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Abstract—An algorithm to identify the bottleneck nodes link-
ing two component networks in a simple network of networks
(NoN) configuration is proposed. The proposed bottleneck identi-
fication algorithm is based on applying a support vector machine
on clustered packet delay measurements. This algorithm has
the advantage that it requires almost no information about the
topology of the underlying NoN. Simulation results show that this
algorithm can provide very good detection performance when the
component networks of the NoN are not too small in size, or when
the connectivity between nodes within the component networks
is not too sparse.

I. INTRODUCTION

Communication networks, such as the Internet, are often not
homogeneous but are instead actually loosely interconnected
sets of heterogeneous subnetworks. Such a “network of net-
works” [1] is characterized by difference in the connectivity
within the subnetworks versus the connectivity between sub-
networks. The links interconnecting subnetworks are referred
to as structural bottlenecks in [1], as these are topological
features of the network that restrict communication because
traffic between subnetworks can only flow over the bottleneck
links. These bottlenecks links and the network nodes attached
to them are weak points in the network topology; disrupting
these links/nodes can greatly alter the network topology and
often cause the network to partition. Thus, techniques to iden-
tify bottlenecks and to obfuscate bottlenecks from adversaries
are of significant interest.

Network connectivity is often studied by modeling the
network as a graph, where the vertices represent the com-
munication nodes and the edges represent the communication
links. Then bottlenecks in the network can be found as edge
cuts of the graph, where the number of edges cut is small
but the subnetworks created by the cut do not have small
order (vertex cardinality). The latter constraint is because most
networks have some nodes that are considered to be near the
perimeter of the network in that they are only connected to
one or two other nodes, and the links connecting such nodes
to the main network are not typically considered bottlenecks.
When the topology of the network is known, then there are
many algorithms for finding edge cuts of a graph [2]–[5].
A recent contribution [6] focuses particularly on bottleneck
detection, and uses a linear program to find a bottleneck cut
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that mimics the cut associated with the Cheeger constant of
the network [7].

In many situations, it may be desirable to detect a network
bottleneck without knowing the network topology. For exam-
ple, an adversary wishing to conduct a denial-of-service attack
may not have access to the full network topology information.
From the defense side, a network operator may wish to evalu-
ate what features will make the network bottlenecks detectable
by an adversary. For mobile networks, the bottlenecks may be
time-varying based on the locations of the communicators, and
a network operator may wish to characterize these bottlenecks,
even if it does not know the topology of the full network.
If the network allows conventional probing (for instance, us-
ing traceroute or Simple Network Management Protocol
(SNMP)), then the topology can be easily discovered; however,
network managers may disable these protocols to protect the
details of their network. Techniques that use measurements of
communications over a network to infer the topology of the
network or the properties of the network links are referred
to as network tomography techniques. Surveys of network
tomography techniques are given in [8] and [9].

Most network tomography techniques for topology discov-
ery are based on trying to infer a tree topology from a source
to multiple receivers. In [10], techniques are developed to
perform tomography from multiple sources to enable better
characterization of network topology further from the source.
However, the main result is to determine where two trees join
in the progression from the source to the destinations in the
logical network. This concept of detecting joining points is
relevant to the problem of bottleneck identification because
transmissions from multiple sources that must travel over a
single bottleneck to reach another network must have a joining
point (where the remaining routes are identical) at or before
the bottleneck. The fact that the joining point may be far
before the bottleneck limits the applicability of this technique
to bottleneck detection.

In this paper, we consider a scenario in which network load
results in different queuing delays at the different nodes in
the network, and we wish to use the observed end-to-end
delays to identify the location of a bottleneck between two
subnetworks. We develop techniques to accurately identify
a single bottleneck link that interconnects two subnetworks,
while only using end-to-end delay measurements. The agents
(observers) that are attempting to identify the bottleneck are
constrained to be in the same subnetwork. We evaluate the
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Fig. 1. A single-bottleneck graph with ten nodes in each component,
representing a NoN with two networks connected by a single link.

performance for a scenario in which the observers can either
hear round-trip traffic or can generate pings (and receive
responses) at one or more nodes in the subnetwork. We apply
clustering of the average delay measurements and use a fuzzy
support vector machine classifier to identify the bottleneck
nodes.

II. SYSTEM MODEL

In this paper, we consider the simple network-of-networks
(NoN) scenario in which two networks are connected together
by a single link: the bottleneck. This NoN is represented by a
single-bottleneck graph, which is defined as follows:

Definition 1. We say that G = (V,E)1 is a single-bottleneck
graph if
• G is connected, and
• G contains a (unique) bridge b ∈ E that cuts G into two

bridgeless, connected components.

