of the Fréchet distribution, but also
for distributions from the MDAs of the Gumbel or Weibull
distributions, i.e., for any ξ ∈ R. To define it, denote

ξ̂ Hill,2
κ,n = 1

κ

κ∑
i=1

(
ln

x(i)

x(κ+1)

)2

.

With this notation, the moments estimator is

ξ̂ Moment
κ,n = ξ̂ Hill

κ,n + 1 − 1

2

(
1 −

(̂
ξ Hill
κ,n

)2

ξ̂ Hill,2
κ,n

)−1

. (B8)

Consistency of ξ̂ Moment
κ,n is proven in Ref. [58, Theorem 2.1]. It

converges almost surely if κ/n → 0 and κ → ∞ as n → ∞,
and there exists a constant δ > 0 such that ln(n)δ/κ → 0.

4. Kernel estimator

Similar to the moments estimator, the Kernel estimator [59]
is consistently applicable to distributions with any ξ ∈ R. As
its name suggests, the Kernel estimator uses a kernel, which
is a function φ : [0, 1] → [0,∞) that can by chosen by the
user, and that must satisfy a set of conditions for the estimator
to be consistent [59]. The estimator also employs a parameter
λ > 1/2 to get rid of possible singularities. Finally, instead of
using an integer-valued κ to determine the range of the order
statistics to consider for ξ estimation, the estimator relies on
a continuous bandwidth parameter h > 0 for that purpose.
Thanks to this modification, as a function of h, the estimator
tends to be smoother compared to the other estimators.

Given the chosen kernel φ, denote φh(u) := φ(u/h)/h.
With this notation, the Kernel estimator is

ξ̂ Kernel
h,n = ξ̂

pos
h,n − 1 + q̂ (1)

h,n

q̂ (2)
h,n

, where

ξ̂
pos

h,n =
n−1∑
i=1

i

n
φh

(
i

n

)
ln

(
x(i)

x(i+1)

)
,

q̂ (1)
h,n =

n−1∑
i=1

(
i

n

)λ

φh

(
i

n

)
ln

(
x(i)

x(i+1)

)
,

q̂ (2)
h,n =

n−1∑
i=1

∂

∂u
[uλ+1φh(u)]u=i/n ln

(
x(i)

x(i+1)

)
.

The consistency of this estimator for n → ∞, h → 0, and
hn → ∞ is proven in Ref. [59].

For the experiments in this paper, which are also the default
settings in Ref. [55], we prepare a list of fractions of order
statistics h1, . . . , hs. The estimator is then evaluated at each h
value hi, i = 1, . . . , s. These fractions hi are logarithmically
spaced in the interval [1/n, 1], where n is the sequence length.
The number of different h values is set to s = [0.3n]. The
logarithmic binning is chosen to scan the tail of the degree
sequence more densely, while the choice of s guarantees
that the sample sizes used in the double bootstrap procedure
described in Appendix C 1 exceed s, so that kernel smoothing
is applied to both bootstrap samples as well. For λ, we use the
setting in Ref. [59] where λ = 0.6. In our software package
[55], the values of λ and s can be changed to any other values
λ > 1/2 and s > 0. We note that the estimator is proven to
be consistent for any choice of s, hi, and λ satisfying the
requirements above. Package [55] also implements the bi- and
triweight kernels from [59]

φ(1)(u) = 15
8 (1 − u2)2,

φ(2)(u) = 35
16 (1 − u2)3,
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where φ(1) is used for the tail estimation, and the combination
of φ(1) and φ(2) is used to find the optimal h∗ as described in
Appendix C 1. Once such an h∗ is found, the value of κ∗ is set
to �nh∗� in Ref. [55].

5. Smooth Hill estimator

Although Hill’s estimator is consistent, it, as a function
of the number of order statistics κ , can be highly irregular
for finite-size data samples. The plots of such functions are
even known as Hill horror plots, Sec. 4.4.2 in Ref. [31].
These horrors make it essentially impossible to examine these
plots in search of the stable regime of ξ̂ Hill

κ,n , i.e., the region
of κ’s where ξ̂ Hill

κ,n is approximately constant. The value that
the estimator yields in this constant regime is then one’s best
estimate of ξ , but if these plots are highly irregular, then this
estimation procedure is unavoidably subjective. Even though
no results presented in this paper rely on such subjective
manipulations—instead we rely on the statistically consis-
tent double bootstrap method to find κ∗, Appendix C 1—in
practice one may wish to investigate such plots to get deeper
insight into the data at hand. To this end, one usually uses
either the smoothed version of Hill’s estimator or Pickands
estimator, which are both included in Ref. [55].

The smooth Hill estimator [95] is defined for any integer
r � 2, which is a parameter, by

ξ̂ smooH
κ,n = 1

(r − 1)κ

rκ∑
j=κ+1

ξ̂ Hill
j,n , (B9)

which is just an average of Hill’s estimators over the range
[κ + 1, rκ]. This estimator is also statistically consistent, for
any r, as proven in Ref. [95]. The practical advantage of this
smooth estimator compared to the original Hill’s estimator is
that by averaging the latter, the former suppresses its erratic
behavior, making it easier to identify its stable region.

