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Abstract—We investigate the framework of privacy amplifi-
cation by iteration, recently proposed by Feldman et al., from
an information-theoretic lens. We demonstrate that differential
privacy guarantees of iterative mappings can be determined by a
direct application of contraction coefficients derived from strong
data processing inequalities for f -divergences. In particular, by
generalizing the Dobrushin’s contraction coefficient for total
variation distance to an f -divergence known as Eγ-divergence,
we derive tighter bounds on the differential privacy parameters
of the projected noisy stochastic gradient descent algorithm with
hidden intermediate updates.

I. INTRODUCTION AND MOTIVATION

Differential privacy (DP) [1, 2] has become the standard
definition for designing privacy-preserving machine learning
algorithms. One reason for its success is its operational
significance, which can be best described in terms of binary
hypothesis testing (see, e.g., [3, 4]). Nevertheless, it is often
difficult to compute DP guarantees for applications where a
high number of data accesses is needed for a single analysis
[5, 6]. To obtain the DP parameters in such applications, which
include machine learning models trained using stochastic
gradient descent (SGD), one needs to resort to composition
theorems which are often loose due to their generality. As
a remedy, several variants of DP have been recently pro-
posed [7–10] based on Rényi divergence. These variants enjoy
better composition properties. Among these variants, Rényi
DP (RDP) has proven to be effective in studying private
deep learning algorithms [5] especially when paired with sub-
sampling techniques [11].

Recently, the new framework of privacy amplification by
iteration was proposed by Feldman et al. [12] as an alternative
to privacy amplification by sub-sampling. This framework
possesses several advantages which makes it well-suited for
determining and enforcing privacy in distributed settings where
data samples are stored locally by each user. Existing private
algorithms based on sub-sampling require hiding the set of
users participating in each update step of the model. This
requirement, however, dictates either all data samples be stored
centrally (i.e., no distributed setting) or all-to-all communi-
cation (i.e., excessive communication complexity). The new
framework of privacy amplification by iteration relaxes these
issues; it does not require the order of participating users
to be random or hidden. On the other hand, it requires that
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all intermediate updates be hidden until a certain number of
update steps are applied (e.g., not disclosing model update of
SGD before a pre-specified step, say, n-th step).

Since the intermediate updates are assumed to be hidden,
one can view an iterative process as a concatenation of
channels. To see this, let {ψt}nt=1 be a sequence of mapping
and the update rule be given by

Yt = ψt(Yt−1) + Zt, (1)

where Y0 = y0 ∈ Rd and {Zt}nt=1 are i.i.d. copies of a noise
distribution PZ . Let {Y ′t }nt=1 be the output of the same process
started at Y ′0 = y′0 ∈ Rd. Letting µt and νt be the distributions
of Yt and Y ′t , the strong data processing inequality (SDPI) for
f -divergences (see, e.g., [13, 14]) implies that

Df (µn‖νn) ≤ Df (µ1‖ν1)
n∏
t=1

ηf (Kt), (2)

where Df is an f -divergence and ηf (Kt) is the contraction
coefficient (also known as strong data processing constant) of
the Markov kernel Kt(y) := PYt|Yt−1=y = PZ+ψt(y) under
f -divergence (see Section III for details). By exploiting the
connection between DP and a certain f -divergence known as
Eγ-divergence, we build upon (2) to obtain bounds for DP
parameters of iterative processes. Specifically, we study the
noisy stochastic gradient descent algorithm and obtain tighter
bounds for its DP parameters than those provided currently
in the literature [12, 15]. To do so, we obtain a closed-
form expression for the contraction coefficient of Markov
kernels under Eγ-divergence that generalizes the well-known
Dobrushin’s theorem [16].

Our approach is inspired by the original work of Feldman
et al. [12]. They adopted RDP as the measure of privacy and
proved the following SDPI result [12, Theorem 1] for the
Rényi divergence of order α > 1: For the iterative process
described in (1) with PZ the Gaussian distribution N (0, σ2Id),

Dα(µn‖νn) ≤ 1

n
Dα(µ1‖ν1) =

1

n

α‖y0 − y′0‖
2σ2

. (3)

Despite its tractability, RDP lacks a clear operational inter-
pretation. As a result, RDP guarantees are usually translated
to DP guarantees via a transformation which is known to be
loose, see, e.g., [7, Proposition 3].

