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Abstract—We derive the optimal differential privacy (DP)
parameters of a mechanism that satisfies a given level of Rényi
differential privacy (RDP). Our result is based on the joint range
of two f-divergences that underlie the approximate and the
Rényi variations of differential privacy. We apply our result to
the moments accountant framework for characterizing privacy
guarantees of stochastic gradient descent. When compared to
the state-of-the-art, our bounds may lead to about 100 more
stochastic gradient descent iterations for training deep learning
models for the same privacy budget.

I. INTRODUCTION

Differential privacy (DP) [1] has become the de facto
standard for privacy-preserving data analytics. Intuitively, a
(potentially randomized) algorithm is said to be differentially
private if its output does not vary significantly with small
perturbations of the input. DP guarantees are usually cast in
terms of properties of the information density [2] of the output
of the algorithm conditioned on a given input—referred to as
the privacy loss variable in the DP literature.

Several methods have recently been proposed to ensure
differentially private training of machine learning (ML) models
[3-8]. Here, the parameters of the model determined by
a learning algorithm (e.g., weights of a neural network or
coefficients of a regression) are sought to be differentially
private with respect to the data used for fitting the model (i.e.
the training data). When the model parameters are computed
by applying stochastic gradient descent (SGD) to minimize
a given loss function, DP can be ensured by directly adding
noise to the gradient. The empirical and theoretical flexibility
of this noise-adding procedure for ensuring DP was demon-
strated, for example, in [3, 4]. This method is currently being
used for privacy-preserving training of large-scale ML models
in industry, see e.g., the implementation of [9] in the Google’s
open-source TensorFlow Privacy framework [10].

Not surprisingly, for a fixed training dataset, privacy deteri-
orates with each SGD iteration. In practice, the DP constraints
are set a priori, and then mapped to a permissible number of
SGD iterations for fitting the model parameters. Thus, a key
question is: given a DP constraint, how many iterations are
allowed before the SGD algorithm is no longer private? The
main challenge in determining the DP guarantees provided
by noise-added SGD is keeping track of the evolution of
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the privacy loss random variable during subsequent gradient
descent iterations. This can be done, for example, by invoking
advanced composition theorems for DP, such as [11, 12]. Such
composition results, while theoretically significant, may be
difficult to apply to the SGD setting due to their generality
(e.g., they do not take into account the noise distribution used
by the privacy mechanism).

Recently, Abadi et al. [3] circumvented the use of DP
composition results by developing a method called moments
accountant (MA). Instead of dealing with DP directly, the
MA approach provides privacy guarantees in terms of Rényi
differential privacy (RDP) [13] for which composition has a
simple linear form. Once the privacy guarantees of the SGD
execution are determined in terms of RDP, they are mapped
back to DP guarantees via a conversion result between DP
and RDP [3, Theorem 2]. This approach renders tighter DP
guarantees than those obtained from advanced composition
theorems (see [3, Figure 2]).

Our Contributions: We provide a framework which settles
the optimal conversion from RDP to DP, and thus further
enhances the privacy guarantee obtained by the MA approach.
Our technique relies on the information-theoretic study of joint
range of f-divergences: we first describe both DP and RDP
using two certain types of the f-divergences, namely E, and
x® divergences (see Section II). We then apply [14, Theorem
8] to characterize the joint range of these two f-divergences
which, in turn, leads to the “optimal” conversion from RDP
to DP (see Section III). Specifically, this optimal conversion
allows us to derive bounds on the number of SGD iterations for
a given DP constraint in the context of Gaussian perturbation
of the gradient. Our result improves upon the state-of-the-art
[3] by allowing more training iterations (often hundreds more)
for the same privacy budget, and thus providing higher utility
for free (see Section IV). In the interest of space, we delegate
the proofs to the full version of this paper [15].

II. PRELIMINARIES AND PROBLEM SETUP

In this section, we give several definitions and basic results
that will be used in the subsequent sections.