6. Pickands estimator

The Pickands estimator [72] is defined by

ξ̂ Pickands
κ,n = 1

ln 2
ln

(
x(κ ) − x(2κ )

x(2κ ) − x(4κ )

)
. (B10)

Consistency of the estimator is proven also in Ref. [72].
Similarly to the moments and kernel estimators, it is con-
sistently applicable to distributions in the MDAs of extreme
value distributions with any ξ ∈ R. In practice this estimator
provides a simple way to check whether the assumption that
the data come from a regularly varying distribution makes
sense. Specifically, if the function ξ̂ Pickands

κ,n of κ is all negative,
then this assumption can hardly be true.

In contrast to the other estimators, the Pickands estimator
has an issue dealing with integer-valued data containing ties.
For instance, if there are many data points with the same value
(many nodes with the same degree), it can happen that for
some κ , x(2κ ) = x(4κ ), in which case ξ̂ Pickands

κ,n is undefined. This
drawback can however be remedied, in a provably consistent
manner, by adding uniform noise to the integer-valued data,
as explained in Appendix C 2.

It is known that in practice the Pickands estimator is
quite volatile as a function of the number of order statistics
κ , and that it has large asymptotic variance [73] and poor
efficiency [59]. Attempts to cure this poor behavior resulted
in a number of different versions of generalized Pickands
estimators [73,96–100], all of them using linear combinations
of logarithmic spacings of the order statistics κ(1), . . . , κ(n).
Yet, to the best of our knowledge, the consistency of the
double bootstrap method has been proven [101] for only one
version, the one defined in Ref. [96], so that we implemented
only this version in Ref. [55].

APPENDIX C: ESTIMATING THE TAIL EXPONENT
OF AN EMPIRICAL DEGREE SEQUENCE

Here we discuss the technical details concerning the appli-
cation of the consistent estimators discussed in the previous
section to empirical degree sequences coming from either
synthetic or real-world networks.

1. Finding the optimal number of order statistics

All the estimators in Appendix B depend on the number of
order statistics κ . That is, all the estimators operate only on
the κ largest-value data samples (degrees). The consistency
of all the estimators is proven only in the limit of both κ

and n, the number of samples (nodes), tending to infinity.
Therefore, when applied to a finite empirical degree sequence,
these estimators have the value of κ as a free parameter. The
main focus of this section is the double bootstrap method
that algorithmically identifies an optimal κ value κ∗ in a
statistically consistent manner, meaning that the value of ξ̂κ∗,n
estimated by these estimators with κ = κ∗ provably converges
to the true value of ξ as n → ∞.

The identification of an optimal value κ∗ has been an
active research topic in extreme value statistics for several
decades [101,102]. The existing methods for choosing κ∗ can
be roughly split into two classes: (1) heuristic approaches that
propose to study tail index estimates plotted as functions of κ

and (2) theoretical approaches based on the minimization of
the asymptotic mean squared error (AMSE) of the estimator.

The heuristic methods mainly consider various ways of
identifying regions of κ where estimators show stable behav-
ior, i.e., where the estimator plot is relatively flat as a function
of κ . Examples of such approaches are the automated eyeball
method [95], or picking a fixed small percentage (typically
5% or 10%) of the largest-value data samples. Such methods,
involving (semi-)subjective ad hoc choices, may not be robust.

The main idea behind the theoretical methods is as fol-
lows. Suppose x1, . . . , xn is an i.i.d. sequence sampled from
a distribution that belongs to the domain of attraction of the
generalized extreme value distribution (B2) with a given ξ .
Denote by ξ̂κ,n the estimated value of ξ returned by a given
estimator applied to the κ largest elements in this sequence.
Observe that since the sequence is random, ξ̂κ,n is a random
variable. Define the asymptotic mean squared error between
the true and estimated ξ ’s as

AMSE(n, κ ) = E[(̂ξκ,n − ξ )2]. (C1)
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The main goal is to find the optimal κ value κ∗ that minimizes
this error:

κ∗ = arg min
κ

AMSE(n, κ ). (C2)

To estimate κ∗ in this paper, we use the AMSE-based
double bootstrap method developed in Refs. [59,101–103]
because of its proved consistency, stability, and applicability
to the considered estimators. The method finds a consistent
optimal value κ∗ for a given consistent estimator by em-
ploying not only this estimator, but also another consistent
estimator. The two estimators are applied to two collections
of bootstrap samples from the original data, estimating ξ at all
possible values of κ in these collections, and the value κ∗ is
then determined as the value of κ at which the two estimators
agree most in their estimation of ξ according to the empirical
AMSE evaluated on the bootstrap collections.

Specifically, the double bootstrap method operates using
the following steps with two parameters: r denotes the number
of bootstrap samples, and t ∈ (0, 1) defines the first and sec-
ond bootstrap sample sizes as n1 = √

tn and n2 = tn, where
n is the original sequence length. In all the experiments in
this paper, and in the software package [55], these parameters
are set to r = 500 and t = 1/2 by default, so that the size of
the second bootstrap sample is n2 = n/2. (1) Sample r > 1
bootstrap samples of size n1 = [

√
tn] from the original data.

(2) Using the two consistent estimators, estimate ξ
(1)
κ1, j and

ξ
(2)
κ1, j for each value of κ1 = 1, . . . , n1 in each bootstrap sample

j = 1, . . . , r. (3) Find κ∗
1 that minimizes the empirical AMSE

between the two estimates with respect to the r bootstrap
samples, i.e.,

κ∗
1 = arg min

κ1

1

r

r∑
j=1

(
ξ

(1)
κ1, j − ξ

(2)
κ1, j

)2
.