As a special case of iterative processes, we consider the
noisy SGD algorithm with Laplacian or Gaussian perturbation.
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Our empirical analyses show that the DP parameters of noisy
SGD obtained by our approach are smaller than that of [12, 15]
(after applying the RDP to DP transformation). To capture
common practice in machine learning applications, the input
alphabet of the Markov kernels in this work are assumed to be
compact. As a result, our analysis of contraction coefficients
of such kernels is akin to the analysis of input-constrained
channels performed by [17]. In the interest of space, all the
proofs are delegated to its full version available online [18].

II. BACKGROUND

In this section, we briefly review privacy mechanisms, f -
divergences and contraction coefficients. We also review a
relation between DP and Eγ-divergence.

A. Privacy Mechanisms
The following examples describe two typical privacy mech-

anisms used in machine learning.

Example 1. (Private Queries) Let X be an arbitrary alphabet.
A query is a function f that takes a sample D ∈ Xn and
produces a response y in the space of responses Y . In this
setting, a privacy mechanism K takes a response y ∈ Y and
produces another (random) response in the same space. In
general, a privacy mechanism can be described by a Markov
kernel K : Y → P(Y), i.e., a channel with the same input and
output space Y , where P(Y) denotes the set of probability
measures over Y . Thus, the private query, sayM, is a random
variable satisfying M(D) ∼ K(f(D)).

Example 2. (Stochastic Optimization) Let Y denote a param-
eter space, e.g., the coefficients in a linear regression model.
Given a dataset D = {x1, . . . , xn} ∈ Xn, typical stochastic
optimization methods take an initial point Y0 ∼ µ0 ∈ P(Y)
and further refine it through a random optimization process.
The latter process typically depends on the dataset D and can
be encoded by a Markov kernel KD : Y → P(Y). Furthermore,
in some cases it is of iterative form, e.g., stochastic gradient
descent, and the kernel KD can be decomposed as KD =
Kx1
· · ·Kxn . Here, the randomness of the initial point and the

optimization process may provide some level of privacy.

Motivated by the previous examples, we model privacy
mechanisms as random mappings taking a data set D ∈ Xn
as input and producing an element in a given set Y as output.
Furthermore, we assume that any privacy mechanism, sayM,
is a random variable satisfying

M(D) ∼ µ0K :=

∫
µ0(dy)K(y),

where the measure µ0 ∈ P(Y) and the kernel K : Y → P(Y)
may depend on D, i.e., µ0 = (µ0)D and K = KD.

B. f -Divergence and Contraction Coefficients
Given a convex function f : (0,∞) → R with f(1) = 0,

f -divergence between two probability measures µ and ν is
defined in [19, 20] as

Df (µ‖ν) := Eν
[
f

(
dµ
dν

)]
.

Let K : Y 7→ P(Y) be a Markov kernel. Following
the definition from Ahslwede and Gács [21], we define the
contraction coefficient (or strong data processing coefficient)
of K under f -divergence as

ηf (K) := sup
µ,ν:

Df (µ‖ν)6=0

Df (µK‖νK)

Df (µ‖ν)
.

This quantity has been studied for several f -divergences, e.g.,
KL-divergence for which f(t) = t log(t), χ2-divergence for
which f(t) = (t − 1)2, and also total variation distance for
which f(t) = 1

2 |t − 1|. In particular, Dobrushin [16] showed
that

ηTV(K) = sup
y1 6=y2

TV(K(y1),K(y2)), (4)

where TV(µ, ν) denotes the total variation distance between
µ and ν. It is worth noting that (4) has been extensively used
in information theory [17, 22], statistics [23] and graph theory
[24, 25].

C. Differential Privacy and Eγ-Divergence

For an arbitrary alphabet X , let Xn be the set of all
datasets of size n. By definition, two datasets D and D′ are
neighboring, denoted as D ∼ D′, if their Hamming distance is
equal to one. Given a randomized mechanism M, we let PD
be the distribution of M(D), the output of M with D ∈ Xn
as the input. For ε ≥ 0 and δ ∈ [0, 1], a mechanismM is said
to be (ε, δ)-differentially private (DP) if

PD(A) ≤ eεPD′(A) + δ, (5)

for every measurable set A ⊂ Y and neighboring datasets
D ∼ D′. When δ = 0, we simply say that M is ε-DP.

