
OpenPiton: An Open Source Hardware Platform
For Your Research

[Extended Abstract]

Jonathan Balkind
Princeton University

jbalkind@princeton.edu

Michael McKeown
Princeton University

mmckeown@princeton.edu

Yaosheng Fu†

NVIDIA
yfu@nvidia.com

Tri Nguyen
Princeton University

trin@princeton.edu

Yanqi Zhou†

Baidu SVAIL
zhouyanqi@baidu.com

Alexey Lavrov
Princeton University

alavrov@princeton.edu
Mohammad Shahrad

Princeton University
mshahrad@princeton.edu

Adi Fuchs
Princeton University

adif@princeton.edu

Samuel Payne†

NVIDIA
spayne@nvidia.com

Xiaohua Liang†

Microsoft
xialian@microsoft.com

Matthew Matl†
University of California,

Berkeley
mmatl@eecs.berkeley.edu

David Wentzlaff
Princeton University

wentzlaf@princeton.edu

ABSTRACT
Industry is building larger, more complex, manycore proces-
sors on the back of strong institutional knowledge, but aca-
demic projects face difficulties in replicating that scale. To
alleviate these difficulties and to develop and share knowl-
edge, the community needs open architecture frameworks
for simulation, chip design, and software exploration which
support extensibility, scalability, and configurability, along-
side an established base of verification tools and supported
software. In this highlight, we present OpenPiton, an open
source framework for building scalable architecture research
prototypes from 1 core to 500 million cores. OpenPiton is
the world’s first open source, general-purpose, multithreaded
manycore processor and framework. OpenPiton is highly
configurable, providing a rich design space spanning a va-
riety of hardware parameters that researchers can change.
OpenPiton designs can be emulated on FPGAs, where they
can run full-stack multiuser Debian Linux. OpenPiton is
designed to scale to very large core fabrics, enabling re-
searchers to measure operating system, compiler, and soft-
ware scalability. The mature codebase reflects the complex-
ity of an industrial-grade design and provides the necessary
scripts to build new chips, making OpenPiton a natural
choice for computer-aided design research. OpenPiton has

The original version of this paper is entitled “OpenPiton:
An Open Source Manycore Research Framework” and was
published in Proceedings of ASPLOS 2016, Atlanta, GA,
April 2-6, 2016, ACM.
† Work was done at Princeton University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
c©2019 Copyright held by the owner/author(s). Publications rights licensed

to ACM. https://doi.org/10.1145/3366343.

been validated with a 25-core chip prototype, named Piton,
and is bolstered by a validation suite that has thousands of
tests, providing an environment to test new hardware de-
signs while verifying the correctness of the whole system.
OpenPiton is being actively used in research both internally
to Princeton and in the wider community, as well as being
adopted in education, industry, and government settings.

1. INTRODUCTION
Building processors for academic research purposes can be

a risky proposition. Particularly as processors have grown
in size, and with the focus on multicore and manycore pro-
cessors [17, 19, 20, 21, 14, 22, 6], the number of poten-
tial points of failure in chip fabrication has increased dras-
tically. To combat this, the community needs well-tested,
open-source, scalable frameworks that they can rely on as
baselines to work from and compare against. To reduce“aca-
demic time-to-publication”, these frameworks must provide
robust software tools, mature full-system software stacks,
rely on industry-standard languages, and provide thorough
test suites. Additionally, to support research in a broad
variety of fields, these frameworks must be highly config-
urable, be synthesisable to FPGA and ASIC for prototyp-
ing purposes, and provide the basis for others to tape-out
(manufacture) their own, modified academic chips. Building
and supporting such an infrastructure is a major undertak-
ing which has prevented such prior designs. Our framework,
OpenPiton, attacks this challenge and provides all of these
features and more.

OpenPiton is the world’s first open source, general-
purpose, multithreaded manycore processor. Open-
Piton is scalable and portable; the architecture supports ad-
dressing for up to 500-million cores, supports shared mem-
ory both within a chip and across multiple chips, and has
been designed to easily enable high performance 1000+ core
microprocessors and beyond. The design is implemented in

 Tile

 Chip

chipset

Figure 1: OpenPiton Architecture. Multiple manycore chips
are connected together with chipset logic and networks to
build large scalable manycore systems. OpenPiton’s cache
coherence protocol extends off chip.

industry-standard Verilog HDL and does not require
the use of any new languages. OpenPiton enables research
from the small to the large with demonstrated implementa-
tions from the slimmed-down, single-core PicoPiton, which
is emulated on a $160 Xilinx Artix 7 at 29.5MHz, up to
the 25-core Piton processor which targeted a 1GHz operat-
ing point and was recently validated and thoroughly char-
acterised [12, 13].

The OpenPiton platform shown in Figure 1 is a modern,
tiled, manycore design consisting of a 64-bit architecture
using the mature SPARC v9 ISA with P-Mesh: our scal-
able cache coherence protocol and network on chip (NoC).
OpenPiton builds upon the industry-hardened, open-source
OpenSPARC T1 [15, 1, 18] core, but sports a completely
scratch-built uncore (caches, cache-coherence protocol, NoCs,
NoC-based I/O bridges, etc), a new and modern simulation
framework, configurable and portable FPGA scripts, a com-
plete set of scripts enabling synthesis and implementation
of ready-to-manufacture chips, and full-stack multiuser De-
bian Linux support. OpenPiton is available for download at
http://www.openpiton.org.

OpenPiton has been designed as a platform to enable at-
scale research. An explicit design goal of OpenPiton is that
it should be easy to use by other researchers. To support
this, OpenPiton provides a high degree of integration and
configurability as shown in Table 1. Unlike many other de-
signs where the pieces are provided, but it is up to the user
to compose them together, OpenPiton is designed with all
of the components integrated into the same, easy-to-use,
build infrastructure providing push-button scalability.
Researchers can easily deploy OpenPiton’s source code, add
in modifications and explore their novel research ideas in the
setting of a fully working system. Thousands of targeted,
high-coverage test cases are provided to enable researchers
to innovate with a safety net that ensures functionality is
maintained. OpenPiton’s open source nature also makes it
easy to release modifications and reproduce previous work
for comparison or reuse.