(4) Repeat the same procedure for a smaller bootstrap
sample size n2 = [tn] and find κ∗

2 in the same manner. (5) The
optimal value of κ for the original data is given by

κ∗ = A(κ∗
1 , n1, n)

(κ∗
1 )2

κ∗
2

, (C3)

where A(κ∗
1 , n1, n) is a prefactor that depends on κ∗

1 , n1, n, and
whose exact form depends on the two estimators used.

Following the derivations in Refs. [59,101–103], we use
the following combinations of consistent estimators for the
double bootstrap procedure applied to the Hill, kernel, and
moments estimators: (1) the first (Hill) and second moment es-
timators for the Hill double bootstrap; (2) the second and third
moment estimators for the moments double bootstrap; and
(3) the biweight and triweight kernel estimators for the kernel
double bootstrap. We note that in principle any combination
of consistent estimators can be used in the double bootstrap
method, but proofs of the consistency of such combinations
must be carried out for each combination, so that we use
the combinations that are already proven to be consistent and
optimal.

We also note that these proofs are based on an addi-
tional assumption that the regularly varying distribution of
the samples satisfies the second-order condition [104], [105,
Definition 2.3.1]. This condition is often invoked to prove

asymptotic normality of estimators [76,106], but it is known
to be either difficult or impossible to check in real-world
data [107]. To define it for a given distribution with CDF
F (x), let U (x) = F−1(1 − 1/x) be the inverse of the CCDF
1 − F (x). If the distribution is in an MDA of some extreme
value distribution, then it is known [105, Theorem 1.1.6] that
there exists a positive function a(x) such that, for any t > 0,

lim
x→∞

U (tx) − U (x)

a(x)
= bξ (t ) :=

{
t ξ −1

ξ
, if ξ �= 0,

ln t, otherwise.

The second-order condition concerns the scaling of (U (tx) −
U (x))/a(x) − bξ (t ) as x → ∞. The distribution is said to
satisfy the second-order condition if there exist functions A(x)
with limx→∞ A(x) = 0 and a nondegenerate H (t ) �= cbξ (t ) for
any c �= 0, such that for any t > 0

lim
x→∞

(
U (tx) − U (x)

a(x)
− t ξ − 1

ξ

)/
A(x) = H (t ). (C4)

A simple example of a regularly varying CDF that satisfies the
second-order condition is

F (x) = 1 − x−α − dx−δ,

where d > 0, δ > α > 0, and x � x∗, where x∗ is the root of
F (x) = 0. The simplest example of a distribution that does
not satisfy the second-order condition is a Pareto distribution.
To see this, note that in case of Pareto U (x) = x∗x1/α , so that
a(x) = α−1x∗x1/α , and

U (tx) − U (x)

a(x)
= α(t1/α − 1) = t ξ − 1

ξ
.

Hence the left-hand side in (C4) is always zero, meaning that
no nondegenerate function H (t ) exists.

Since the proofs of consistency of the double bootstrap
method rely on the second-order condition, nothing can be
said regarding the convergence and consistency of the consid-
ered estimators equipped with the double bootstrap method,
if they are applied to sequences sampled from distributions
that do not satisfy the second-order condition. However, in
our experiments, we find that even in these cases the double
bootstrap procedure performs well, and the values of ξ̂κ∗,n
quickly converge to the true ξ ’s as n → ∞ in most such cases,
Appendix D 1.

Further technical details on the double bootstrap procedure
for the Hill estimator can be found in Refs. [102,103], for the
moments estimator in Ref. [101], and for the kernel estimator
in Ref. [59], where the consistency of double bootstrapping
applied to these estimators is also proven.

2. Working with integer data

A common issue with all the known consistent estimators
is their instability, i.e., erratic behavior of ξ̂κ,n’s as functions
of sampled sequences and the number of order statistics κ ,
on integer-valued sequences [71,108], which is the case with
degree sequences. For instance, just rounding samples in
sequences sampled from a continuous regularly varying distri-
bution makes the estimators unstable [71], even though such
rounded sequences are still regularly varying with the same
exponent, Sec. A 3. In other words, the estimators remain
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FIG. 5. The relative root mean squared error (RRMSE) (D7) of
the three estimators for the i.i.d. sequences of random integers k of
varying length n sampled from the zeta distributions with different
values of exponent γ , Appendix D 1. The integers are fed to the
estimators as is, without adding the uniform symmetric noise. The
RRMSE is larger than with noise, cf. Appendix D 1.

consistent on integer-valued regularly varying distributions,
but they tend to be unstable and exhibit slow convergence in
such cases.

To resolve this issue we add uniform symmetric noise to
the integer-valued sequences xi, i = 1, . . . , n, that is, to all
sequences considered in this paper. Specifically, instead of
applying the estimators to xi, we apply them to yi = xi + ui,
where ui’s are i.i.d. samples from the uniform distribution
on [−1/2, 1/2]. This does not affect the tail exponent: if x
is a regularly varying random variable with tail index ξ > 0,
and u is a uniform random variable on [−1/2 × 10−p, 1/2 ×
10−p], where p � 0, then x + u is also regularly varying
with the same exponent [108, Theorem 5.3.1]. Adding such
noise greatly improves the stability and convergence of the
estimators, see Fig. 5 and compare it with Appendix D 1.