The definition of (ε, δ)-DP given in (5) can be reformu-
lated in terms of Eγ-divergence, also known as hockey-stick
divergence [26–28]. Given γ ≥ 1, Eγ-divergence between two
probability distributions P and Q is defined as

Eγ(P‖Q) :=

∫
Y

[d(P − γQ)(y)]+ (6)

= sup
A⊂Y

[P (A)− γQ(A)]

= P
(
ıP‖Q > log γ

)
− γQ

(
ıP‖Q > log γ

)
, (7)

where [b]+ = max{0, b} and ıP‖Q(t) := log dP
dQ (t) denotes

the information density between P and Q. The Eγ-divergence
is in fact an f -divergence associated with f(t) = (t−γ)+ and
it also satisfies that E1(P‖Q) = TV(P,Q). The next theorem
provides a relation between this divergence and (ε, δ)-DP.

Theorem 1 ([29, 30]). A mechanism M is (ε, δ)-DP if and
only if, for all D ∼ D′,

Eeε(PD‖PD′) ≤ δ.

By relating DP to Eγ-divergence, this theorem enables us to
invoke the SDPI relationship (2), specialized to Eγ-divergence,
to obtain the DP parameters ε and δ of iterative processes. To
do so, we first need to compute the contraction coefficient
under Eγ-divergence, which is addressed in the next section.
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Fig. 1. The schematic representation of the projected noisy stochastic gradient descent described algorithm in Algorithm 1. Given µ0

an arbitrary distribution on K and dataset D = {x1, . . . , xn}, the i-th iteration is encoded by a projected additive kernel Kxi given by
y 7→ ΠK(ψxi(y) + ηZi) where ψxi(y) = y − η∇y`(y, xi). The output distribution of kernel Kxi is µi = µ0Kx1 . . .Kxi−1 .

III. CONTRACTION OF Eγ -DIVERGENCE

In this section we establish a closed-form expression for
the contraction coefficient of kernels under Eγ-divergence that
generalizes the Dobrushin’s theorem in (4). We then instantiate
this expression to introduce a family of practically-appealing
kernels with compact input alphabet. For ease of notation, we
let ηγ(K) := ηEγ (K).

Theorem 2. For any γ ≥ 1, we have

ηγ(K) = sup
y1,y2∈Y

Eγ(K(y1)‖K(y2)). (8)

Note that the Dobrushin’s theorem [16] given in (4) cor-
responds to the special case of γ = 1 in Theorem 2. This
theorem implies that in order to compute the contraction
coefficient of a Markov kernel K under Eγ-divergence, one
needs to compute Eγ-divergence between K(y1) and K(y2)
for any y1, y2 ∈ Y . The following lemmas are useful for such
task. For m ∈ R and v > 0, let L(m, v) denote the Laplace
distribution with mean m and variance 2v2.

Lemma 1. For m1,m2 ∈ R and v > 0, we have

Eγ(L(m1, v)‖L(m2, v)) =
[
1− e

v log(γ)−|m1−m2|
2v

]
+
. (9)

For m ∈ Rd and σ > 0, let N (m,σ2Id) denote the mul-
tivariate Gaussian distribution with mean m and covariance
matrix σ2Id.

Lemma 2. For Ni = N (mi, σ
2Id), i = 1, 2, we have

Eγ(N1‖N2) = Q

(
log γ

β
− β

2

)
− γQ

(
log γ

β
+
β

2

)
,

where Q(t) = 1√
2π

∫∞
t
e−u

2/2du and β = ‖m2−m1‖
σ .

The previous lemma motivates the following definition.

Definition 1. For γ ≥ 1, we define θγ : [0,∞)→ [0, 1] by

θγ(r) := Eγ (N (ru, Id)‖N (0, Id))

= Q

(
log γ

r
− r

2

)
− γQ

(
log γ

r
+
r

2

)
, (10)

where u ∈ Rd is any vector of unit norm.

With this definition at hand, we can write

Eγ(N (m1, σ
2Id)‖N (m2, σ

2Id)) = θγ

(
‖m2 −m1‖

σ

)
.

(11)

It is worth pointing out that θγ has a similar role as the function
Rα introduced by Feldman et al. in [12].

The additive Gaussian kernel K : Rd → Rd is the kernel
determined by K(y) = N (y, σ2Id) for some σ > 0. This
kernel models the privacy mechanisms which map y 7→ y+Z
with Z ∼ N (0, σ2Id). An application of Theorem 2 and
Lemma 2 shows that, under Eγ-divergence, the contraction
coefficient of the additive Gaussian kernel is trivial1, i.e.,
ηγ(K) = 1. A similar conclusion holds for the additive Laplace
kernel2 which is determined by K(y) = L(y, v) for some
v > 0.