Rather than simply being a platform designed by com-
puter architects for use by computer architects, OpenPiton
enables researchers in other fields including operating sys-

(a) (b)

P-Mesh Off-Chip
Routers (3)

Chip
Bridge

P-Mesh XBars
(3)

DRAM SDHC I/O

L2 Cache Slice
+

Directory Cache

P-Mesh
Routers

(3)

L1.5 Cache

CCX Arbiter

FPU

Modified
OpenSPARC T1

Core

MITTS
(Traffic Shaper)

Figure 2: Architecture of (a) a tile and (b) chipset.

Component Configurability Options
Cores (per chip) Up to 65,536

Cores (per system) Up to 500 million
Threads per Core 1/2/4

Floating-Point Unit Present/Absent
Stream-Processing Unit Present/Absent

TLBs 8/16/32/64 entries
L1 I-Cache 8*/16/32KB
L1 D-Cache 4*/8/16KB
L1.5 Cache Number of Sets, Ways (8KB, 4-way)

L2 Cache (per tile) Number of Sets, Ways (64KB, 4-way)
Intra-chip Topologies 2D Mesh, Crossbar

Inter-chip 2D Mesh, 3D Mesh,
Topologies Crossbar, Butterfly Network

Bootloading SD/SDHC Card, UART

Table 1: Supported OpenPiton Configuration Options. Bold
indicates default values. (*Associativity reduced to 2-ways
at smallest size)

tems (OS), security, compilers, runtime tools, systems, and
computer aided design (CAD) tools to conduct research at-
scale. In order to enable such a wide range of applications,
OpenPiton is configurable and extensible. The number of
cores, attached I/O, size of caches, in-core parameters, and
network topology are all configurable from a command-line
option or configuration file. OpenPiton is easy to extend; the
presence of a well documented core, a well documented co-
herence protocol, and an easy-to-interface NoC make adding
research features straightforward. Research extensions to
OpenPiton that have already been built include several novel
memory system explorations, an Oblivious RAM controller,
and a new in-core thread scheduler. The validated and ma-
ture ISA and software ecosystem support OS and compiler
research. The release of OpenPiton’s scripts for FPGA em-
ulation and chip manufacture make it easy for others to
port to new FPGAs or semiconductor process technologies.
In particular, this enables CAD researchers who need large
netlists to evaluate their algorithms at-scale.

2. THE OPENPITON PLATFORM
OpenPiton is a tiled, manycore architecture, as shown in

Figure 1. It is designed to be scalable, both intra-chip and
inter-chip, using the P-Mesh cache coherence system.

Intra-chip, tiles are connected via three P-Mesh networks
on-chip (NoCs) in a scalable 2D mesh topology (by default).
The NoC router address space supports scaling up to 256
tiles in each dimension within a single OpenPiton chip (64K
cores/chip).

For inter-chip communication, the chip bridge extends the
three NoCs off-chip, connecting the tile array (through the
tile in the upper-left) to off-chip logic (chipset). The chipset

Core
L1

Private
L1.5

Distributed
L2

Off-chip
Memory
Controller

NoC1

NoC2

NoC3

NoC2

NoC3

NoC1

CCX

Figure 3: OpenPiton’s memory hierarchy datapath.

may be implemented on an FPGA, as a standalone chip, or
integrated into an OpenPiton chip.

The extension of the P-Mesh NoCs off-chip allows the
seamless connection of multiple OpenPiton chips to create
a larger system, as shown in Figure 1. OpenPiton’s cache-
coherence extends off-chip as well, enabling shared-memory
across multiple chips, for the study of even larger shared-
memory manycore systems.

2.1 Tile
The architecture of a tile is shown in Figure 2a. A tile

consists of a core, an L1.5 cache, an L2 cache, a floating-
point unit (FPU), a CPU-Cache Crossbar (CCX) arbiter,
a Memory Inter-arrival Time Traffic Shaper (MITTS), and
three P-Mesh NoC routers.

The L2 and L1.5 caches connect directly to all three NoC
routers, and all messages entering and leaving the tile tra-
verse these interfaces. The CPU Cache-Crossbar (CCX) is
the crossbar interface used in the OpenSPARC T1 to con-
nect the cores, L2 cache, FPU, I/O, etc. [1]. In OpenPiton,
the L1.5 and FPU are connected to the core by CCX.

2.2 Core
OpenPiton uses the open-source OpenSPARC T1 [15] core

with modifications. This core was chosen because of its
industry-hardened design, multi-threaded capability, sim-
plicity, and modest silicon area requirements. Equally im-
portant, the OpenSPARC framework has a stable code base,
implements a mature ISA with compiler and OS support,
and comes with a large test suite.

In the default configuration for OpenPiton, as used in
Piton, the number of threads is reduced from four to two
and the stream processing unit (SPU) is removed from the
core to save area. The default Translation Lookaside Buffer
(TLB) size is 16 entries but can be increased to 32 or 64, or
decreased down to 8 entries.

Additional configuration registers were added to enable
extensibility within the core. They are useful for adding ad-
ditional functionality to the core which can be configured
from software, e.g. enabling/disabling functionality, config-
uring different modes of operation, etc.

2.3 Cache Hierarchy
OpenPiton’s cache hierarchy is composed of three cache

levels. Each tile in OpenPiton contains private L1 and L1.5
caches and a slice of the distributed, shared L2 cache. The
data path of the cache hierarchy is shown in Figure 3.

The memory subsystem maintains cache coherence using
our coherence protocol, called P-Mesh. It adheres to the
memory consistency model used by the OpenSPARC T1.
Coherent messages between L1.5 caches and L2 caches com-
municate through three NoCs, carefully designed to ensure
deadlock-free operation.

