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Abstract

This paper considers fair probabilistic clas-
sification where the outputs of primary in-
terest are predicted probabilities, commonly
referred to as scores. We formulate the prob-
lem of transforming scores to satisfy fair-
ness constraints while minimizing the loss
in utility. The formulation can be applied
either to post-process classifier outputs or
to pre-process training data, thus allowing
maximum freedom in selecting a classifica-
tion algorithm. We derive a closed-form ex-
pression for the optimal transformed scores
and a convex optimization problem for the
transformation parameters. In the popula-
tion limit, the transformed score function is
the fairness-constrained minimizer of cross-
entropy with respect to the optimal uncon-
strained scores. In the finite sample set-
ting, we propose to approach this solution
using a combination of standard probabilis-
tic classifiers and ADMM. Comprehensive ex-
periments comparing to 10 existing methods
show that the proposed FairScoreTransformer
has advantages for score-based metrics such
as Brier score and AUC while remaining com-
petitive for binary label-based metrics such
as accuracy.

1 INTRODUCTION

Recent years have seen a surge of interest in fair clas-

sification, which is concerned with disparities in clas-
sification output or performance when conditioned on
a protected attribute such as race or gender. Many
measures of fairness and fairness-enhancing interven-
tions have been introduced (see supplemental material
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thor(s).

(SM) for citations). Roughly categorized, these inter-
ventions either (i) change data used to train a clas-
sifier (pre-processing), (ii) change a classifier’s output
(post-processing), or (iii) directly change a classifica-
tion model to ensure fairness (in-processing).

This paper is distinguished by its greater emphasis on
probabilistic classification, where the outputs of inter-
est are predicted probabilities of belonging to one of
the classes, as opposed to binary predictions. The pre-
dicted probabilities are often referred to as scores and
are desirable because they indicate confidences in pre-
dictions. We propose an optimization formulation for
transforming scores to satisfy fairness constraints while
minimizing the loss in utility. The formulation accom-
modates any fairness criteria that can be expressed
as linear inequalities involving conditional means of
scores, including variants of statistical parity (SP) (Pe-
dreschi et al., 2012) and equalized odds (EO) (Hardt
et al., 2016; Zafar et al., 2017a).

We make the following contributions beyond a novel
problem formulation: We derive a closed-form expres-
sion for the optimal transformed scores and a convex
dual optimization problem for the Lagrange multipli-
ers that parametrize the transformation. In the pop-
ulation limit, the transformed scores minimize cross-
entropy with respect to the conditional distribution
pY | X of the outcome Y given features X (i.e. the
unconstrained optimal score) subject to the fairness
constraints. In the finite sample setting, we propose
a method called FairScoreTransformer (FST) that uses
standard probabilistic classifiers (e.g. logistic regres-
sion) to approximate pY | X and the alternating di-
rection method of multipliers (ADMM) to solve the
dual problem. The closed-form expression for the
transformed scores and the low dimension of the dual
problem (a small multiple of the number of protected
groups) make FST computationally lightweight.

FST lends itself naturally to post-processing and can
also be applied in pre-processing. As such, we envi-
sion that FST will be particularly beneficial in situ-
ations that make post- and pre-processing attractive
(also discussed by Hajian and Domingo-Ferrer (2013);
Calmon et al. (2017); Agarwal et al. (2018);
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Madras et al. (2018); Salimi et al. (2019)): a) when it is
not possible or desirable to modify an existing classifier
(post); b) when freedom is desired to select the most
suitable classifier for an application (post, pre); and c)
when standard training algorithms are used without
the additional complexity of accounting for fairness
(post, pre). In-processing meta-algorithms (Agarwal
et al., 2018; Celis et al., 2019) can also support situa-
tion b) but not a) or c). Compared to existing post-
and pre-processing methods, FST is considerably more
flexible in handling more cases (see Table 1).

Comprehensive experiments compare FST to 10 ex-
isting methods, a number that compares favorably to
recent meta-studies (Friedler et al., 2019). On score-
based metrics such as Brier score and AUC, FST
achieves better fairness-utility trade-o↵s and hence is
indeed advantageous when scores are of interest. At
the same time, it remains competitive on binary label-
based metrics such as accuracy.