Let D be some universe of all possible datasets and (X, F)
be a measurable space with Borel o-algebra . A mechanism
M : D — P(X) assigns a probability distribution M, to each
dataset d where P(X) denotes the set of all probability mea-
sures on X. Two datasets d and d’ are said to be neilgltlboring
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(denoted by d ~ d’) if their Hamming distance is one. For any
pair of neighboring datasets d and d’, the privacy loss random

variable is defined as Lg 4 = log //\\44;((3;)) where Y ~ M.

Definition 1. A mechanism M : D — P(X) is said to be
e (g,0)-DP for given 6 € [0,1) and € > 0, if

sup Mg(A) — e“Ma (A) <6. (1)
AEF drd!

e (a,7)-RDP for a given o > 1, if

sup Do (Mal|Mar) <, (2)

«
where Do (P[|Q) == L5 logEq [(gg) ] denotes the

Rényi divergence of order o between P and Q in P(X).

It can be shown that (1) is implied if the tail event {L4 4 >
e} occurs with probability at most § for all d ~ d’, and (2)
is implied if (and only if) the a-moment of Ly 4 is upper
bounded by . Built on this insight, the MA restricts the «-
moment of Lg g for all o > 1.

As mentioned earlier, RDP (and hence MA) composes
linearly, as opposed to the strong composition theorem for
DP which is known to be loose for many practical mecha-
nisms, including Gaussian. With this clear advantage comes
a shortcoming: RDP suffers from the lack of operational
interpretation, see e.g., [16]. To address this issue, the RDP
guarantee is often translated into a DP guarantee via the
following result.

Theorem 1. ([3, Thm 2], [13, Prop 3]) If the mechanism M
is (cv,y)-RDP, then it satisfies (¢,0)-DP for any € > ~ and

§ = e (a=D(e=) (3)

For MA, this constraint must hold for all o > 1 and thus it

leads to (&, 4)-DP for
§ = inf e~ (@~ D(E=v(@) 4)
a>1

where y(a) = supy.gy Da(Mg|| Mg ) and the dependence
on « is made clear. Since o — (a — 1)D,(P||Q) is convex
[17, Corollary 2] for any pair of probability measures P
and @, the above minimization is a log-convex problem and
hence can be solved to an arbitrary accuracy. We will show
in Section IV that this minimization has a simple form for
Gaussian mechanisms and can be solved analytically.

Theorem 1 establishes a relationship for converting RDP
to DP that is extensively used in several recent differentially
private ML applications, e.g., [7, 18-23] to name a few.
However, despite its extensive use, this relationship is loose.
For instance, as we see later, for Gaussian mechanisms this
relationship holds for ¢ — 0 only when the variance of noise
goes to infinity. In Section III, we present the optimal conver-
sion from RDP to DP, thus improving the privacy guarantees
of recent ML applications involving MA. Specifically, we
investigate the following two closely-related questions:

Question One: Given an («,~y)-RDP mechanism M, what
are the smallest € and § such that M is (e,6)-DP?

We show in Section III that such minimal € and § can be
obtained via a simple one-variable optimization problem.

We then turn our attention to privacy guarantees in applica-
tions where the data may need to be accessed many times (say
T times) such as with SGD. In such applications, each data
access renders the application of a privacy mechanism, i.e.,
T privacy mechanisms are applied. An oft-used model, that
we also adopt here, is one in which each mechanism adds
Gaussian noise with pre-specified variance 2. This model
is referred to as the T-fold homogeneous composition of
Gaussian mechanisms each with variance o2.

Question Two: Given ¢ > 0, § € [0,1] and o2, what is
the largest T such that the T-fold homogeneous composition
of Gaussian mechanism with variance o is (¢,8)-DP?

The linearity of the RDP guarantee (in 7") and the optimal
conversion from RDP to DP (addressed in Question One)
enable us to express the answer to this question as a minimiza-
tion (over o > 1) of the answer to Question One, analogous
to (4). Although this additional minimization significantly
complicates the analytic derivation, we nevertheless obtain
tight bounds for the largest 7" provided that ¢ is sufficiently
small. Details are deferred to Section IV.