3. Example of the estimator operation using the double
bootstrap method

To emphasize the importance of using as many consistent
estimators as possible in application to degree sequences in
real-world networks, here we consider an example of how
the estimators work in conjunction with the double boot-
strap method, showing that different estimators may explore

different parts of the empirical degree distribution for any
finite sequence, thus explaining why they may return different
estimations on such sequences, especially if the slowly vary-
ing function �(k) is not trivial.

Figure 6 shows that the Hill estimator yields a higher
estimation of α = 1/ξ than the other two estimators applied to
the in-degree sequence of the Libimseti network. This happens
because the value of the optimal number of order statistics
κ∗ returned by Hill’s double bootstrap is substantially lower
than for the other two estimators, so that the Hill estimator
considers a smaller part of the distribution tail. The value of
Hill’s κ∗ is smaller because it is based on finding the minimum
of the AMSE as a function of the number of order statistics
κ , and as we can see in the figure these minima occur at
quite different values of κ for the Hill versus the two other
estimators.

This effect is actually expected in small-sized sequences
sampled from regularly varying distributions with nontrivial
slowly varying functions �(k). Figure 7 shows the details
behind estimator convergence in two different cases, with a
“nice” and “not so nice” slowly varying function �(k). The
figure illustrates the point that the farther the �(k) is from
a constant, the larger the network size must be for all the
estimators to yield similar values of κ∗ and ξ̂ . The estimators
are guaranteed to converge to the true value of ξ for any
�(k), but only in the infinite sample limit n → ∞, and, to the
best of our knowledge, there are no results (for the bounds)
on the speed of this convergence, partly because this speed
may depend in an unknown way on some properties of �(k).
That is why using as many consistent estimators as possible
in application to real-world data is the best strategy one can
follow.

APPENDIX D: EVALUATION ON SYNTHETIC
SEQUENCES AND NETWORK MODELS

Here we show that the estimators based on extreme
value (EV) theory—the Hill, moments, and kernel estimators
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FIG. 6. An example of the estimator operation on the in-degree sequence of the Libimseti network, an online dating social network.
(a) follows the same style and notations as in Fig. 2. (b) shows the estimated values ξ̂ (κ ) of the extreme value index ξ as a function of
the number of order statistics κ . The filled symbols correspond to ξ̂ (κ∗), where κ∗ is the optimal value of κ found by the double bootstrap
algorithm. (c) shows the averaged asymptotic mean squared error (AMSE), defined in (C1), as a function of the fraction f = κ/n of the number
of order statistics used in the two bootstrap samples of sizes [n/

√
2] and [n/2], corresponding to the “1st boot.” and “2nd boot.” curves in the

figure. Their minima, given by (C2), are shown by the triangle and cross markers. The values of the number of order statistics κ corresponding
to these minima—κ∗

1 and κ∗
2 for the first and second bootstrap samples, respectively—are then used to identify the optimal value κ∗ via (C3).
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FIG. 7. An example of convergence of the estimators on the i.i.d. sequences of two different sizes, “small” ns = 1000 and “large” nl =
5, 000, sampled from two regularly varying distributions with the same tail exponent γ = 3, but with different slowly varying functions �(k):
the Pareto-mixed Poisson distribution and double power law, see Sec. D 1 for details. The parameters for the Pareto-mixed Poisson are γ = 3
and x0 = 1, while for the double power law, they are: γ = 3, γ0 = 1.5, c = 500, r = 0.1, and x0 = 1. The first, second, and third rows follow
the same style and notations as panels (a,b,c) in Fig. 6, respectively. One can see that while all the estimators yield similar estimates for the
sequences sampled from the Pareto-mixed Poisson distribution for both small and large sequence sizes, the estimates of different estimators
for the small sequence size ns are far apart in the case of the double power law distribution with “uglier” �(k). In the latter case, the estimators
start to agree on their estimates only for the large sequence size nl . One can also see that the main reason for this effect is that the AMSE
minima occur at far-apart locations if the sample size is small and �(k) is not so “nice.”

equipped with the double bootstrap procedure, the code in
Ref. [55]—yield the expected results when applied to syn-
thetic degree sequences and to network models. We also
compare the estimations that these estimators produce with
the ones by the PLFIT [19], which is based on a combination
of techniques inspired by maximum-likelihood estimation
(MLE) and Kolmogorov-Smirnov (KS) distance minimiza-
tion. We use the plfit.m code version 1.0.11 by Aaron
Clauset, which is widely used and publicly available at [109].
As stated in the code comments of the fit.py script in
Ref. [110]—the PYTHON implementation of the PLFIT used
in Ref. [20]—this implementation is based on the original

MATLAB code [109], so that the results obtained using any of
these two implementations [109,110] should be identical.

1. Synthetic sequences

Here we sample different numbers n of positive integers
k ∈ N+ from the distributions listed below, so that the sam-
pled sequence length is always n. The set of chosen distribu-
tions is intended to be diverse and representative of distribu-
tions claimed to be observed in real-world networks. In cases
where the distribution has support on non-negative integers
k ∈ N, we discard all the zero entries from the sequence since
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they would correspond to nodes of degree k = 0 in networks.
The parameter γ in all the distributions below can be any real
number greater than 1.