In summary, it is shown that FairScoreTransformer en-
ables fairness-ensuring post- and pre-processing that

• is theoretically grounded and optimal in the pop-
ulation limit (Sections 2 and 3),

• is computationally lightweight (Section 4),

• performs favorably compared to the state-of-the-
art (Section 5 and Supplementary Material).

1.1 Related Work

Existing post-processing methods take predicted
scores as input but most (Kamiran et al., 2012; Fish
et al., 2016; Hardt et al., 2016; Chzhen et al., 2019)
produce only binary output and not scores. Pleiss
et al. (2017) aim to maintain calibrated probability es-
timates, a requirement that we do not enforce herein.
Furthermore, Kamiran et al. (2012); Fish et al. (2016);
Hardt et al. (2016); Pleiss et al. (2017) all assume
knowledge of the protected attribute at test time.
Kamiran et al. (2012); Fish et al. (2016); Jiang et al.
(2019) address only SP, Hardt et al. (2016); Pleiss et al.
(2017) address disparities in error rates, and Chzhen
et al. (2019) address only equal opportunity. Our ap-
proach does not have these limitations.

Existing pre-processing methods (Kamiran and
Calders, 2012; Hajian and Domingo-Ferrer, 2013; Cal-
mon et al., 2017) only address SP or the related notion
of disparate impact (Feldman et al., 2015). Learn-
ing representations that are invariant to protected at-
tributes (Zemel et al., 2013; Louizos et al., 2016; Ed-
wards and Storkey, 2016; Xie et al., 2017; Xu et al.,
2018) can also be seen as pre-processing, at the cost of

losing the original data domain and its semantics. Re-
cent adversarial approaches (Beutel et al., 2017; Zhang
et al., 2018; Madras et al., 2018) target EO as well as
SP but can be computationally challenging.

Several works have technical similarities but focus on
binary outputs with 0-1 risk (Celis et al., 2019; Agar-
wal et al., 2018) or cost-sensitive risk (Menon and
Williamson, 2018; Corbett-Davies et al., 2017) as the
objective function. The closest is Celis et al. (2019),
which also solves a fairness-constrained classification
problem via the dual problem. Celis et al. (2019);
Agarwal et al. (2018) propose in-processing algorithms
that solve multiple instances of a subproblem whereas
we solve only one instance. Menon and Williamson
(2018); Corbett-Davies et al. (2017) also characterize
optimal fair classifiers in the population limit in which
probability distributions are known; however, they do
not propose algorithms for computing the solution.

2 PROBLEM FORMULATION

We represent one or more protected attributes by a
random variable A and an outcome variable by Y .
We make the common assumption that Y 2 {0, 1}
is binary-valued. It is assumed that A takes a finite
number of values in a set A, corresponding to pro-
tected groups. Let X 2 X denote features used to
predict Y in a supervised classification setting. We
consider two scenarios in which X either includes or
does not include A, like in other works (e.g. Agarwal
et al. (2018); Donini et al. (2018)). While the former
scenario can achieve better trade-o↵s between utility
and fairness, the latter is needed in applications where
disparate treatment laws and regulations forbid the
explicit use of A. To develop our approach in this sec-
tion and Section 3, we work in the population limit
and make use of probability distributions involving A,
X, Y . Section 4 discusses how these distributions are
approximated using a training sample.

As stated earlier, we focus more heavily on proba-
bilistic classification in which the output of interest
is the predicted probability of being in the positive
class Y = 1 rather than a binary prediction. The
optimal probabilistic classifier is the conditional prob-
ability r(x) , pY | X(1 | x), which we refer to as the
original score. Bayes-optimal binary classifiers can be
derived from r(x) by thresholding.

We propose a mathematical formulation and method
called FairScoreTransformer (FST) that can be applied
to both post-processing and pre-processing. In both
cases, the goal is to transform r(x) into a transformed

score r
0(x) that satisfies fairness conditions while min-

imizing the loss in optimality compared to r(x). We
elaborate on the utility and fairness measures consid-
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ered in Sections 2.1 and 2.2. The application of FST
to post-processing is straightforward: r0(x) is used di-
rectly as the classification output and can be thresh-
olded to provide a binary prediction.