The bridge b = (u, v), where u, v ∈ V , models the bottle-
neck link joining the two network. Then the two connected
components, produced from the cut by b, that contain u and
v will be denoted by Gu = (Vu, Eu) and Gv = (Vv, Ev),
respectively. Clearly, Gu and Gv model the two networks
connected by b. We will call b as the bottleneck and u, v as the
bottleneck nodes. We note the requirement that Gu and Gv are
both bridgeless is to avoid the confusion of having multiple
edges that may be considered as possible bottleneck links in
G. Fig. 1 shows an example of a single-bottleneck graph with
10 nodes in each component. In Fig. 1, nodes 4 and 17 are the
bottleneck nodes u and v, respectively. The bridge is the edge
b = (4, 17). Nodes 0–9 form the component network Gu, and
nodes 10-19 form Gv .

Our goal is to develop an algorithm that an observer
may be used to determine which two nodes among all the
nodes in the NoN are the bottleneck nodes when minimal
information about the network topology and traffic pattern

1As usual, V and E denote the set of vertices (nodes) and the set of edges
(links) of G, respectively.

is available. For example, the observer may not be able to
easily obtain information about the topology of the network
if Internet Control Message Protocol (ICMP) is disabled to
protect against denial-of-service (DoS) attacks. More precisely,
we make the following assumptions regarding the initial prior
knowledge that the observer has about the network G and
the observations that the observer can make to enhance his
knowledge about G:

1) The observer knows that G is a single-bottleneck graph.
He also knows all the nodes in G, i.e., the set V .
Other than these two piece of information, the observer
has no further information about the topology of G. In
particular, he does not know u, v, E, Vu, or Vv .

2) The observer is able to send packets from one or more
nodes, called observer source nodes (OSNs), to any
other node in G, and measure the round-trip delay of
each sent packet reaching the destination node and then
the acknowledgment arriving back at the OSN.

3) If the observer uses multiple OSNs, then all the OSNs
are located within the same component network (either
Gu or Gv) of G, but the observer does not know to
which component the OSNs belongs.

4) The observer does not know the underlying traffic pat-
tern in G but does know that the networking delay at
a node is dependent on the amount of traffic passing
through that node.

Under these assumptions, the observer aims to identify the
bottleneck nodes u and v amongst all nodes in V based only
on the delay measurements obtained by sending packets from
the OSNs to different destination nodes in G.

Because of the assumption that the observer may identify
the bottleneck nodes based only on delay measurements, the
pattern of network traffic over G can be sufficiently sum-
marized by the distributions of the round-trip delay over the
paths between any two nodes in G. Following the prior work
described in Section I, we employ the following simple path-
delay model. Assume that a minimum-hop (min-hop) routing
scheme is applied to route packets between any two nodes
in the network G. Henceforth, a min-hop path is implicitly
assumed when we refer to a path between a pair of nodes
in G. Assume that the queuing delay of a packet or its
acknowledgment, going through the forward or return path
from an OSN to a destination node, incurred at each node
along the path is modeled by an exponential random variable
with a mean that is proportional to the betweenness centrality
(BC) of that node. The delay random variables incurred at all
nodes along such a returned path are statistically independent,
and the total round-trip delay measured by the OSN is the sum
of the individual delays at all nodes traversed in the returned
path. This simple delay model approximately represents the
traffic scenario in which the network G is fully loaded in that
there is a unit traffic flow between each pair of nodes in G. In
this case, the BC of a node provides a reasonable measure that
indicates the amount of traffic going through that node. Hence
the queuing delay through the node is given by an exponential
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Fig. 2. A K-means clustering of the average delay vectors obtained for the
network shown in Fig. 1. There are two OSNs, nodes 0 and 7, shown in black.
Nodes classified to class 1 are in yellow, and the two OSNs belong to class
1. Nodes classified to class 2 are in magenta. The bottleneck nodes 4 and 17
(shown in green) are classified to classes 1 and 2, respectively.

random variable with a mean proportional to the BC for the
case in which the service process is modeled by an M/M/1
queue.

III. BOTTLENECK IDENTIFICATION ALGORITHM

In this section, we propose an algorithm to identify the
bottleneck nodes u and v amongst all nodes in V based only on
the delay measurements obtained at the OSNs. The proposed
bottleneck identification algorithm consists of the following
three steps:

a) Preprocessing of delay measurements: Let S ⊆ V be
the set of OSNs. From assumption 3 in Section II, we have
either S ⊆ Vu or S ⊆ Vv . Consider each s ∈ S. Suppose that
it sends Ns,v packets to each v ∈ V \ {s} and measures the
average round-trip delay

Ds,v =
1

Ns,v

Ns,v∑
i=1

Ds,v(i),

where Ds,v(i) is the round-trip delay measured for the ith
packet sent by s to v. For completeness, define Ds,s = 0.
For each v ∈ V , form a |S|-dimensional average delay
vector Dv = (Ds,v)s∈S by aggregating the average round-
trip delays from the OSNs in S to this node v. The collection
D = {Dv}v∈V of the average delay vectors is passed on to
the next step.