Fortunately, the input and output of kernels appearing in
applications tend to be bounded. Think, for example, of the
kernel which models the update of the weights of a neural
networks during its training. In this case, the weights are
bounded either by design or by regularization mechanisms.
Motivated by this observation, we say that a kernel K : K→ K
is the projected additive Gaussian kernel if it models the
mechanism which maps y 7→ ΠK(y + Z) where K ⊂ Rd
is compact and convex, ΠK is the projection operator onto K
and Z ∼ N (0, σ2Id) for some σ > 0. Similarly, we say that a
kernel K : K → K is the projected additive Laplace kernel if
it models the mechanism which maps y 7→ ΠK(y + L) where
L ∼ L(0, v) for some v > 0. These construction of kernels
will be instrumental in the analysis of privacy guarantee of
iterative processes in the next section.

IV. ANALYSIS OF ITERATIVE MECHANISMS VIA
CONTRACTION COEFFICIENTS

In this section, we consider iterative processes that can be
decomposed into projected additive kernels. This constraint
allows us to analyze the evolution of such processes through
the lens of contraction coefficients.

A. General Setting

Recall the stochastic optimization setting in Example 2,
where Y ⊂ Rd is a parameter space and D = {x1, . . . , xn} is
a dataset. In this context, an iterative stochastic optimization
method is fully characterized by a set of kernels {Kx : x ∈ X}

1This is not surprising given the facts that ηTV(K) = 1 for any Gaussian
channels K without input constraints [17] and ηTV(K) = 1 if and only if
ηf (K) = 1 for all non-linear functions f [31].

2The Euclidean norm of a d-dimensional Laplace noise vector is of order
d log d, see, e.g., [32, Thm. 2]. This asymptotic behavior makes Laplacian
noise vectors highly inefficient for privacy purposes in the high dimensional
setting. Therefore, in this paper we focus on the 1-dimensional case.
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with Kx : Y → P(Y). The following lemma provides an upper
bound for the f -divergence between the parameters returned
when using two neighboring datasets.

Lemma 3. Let µ0 ∈ P(Y) and {Kx : x ∈ X} be a family of
kernels over Y . If D = {x1, . . . , xn} and D′ = {x′1, . . . , x′n}
are neighbouring datasets with xi 6= x′i for some i ∈ [n], then

Df (µ0Kx1
· · ·Kxn‖µ0Kx′1 · · ·Kx′n)

≤ Df (µi−1Kxi‖µi−1Kx′i)
n∏

t=i+1

ηf (Kxt),

where µi−1 := µ0Kx1
· · ·Kxi−1

.

While the previous lemma follows from a routine appli-
cation of the strong data processing inequality, it provides a
natural framework to study the privacy guarantees of iterative
optimization methods. In the following, we use it to study the
privacy properties of the projected noisy stochastic gradient
descent algorithm and some of its variations.

B. Projected Noisy Stochastic Gradient Descent

We now apply Lemma 3 to study the projected noisy
stochastic gradient descent (PNSGD) algorithm under two
different noise densities: Laplacian and Gaussian.

Assume that K is a compact and convex subset of Rd and
that ` : K × X → R+ is a loss function differentiable in
its first argument. In the literature it is customary to assume
regularity conditions on the loss function [12, 15]. We make
the following assumptions on the loss function:
• y 7→ `(y, x) is L-Lipschitz for all x ∈ X ,
• y 7→ ∇y`(y, x) is β-Lipschitz for all x ∈ X ,
• y 7→ `(y, x) is ρ-strongly convex for all x ∈ X .

For a given a dataset D = {x1, . . . , xn}, the PNSGD algorithm
starts from a given point Y0 ∼ µ0 ∈ P(K) (an arbitrary initial
distribution) and then updates it according to the rule

Yt+1 = ΠK(Yt − η[∇y`(Yt, xt+1) + Zt+1]), (12)

where ΠK : Rd → K is the projection operator onto K, η > 0
is the learning rate and {Zt}nt=1 is a collection of i.i.d. noise
variables sampled from a distribution absolutely continuous
w.r.t. the Lebesgue measure. The PNSGD algorithm is sum-
marized in Algorithm 1.