In the pre-processing case, we additionally define a
transformed outcome Y

0 2 {0, 1} and let r
0(x) ,

pY 0 | X(1 |x) be its conditional probability. The overall
procedure consists of two steps, performed in general
by two di↵erent parties: 1) The data owner transforms
the outcome variable from Y to Y

0; 2) The modeler

trains a classifier with Y
0 as target variable and X as

input, without regard for fairness. The transformed
score r

0(x) plays two roles in this procedure. The first
is to specify the (randomized) mapping from X to Y

0

in step 1). We will see that this mapping depends only
indirectly on Y through the original score r(x). The
second role stems from the main challenge faced by
pre-processing methods, namely that the predominant
fairness metrics depend on the output of the classifier
trained in step 2) but this classifier is not under di-
rect control of the pre-processing. In recognition of
this challenge, we make the following assumption, also
discussed by Madras et al. (2018); Salimi et al. (2019):

Assumption 1 (pre-processing). The classifier
trained by the modeler approximates the transformed
score r

0(x) if it is a probabilistic classifier or a thresh-
olded version of r0(x) if it is a binary classifier.

Assumption 1 is satisfied for modelers who are indeed
learning to predict Y 0 from X since the optimal clas-
sifier in this case is r0(x) or a function thereof. Given
the assumption, we will use r0(x) as a surrogate for the
actual classifier output. Assumption 1 is not satisfied
if the modeler is not competent or, worse, malicious in
discriminating against certain protected groups.

2.1 Utility Measure

We propose to measure the loss in optimality, i.e. util-
ity, between the transformed score r

0(x) and original
score r(x) using the following cross-entropy:

E
⇥
� log pY 0 | X(Y |X)

⇤
= E [Hb (r(X), r0(X))] , (1)

where Hb(p, q) , �p log q � (1 � p) log(1 � q) is the
binary cross-entropy function. The right-hand side of
(1) results from expanding the expectation over Y con-
ditioned on X. On the left-hand side, pY 0 | X is used
only as notational shorthand in the post-processing
case since Y

0 is not generated.

One way to arrive at (1) is to assume that r
0(x),

which is the classifier output in the post-processing
case and a surrogate thereof in the pre-processing case,
is evaluated against the original outcomes y1, . . . , yn

in a training set using the cross-entropy a.k.a. log loss.

This yields the empirical version of the left-hand side
of (1), i.e., � 1

n

Pn
i=1 log pY 0 | X(yi | xi). The use of log

loss is well-motivated by the desire for r0(x) to be close
to the true conditional probability r(x).

An equivalent way to motivate (1) in the pre-
processing context is to measure the utility loss by the
Kullback-Leibler (KL) divergence between the original
and transformed distributions pX,Y , pX,Y 0 :

DKL

�
pX,Y k pX,Y 0

�
= EpX,Y


log

pX,Y

pX,Y 0

�
(2)

= EpX,Y [log pY | X ]� EpX,Y [log pY 0 | X ].

The first term depends on the data distribution but
not r0(x) and the second term is exactly (1).

Starting from a di↵erent premise, Jiang and Nachum
(2019) proposed a similar formulation in which the ar-
guments of the KL divergence are reversed from those
in (2). The form of the solution in Jiang and Nachum
(2019) is therefore di↵erent from the one presented
herein. The order of arguments in (2) is justified by
the connection to log loss discussed above.

2.2 Fairness Measures

We consider fairness criteria expressible as linear in-
equalities in conditional means of scores,

JX

j=1

bljE
⇥
r
0(X) | Elj

⇤
 cl, l = 1, . . . , L, (3)

where {blj} and {cl} are real-valued coe�cients and
the conditioning events Elj are defined in terms of
(A,X, Y ) but do not depend on r

0. Special cases of
(3) correspond to the well-studied notions of statistical
parity (SP) and equalized odds (EO). More precisely,
we focus on the following variant of SP:

�✏  E[r0(X) |A = a]�E[r0(X)]  ✏ 8a 2 A, (4)

which we refer to as mean score parity (MSP) follow-
ing Coston et al. (2019). Similar notions can also be
put in the form of (3), for example bounds on the ra-
tio E[r0(X) | A = a]/E[r0(X)] referred to as disparate

impact (Feldman et al., 2015).