To mathematically formulate these goals, we need the
following definitions and basic results.

Definition 2. ([24, 25]) Given two probability distributions P
and () and a real-valued convex function f satisfying f(1) =
0, the f-divergence between P and () is given by

dP

fl=

dQ
We frequently use two particular instances of f-divergences.
Given X\ > 1, the f-divergence associated with f(t) = (¢ —

A)+ = max{t — A, 0}, is called E-divergence (also known as
hockey-stick divergence [26]) and given by

Dy(P||Q) = Eq : (5)

EAPIQ) = [(@P=2dQ), = sup [P(4) - AQ(0)]. ©

Also, for any a > 1, the f-divergence associated with
f(t) = L5t — 1) is denoted by' x*(P||Q). Note that
Do(Pl|Q) = ZA5log (1 + (o — 1)x*(P||Q)) for a pair of
probability distributions P and Q.

It is shown in [28], [29] that

M is (g,8)-DP <= sup E . (M || Ma) < 6. (7
drd’

Similarly, it can be verified that:

M is (a,7)-RDP = sup X*Mal[Ma) < x(v), @)

where

x(v) = a1 &)

For any o > 1 and non-negative ~y, we let M, () be the
set of all («, 7)-RDP mechanisms M. This definition, together

I x®-divergence is also referred to as a-Hellinger divergence, see, e.g., [27].

921

Authorized licensed use limited to: Harvard Library. Downloaded on November 18,2020 at 14:43:58 UTC from IEEE Xplore. Restrictions apply.



with (7), enables us to precisely formulate Question One. If a
mechanism is («,y)-RDP then the smallest d, for a given ¢,
such that it is (,9)-DP is upper bounded by

5 () = sup Eee (Mgl My)

d~d’

sup
MeM, ('7)

(10)

Given a,~ and e, this quantity corresponds to the smallest
0 guaranteed by the worst mechanism in M, (), thus estab-
lishing an upper bound for the smallest ¢ such that a given
(r,v)-RDP mechanism is (g, d)-DP. In fact, we can write

65(v) =inf {6 € [0,1] : VM € Mq(y) is (g,6)-DP}. (11)

Such quantity is key for indicating the “optimality” of a
conversion from RDP to DP. It may be equivalently identified
by closely related quantities

~5 () = sup {'y >0:YM e M,(v) is (¢, 6)-DP} , (12)
or
€® (v) := inf {e>0:YM € M,y(v) is (¢,6)-DP}. (13)

In the next section, we exploit (7)-(8) to compute or bound
these quantities.

IIT. OpPTIMAL CONVERSION FROM RDP TO DP

In this section, we aim at computing the fundamental worst-
case DP privacy parameter guaranteed by an (a,<)-RDP
mechanism; a quantity defined in (10). To this goal, we first
show that this quantity is an upper boundary of a convex set
defined by E,-divergence and x“-divergence and then invoke
the well-known result of [14] about the joint range of f-
divergences.

First note that, according to (8), the set M, () can be equiv-
alently characterized by the constraint x*(Mg|[Ma) < x(7),
where x(7v) is defined in (9). Hence, the quantity in (10) in
fact constitutes the upper boundary of the convex set

R e {(XQ(MMMM, Eee (MallMa)) [yM d~ '}

(14)
This simple observation has two key implications. First, the
convexity of this set implies that the map v — ¢ (), defined
in (10), can be alternatively expressed by & — ~(4), defined
in (12). Note also that ~; can be equivalently written as

S(6)= inf inf x ' (x*(Mgl|Ma
Ya(6) o ey a2, X (x*Ma[Ma))
s.t. Ege (Md”Md’) >0, Vd ~ d/,

where x ~1(-) is the inverse of x(-), defined in (9), and is given
by x1(t) = =15 log(1+(a—1)t). Second, to derive the upper
boundary of R, (and thus ~¢(¢)) it suffices to characterize
R. This allows us to cast the problem of converting from
(a,7)-RDP to (g,0)-DP as characterizing the joint range of
E, and x divergences. To tackle the latter problem, we refer

to [14] whose main result is as follows.