2.3.1 L1 Caches
The L1 caches are reused from the OpenSPARC T1 design

with extensions for configurability. They are composed of
separate L1 instruction and L1 data caches, both of which
are write-through and 4-way set-associative. By default, the
L1 data cache is an 8KB cache and its line size is 16-bytes.
The 16KB L1 instruction cache has a 32-byte line size.

2.3.2 L1.5 Data Cache
The L1.5 (comparable to L2 caches in other processors)

both transduces the OpenSPARC T1’s CPU-Cache Crossbar
(CCX) protocol to P-Mesh’s NoC coherence packet formats,
and acts as a write-back layer, caching stores from the write-
through L1 data cache. Its parameters match the L1 data
cache by default.

The L1.5 communicates to and from the core through the
CCX bus, preserved from the OpenSPARC T1. When a
memory request results in a miss, the L1.5 translates and
forwards it to the L2 through the network-on-chip (NoC)
channels. Generally, the L1.5 issues requests on NoC1, re-
ceives data on NoC2, and writes back modified cache lines
on NoC3, as shown in Figure 3.

The L1.5 is inclusive of the L1 data cache; each can be
independently sized with independent eviction policies. For
space and performance, the L1.5 does not cache instructions–
these cache lines are bypassed directly to the L2 cache.

2.3.3 L2 Cache
The L2 cache (comparable to a last-level L3 cache in other

processors) is a distributed, write-back cache shared by all
tiles. The default cache configuration is 64KB per tile and
4-way set associativity, but both the cache size and asso-
ciativity are configurable. The cache line size is 64 bytes,
larger than the line sizes of caches lower in the hierarchy.
The integrated directory cache has 64 bits per entry, so it
can precisely keep track of up to 64 sharers by default.

The L2 cache is inclusive of the private caches (L1 and
L1.5). Cache line way mapping between the L1.5 and the
L2 is independent and is entirely subject to the replacement
policy of each cache. Since the L2 is distributed, cache lines
consecutively mapped in the L1.5 are likely to be distributed
across multiple L2 tiles (L2 tile referring to a portion of the
distributed L2 cache in a single tile).

The L2 is the point of coherence for all cacheable mem-
ory requests. All cacheable memory operations (including
atomic operations such as compare-and-swap) are ordered,
and the L2 strictly follows this order when servicing requests.
The L2 also keeps the instruction and data caches coherent,
per the OpenSPARC T1’s original design. When a line is
present in a core’s L1 instruction cache and is loaded as data,
the L2 sends invalidations to the relevant instruction caches
before servicing the load.

2.4 P-Mesh Network On-chip
There are three P-Mesh NoCs in an OpenPiton chip. The

NoCs provide communication between the tiles for cache
coherence, I/O, memory traffic, and inter-core interrupts.
They also route traffic destined for off-chip to the chip bridge.
The packet format contains 29 bits of core addressability,
making it scalable up to 500 million cores.

To ensure deadlock-free operation, the L1.5 cache, L2
cache, and memory controller give different priorities to dif-
ferent NoC channels; NoC3 has the highest priority, next is
NoC2, and NoC1 has the lowest priority. Thus, NoC3 will
never be blocked. In addition, all hardware components are

designed such that consuming a high priority packet is never
dependent on lower priority traffic.

Classes of coherence operations are mapped to NoCs based
on the following rules, as depicted in Figure 3:

• NoC1 messages are initiated by requests from the pri-
vate cache (L1.5) to the shared cache (L2).

• NoC2 messages are initiated by the shared cache (L2)
to the private cache (L1.5) or memory controller.

• NoC3 messages are responses from the private cache
(L1.5) or memory controller to the shared cache (L2).

2.5 Chipset
The chipset, shown in Figure 2b, houses the I/O, DRAM

controllers, chip bridge, P-Mesh chipset crossbar, and P-
Mesh inter-chip network routers. The chip bridge de-multiplexes
traffic from the attached chip back into the three physical
NoCs. The traffic then passes through a Packet Filter (not
shown), which modifies packet destination addresses based
on the memory address in the request and the set of devices
on the chipset. The chipset crossbar (a modified network
router) then routes the packets to their correct destination
device. If the traffic is not destined for this chipset, it is
passed to the inter-chip network routers, which route the
traffic to another chipset according to the inter-chip routing
protocol. Traffic destined for the attached chip is directed
back through similar paths to the chip bridge.

Inter-chip Routing.
The inter-chip network router is configurable in terms of

router degree, routing algorithm, buffer size, etc. This en-
ables flexible exploration of different router configurations
and network topologies. Currently, we have implemented
and verified crossbar, 2D mesh, 3D mesh, and butterfly
networks. Customized topologies can be explored by re-
configuring the network routers.

2.6 Configurability
OpenPiton was designed to be a configurable platform,

making it useful for many applications. Table 1 shows Open-
Piton’s configurability options, highlighting the large design
space that it offers.

2.6.1 PyHP for Verilog
In order to provide low effort configurability of our Verilog

RTL, we make use of a Python pre-processor, the Python
Hypertext Processor (PyHP) [16]. PyHP was originally de-
signed for Python dynamic webpage generation and is akin
to PHP. We have adapted it for use with Verilog code. Pa-
rameters can be passed into PyHP, and arbitrary Python
code can be used to generate testbenches or modules. PyHP
enables extensive configurability beyond what is possible
with Verilog generate statements alone.

2.6.2 Core and Cache Configurability
OpenPiton’s core configurability parameters are shown in

Table 1. The default parameters are shown in bold. Open-
Piton preserves the OpenSPARC T1’s ability to modify TLB
sizes (from 8 to 64, in powers of two), thread counts (from
1 to 4), and the presence or absence of the FPU and SPU.
Additionally, OpenPiton’s L1 data and instruction caches
can be doubled or halved in size (associativity drops to 2
when reducing size).