For EO, we add the condition Y = y to the condition-
ing events in (4), resulting in

� ✏  E[r0(X) |A = a, Y = y]�E[r0(X) |Y = y]  ✏

8a 2 A, y 2 {0, 1}. (5)

For y = 0 (respectively y = 1), E[r0(X) | Y = y] is
the false (true) positive rate (FPR, TPR) generalized
for a probabilistic classifier, and E[r0(X) | A = a, Y =
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y] is the corresponding group-specific rate. Following
Pleiss et al. (2017), we refer to (5) for y = 0 or y = 1
alone as approximate equality in generalized FPRs or
TPRs, and to (5) for y = 0 and y = 1 together as
generalized EO (GEO). The SM specifies the exact
correspondences between (4), (5) and (3).

The fairness measures (3) in our formulation are de-
fined in terms of probabilistic scores. Parallel notions
defined for binary predictions, i.e. by replacing r

0(X)
with a thresholded version 1(r0(X) > t), are more
common in the literature. For example, the counter-
part to (5) is (non-generalized) EO while the counter-
part to (4) is called thresholded score parity by Coston
et al. (2019). While our formulation does not optimize
for these binary prediction measures, we nevertheless
use them for evaluation in Section 5.

The form of (3) is inspired by but is less general than
the constraints of Agarwal et al. (2018), which re-
place r

0(X) in (3) by an arbitrary bounded function
gj(A,X, Y, r

0(X)). We have restricted ourselves to
(3) to derive a closed-form optimal solution in Sec-
tion 3. We note however that in the examples in
Agarwal et al. (2018) and many fairness measures,
gj(A,X, Y, r

0(X)) = r
0(X) and the additional gener-

ality is not required.

2.3 Optimization Problem

The transformed score r0(x) is obtained by minimizing
the cross-entropy in (1) (equivalently maximizing its
negative) subject to fairness constraints (3):

max
r0

�E [Hb (r(X), r0(X))]

s.t.
JX

j=1

bljE
⇥
r
0(X) | Elj

⇤
 cl, l = 1, . . . , L.

(6)

The next section characterizes the optimal solution to
this problem. In the SM, we elaborate on the fact
that when utility and fairness are measured according
to the objective and constraints in (6), it su�ces to
transform scores and not also transform features X

into X
0, as proposed by Hajian and Domingo-Ferrer

(2013); Feldman et al. (2015); Calmon et al. (2017).

3 CHARACTERIZATION OF
OPTIMAL FAIR SCORE

We derive a closed-form expression for the optimal so-
lution to (6) using the method of Lagrange multipliers.
We then state the dual optimization problem that de-
termines the Lagrange multipliers. These results are
specialized to the cases of MSP (4) and GEO (5).

Define Lagrange multipliers �l � 0, l = 1, . . . , L for

the constraints in (6), and let � , (�1, . . . ,�L). Then
the Lagrangian function is given by

L(r0,�) = �E
⇥
Hb (r(X), r0(X))

⇤

�
LX

l=1

JX

j=1

�lbljE
⇥
r
0(X) | Elj

⇤
+

LX

l=1

cl�l. (7)

The dual optimization problem corresponding to (6)
is min��0 maxr0 L(r0,�).

Note that L(r0,�) is a strictly concave function of r0

and the fairness constraints in (6) are a�ne functions
of r0. Consequently, as long as the constraints in (6)
are feasible, the optimal transformed score r

⇤ can be
found by (i) maximizing L(r0,�) with respect to r

0, re-
sulting in an optimal solution r

⇤ that is a function of
�, and then (ii) minimizing L(r⇤,�) with respect to �

(Boyd and Vandenberghe, 2004, Section 5.5.5). Sub-
stituting the optimal �⇤ into the solution for r⇤ found
in the first step then yields the optimal transformed
score. Note that this procedure would not necessarily
be correct if a linear objective function were consid-
ered (e.g., 0-1 loss in Celis et al. (2019)) due to lack of
strict concavity. The next proposition states the gen-
eral form of the solution to the inner maximization (i)
above. Its proof is in the SM.