Algorithm 1 PNSGD Algorithm

Require: Dataset D = {x1, . . . , xn}, learning rate η > 0, initial
point Y0 ∼ µ0 ∈ P(K) and i.i.d. copies {Zt}nt=1 of a r.v. Z
for t ∈ {0, . . . , n− 1} do
Yt+1 = ΠK(Yt − η[∇y`(Yt, xt+1) + Zt+1])

end for
return Yn

For any x ∈ X , let ψx(y) := y − η∇y`(y, x). Notice that
y 7→ ΠK(ψx(y) + ηZ) is encoded by the projected additive
Laplacian (resp., Gaussian) kernel if Z is Laplacian (resp.,
Gaussian) noise variable. Given the dataset D = {x1, . . . , xn},
one can therefore view the i-th iteration of the PNSGD

algorithm as a projected kernel Kxi : K→ P(K) that models
the mapping

y 7→ ΠK(ψxi(y) + ηZ),

where Z is the common distribution of {Zt}nt=1. If Y1, . . . , Yn
are produced by the PNSGD algorithm with Y0 ∼ µ0, then,
for all t ∈ [n], we have

Yt ∼ µt = µ0Kx1
· · ·Kxt .

This allows us to express the PNSGD algorithm as a concate-
nation of n channels, as illustrated in Fig. 1.

Before delving into the privacy analysis of PNSGD, it is
important to pause and adapt the definition of differential pri-
vacy to PNSGD setting. We recall from [12] that a mechanism
M is (ε, δ)-DP for its ith input if Eeε(PD‖PD′) ≤ δ for any
pair of datasets D and D′ differing on the i-th coordinate.
Specializing Lemma 3 to Eγ-divergence, we can say that the
PNSGD algorithm is (ε, δ)-DP for its i-th input if

Eeε(µ0Kx1
· · ·Kxn‖µ0Kx′1 · · ·Kx′n) (13)

≤ Eeε(ζxi‖ωxi)
n∏

t=i+1

ηeε(Kxt),

where ζxi := µi−1Kxi and ωxi := µi−1Kx′i . Assuming Z is
either Laplacian or Gaussian, we can compute ηeε(Kxt).

C. Laplacian Projected Noisy Stochastic Gradient Descent

Here, we consider the PNSGD algorithm with Laplacian
noise; i.e., Z ∼ L(0, v) for some v > 0. The following
theorem establishes the ε-DP property of such algorithm. For
L, β, and ρ given in Section IV-B, define

M :=

√
1− 2ηβρ

β + ρ
. (14)

Theorem 3. Assume that K = [a, b] for some a < b. Then
PNSGD algorithm with Laplace noise is (ε, δ)-DP for its i-th
input where ε ≥ 0 and

δ =
(

1− e ε2−Lv
)
+

(
1− e

ε
2−

M(b−a)
2ηv

)n−i
+

.

Consequently, we have δ = 0 if ε ≥ min{ 2Lv ,
M(b−a)
ηv }.

The use of Laplacian noise to provide ε-DP for SGD
algorithms was extensively studied, see e.g., [32–34]. Unlike
previous results, Theorem 3 is the first result regarding the
privacy guarantees of PNSGD with Laplacian noise in the
distributed-oriented framework proposed by Feldman et al.
[12]. It is worth pointing out that our approach seems con-
ceptually simpler than the approaches employed in [12, 15].

D. Gaussian Projected Noisy Stochastic Gradient Descent

Next, we assume that the noise distribution in the PNSGD
algorithm is Gaussian, i.e., Z ∼ N (0, σ2Id).
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Fig. 2. The privacy parameters ε and δ of PNSGD with Gaussian
noise having σ = 2 and loss function with parameter L = 1 and β =
0.5, computed using both Theorem 4 and Balle et al. [15, Theorem
5] for i = 1, i = 20, and i = 39 in dataset of size n = 40. Other
parameters are as follows: η = 0.5, ρ = 0, and DK = 1.

Theorem 4. Let K ⊂ Rd be a compact and convex set. The
PNSGD algorithm with Gaussian noise is (ε, δ)-DP for its i-th
input where ε ≥ 0 and

δ = θeε

(
2L

σ

)
θeε

(
MDK

ησ

)n−i
.