Leveraging PyHP, OpenPiton provides parameterizable
memories for simulation or FPGA emulation. In addition,
custom or proprietary memories can easily be used for chip
development. This parameterization enables the configura-
bility of cache parameters. The size and associativity of the
L1.5 and L2 caches are configurable, though the line size
remains static.

2.6.3 Manycore Scalability
PyHP also enables the creation of scalable meshes of cores,

drastically reducing the code size and complexity in some ar-
eas adopted from the original OpenSPARC T1. OpenPiton
automatically generates all core instances and wires for con-
necting them from a single template instance. This reduces
code complexity, improves readability, saves time when mod-
ifying the design, and makes the creation of large meshes
straightforward. The creation of large two-dimensional mesh
interconnects of up to 256x256 tiles is reduced to a single in-
stantiation. The mesh can be any rectangular configuration,
and the dimensions do not need to be powers of two. This
was a necessary feature for the 5x5 (25-core) Piton proces-
sor.

2.6.4 NoC Topology Configurability
P-Mesh provides other NoC connection topologies than

the default two-dimensional mesh used in OpenPiton. The
coherence protocol only requires that messages are deliv-
ered in-order from one point to another point. Since there
are no inter-node ordering requirements, the NoC can easily
be swapped out for a crossbar, higher dimension router, or
higher radix design. Our configurable P-Mesh router can be
reconfigured to a number of topologies shown in Table 1. For
intra-chip use, OpenPiton can be configured to use a cross-
bar, which has been tested with four and eight cores with
no test regressions. Other NoC research prototypes can eas-
ily be integrated and their performance, energy, and other
characteristics can be determined through RTL, gate-level
simulation, or FPGA emulation.

2.6.5 Chipset Configurability
The P-Mesh chipset crossbar is configurable in the num-

ber of ports to connect the myriad devices OpenPiton users
may have. There is a single XML file where the chipset de-
vices and their address ranges are specified, so connecting a
new device needs only a Verilog instantiation and an XML
entry. PyHP is used to automatically connect the necessary
P-Mesh NoC connections and Packet Filters.

We have so far connected a variety of devices through
P-Mesh on the chipset. These include DRAM, Ethernet,
UART, SD, SDHC, VGA, PS/2 keyboards, and even the
MIAOW open source GPU [2]. These devices are driven
by the OpenPiton core and perform their own DMA where
necessary, routed over the chipset crossbar.

2.6.6 Multi-chip Scalability
Similar to the on-chip mesh, PyHP enables the generation

of a network of chips starting with the instantiation of a
single chip. OpenPiton provides an address space for up to
8192 chips, with 65,536 cores per chip. By using the scalable
P-Mesh cache coherence mechanism built into OpenPiton,
half-billion core systems can be built. This configurability
enables the building of large systems to test ideas at scale.

0

20

40

60

80

100

Tile CCX	Arbiter FPU L1.5 L2 NoC	Router Core Chip	Bridge

Co
ve
ra
ge
	P
er
ce
nt
ag
e Overall	Score

Line

Cond

Toggle

FSM

Branch

Figure 4: Test suite coverage results by module (default
OpenPiton configuration).

3. VALIDATION

3.1 Platform Stability
One of the benefits of OpenPiton is its stability, matu-

rity, and active support. Much of this is inherited from the
OpenSPARC T1 core, which has a stable code base and has
been studied for years, allowing the code to be reviewed and
bugs fixed by many people. In addition, it implements a ma-
ture, commercial, and open ISA, SPARC V9. This means
that there is existing full tool chain support for OpenPiton,
including Debian Linux OS support, a compiler, and an as-
sembler. SPARC is supported on a number of OSs including
Debian Linux, Oracle’s Linux for SPARC, and OpenSolaris
(and its successors). Porting the OpenSPARC T1 hyper-
visor required changes to fewer than 10 instructions, and
a newer Debian Linux distribution was modified with open
source, readily available, OpenSPARC T1-specific patches
written as part of Lockbox [3, 4].

OpenPiton provides additional stability on top of what
is inherited from OpenSPARC T1. The tool flow was up-
dated to modern tools and ported to modern Xilinx FPGAs.
OpenPiton is also used extensively for research internal to
Princeton. This means there is active support for Open-
Piton, and the code is constantly being improved and opti-
mized, with regular releases over the last several years. In
addition, the open sourcing of OpenPiton has strengthened
its stability as a community has built.

3.1.1 Validation
When designing large scale processors, simulation of the

hardware design is a must. OpenPiton supports one open
source and multiple commercial Verilog simulators, which
can simulate the OpenPiton design at rates up to tens or
hundreds of kilohertz. OpenPiton inherited and then ex-
tended the OpenSPARC T1’s large test suite with thou-
sands of directed assembly tests, randomized assembly test
generators, and tests written in C. This includes tests for
not only the core, but the memory system, I/O, cache co-
herence protocol, etc. Additionally, the extensions like Ex-
ecution Drafting (Section 4.1.1) have their own test suites.
When making research modifications to OpenPiton, the re-
searcher can rely on an established test suite to ensure that
their modifications did not introduce any regressions. In
addition, the OpenPiton documentation details how to add
new tests to validate modifications and extend the existing
test suite. Researchers can also use our scripts to run large
regressions in parallel (to tackle the slower individual execu-
tion), automatically produce pass/fail reports and coverage
reports (as shown in Figure 4), and run synthesis to verify
that synthesis-safe Verilog has been used. Our scripts sup-
port the widely-used SLURM job scheduler and integrate
with Jenkins for continuous integration testing.