Proposition 1. Let L(r0,�) be as given in (7). Then
for fixed �, r⇤(�) = argmaxr0 L(r0,�) is given by

r
⇤�
µ(x); r(x)

�
= (8)

8
><

>:

1 + µ(x)�
p
(1 + µ(x))2 � 4r(x)µ(x)

2µ(x)
, µ(x) 6= 0

r(x), µ(x) = 0,

where µ(x) ,
LX

l=1

JX

j=1

�lblj
Pr(Elj |X = x)

Pr(Elj)
. (9)

We can interpret the optimal primal solution (8) as
a prescription for score transformation controlled by
µ(x), which is in turn a linear function of �. When
µ(x) = 0, the score is unchanged from r(x), and
as µ(x) increases or decreases from zero, the score
r
⇤(µ(x); r(x)) decreases or increases smoothly from
r(x) (as can be seen by plotting the function). It can
also be shown by di↵erentiating r

⇤ with respect to r

that r
⇤ has a rank-preserving property for fixed µ in

the sense that if r1 < r2 then r
⇤(µ; r1) < r

⇤(µ; r2).

It is shown in the proof of Proposition 1 that the
result of substituting the optimal primal solution
(8) into the first two terms of the Lagrangian (7)
is the expectation of the function g(µ(x); r(x)) ,
�Hb

�
r(x), r⇤(µ(x); r(x))

�
� µ(x)r⇤(µ(x); r(x)). The
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dual problem is therefore

min
��0

E
⇥
g
�
µ(X); r(X)

�⇤
+

LX

l=1

cl�l

s.t. µ(X) =
LX

l=1

JX

j=1

�lblj
Pr(Elj |X)

Pr(Elj)
.

(10)

The solution to (10) provides the values of �⇤ for the
optimal transformed score (8). Like all Lagrangian
duals, (10) is a convex optimization (although it is
no longer apparent from (10) that this is the case).
Furthermore, (10) is typically low-dimensional in cases
where the number of dual variables L is a small mul-
tiple of the number of protected groups |A|.

We now specialize and simplify (10) for MSP (4) and
GEO (5) constraints, utilizing their correspondences
with (3) as shown in the SM.

Proposition 2. Under the MSP constraint (4), the
dual optimization (10) reduces to

min
�

E
⇥
g
�
µ(X); r(X)

�⇤
+ ✏k�k1

s.t. µ(X) =
X

a2A
�a

✓
pA | X(a |X)

pA(a)
� 1

◆
.

(11)

For the GEO constraint (5), (10) reduces to

min
�

E
⇥
g
�
µ(X); r(X)

�⇤
+ ✏k�k1,

s.t. µ(X) =
X

y2{0,1}

pY | X(y |X)

pY (y)
⇥

X

a2A
�a,y

✓
pA | X,Y (a |X, y)

pA | Y (a | y) � 1

◆
.

(12)

In (11), (12), there is no longer a non-negativity con-
straint on � but instead an `1 norm, and the problem
dimension is only |A| in (11) and 2|A| in (12). More-
over, both dual formulations are well-suited for decom-
position using the alternating direction method of mul-
tipliers (ADMM), as discussed in Section 4.2. In the
case where X includes A, the constraints in (11) and
(12) simplify as shown in the proof of Proposition 2
and, importantly, eliminate the need to estimate A.

4 FairScoreTransformer PROCEDURE

We now consider the finite sample setting in which
the probability distributions of A,X, Y are not
known and we have instead a training set Dn ,
{(ai, xi, yi), i = 1, . . . , n}. This section presents the
proposed FairScoreTransformer (FST) procedure that
approximates the optimal fairness-constrained score in
Section 3. We focus on the cases of MSP and GEO.