15)

Theorem 2. ([14, Theorem 8]) The joint range of divergences
Dy and D, satisfies

{(Ds(PIQ), Dy(PIIQ))|P.@ € P(X)} = conv(B)

10°

— True,a=2,e=05

10-2 Bound, @=2,£=0.5
['s) True,a=5,e=1
Bound, a=5,e=1
10+ — True,a=10,e=2

Bound, @=10,e =2

0 2 4 6 8
yin (a, y)-RDP

Fig. 1. True values (solid curves), obtained via numerically solving
convex optimization problem (16), versus the bounds (dotted curves)
obtained from Theorem 4 for three pairs of (a,¢).

where conv(-) denotes the convex hull operator and

B = {(Df(PbHQb),Dg(PbHQb)) Py, Q, € P({0, 1})}-

This theorem provides an efficient method for characterizing
the joint range of any pair of f-divergences. Specialized to
x® and E, divergences, this theorem therefore enables us to
characterize R, and thus derive 75 (). This is formalized in
Theorem 3 in which we establish a simple variational formula
for 7<,(9) involving a one-parameter log-convex minimization.
Hence, the optimization (15), which can potentially be of
significant complexity, turns into a simple tractable problem.

Theorem 3. For any o > 1, ¢ > 0 and § € [0, 1),

15 (0) = e+ (16)

log <pa(p _ 6)1—04 +]5a(€6 —p + 5)1—04) ;

min
pe(s,1) a — 1

where p =1 —p.

It can be shown the term inside the logarithm is convex in p
and hence this optimization problem can be numerically solved
with an arbitrary accuracy. It seems, however, not simple to
analytically derive 7€ (9). Nevertheless, we obtain a tight lower
bound in the following theorem.

Theorem 4. For any ¢ > 0 and o > 1, we have

7a(0) =0,
Va(6) =€ —log(1 —§), if ad>1, a7)
Va(0) = max{g(a,e,0), f(a,e,0)}, if 0<ad <1, (18)

where

logc—a
a—1 5’

g(Oé,Fj,(S) =&

with (o =+ (1 - l)afl and

[ [

1 _ 5—1\"
a_110g<(e — ad) <m) +a5>.

In Fig. 1, we numerically solve (16) for three pairs of («, ¢)

flaye,d) =e+

22and compare them with their corresponding bounds obtained
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from Theorem 4, highlighting the tightness of the above lower
bound.

As indicated earlier and illustrated in Fig. 1, the lower bound
in v5(9) in Theorem 4 is translated into an upper bound
on 0% (). In practice, it is often more appealing to design
differentially private mechanisms with a hard-coded value of
0 (as opposed to the fixed ). To address this practical need,
we convert the lower bound in Theorem 4 to an upper bound

on £5,(7).

Lemma 1. For o > 1 and v > 0, we have

(1) = (v+log(1—=0)),, if ad>1, (19
and if 0 < ad < 1
1 5
b0 < pmin{((a -1y -log )
1
log(erl)}, (20)

where X () is defined in (9). Moreover, £2,(0) = 0.

The proof of this lemma is based on writing the first-order
approximation for f in terms of d, thereby allowing us to
invert the inequality (18). Note that g is a linear function of
€ and hence invertible. It must be mentioned that Balle et
al. [16, Theorem 21] has recently proved the bound £ (v) <
v — all log C%, via a fundamentally different approach which

is weaker than Lemma 1.

Remark 1. As an important special case, this lemma demon-
strates that an (a,)-RDP mechanism provides (0,0)-DP
guarantee if 1 —e~7 < L and § € [(oe(*™ D7, 1] see [15] for
the detailed derivation and also another sufficient condition for
(0,0)-DP. Notice that this is significantly stronger than what
would be obtained from Theorem 1: € (v) < v — =15 log¥d

from which (0,6)-DP cannot be achieved.