Linux for SPARC is hosted at https://oss.oracle.com/
projects/linux-sparc/

Core
50.96%

L2
23.11%

L1.5
14.35%

FPU
7.74%

NoC Router0
0.70%

NoC Router1
0.83%

NoC Router2
0.86%

CCX Arbiter+
Misc. Logic

0.82%

Figure 5: Tile area breakdown for FPGA PicoPiton

L2 Cache
22.16%

L1.5 Cache
7.62%

NoC1 Router
0.98%

NoC2 Router
0.95%

NoC3 Router
0.95%

FPU
2.64%
MITTS
0.17%

JTAG
0.10%

Config Regs
0.05%

Core
47.00%

Clock Tree
0.01%

Timing Opt Buffers
0.34%

Filler
16.32%

Unutilized
0.73%

Fetch
17.52%

Load/Store
22.33%

Execute
2.38%

Integer RF
16.81%

Trap Logic
6.42%

Multiply
1.53%

FP Front-End
1.85%

Config Regs
0.11%

CCX Buffers
0.06%Clock Tree

0.13% Timing Opt
Buffers
3.83%

Filler
26.13%

Unutilized
0.90%

Tile0
3.27%Tile 1-24

78.37%

Chip Bridge
0.12%

Clock Circuitry
0.26% I/O Cells

3.75%

ORAM
2.73% Timing Opt

Buffers
0.07%

Filler
9.32%

Unutilized
2.12%

Tile Area: 1.17459 mm2 Core Area: .55205 mm2Chip Area: 35.97552 mm2

Figure 6: Detailed area breakdown of Piton at chip, tile,
and core levels. Reproduced from [13].

3.2 FPGA Prototyping
OpenPiton can also be emulated on FPGA, which pro-

vides the opportunity to prototype the design, emulated at
tens of megahertz, to improve throughput when running our
test suite or more complex code, such as an interactive op-
erating system. OpenPiton is actively supported on three
Xilinx FPGA platforms: Artix-7 (Digilent Nexys Video),
Kintex-7 (Digilent Genesys 2) and Virtex-7 (VC707 Evalu-
ation Board). An external port is also maintained for the
Zynq-7000 (ZC706 Evaluation Board). Figure 5 shows the
area breakdown for a minimized “PicoPiton” core, imple-
mented for an Artix-7 FPGA (Digilent Nexys 4 DDR).

OpenPiton designs have the same features as the Piton
processor, validating the feasibility of that particular de-
sign (multicore functionality, etc.), and can include the chip
bridge to connect multiple FPGAs via an FPGA Mezzanine
Card (FMC) link. All of the FPGA prototypes feature a full
system (chip plus chipset), using the same codebase as the
chipset used to test the Piton processor.

OpenPiton on FPGA can load bare-metal programs over
a serial port and can boot full stack multiuser Debian Linux
from an SD/SDHC card. Booting Debian on the Genesys2
board running at 87.5MHz takes less than 4 minutes (and
booting to a bash shell takes just one minute), compared
to 45 minutes for the original OpenSPARC T1, which re-
lied on a tethered MicroBlaze for its memory and I/O re-
quests. This boot time improvement combined with our
push-button FPGA synthesis and implementation scripts
drastically increases productivity when testing operating sys-
tem or hardware modifications.

3.3 The Princeton Piton Processor
The Piton processor prototype [12, 13] was manufactured

in March 2015 on IBM’s 32nm SOI process with a target
clock frequency of 1GHz. It features 25 tiles in a 5x5 mesh on
a 6mm x 6mm (36mm2) die. Each tile is two-way threaded

and includes three research projects: ExecD [11], CDR [8],
and MITTS [23], while an ORAM [7] controller was included
at the chip level. The Piton processor provides validation of
OpenPiton as a research platform and shows that ideas can
be taken from inception to silicon with OpenPiton.

With Piton, we also produced the first detailed power and
energy characterisation of an open source manycore design
implemented in silicon [13]. This included characterising en-
ergy per instruction, NoC energy, voltage versus frequency
scaling, thermal characterisation, and memory system en-
ergy, among other properties. All of this was done in our
lab, running on the Piton processor with the OpenPiton
chipset implemented on FPGA. Performing such a charac-
terisation yielded new insights into the balance between re-
computation and data movement, the energy cost of differ-
ing operand values, and a confirmation of earlier results [9]
that showed that NoCs do not dominate manycore proces-
sors’ power consumption. Our study also produced what
we believe is the most detailed area breakdown of an open
source manycore, which we reproduce in Figure 6. All char-
acterisation data from our study, as well as designs for the
chip printed circuit board (PCB), are now open source at
http://www.openpiton.org.

3.4 Synthesis and Back-end Support
OpenPiton provides scripts to aid in synthesis and back-

end physical design for generating realistic area results or for
manufacturing new chips based on OpenPiton. The scripts
are identical to the ones used to tape-out the Piton proces-
sor, however the scripts have been made process agnostic
and references to the specific technology used have been re-
moved due to proprietary foundry intellectual property con-
cerns. Directions are included with OpenPiton which de-
scribe how to port to a new foundry kit. This allows the user
to download OpenPiton, link to the necessary process devel-
opment kit files, and run our full tool flow to produce the
chip layout for a new instance of OpenPiton. In this sense,
OpenPiton is portable across process technologies and pro-
vides a complete ecosystem to implement, test, prototype,
and tape-out (manufacture) research chips.

4. APPLICATIONS
Table 2 presents a taxonomy of open source processors

which highlights imporant parameters for research. Since
OpenPiton’s first release in 2015, it has been used across a
wide range of applications and research domains, some of
which are described in this section.

4.1 Internal Research Case Studies

4.1.1 Execution Drafting
Execution Drafting [11] (ExecD) is an energy saving mi-

croarchitectural technique for multithreaded processors which
leverages duplicate computation. ExecD takes over the thread
selection decision from the OpenSPARC T1 thread selection
policy and instruments the front-end to achieve energy sav-
ings. ExecD required modifications to the OpenSPARC T1
core and thus was not as simple as plugging a standalone
module into the OpenPiton system. The core microarchi-
tecture needed to be understood, and the implementation
tightly integrated with the core. Implementing ExecD in
OpenPiton revealed several implementation details that had
been abstracted away in simulation, such as tricky diver-

gence conditions in the thread synchronization mechanisms.
This reiterates the importance of taking research designs to
implementation in an infrastructure like OpenPiton.