Zeta distribution. The distribution PDF (or PMF, to be
precise) is

P(k) = k−γ

ζ (γ )
, k ∈ N+, (D1)

where ζ (γ ) is the Riemann zeta function. This is the “clean”
integer-valued power-law distribution with constant slowly
varying function �(k) = 1/ζ (γ ).

Pareto-mixed Poisson distribution. For each sample, we
first sample a real number x from the Pareto distribution, and
then sample an integer k from the Poisson distribution with
mean x:

P(k|x) = xke−x

k!
, k ∈ N, (D2)

P(x) = αxα
0 x−γ , x � x0 > 0, (D3)

where α = γ − 1, and we set x0 = 1 in the experiments. The
Pareto-mixed Poisson distribution is ubiquitous in network
models with hidden variables [90], also known in mathematics
as inhomogeneous random graphs [91], and more generally,
as graphon-based W -random graphs [92]. This is one of the
simplest regularly varying distribution with nonconstant �(k)
that converges to a constant, �(k) → αxα

0 , Appendix A 3.
Pareto distribution with natural exponential cutoff. We

sample a random number x from the Pareto distribution with
the exponential cutoff at nξ ,

Pn(x) = xα
0

Eγ (x0/nξ )
x−γ e−x/nξ

, x � x0 > 0, (D4)

where Eγ is the exponential integral function, ξ = 1/α, and
α = γ − 1. We then round x to the closest integer k = [x].
We set x0 = 1. The value nξ of where the exponential decay
becomes prominent corresponds to the natural cutoff [81],
which is proportional to the exact expected maximum value
(B6) among n i.i.d. samples from the Pareto distribution with
exponent γ . This is an example of not a fixed distribution,
but of an n-dependent family of distributions. For any fixed
n, the distribution is not regularly varying since it has an
exponential tail instead of a power-law tail. Yet as n increases,
the location nξ of the “soft beginning” of the exponential tail
diverges, so that in the n → ∞ limit the distributions in this
family converge to the pure Pareto distribution with exponent
γ , which is regularly varying.

Pareto distribution with a constant exponential cutoff. The
sampling is the same as in the previous example, except that
the location of the exponential cutoff does not depend on n,
and is fixed to be 10 instead of nξ . This is an example of a
distribution which is not regularly varying.

Double power law. We sample a random number x from
the double power-law distribution with the PDF

P(x) = βx−γ0

(
1 +

(x

c

)α0/r
)−r

, x � x0 > 0, (D5)

α0 = γ − γ0, γ � γ0 > 1, (D6)

where c is the location of the switch between the two power
laws with exponents γ0 for x � c and γ for x � c, r is the

parameter that controls how smooth this switch is, and β is
the normalizing constant given by

β = αxα
0

cα0 2F1(r, rα/α0, 1 + rα/α0, −(c/x0)α0/r )
,

where α = γ − 1 and 2F1 is the Gauss hypergeometric func-
tion. As in all other examples, given this random x, we round
it to integer k = [x]. In our experiments, we set γ0 = 1.5,
c = 500, r = 0.1, and x0 = 1. This distribution is regularly
varying with exponent γ , which we vary in the experiments.
Yet, as discussed in Sec. V, it may be difficult for the es-
timators to see that it is indeed γ and not γ0 if n is small.
Distributions of this form characterize the degree distribution
in the causal set of the universe [86], and they also frequently
appear in astrophysics [111].

To assess the accuracy of the estimators, we sample s =
100 random sequences for each combination of the distribu-
tions listed above, the values of γ , and the numbers of samples
n in a sequence. On each sampled sequence j, j = 1, . . . , s,
each estimator returns an estimated value ξ̂ j of ξ . Given a
collection of these ξ̂ j’s, we compute the relative root mean
squared error (RRMSE), a standard measure used to assess
the accuracy of the tail index estimation [112,113], defined as

RRMSE =
√

1
s

∑s
j=1(̂ξ j − ξ )2

ξ
, (D7)

and show the results in Fig. 8 both for the extreme value (EV)
estimators (Hill, kernel, moments), and for the MLE-based
PLFIT [19].

We observe that all the results are as expected. On se-
quences sampled from distributions that are regularly varying,
all the EV estimators converge. They also converge in the
case where the distributions are not regularly varying for any
finite sample size n, but where they converge to a regularly
varying distribution at n → ∞—the Pareto distribution with
the diverging natural cutoff. No estimator converges in the
case of a fixed distribution which is not regularly varying—the
Pareto distribution with a fixed exponential cutoff.

Also as expected, the PLFIT yields a lower estimation error
in case of the zeta distribution. This is because the zeta
distribution satisfies PLFIT’s main assumption of a clean power
law with constant �(k), but does not satisfy the second-order
condition, thus affecting the optimality of the double boot-
strap, Appendix C 1. In other cases with reasonably “nice”
regularly varying distributions with �(k) quickly converging
to a constant, the accuracy and convergence rates of the EV
and PLFIT estimators are comparable. However, as soon as the
regularly varying distribution is not really nice—the double
power law case with nonconstant �(k) over a wide range
of degrees k—the PLFIT estimations are completely off, as
opposed to the EV estimators. This is also expected for the
reasons discussed in Appendix D 3.