The procedure consists of the following steps: 1) Esti-
mate the original score and other probabilities required
to define the dual problem (11) or (12); 2) Solve the
dual problem to obtain dual variables �

⇤ (the “fit”
step); 3) Transform scores using (8) and (9) (“trans-
form” step); 4) For pre-processing, modify the training
data; 5) For binary-valued predictions, binarize scores.
The following subsections elaborate on steps 1), 2),
and 4). Step 5) is done simply by selecting a threshold
t 2 [0, 1] to maximize accuracy on the training set.

4.1 Estimation of Original Score and Other

Probabilities

In some post-processing applications, original scores
r(x) may already be estimated by an existing base
classifier. If no suitable base classifier exists, any prob-
abilistic classification algorithm may be used to esti-
mate r(x). We experiment with logistic regression and
gradient boosting machines in Section 5. We naturally
recommend selecting a model and any hyperparameter
values to maximize performance in this regard, i.e. to
yield accurate and calibrated probabilities.

In the case where A is one of the features in X, the
other probabilities required are pA(a) for MSP (11)
and pY (y), pA | Y (a | y) for GEO (12) (pY | X(y | x)
is already given by r(x) and pA | X , pA | X,Y are delta
functions). Since Y is binary and |A| is typically small,
it su�ces to use the empirical probabilities. If A is not
included in X, then it is also necessary to estimate it
using pA | X(a |X) for MSP (11) and pA | X,Y (a |X, y)
for GEO (12). Again, any probabilistic classification
algorithm can be used, provided that it can handle
more than two classes if |A| > 2. We highlight that
FST translates the e↵ort of ensuring fair classification
into training well-calibrated models for predicting Y

and, if necessary, A. This echoes the plug-in approach
advocated by Menon and Williamson (2018).

4.2 ADMM for Optimizing Dual Variables

Both optimizations in Proposition 2 are of the form

min
�2Rd

1

n

nX

i=1

g
�
µ(xi); r(xi)

�
+ ✏k�k1

s.t. µ(xi) = �
T
f(xi), i = 1, . . . , n,

(13)

where (i) we approximate the expectation in the ob-
jective by the average over the training dataset, (ii) d
is the dimension of �, and (iii) f : X ! Rd is defined
by the expression for µ(x) in (11) or (12) and uses the
probabilities estimated in Section 4.1.

Formulation (13) is well-suited for ADMM because the
objective function is separable between µ(x) and �,
which are linearly related through the constraint. We
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present one ADMM decomposition here and alterna-
tives in the SM. Under the first decomposition, appli-
cation of the scaled ADMM algorithm (Boyd et al.,
2011, Section 3.1.1) to (13) yields the following three
steps in each iteration k = 0, 1, . . . :

µ
(k+1)(xi) = argmin

µ

1

n
g
�
µ; r(xi)

�
+

⇢

2

⇥
⇣
µ� (�(k))T f(xi) + c

(k)(xi)
⌘2

8i = 1, . . . , n (14)

�
(k+1) = argmin

�
✏k�k1 +

⇢

2

⇥
nX

i=1

⇣
µ
(k+1)(xi)� �

T
f(xi) + c

(k)(xi)
⌘2

(15)

c
(k+1)(xi) = c

(k)(xi) + µ
(k+1)(xi)�

⇣
�
(k+1)

⌘T
f(xi)

8i = 1, . . . , n. (16)

The first update (14) can be computed in parallel for
each sample xi in the dataset. Given an xi, finding
µ(xi) is a single-parameter optimization where the ob-
jective possesses closed-form derivatives, provided in
the SM. The second update (15) reduces to an `1-
penalized quadratic minimization over (at most) 2|A|
variables. Details on this reduction are also in the SM.

From (14)–(16), it is seen that the complexity of each
ADMM iteration is linear in n. We have fixed the
ADMM penalty parameter ⇢ = 1 and have not at-
tempted to tune it for faster convergence.

4.3 Additional Steps for Pre-Processing

In pre-processing, the transformed score r
0(x) is used

to generate samples of a transformed outcome Y
0.