ExecD must be enabled by an ExecD-aware operating
system. Our public Linux kernel and OpenPiton hypervi-
sor repositories contain patches intended to add support for
ExecD. These patches were developed as part of a single-
semester undergraduate OS research project.

4.1.2 Coherence Domain Restriction
Coherence Domain Restriction [8] (CDR) is a novel cache

coherence framework designed to enable large scale shared
memory with low storage and energy overhead. CDR re-
stricts cache coherence of an application or page to a subset
of cores, rather than keeping global coherence over poten-
tially millions of cores. In order to implement it in Open-
Piton, the TLB is extended with extra fields and both the
L1.5 and L2 cache are modified to fit CDR into the exist-
ing cache coherence protocol. CDR is specifically designed
for large scale shared memory systems such as OpenPiton.
In fact, OpenPiton’s million-core scalability is not feasible
without CDR because of increasing directory storage over-
head.

4.1.3 MITTS
The Memory Inter-arrival Time Traffic Shaper [23] (MITTS)

enables a manycore system or an IaaS cloud system to pro-
vision memory bandwidth in the form of a memory request
inter-arrival time distribution at a per-core or per-application
basis. A runtime system configures MITTS knobs in or-
der to optimize different metrics (e.g., throughput, fairness).
MITTS sits at the egress of the L1.5 cache, monitoring the
memory requests and stalling the L1.5 when it uses band-
width outside its allocated distribution. MITTS has been
integrated with OpenPiton and works on a per-core gran-
ularity, though it could be easily modified to operate per-
thread.

MITTS must also be supported by the OS. Our public
Linux kernel and OpenPiton hypervisor repositories con-
tain patches for supporting the MITTS hardware. With
these patches, developed as an undergraduate thesis project,
Linux processes can be assigned memory inter-arrival time
distributions, as they would in an IaaS environment where
the customer paid for a particular distribution correspond-
ing with their application’s behaviour. The OS configures
the MITTS bins to correspond with each process’s allocated
distribution, and MITTS enforces the distribution accord-
ingly.

4.2 External Research Use
A number of external researchers have already made con-

siderable use of OpenPiton. In a CAD context, Lerner et
al. [10] present a development workflow for improving pro-
cessor lifetime, based on OpenPiton and the gem5 simulator,
which is able to improve the design’s reliability time by 4.1x.

OpenPiton has also been used in a security context as a
testbed for hardware trojan detection. OpenPiton’s FPGA
emulation enabled Elnaggar et al. [5] to boot full-stack De-
bian Linux and extract performance counter information
while running SPEC benchmarks. This project moved quickly
from adopting OpenPiton to an accepted publication in a
matter of months, thanks in part to the full-stack Open-
Piton system that can be emulated on FPGA.

Processor Architecture FPU OS MMU
HW Multicore/ Prototype

NoC HDL
Back-end

License
MultithreadedManycore/GPUCore Count Scripts

pAVR 8b AVR 7 7 7 7 No - 7 VHDL 7 GPL v2
openMSP430 16bMSP430 7 3(RTOS) 7 7 No - 7 Verilog 7 BSD
CPU86 16b x86 7 3 7 7 No - 7 VHDL 7 GPL
Zet 16b x86 7 3 7 7 No - 7 Verilog 7 GPL v3
LatticeMico32 32b LatticeMico32 7 3 7 7 No - 7 Verilog 7 GPL
ZPU 32b MIPS 7 3 7 7 No - 7 VHDL 7 FreeBSD & GPL
SecretBlaze 32b MicroBlaze 7 7 7 7 No - 7 VHDL 7 GPL v3
AltOr32 32b ORBIS 7 3 7 7 No - 7 Verilog 7 LGPL v3
aeMB 32b MicroBlaze 7 3 7 3 No - 7 Verilog 7 LGPL v3
Amber 32b ARM v2a 7 3 7 7 No - 7 Verilog 7 LGPL
OpenRISC 32b/64b ORBIS 3 3 3 7 No - 7 Verilog 7 LGPL
MIPS32 r1 32b MIPS32 r1 7 3 7 3 No - 7 Verilog 7 LGPL v3
LEON 3 32b SPARC V8 3($) 3 3 7 SMP/AMP - 7 VHDL 7 GPL
OpenScale 32b MicroBlaze 7 3(RTOS) 7 7 Manycore FPGA/6 3 VHDL 7 GPL v3
XUM 32b MIPS32 r2 7 3 7 3 Manycore FPGA/8 3 Verilog 7 LGPL v3
PicoRV32 32b RISC-V 7 7 7 7 No FPGA/1 7 Verilog 7 ISC
PULP-RI5CY 32b RISC-V 3 3(RTOS) 7 7 Manycore Chip/9 7 SystemVerilog 7 Solderpad 0.51
PULP-Zeroriscy 32b RISC-V 7 3(RTOS) 7 7 Multicore Chip/1 7 SystemVerilog 7 Solderpad 0.51
Nyuzi GPGPU Nyami ISA 3 3 3 3 GPGPU FPGA 3 SystemVerilog 7 Apache 2.0
MIAOW GPGPU AMD Southern Islands 3 7 7 3 GPU FPGA/1 3 Verilog 7 BSD 3-Clause
OpTiMSoC 32b/64b ORBIS 3 3 3 7 Manycore FPGA/4 3 SystemVerilog 7 MIT
Simply RISC S1 64b SPARC V9 3 3 3 7 No - 7 Verilog 7 GPL v2
BERI 64b MIPS/CHERI 3 3 3 3(BERI2) Multicore FPGA/4 7 Bluespec 7 BERI HW-SW
OpenSPARC T1/T2 64b SPARC V9 3 3 3 3 Multicore Chip/8 7 Verilog 7 GPL v2
Rocket 64b RISC-V 3 3 3 7 Manycore Chip/8 3 Chisel 7 BSD 3-Clause
AnyCore 64b RISC-V 7 7 7 7 No Chip/1 7 SystemVerilog 7 BSD 3-Clause
PULP-Ariane 64b RISC-V 7 3 7 7 Manycore Chip/1 7 SystemVerilog 7 Solderpad 0.51
BOOM 64b RISC-V 3 3 3 7 Manycore FPGA 3 Chisel 7 BSD 3-Clause
OpenPiton 64b SPARC V9 3 3 3 3 Manycore Chip/25 3 Verilog 3 BSD 3-Clause & GPL v2

Table 2: Taxonomy of differences of open source processors (table data last checked in April 2018).