2. Network models

The main motivation to test the performance of the EV es-
timators not only on synthetic sequences of numbers sampled
from various distributions, but also on degree sequences in
network models, is to see whether and how their performance
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FIG. 8. The relative root mean squared error (RRMSE) (D7) of the three EV-based estimators and the MLE-based PLFIT algorithm [19]
applied to i.i.d. sequences of random numbers sampled from the distributions described in Sec. D 1. The columns correspond to these
distributions, while the rows are for the three values of γ —2.1, 2.5, and 3.0—used in these distributions to sample the number sequences.
The sequence length varies in the range n ∈ [103, 106] everywhere.

is affected by possible non-i.i.d.-ness of the latter sequences.
To this end, we consider three paradigmatic network models in
which the degree distributions have been proven to converge
to a regularly varying distribution, and in which the degree
sequences are not i.i.d: (1) the erased configuration model
(ECM) [114], (2) preferential attachment (PA) [115], and
(3) hyperbolic random graphs (HRG) [116].

Erased configuration model. We sample varying-length
i.i.d. sequences of random integers from the zeta distributions
with different values of the exponent, and then either accept or
reject the sequence based on whether the sum of its elements
is even or odd. Each number in the sequence is the number of
stubs attached to a node in a network to be formed. We match
pairs of stubs uniformly at random, and then delete loops and
multiedges. For any finite sample size, the degree sequence in
the resulting network is neither zeta-distributed nor i.i.d., but
it converges to the original zeta distribution as the sample size
tends to infinity [114, Theorem 2.1].

Preferential attachment. We use the redirection implemen-
tation in Ref. [117]: starting with the first node of degree
0, nodes arrive one by one, and each new node picks an
already existing node uniformly at random, and then connects
either to it with probability 1 − r, or to its random neighbor
with probability r. The only exception is the second node
that connects to the first node with probability 1. We use
this redirection probability to control the exponent of the

power-law tail of the degree distribution, because this distribu-
tion converges to the following regularly varying distribution
with exponent γ = 1 + 1/r [117]:

P(k) = (γ − 1)
	(2γ − 3)

	(γ − 2)

	(k + γ − 3)

	(k + 2γ − 3)
. (D8)

Hyperbolic random graphs. The degree distribution in
random geometric graphs in hyperbolic spaces converges to
regularly varying Pareto-mixed Poisson distributions (A4),
and, as opposed to the previous two models, these graphs
also have nonvanishing average local clustering coefficients
[116]. We use the software package developed in [118] and
available at [119] to generate these graphs. We fix the average
degree parameter to k̄ = 10, the temperature parameter to
T = 0 corresponding to strongest clustering, and vary the γ

parameter.
For each model, we vary the γ over the three values γ =

2.1, 2.5, and 3.0, and vary the network size n from 103 to 106.
For each combination of the model, γ , and n, we generate 100
random networks, read off their degree sequences, and feed
them to all the considered estimators. We then compute the
RRMSE (D7), and show the results in Fig. 9.

We observe that in all the considered cases, all the EV
estimators converge, even though the degree sequences are
not i.i.d. The slow convergence in some cases is explained
by the slow convergence of the degree distributions in these
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FIG. 9. The relative root mean squared error (RRMSE) (D7) of
the three EV-based estimators and the MLE-based PLFIT algorithm
[19] applied to the network models described in Appendix D 2.
The first, second, and third columns show the results for the erased
configuration model, preferential attachment, and hyperbolic random
graphs, respectively. The first, second, and third rows show the
results for γ = 2.1, 2.5, and 3.0, respectively. The network size
varies in the range n ∈ [103, 106] everywhere.

finite-sized networks to their limits. This is the case, for
example, in the HRGs with γ = 2.1: the degree distribution
in HRGs converges to its Pareto-mixed Poisson limit the more
slowly, the closer the γ is to 2 [116].

The most notable results are for PA. Here the EV estimators
clearly outperform the PLFIT if γ = 2.1 or 3, while all the
estimators are on par if γ = 2.5 for the reasons that we discuss
in the next section.

3. Anatomy of the PLFIT

To better understand the slow convergence of the PLFIT

in the double power law and preferential attachment cases
in the previous two sections, it is instructive to recall first
how exactly the PLFIT algorithm works. The algorithm is
a variation of estimators in [120,121] based on maximum-
likelihood estimation (MLE). The starting point of the PLFIT

operations is a sequence of possible γ values γs to experiment
with. By default, this sequence is linearly spaced in the region
[1.5,3.5] with step size 0.01 in the code [109] released with
Ref. [19]. These default settings have to be manually changed
for the code to be applicable to degree sequences coming from
distributions with γ > 3.5. The default values of γs in the code
[110] used in Ref. [20] are linearly spaced in [1.01,6.50] with
step size 0.01.