IV. MOMENTS ACCOUNTANT AND GAUSSIAN
MECHANISMS

Moments accountant (MA) was recently proposed by Abadi
et al. [3] as a method to bypass advanced composition theo-
rems [11, 12]. Given a mechanism M, the T-fold adaptive
homogeneous composition M(T) is a mechanism that con-
sists of T copies of M, ie., (M!, ..., MT) such that the
input of M? may depend on the outputs of M?',... M1,
Determining the privacy parameters of M(T) in terms of those
of M and T is an important problem in practice and thus has
been the subject of an extensive body of research, see e.g.,
[3, 11, 12, 22].

Advanced composition theorems [11, 12] are well-known
results that provide the DP parameters of MT) for general
mechanisms. However, they can be loose and do not take into
account the particular noise distribution under consideration
(i.e., Gaussian noise). MA was shown to significantly improve
upon advanced composition theorems in specific applications
such as SGD. The cornerstone of MA is the linear composabil-
ity of RDP: If M*, ..., MT are (a,)-RDP, then it is shown

923

8
6 = )
w 4 /// 7
2 // Abadi et al. (cf. (23))
/ Our Bound (cf. Lemma 2)
° 0 200 400 600 8OO 1000

T: # of compositions

Fig. 2. The comparison of our bound in Lemma 2 on &° (p, T) with
(23) for 0 =20 and § = 107°.

[3, Theorem 2] that M(T) is (v, ¥T')-RDP. This result is then
translated into DP privacy parameters via Theorem 1. Since
the above composability and conversion hold for all a > 1,
one can obtain the best privacy parameters by optimizing over
a according to (4). More precisely, M(T) is (e, §)-DP with

5 = inf e—(a—l)(e—'y(a)T), (2])
a>1
for a given ¢ or equivalently,
. 1
€= érifl ()T — — 1 log 4, (22)

for a given §, where v(a) = supy.y Do (Mgy||Ma) is the
RDP parameter of the constituent mechanism M.

For the rest of this section, we assume M is a Gaussian
mechanism and apply Theorem 4 and Lemma 1 in place of
(21) and (22) respectively, in order to improve the DP privacy
parameters obtained by MA.

A. Bounds on Privacy Parameters of Gaussian Composition

Let f : D — R"™ be a query function and M be a Gaussian
mechanism with variance ¢2, ie, X = R” and M, =
N(f(d),0?%1,) for each d € D. For simplicity, we assume
that f has unit Lo-sensitivity, i.e., supy_z || f(d)— f(d")]|2= 1.
Since

o

sup Do (MallMar) = 575 sup | f(d) = f(d)l2= 55
it follows that M is («,v(«))-RDP for all o > 1 where
v(a) = povand p = 513 In light of the linear composability of
RDP, we obtain that M(7) the T-fold adaptive composition of
M is (o, y(a)T)-RDP. In this setting, the optimization prob-
lem given in (22) can be solved analytically. Consequently,
MA implies that M(T) is (,§)-DP for any § € (0,1) and

1 / 1
logd = pT 4+ 1/4pTlog = (23)
a—1 0

We next use the machinery developed in the previous section
to improve (23) the DP parameter of M(T) implied by MA.
To do so, define

s =T

(p,T) = 1I;f1 e (paT). (24)
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Abadi et al. (cf. (23))
— Our Bound {cf. Lemma 2}

0.0

100 200 300 400 500
E: # of epochs

Fig. 3. Privacy parameter ¢ of noisy SGD where the Gaussian noise
with 0 = 4 is added to the gradient of mini-batches with size rate
(or sub-sampling rate) 0.001. Also, § is assumed to be 1075,

Thus, MT) is (%(p, T), 5)-DP for any & € (0,1). Invoking
Lemma I, we can obtain a bound £°(p, T').