Since r
0(x) = pY 0 | X(1 | x) is a probabilistic map-

ping, we propose generating a weighted dataset D0 =
{(xi, y

0
i, wi)} with weights wi that reflect pY 0 | X .

Specifically, D0 = D0
0 [ D0

1 with D0
0 = {(xi, 0, 1 �

r
0(xi)), i = 1, . . . , n} and D0

1 = {(xi, 1, r0(xi)), i =
1, . . . , n} so that D0 has 2n samples. The data owner
passes D0 to the modeler, who uses it to train a clas-
sifier for Y 0 without fairness constraints.

5 EMPIRICAL EVALUATION

This section discusses experimental evaluation of the
proposed FST methods for MSP and GEO constraints.

Datasets Four datasets were used, the first three of
which are standard in the fairness literature: 1) adult
income, 2) ProPublica’s COMPAS recidivism, 3) Ger-
man credit risk, 4) Medical Expenditure Panel Survey
(MEPS). We used versions pre-processed by AI Fair-
ness 360 (Bellamy et al., 2019). To facilitate compar-

ison with other methods, we used binary-valued pro-
tected attributes and consider gender and race for both
adult and COMPAS, age and gender for German, and
race for MEPS. Each dataset was randomly split 10
times into training (75%) and test (25%) sets.

Methods Compared Since FST is intended for
post- and pre-processing, comparisons to other such
methods are most natural as they accommodate sit-
uations a)–c) in Section 1. For post-processing, we
have chosen Hardt et al. (2016) (HPS) and the reject
option method of Kamiran et al. (2012), both as imple-
mented in AI Fairness 360, as well as the Wass-1 Post-
Process p̂S method (WPP) of Jiang et al. (2019). For
pre-processing, the massaging and reweighing methods
of Kamiran and Calders (2012) and the optimization
method (OPP) of Calmon et al. (2017) were chosen.
Among in-processing methods, meta-algorithms that
work with essentially any base classifier can handle
situation b). The reductions method (‘red’) (Agarwal
et al., 2018) was selected from this class. We also com-
pared to in-processing methods specific to certain base
classifiers, thus precluding any of a)–c): fairness con-
straints (FC) (Zafar et al., 2017b), disparate mistreat-
ment (DM) (Zafar et al., 2017a), and fair empirical
risk minimization (FERM) (Donini et al., 2018).

The methods in the previous paragraph have various
limitations summarized by Table 1. In particular, the
three post-processing methods require knowledge of
the protected attribute A at test time. Accordingly,
the experiments presented in this section include A in
the features X to make it available to all methods; ex-
periments without A at test time are in the SM. We
also encountered computational problems with OPP
and DM and thus perform separate comparisons with
FST on reduced feature sets, also reported in the SM.

Three versions of FST were evaluated: post-processing
(FSTpost), pre-processing (FSTpre), and a second
post-processing version (FSTbatch) that assumes that
test instances can be processed in a batch rather than
one by one. In this case, the fit step (Section 4.2) can
actually be done on test data since it does not depend
on labels yi (and uses only predicted probabilities for
A if A is unavailable).

Base Classifiers We used `1-regularized logistic re-
gression (LR) and gradient boosted classification trees
(GBM) from scikit-learn (Pedregosa et al., 2011).
Post-processing methods operate on the scores pro-
duced by the base classifier, pre-processing methods
train the base classifier after modifying the training
data, and the reductions method repeatedly calls the
base classification algorithm. In the SM, we used linear
SVMs (with Platt scaling (Platt, 1999) to output prob-
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Table 1: Capabilities of Methods in Comparison (? refers to an extension implemented in Bellamy et al. (2019))

method pre in post SP EO no A at test time scores approx fairness any classifier

massage, reweigh X X X X X
OPP X X X X X X
HPS X X X
reject X X ? X X
WPP X X X X
FC X X X X X
DM X X X X X

FERM X X X X
reductions X X X X X X X

proposed FST X X X X X X X X

abilities) to compare with FERM. We found it imprac-
tical to train nonlinear SVMs on the larger datasets
for reductions and FERM since reductions needs to do
so repeatedly and FERM uses a slower specialized al-
gorithm. For a similar reason, 5-fold cross-validation
to select parameters for LR (regularization parameter
C from [10�4

, 104]) and GBM (min samples/leaf from
{5, 10, 15, 20, 30}) was done only once per training set.
All other parameters were set to defaults. The base
classifier was then instantiated with the best parame-
ter value for use by all methods.