Given the sequence γs and a degree sequence of length
n supplied as input data, the PLFIT algorithm first finds the
sequence of unique degree values kt appearing in the degree

sequence. For each value kt , the algorithm computes the
vector of logarithmic-likelihood values

Lts = −nt ln ζ (γs, kt ) − γs

n∑
i=1

1{ki � kt } ln ki, (D9)

where nt is the number of nodes with degrees ki � kt , 1 the
indicator function, and

ζ (γs, kt ) =
∞∑

k=kt

k−γs (D10)

is the Hurwitz zeta function. This likelihood is based on the
assumption that the degrees that are greater than or equal to
kt form a sequence of i.i.d. samples from a pure power law
with exponent γs, i.e., from the generalized zeta distribution
(9) with parameters γs, kmin = kt , and the normalization con-
stant c = 1/ζ (γs, kt ). Among all the considered values γs, the
algorithm then identifies the one, γ ∗

t , that corresponds to the
maximum value of Lts for the given kt . This γ ∗

t serves as
an approximation of the MLE of γ for the degrees that are
greater than or equal to kt . For the same kt , the algorithm
then computes the Kolmogorov-Smirnov (KS) distance DKS

t
between the generalized zeta distribution with parameters γ ∗

t
and kmin = kt , and the empirical CDF of degrees ki � kt .
This procedure is then repeated for each kt observed in the
sequence, and the estimates γ̂ and k̂min that the algorithm
eventually returns are those that correspond to the minimum
DKS

t∗ of DKS
t across all possible values of kt , i.e., k̂min = kt∗ and

γ̂ = γ ∗
t∗ .

The algorithm is thus a mixture of two optimization strate-
gies: one is based on likelihood maximization, while the
other one deals with the KS distance minimization. We note
that since the algorithm does not implement MLE exactly, it
trivially cannot be consistent if the true value of γ does not
belong to the finite set of γs values, because it can never report
any γ estimate γ̂ that does not belong to the finite set of γs’s.
More importantly, even though the correct implementation of
MLE with a fixed and known kmin had long been proven to be
consistent [19], the consistency of MLE in combination with
KS-distance minimization has been proven only very recently
in Ref. [24], and only for pure power laws, i.e., for the Pareto
or generalized zeta distributions. If the distribution is not a
pure power law but a general regularly varying distribution,
the consistency of the algorithm is a question that has not
been rigorously explored at all, except the conjectures in
[24] that this MLE-KS combination appears to be consis-
tent for regularly varying distributions satisfying the second-
order condition, and for regularly varying distributions whose
slowly varying functions �(k) converge to constants, and that
the algorithm is likely not to be consistent for all other classes
of regularly varying distributions. That is, in all these other
cases the algorithm may be consistent, or it may not be.

The problem is that there is the following logical inconsis-
tency in the algorithm: it operates under the assumption that
above a certain kmin, the distribution of degrees k is a pure
power law, but then it recognizes that the distribution may be
not a pure power law, and tries to account for that by finding
a reasonable value of kmin such that above this value the
assumption would hold “approximately.” If the distribution

033034-25



IVAN VOITALOV et al. PHYSICAL REVIEW RESEARCH 1, 033034 (2019)

FIG. 10. Anatomy of Kolmogorov-Smirnov (KS) distance mini-
mization on a sequence of random numbers sampled from the double
power-law distribution with the parameters as in Appendix D 1, tail
exponent γ = 3 and size n = 1000. Applied to this degree sequence,
the PLFIT algorithm estimates kplfit

min = 2 and γ̂ (kplfit
min ) = 1.57, the MLE

estimate of γ with kmin = 2. (a) shows the empirical and theoretical
(generalized zeta) cumulative distribution functions (CDFs) with
these parameters. The KS distance (0.032) is marked. (b) shows
the same CDFs but for different k∗

min = 470 and γ̂ (k∗
min ) = 3.01, the

MLE estimate of γ with kmin = 470. This kmin is optimal in this
sequence, in the sense that the MLE value of γ with this kmin is
closest to the true γ across all other degree values present in the se-
quence to which kmin can be set. Yet the marked KS distance (0.192),
achieved at k̃ = 506, is greater than the KS distance achieved at a
different location in (a), where the L1 distance (0.027) between the
two CDFs at k̃ is also shown. (c) shows a collection of numerical
errors produced by the PLFIT if modified to compute the MLE values
of γ for large kmin’s. The errors are due to the numerically incorrect
computations of the Hurwitz zeta function in the plfit.m code
[109].

was a pure power law, then the search for this kmin would not
be necessary, since the value of kmin would be equal with high
probability to the smallest value observed in the sequence.
However, if the distribution is not a pure power law, then
such a value of kmin simply does not exist, since for any kmin

the distribution of k > kmin is not a pure power law. Yet the
distribution of such k’s may converge to a pure power law, but
only if the kmin value that the algorithm finds diverges with
the sample size n, and only if the slowly varying function
�(k) converges to a constant. Therefore, for this subclass
of regularly varying distributions with �(k)’s converging to
constants, the algorithm is likely to be consistent, yet the full
proof is currently lacking [24]. If �(k) does not converge to a
constant, then the consistency of the algorithm is quite unclear
at present.

In all the regularly varying distributions considered in the
previous two sections, the function �(k) does converge to a
constant, and indeed in all these cases the PLFIT appears to
eventually converge. Yet in two of these cases, namely, double
power laws and preferential attachment, its convergence is
worse than that of any of the considered EV estimators. To see
why, we analyze the two components of the PLFIT, KS distance
minimization and likelihood maximization, separately—in
Figs. 10 and 11, respectively.