b) Clustering of delay measurements: The |S|-
dimensional average delay vectors in the collection D are
then classified into two clusters (classes), D1 and D2 by
a standard clustering algorithm. As an illustration, Fig. 2
shows the two clustered classes of the average delay vectors
obtained for the network in Fig. 1. There are two OSNs,
nodes 3 and 6, in this case. That is, |S| = 2, and there
are twenty average delay vectors of dimension two in the

collection D. Ten thousand packets are randomly picked
from an OSN to a destination node in V . The two OSNs
are picked with equal probabilities, and then the destination
node is picked from the other nodes in V with again equal
probabilities. The collection of the twenty 2-dimensional
average delay vectors are obtained from the 10000 round-trip
delay measurements according to the preprocessing step a).
Then the 20 average delay vectors are classified into two
classes using the K-means algorithm. The figure shows
that the two classes accurately identify the two component
networks in G.

c) Bottleneck node identification: The clustering
{D1,D2} of D generates class labels for the nodes. For each
v ∈ V , define the class label

yv =

{
1 if Dv ∈ D1

−1 if Dv ∈ D2.

The following support vector machine (SVM) algorithm is
then applied to the collection of the labeled average delay
vectors {(yv, Dv)}v∈V :

min
w,b,ξ

1

2
wTw + c

∑
v∈V

ξv (1)

subject to yv
(
wTφ(Dv) + b

)
≥ 1− ξv,

ξv ≥ 0, for each v ∈ V

where w is a |S|-dimensional linear weight vector, b is a
scalar, and φ is the kernel function. The optimal SVM margin
hyperplanes are then obtained. All nodes v with Dv lying
in the parallelepiped bounded by and including the SVM
margin hyperplanes are identified as bottleneck nodes. The
regularization constant c > 0 in (1) controls the SVM fuzzi-
ness factor [11] that determines the bottleneck identification
performance of our algorithm.

For example, the SVM margin hyperplanes (lines) of the
collection of the labeled average delay vectors in Fig. 2 are
shown by the broken lines, and the optimal SVM decision
hyperplane is shown by the solid line in the figure. Note that
c = 10 in this case. The two bottleneck nodes are the only
nodes in the region bounded by the two SVM margin lines;
hence they will be correctly identified as bottleneck nodes,
and no non-bottleneck nodes are misidentified as bottleneck
nodes.

IV. SIMULATION RESULTS

In this section, we perform computer simulation to evaluate
the performance of the bottleneck identification algorithm
proposed in Section III. For all the results presented in this
section, the NoN G is generated by the following procedure:

1) Generate an Erdős-Rényi graph G1 = (V1, E1) with K
nodes and probability of edge creation p.

2) G1 is checked to make sure that it is connected and
bridgeless as required in Definition 1. If not, repeat step
1).

3) Randomly pick a node u amongst all nodes in V1 with
equal probabilities.



4) Repeat steps 1) – 3) to generate G2 = (V2, E2) and pick
a node v ∈ V2.

5) Form G = (V,E) by letting V = V1 ∪ V2 and E =
E1 ∪E2 ∪{(u, v)}. That is, join G1 and G2 together to
form G by adding the bottleneck edge between u and
v. Rename G1 and G2 as Gu and Gv , respectively.

6) Pick |S| nodes in Vu as OSNs uniformly.

After G is generated, the set of round-trip delays are
generated according to the following procedure:

1) An OSN s is selected from all nodes in S with equal
probabilities, and a v is selected from all nodes in V \{s}
with equal probabilities.

2) The queuing delay each arrival of a probe packet at each
node on the round-trip path from s to v is generated as
an exponential random variable with mean proportional
to the betweenness centrality of that node, where the
delays are independent. The round-trip delay from s to
v is found by adding up the set of delays along the
returned path from s to v.

3) Steps 1) and 2) are repeated until a total of N
round-trip delays have been calculated. That is, N =∑
s∈S

∑
v∈V \{s}Ns,v .

The algorithm described in Section III is then applied to
identify the bottleneck nodes based on the set of round-trip
delays.

We consider two metrics, namely a strong metric and a
weak one, to evaluate the proposed bottleneck identification
algorithm. For the strong metric, we define the detection (true
positive) event be that both bottleneck nodes are identified as
such and the false alarm (false positive) event be that any
non-bottleneck nodes are identified as bottleneck nodes. On
the other hand, for the weak metric, detection is defined as
the event that a bottleneck node is identified as such and
false alarm is defined as the event that a non-bottleneck
node is identified as a bottleneck node. For each metric,
we estimate the detection and false alarm probabilities from
5000 independent realizations for G. The estimated detection
and false alarm probabilities obtained by varying the SVM
fuzziness factor c in (1) are plotted to obtain a standard
receiver operating characteristic (ROC) curve. Below, we will
refer to the ROC curves based on the strong (resp., weak)
metric as strong (resp., weak) ROC curves.