Lemma 2. The T-fold adaptive homogeneous composition of

the Gaussian mechanism with variance o2 is (¢°(p,T), §)-DP
with § € (0,1) and

T
& (p. 1) < min {eo(p. 7). 1(p.T). (% +1051-9)) 1.
(25)

where p = ﬁ and

1 5
eo(p,T) == inf T - log — | 26
o(p,T) o0 (pa p— gga)+ (26)
T)— int og (14 <721y oy
e1(p, )'_aéﬁ,%} p— og( + =5 ) 27)

and (, is as defined in Theorem 4.

The bound given in this lemma can shed light on the optimal
variance of the Gaussian mechanism M required to ensure
that M) is (g,6)-DP (cf. Question Two in Section II).
To put our result about the variance in perspective, we
first mention two previously-known bounds on o2. Advanced
composition theorems (see, e.g., [11, Theorem II1.3]) require
o? = Q(w). Abadi et al. [3, Theorem 1]
improved this result by showing that o2 suffices to be linear
in T; more precisely, 02 = Q(Tl%gl/é)). To have a better
comparison with our final result, we write this result more
explicitly. It follows from (21) or (22) that
T < sup = + _ log
202 — Q>Ii a  ala—1) &

1
:5—210g6—2\/(5—10g6)log5,

and hence assuming ¢ is sufficiently small, we obtain

Theorem 5. The T-fold adaptive homogeneous composition
of a Gaussian mechanism with variance o* is (g,6)-DP, for
€ > 20 log %, if

1 T

2T 2T
o?> T log -+~ — = (log(Qlog S +1—1log 5)
g2 by e &2

log?(log 6~ 1)
+0 < log 61 '

The proof of this theorem is based on a relaxation of
Theorem 4 obtained by ignoring f(«, e, d). Considering both
f and g will result in a stronger result at the expense of
more involved analysis. Comparing with (28), Theorem 5
indicates that, providing ¢ is sufficiently small, the variance
of each constituent Gaussian mechanism can be reduced by
26—2 (log(2log6=') + 1 —loge) compared to what would be
obtained from MA.

B. Illustration of Our Bounds

In this section, we empirically compare our bound on
€9(p,T) given in Lemma 2 with the privacy parameter (23)
obtained via MA and has been extensively used in the state-
of-the-art differentially private machine learning algorithms,
e.g., [7, 9, 18-23]. We do so in two different settings: (1)
vanilla T-fold composition of the Gaussian mechanism with
fixed variance, and (2) noisy SGD algorithm.

Vanilla Gaussian Composition: Here, we wish to obtain
bounds on the privacy parameter ¢ of M) where M is a
Gaussian mechanism with ¢ = 20. In Fig. 2, we compare
Lemma 2 with MA when § = 10~°. According to this plot, our
result enables us to achieve a smaller privacy parameter by up
to 0.75, i.e., maxre(iooo) emalp, T) — €°(p, T) = 0.75 where
ea(p,t) is the e given in (23). This privacy amplification
may have important impacts on recent private deep leaning
algorithms. Alternatively, one can observe that our result
allows for more iteration for the same &, for instance 100
more iterations for any ¢ larger than 6.

Noisy SGD: SGD is the standard algorithm for training many
machine learning models. In order to fit a model without
compromising privacy, a standard practice is to add Gaus-
sian noise to the gradient of each mini-batch, see e.g., [3—
6, 18, 21, 30]. The prime use of MA was to exploit the
RDP’s simple composition property in deriving the privacy
parameters of the noisy SGD algorithm [3, Algorithm 1].
To have a fair comparison, we implement this algorithm
with the sub-sampling rate ¢ = 0.001 and noise parameter
o = 4 and then compute its DP parameter via (23) with
p=¢*/((1 — q)o?) (see [3, Lemma 3]) and § = 107°. We
then compare it in Fig. 3 with Lemma 2 with the same p and
0. As demonstrated in this figure, our result allows remarkably
more epochs (often over a hundred) within the same privacy
budget and thus providing higher utility.
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