Figure 7: Three OpenPiton FPGAs connected by 9 gigabit
per second serial P-Mesh links.

Oblivious RAM (ORAM) [7] is a memory controller de-
signed to eliminate memory side channels. An ORAM con-
troller was integrated into the 25-core Piton processor, pro-
viding the opportunity for secure access to off-chip DRAM.
The controller was directly connected to OpenPiton’s NoC,
making the integration straightforward. It only required a
handful of files to wrap an existing ORAM implementation,
and once it was connected, its integration was verified in
simulation using the OpenPiton test suite.

4.3 Educational Use
We have been using OpenPiton in coursework at Prince-

ton, in particular our senior undergraduate Computer Ar-
chitecture and graduate Parallel Computation classes. A

few of the resulting student projects are described here.

Core Replacement.
Internally, we have tested replacements for the OpenSPARC

T1 core with two other open source cores. These modifica-
tions replaced the CCX interface to the L1.5 cache with
shims which translate to the L1.5’s interface signals. These
shims require very little logic but provide the cores with
fully cache-coherent memory access through P-Mesh. We
are using these cores to investigate manycore processors with
heterogeneous ISAs.

Multichip Network Topology Exploration.
A senior undergraduate thesis project investigated the im-

pact of interchip network topologies for large manycore pro-
cessors. Figure 7 shows multiple FPGAs connected over a
high-speed serial interface, carrying standard P-Mesh pack-
ets at 9 gigabits per second. The student developed a con-
figurable P-Mesh router for this project which is now inte-
grated as a standard OpenPiton component.

MIAOW.
A student project integrated the MIAOW open source

GPU [2] with OpenPiton. An OpenPiton core and a MIAOW
core can both fit onto a VC707 FPGA with the OpenPiton
core acting as a host, in place of the Microblaze that was
used in the original MIAOW release. The students added
MIAOW to the chipset crossbar with a single entry in its
XML configuration. Once they implemented a native P-
Mesh interface to replace the original AXI-Lite interface,
MIAOW could directly access its data and instructions from
memory without the core’s assistance.

Hardware Transactional Memory.
Another student project was the implementation of a Hard-

ware Transactional Memory system in OpenPiton. The stu-
dents learned about the P-Mesh cache coherence protocol
from the OpenPiton documentation, before modifying it,
including adding extra states to the L1.5 cache, and pro-
ducing a highly functional prototype in only six weeks. The
OpenPiton test suite was central to verifying that existing
functionality was maintained in the process.

Cache Replacement Policies.
A number of student groups have modified the cache re-

placement policies of both the L1.5 and L2 caches. Open-
Piton enabled them to investigate the performance and area
tradeoffs of their replacement policies across multiple cache
sizes and associativities in the context of a full-stack system,
capable of running complex applications.

4.4 Industrial and Governmental Use
So far we are aware of multiple CAD vendors making

use of OpenPiton internally for testing and educational pur-
poses. These users provide extra confidence that the RTL
written for OpenPiton will be well supported by industrial
CAD tools, as vendors often lack large scale designs to val-
idate the functionality of their tools. In government use,
DARPA has identified OpenPiton as a benchmark for use in
the POSH program.

5. FUTURE
OpenPiton has a bright future. It not only has active

support from researchers at Princeton, but has a vibrant
external user base and development community. The Open-
Piton team has run four tutorials at major conferences and
numerous tutorials at interested universities and will con-
tinue to run more tutorials. The future roadmap for Open-
Piton includes adding additional configurability, support for
more FPGA platforms and vendors, the ability to emulate
in the Cloud by using Amazon AWS F1 instances, more core
types plugged into the OpenPiton infrastructure, and inte-
gration with other emerging open source hardware projects.
OpenPiton has demonstrated the ability to enable research
at hardware speeds, at scale, and across different areas of
computing research. OpenPiton and other emerging open
source hardware projects have the potential to have signif-
icant impact not only on how we conduct research and ed-
ucate students, but also design chips for commercial and
governmental applications.

6. ACKNOWLEDGMENTS
This material is based on research sponsored by the NSF

under Grants No. CNS-1823222, CCF-1217553, CCF-1453112,
and CCF-1438980, AFOSR under Grant No. FA9550-14-
1-0148, Air Force Research Laboratory (AFRL) and De-
fense Advanced Research Projects Agency (DARPA) un-
der agreement No. FA8650-18-2-7846 and FA8650-18-2-7852
and DARPA under Grants No. N66001-14-1-4040 and HR0011-
13-2-0005. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwith-
standing any copyright notation thereon. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,
of Air Force Research Laboratory (AFRL) and Defense Ad-
vanced Research Projects Agency (DARPA), the NSF, AFOSR,

DARPA, or the U.S. Government. We thank Paul Jack-
son, Ting-Jung Chang, Ang Li, Fei Gao, Katie Lim, Felix
Madutsa, and Kathleen Feng for their important contribu-
tions to OpenPiton.

7. REFERENCES
[1] OpenSPARC T1 Microarchitecture Specification. Santa

Clara, CA, 2006.