Fig. 3 shows the strong and weak ROC curves obtained for
the cases in which each component network of G has 10 nodes
(i.e., |Vu| = |Vv| = 10) and for probability of edge creation
p = 0.25, 0.5, and 0.75. The number of OSNs employed is
|S| = 2. The total number of packets used to obtain delay
measurements is N = 2000. We see from the figures that both
the weak and strong ROC performance improves when the net-
work components becomes more connected within themselves.
When the network components are only lightly connected, the
ROC performance is limited for this small network scenario.
This result is intuitive. With the small network components,
the traffic load across the bottleneck node is not much higher
than that within each components. On the other hand, since the
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Fig. 3. ROC performance of NoNs with two components of ten nodes each.
Number of OSNs |S| = 2. Total number of packets measured N = 2000.
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Fig. 4. ROC performance of NoNs with two 25-node components. Number
of OSNs |S| = 2. Total number of packets measured N = 5000.

network components are lightly connected within themselves,
the delay of a path within a network component may not be
much lower than that of a path across the two component
networks. All these makes it harder to identify the bottleneck
nodes based on the delay measurements.

Fig. 4 shows the strong and weak ROC curves obtained for
the cases in which each component network of G has 25 nodes
(i.e., |Vu| = |Vv| = 25) and for probability of edge creation
p = 0.25, 0.5, and 0.75. The number of OSNs employed is
|S| = 2. For a fair comparison with Fig. 3, the total number
of packets used to obtain delay measurements is increased to
N = 5000 in this case. Comparing Fig. 4 with Fig. 3, we
observe that the ROC performance significantly improves for
the larger network. This result is again intuitive in that the
traffic load is heavier across the bottleneck when the network
components become larger; hence it becomes easier to identify
the bottleneck nodes based on the delay statistics.

In Figs. 5 and 6 we investigate the effect of the number
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Fig. 5. Strong ROC performance of NoNs with two 25-node components with
one, two, and three OSNs. Total number of packets measured N = 5000.
Edge creation probability p = 0.5.
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Fig. 6. Weak ROC performance of NoNs with two 25-node components with
one, two, and three OSNs. Total number of packets measured N = 5000.
Edge creation probability p = 0.5.

of OSNs on the bottleneck identification performance of the
proposed algorithm. Plotted in the figures are the strong
and weak ROC curves obtained for the case in which each
component network of G has 25 nodes (i.e., |Vu| = |Vv| = 25),
the probability of edge creation p = 0.5, and the number of
OSN(s) |S| = 1, 2, and 3. The total number of packets used to
obtain delay measurements is fixed to N = 5000 for all cases
in the figures. We see from the figures that using two OSNs is
sufficient to obtain close-to-perfect ROC performance for this
network setting.

Finally, in Figs. 7 and 8 we investigate the effect of
the number of packets used to obtain delay measurements
on the bottleneck identification performance of the proposed
algorithm. Plotted in the figures are the strong and weak ROC
curves obtained for the case in which each component network
of G has 25 nodes (i.e., |Vu| = |Vv| = 25), the probability of
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Fig. 7. Strong ROC performance of NoNs with two 25-node components
with total number of packets measured N = 5000, 1000, and 500. Number
of OSNs |S| = 2. Edge creation probability p = 0.5.
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Fig. 8. Weak ROC performance of NoNs with two 25-node components
with total number of packets measured N = 5000, 1000, and 500. Number
of OSNs |S| = 2. Edge creation probability p = 0.5.

edge creation p = 0.5, and the number of OSN(s) packets
measured N = 5000, 1000, and 500. The number of OSNs
employed in |S| = 2 in all cases. From the figures, we observe
that the strong ROC performance degrades sharply as the
number of packets measured drops to N = 1000 or below.
However, the weak ROC performance degrades in a much
more graceful manner as N decreases. The main reason for
this observed difference in degradation in performance comes
from the fact that the strong false alarm event is much stricter
a requirement than its weak counterpart.

V. CONCLUSION

The proposed bottleneck identification algorithm based on
applying a SVM on clustered packet delay statistics is shown
to give very good detection performance in a NoN that is
modeled by a single-bottleneck graphs, when the component



networks of the NoN are not too small in size or the con-
nectivity between nodes within the component networks is
not too sparse. This bottleneck identification algorithm has
the advantage that it requires almost no information about
the topology or traffic pattern of the underlying NoN. It
only employs round-trip delay measurements of packets sent
by nodes to other nodes in the NoN to perform bottleneck
identification. Extensions to more complicated NoNs that
contain more and unknown numbers of bottleneck links are
currently under investigation.
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