Figure 10 illustrates that the KS distance minimization
component of the PLFIT drives the values of kmin that the
PLFIT attempts to estimate to erroneously low values, in full
agreement with more recent and in-depth investigations in
Ref. [24]. This happens because the smaller the kmin, the
smaller the deviations of the empirical CDF at degrees k

FIG. 11. Anatomy of maximum-likelihood estimation (MLE) of
γ on different sequences of different sizes. The columns, left to right,
correspond to (1) number sequences sampled from the double power-
law distribution (D5) with the same parameters as in Appendix D 1;
(2) degree sequences of random graphs in the preferential attachment
model with the degree distribution given by (D8); and (3) number
sequences sampled from the Pareto-mixed Poisson distribution (A4).
The first three rows show the results for γ = 2.1, 2.5, and 3.0, while
the last row show the average values of kmin found by the PLFIT

algorithm for different γ ’s as functions of sequence length n. The first
three rows show the results only for three different sequence sizes n,
marked by different colors. The colored dots are the average values,
computed using the SCIPY package [122], of the MLE γ̂ estimates
obtained by the minimization of (D9) over γs linearly spaced in
[1.01,6.50] with step 0.01, shown as functions of kmin = kt , where
kt is a degree value appearing at least once in the collection of se-
quences. For any combination of the model, γ , and n, the results are
averaged over 100 random sequences. The solid black curves in the
first three rows are the loglog slopes of the corresponding theoretical
PDFs considered as functions of continuous k. The horizontal dashed
lines are the true γ ’s, while the vertical dashed lines color-correspond
to the n’s, showing the average kmin’s for these n’s from the bottom
row.

right above kmin from the theoretical CDF, because if the
distribution is regularly varying, there are more nodes with
smaller degrees. The larger the kmin, the larger are these
deviations caused by “sparser statistics” in the distribution
tail, and as a consequence the KS distance grows larger. If
kmin is set to a small value, the deviations in the tail are
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suppressed as they are getting “squished” in the high-degree
region of the CDF close to 1, cf. panels (a) and (b) in the
figure.

Panel (c) in Fig. 10 shows that the plfit.m code [109],
both originally released with [19] as well as its current ver-
sion, cannot be used to compute the MLE values of γ for large
kmin’s, because it contains errors in computing the Hurwitz
zeta function with the required accuracy [121], leading to
numerical errors. Therefore we use a SciPy [122] implemen-
tation instead in Fig. 11.

Figure 11 shows that if kmin is small—and it is, thanks
to the KS distance minimization part of the PLFIT—then the
MLE component of the PLFIT does very little other than trying
to fit the log-log slope of the PDF evaluated at this kmin. The
reasons behind this problem are the same as those behind the
KS distance minimization problems discussed above: since
there is a lot of data with degrees right above a small value of
kmin, and since the MLE is primarily concerned with fitting as
much data as possible, it tries to fit the part of the distribution
with degrees k right above kmin, versus the true tail of the
distribution with large k’s, thus getting bad estimates of the
tail exponent.

In other words, the errors in PLFIT’s estimates are due to the
combination of the following two factors related, ironically,
to the two key ideas behind the PLFIT: (1) the small values
of kmin returned by the KS distance minimization part of the
algorithm, and (2) the MLE part of the PLFIT that estimates
not the tail exponent but, roughly, the loglog slope of the PDF
evaluated close to this kmin. If this slope is different from
the slope at large k’s, i.e., the true tail exponent, then the
PLFIT does not really fit any power-law tail. However, if the
distribution is such that at least one of these conditions is not
satisfied, then the PLFIT estimates are more accurate, cf. the
Pareto-mixed Poisson or the γ = 2.5 preferential attachment
cases in Fig. 11.

If these two conditions are satisfied, which is the case
with the double power law and preferential attachment with
γ = 2.1 and 3.0 in Fig. 11, then the PLFIT estimates of the tail
exponent are quite off. However, if they are off, and if one

then performs KS hypothesis testing using these inaccurate
estimates, then the hypothesis that the degree sequence comes
from a pure power law with the estimated exponent will be
rejected with high probability, simply because the true tail ex-
ponent is different. For these reasons, if one applies the PLFIT

to preferential attachment networks with these exponents and
then deploys the KS hypothesis tests, one will likely find that
these networks are not power-law [20].

Finally, Fig. 11 also shows that the whole idea of using
MLE to estimate tail exponents of regularly varying distri-
butions is quite problematic to begin with, explaining why
it has not been seriously explored in statistics. Indeed, for
such an estimation procedure to be accurate, the values of
kmin must be large and diverging in the n → ∞ limit for
the reasons discussed above. However, the larger the kmin,
the smaller the second term in (D9). On the other hand, as
a function of γs, the first term in (D9) grows monotonically
at a much higher rate than the linear rate of growth of the
second term. Therefore, if kmin is above a certain threshold,
then the MLE will do nothing but select the largest possible
value of γs to maximize the likelihood via the first term. This
is exactly what we see in Fig. 11, where for many instances
of large kmin, the MLE-selected values of γ are the largest
possible values within the range that we offer the MLE to
operate with. Therefore the correctness of MLE depends on
whether there exists a “sweet-spot” range of values of kmin

that are not too large and not too small. It might be the case
that such a range simply does not exist for some regularly
varying distributions. Worse, even if it can be proven to always
exist, which is unclear at present, we have seen above that
the KS distance minimization procedure is quite unlikely to
be a correct, statistically consistent, procedure to identify this
range. At least, the KS distance minimization has not been
proven to be such a procedure for general regularly varying
distributions. Whether a required procedure exists at all, is
also unclear. After all, for the reasons mentioned above, even
the required sweet-spot range of kmin’s is quite unlikely to
exist for regularly varying distributions whose slowly varying
functions do not converge to constants.
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