Results Figure 1 shows the trade-o↵s between clas-
sification performance and fairness obtained in a sub-
set of the experiments. The full set with other dataset-
protected attribute combinations, etc. is in the SM.
Each dataset occupies two rows with the first show-
ing score-based measures (Brier score vs. di↵erences in
mean scores (MSP) or GEO, AUC is in the SM) and
the second showing binary label-based measures (accu-
racy vs. di↵erences in mean binary predictions (SP) or
non-generalized EO). The columns correspond to com-
binations of base classifier (LR, GBM) and fairness
measure targeted (SP, EO). Markers indicate mean
values over the 10 splits, error bars indicate standard
errors in the means, and Pareto-optimal points have
been connected to ease visualization.

Considering first the score-based plots (odd rows),
FSTpost and FSTbatch achieve trade-o↵s that are at
least as good as all other methods, with the slight ex-
ception of the GBM case on MEPS. In all cases, the
advantage of FST lies in extending the Pareto frontiers
farther to the left, attaining smaller MSP or GEO dif-
ferences; this is especially apparent for GEO. FSTpre
sometimes performs less well, e.g. with GBM on adult
and MEPS, likely due to the loss incurred in approxi-
mating the transformed score r0(x) with the output of
a classifier fit to the pre-processed data.

Turning to the binary label-based plots (even rows),
the trade-o↵s for FSTpost and FSTbatch generally co-
incide with or are close to the trade-o↵s of the best

method, and are even sometimes the best, despite not
optimizing for binary metrics beyond tuning the bina-
rization threshold for accuracy. Again FSTpre with
GBM is worse on adult, but FSTpre with LR is the
best performer on COMPAS. The main disadvantage
of FST is that its trade-o↵ curves may not extend as
far to the left as other methods, in particular on adult.
This is the converse of its advantage for score-based
metrics. We discuss other limitations in the SM.

Among the existing methods, reductions is the
strongest and also the most versatile, handling all cases
that FST does. However, it is an in-processing method
and far more computationally expensive, requiring an
average of nearly 30 calls to the base classification al-
gorithm compared to one for FSTpost, FSTbatch and
two for FSTpre. Reductions also returns a randomized
classifier, which may be undesirable in some applica-
tions. Reject option and HPS do not output scores
and hence are omitted from the score-based plots. Re-
ject option performs close to the best except on MEPS
and at small unfairness values. HPS is limited to EO,
does not have a parameter to vary the trade-o↵, and
is less competitive. Massaging, reweighing, and WPP
likewise do not have a trade-o↵ parameter and are lim-
ited to SP. As also observed by Agarwal et al. (2018),
massaging is often dominated by other methods while
reweighing lies on the Pareto frontier but with sub-
stantial disparity. WPP results in low disparity but
its Brier score or accuracy is sometimes less competi-
tive. FC applies only to the LR-SP column and could
not substantially reduce unfairness, possibly due to the
larger feature dimension.

6 CONCLUSION

We proposed FairScoreTransformer for transforming
scores to satisfy fairness constraints and optimize
cross-entropy. FST is theoretically optimal in the pop-
ulation limit, has a computationally attractive imple-
mentation, and allows flexibility as a post- and pre-
processing method. Via a comprehensive set of exper-
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Figure 1: Trade-O↵s Between Fairness and Classification Performance (see SM for full set; in each column of
plots, legend in first row applies to all odd rows within that column, legend in second row applies to even rows)

iments, we demonstrated that FST is either as compet-
itive or outperforms 10 existing fairness interventions
over a range of constraints and datasets. Future direc-
tions include characterizing convergence rates for the

ADMM iterations and adapting FST to fairness cri-
teria that are not based on conditional expectations
of scores (e.g., calibration across groups (Pleiss et al.,
2017)) as well as to non-binary outcomes Y .
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