[2] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H.
Ho, C. Joseph, J. Menon, M. P. Drumond, R. Paul,
S. Prasad, P. Valathol, and K. Sankaralingam.
Enabling gpgpu low-level hardware explorations with
miaow: An open-source rtl implementation of a gpgpu.
ACM Trans. Archit. Code Optim., 12(2), June 2015.

[3] D. Bittman, D. Capelis, and D. Long. Introducing
seaos. In Information Science and Applications
(ICISA), 2014 International Conference on, pages
1–3, May 2014.

[4] D. J. Capelis. Lockbox: Helping computers keep your
secrets. Technical Report UCSC-WASP-15-02,
University of California, Santa Cruz, Nov. 2015.

[5] R. Elnaggar, K. Chakrabarty, and M. B. Tahoori.
Run-time hardware trojan detection using
performance counters. In 2017 IEEE International
Test Conference (ITC), pages 1–10, Oct 2017.

[6] H. Esmaeilzadeh, E. Blem, R. St. Amant,
K. Sankaralingam, and D. Burger. Dark silicon and
the end of multicore scaling. In Proceedings of the 38th
Annual International Symposium on Computer
Architecture, ISCA ’11, pages 365–376, New York, NY,
USA, 2011. ACM.

[7] C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, and
S. Devadas. Freecursive oram: [nearly] free recursion
and integrity verification for position-based oblivious
ram. In Proceedings of the Twentieth Int. Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, pages 103–116,
New York, NY, USA, 2015. ACM.

[8] Y. Fu, T. M. Nguyen, and D. Wentzlaff. Coherence
domain restriction on large scale systems. In
Proceedings of the 48th International Symposium on
Microarchitecture, MICRO-48, pages 686–698, New
York, NY, USA, 2015. ACM.

[9] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff.
Energy characterization of a tiled architecture
processor with on-chip networks. In Proceedings of the
2003 International Symposium on Low Power
Electronics and Design, ISLPED ’03, pages 424–427,
New York, NY, USA, 2003. ACM.

[10] S. Lerner and B. Taskin. Workload-aware asic flow for
lifetime improvement of multi-core iot processors. In
2017 18th International Symposium on Quality
Electronic Design (ISQED), pages 379–384, March
2017.

[11] M. McKeown, J. Balkind, and D. Wentzlaff. Execution
drafting: Energy efficiency through computation
deduplication. In Microarchitecture (MICRO), 2014
47th Annual IEEE/ACM International Symposium on,
pages 432–444, Dec 2014.

[12] M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, J. Balkind,
A. Lavrov, M. Shahrad, S. Payne, and D. Wentzlaff.
Piton: A manycore processor for multitenant clouds.

IEEE Micro, 37(2):70–80, Mar 2017.

[13] M. McKeown, A. Lavrov, M. Shahrad, P. Jackson,
Y. Fu, J. Balkind, T. Nguyen, K. Lim, Y. Zhou, and
D. Wentzlaff. Power and energy characterization of an
open source 25-core manycore processor. In High
Performance Computer Architecture (HPCA), IEEE
Int. Symposium on, 2018.

[14] B. Miller, D. Brasili, T. Kiszely, R. Kuhn,
R. Mehrotra, M. Salvi, M. Kulkarni, A. Varadharajan,
S.-H. Yin, W. Lin, A. Hughes, B. Stysiack,
V. Kandadi, I. Pragaspathi, D. Hartman, D. Carlson,
V. Yalala, T. Xanthopoulos, S. Meninger, E. Crain,
M. Spaeth, A. Aina, S. Balasubramanian, J. Vulih,
P. Tiwary, D. Lin, R. Kessler, B. Fishbein, and
A. Jain. A 32-core risc microprocessor with network
accelerators, power management and testability
features. In IEEE Int. Solid-State Circuits Conf.
Digest of Tech. Papers, pages 58–60, Feb 2012.

[15] Oracle. OpenSPARC T1.
http://www.oracle.com/technetwork/systems/

opensparc/opensparc-t1-page-1444609.html.

[16] PyHP. PyHP Official Home Page.
http://pyhp.sourceforge.net.

[17] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth,
M. Abrash, P. Dubey, S. Junkins, A. Lake,
J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: A many-core
x86 architecture for visual computing. ACM Trans.
Graph., 27(3):18:1–18:15, Aug. 2008.

[18] J. Szefer, W. Zhang, Y.-Y. Chen, D. Champagne,
K. Chan, W. Li, R. Cheung, and R. Lee. Rapid
single-chip secure processor prototyping on the
opensparc fpga platform. In Rapid System Prototyping
(RSP), 2011 22nd IEEE International Symposium on,
pages 38–44, May 2011.

[19] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe,
H. Wilson, J. Tschanz, D. Finan, A. Singh, T. Jacob,
S. Jain, et al. An 80-tile sub-100-w teraflops processor
in 65-nm cmos. Solid-State Circuits, IEEE Journal of,
43(1):29–41, 2008.

[20] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao,
B. Edwards, C. Ramey, M. Mattina, C.-C. Miao, J. F.
Brown III, and A. Agarwal. On-chip interconnection
architecture of the Tile Processor. IEEE Micro,
27(5):15–31, Sept. 2007.

[21] D. Wentzlaff, C. J. Jackson, P. Griffin, and
A. Agarwal. Configurable fine-grain protection for
multicore processor virtualization. In Proceedings of
the Annual Int. Symp. on Computer Architecture,
pages 464–475, Washington, DC, USA, 2012.

[22] D. H. Woo and H.-H. S. Lee. Extending amdahl’s law
for energy-efficient computing in the many-core era.
Computer, (12):24–31, 2008.

[23] Y. Zhou and D. Wentzlaff. Mitts: Memory
inter-arrival time traffic shaping. In Proceedings of the
43rd International Symposium on Computer
Architecture, ISCA ’16, pages 532–544, Piscataway,
NJ, USA, 2016. IEEE Press.