Compared to Laplacian, the Gaussian perturbation has a
better utility in high-dimensional setting, as illustrated in
[32]. Hence, it has extensively appeared in DP literature as
a de facto mechanism for providing privacy guarantees in
training deep learning models [5]. Gaussian distribution is,
in particular, appealing in the case of RDP as the Rényi
divergence between two Gaussian distributions has a simple
form (as opposed to Eγ-divergence). This intuition, among
others, led Feldman et al. [12] and Balle et al. [15] to adopt
RDP to examine the PNSGD algorithm with Gaussian noise
in the framework of privacy amplification by iteration. While
the former studied the problem for cases where M = 1
(i.e., ρ = 0), the latter assumed M < 1 (i.e., ρ > 0) and
derived strictly better bounds for RDP guarantees. In fact,
[15, Theorem 5] reduces to [12, Theorem 23] when ρ = 0.
We wish to compare Theorem 4 with these results with or
without strong convexity. To do so, we first need to convert
the RDP guarantee given in [15, Theorem 5] to (ε, δ)-DP. This
conversion is a standard practice in DP literature and follows
from an straightforward application of [7, Proposition 3].

Proposition 1 (Adapted from [15]). The PNSGD algorithm
with Gaussian perturbation is (ε, δ̃)-DP for its i-th input where
ε > κ and

δ̃ = e−
1
4κ (ε−κ)

2

, (15)

where κ = 2L2

(n−i)σ2M
(n−i+1) if i ∈ [n − 1] and κ = 2L

2

σ2 if
i = n.

Note that δ in Theorem 4 is given in terms of Q function
and hence it is challenging to analytically compare δ with δ̃.
Nevertheless, we provide several numerical comparisons. In
Fig. 2, we compare δ in Theorem 4 with δ̃ in Proposition 1
for the first (i = 1), middle (i = 20) and the second to last
(i = 39) individuals in a dataset of size n = 40 and σ = 2
with the assumption that the loss function is not strictly convex
(i.e., ρ = 0). As clearly seen, our approach outperfoms [12]
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Fig. 3. The privacy parameters ε and δ of PNSGD with Gaussian
noise having σ = 1 and strongly convex loss function (ρ = 0.2),
computed using both Theorem 4 and Balle et al. [15, Theorem 5]
for i = 20, i = 30, and i = 39 in a dataset of size n = 40. Other
parameters are as follows: η = 0.7, L = 1, β = 0.5, and DK = 1.

especially for the individuals whose records were processed
later in the algorithm.

In Fig. 3, we focus on the effect of strong convexity
parameter ρ on the privacy guarantee. We again depict δ and δ̃
for the second half of the dataset: i = 20, i = 30, and i = 39
in a dataset of size n = 40 and σ = 1. Here, we assume that
the loss function is strictly convex with parameter ρ = 0.2. As
observed in this case, Theorem 4 provides better privacy in the
high privacy region (i.e., small ε) as well as for the individuals
who appear later in the dataset for all privacy region.

E. Randomly Stopped PNSGD Algorithm

We end this section by pointing out a potential shortcoming
of Theorems 3 and 4 (and in general the privacy amplification
by iteration framework): different individuals participating in
the dataset experience different privacy guarantees; that is,
individuals whose records were processed earlier experience
higher privacy guarantee. This may not be justified in prac-
tice. To address this issue, we follow [12] to consider the
random stopping for the PNSGD algorithm: namely, instead
of iterating for n steps, we pick a random time T uniformly
on [n], stop the algorithm after T steps and then output YT .
The following theorem illuminates that such algorithm in fact
uniformizes the privacy guarantee among all individuals.

Theorem 5. Let K ⊂ Rd be a compact and convex set. The
randomly-stopped PNSGD algorithm with Gaussian noise is
(ε, δ)-DP with ε ≥ 0 and

δ =
1

n
θeε

(
2L

σ

)(
1− θeε

(
MDK

ησ

))−1
. (16)

The randomly stopped PNSGD was first proposed by Feld-
man et al. [12] where they derived its RDP guarantee in
[12, Theorem 26] only if σ satisfies a certain constraint. This
constraint is due to the non-convexity of the map (µ, ν) 7→
Dα(µ‖ν). In contrast, since (µ, ν) 7→ Eγ(µ‖ν) is jointly
convex (as for any other f -divergences), Theorem 5 holds for
any σ.

Another approach to address the non-uniformity of privacy
guarantees is to permute the dataset first, via a random
permutation and then feed it to the PNSGD algorithm. We
will examine this approach in our future work.
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