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Abstract. A popular approach in numerical simulations of black hole binaries is
to model black holes as punctures in the fabric of spacetime. The location and the
properties of the black hole punctures are tracked with apparent horizons, namely
outermost marginally outer trapped surfaces (MOTSs). As the holes approach each
other, a common apparent horizon suddenly appears, engulfing the two black holes and
signaling the merger. The evolution of common apparent horizons and their connection
with gravitational wave emission have been studied in detail with the framework of
dynamical horizons. We present a study of the dynamics of the MOTSs and their
punctures in the interior of the final black hole. The study focuses on head-on mergers
for various initial separations and mass ratios. We find that MOTSs intersect for most
of the parameter space. We show that for those situations in which they do not, it is
because of the singularity avoidance property of the moving puncture gauge condition
used in the study. Although we are unable to carry out evolutions that last long enough
to show the ultimate fate of the punctures, our results suggest that MOTSs always
intersect and that at late times their overlap is only partial. As a consequence, the
punctures inside the MOTSs, although close enough to each other to act effectively as
a single puncture, do not merge.

1. Introduction

An essential element in numerical relativity simulations involving black holes (BHs) is
tracking the location and properties of the holes. A natural structure to accomplish this
would be the event horizon of the BH. The problem with these horizons is that they are
teleological in nature; that is, we require knowledge of the entire space-time in order
to identify their location and dynamics. The alternative is to track apparent horizons
(AHs) [1] since to find them one only needs the intrinsic metric and extrinsic curvature
of the spacetime hypersurface at a given time. AHs can be used to determine the mass
and angular momentum of the BHs [2]. Once the common AH forms during the merger,
one can also estimate mass and spin multipole moments [3, 4] to quantify the rate at
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which the final BH approaches equilibrium and potentially identify when the ringdown
phase begins [5]. In addition, studies [6, 7, 8, 5, 9] have shown that fields at the AH
are correlated with fields in the wave-zone and thus the gravitational wave (GW) signal
itself.

The fate of the common AH resulting from a BH merger has been studied
extensively and is fairly well understood [10, 11, 4, 5]. Generally, after a common MOTS
forms it bifurcates into two surfaces. The outermost of these two surfaces expands and
forms the AH for the final BH, while the innermost surface contracts. Furthermore, the
two MOTSs that were initially the AHs of the two original BHs continue to exist well
after the formation of the common horizon. While these three interior MOTSs have
been studied in some detail [11, 12, 13, 5, 14], their ultimate fate remains uncertain and
is the main focus of our work.

In this paper, we present a study to investigate the dynamics of MOTSs in the
head-on collision of BHs for various separations and mass ratios, with the holes modeled
as punctures [15]. We find that the MOTSs of the merging punctures will in general
intersect. For the situations in which they do not intersect, we show that it is due to
the singularity avoidance properties of the moving puncture gauge condition [16, 17]
used in the study. Our simulations are not long enough to show the ultimate fate of the
MOTSs and their punctures. At the same time, the results provide evidence that the
punctures, although close enough to each other to act effectively as a single puncture,
do not merge and the MOTSs do not fully overlap. Section 2 provides a review of the
MOTS involved in the evolutions. In Section 3, we outline the computational methods
used for the simulations. Results are given in Section 4, and Section 5 provides the
conclusions.

2. Marginally Trapped Surfaces of Two Black Holes

We consider a spacetime foliation of spacelike hypersurfaces 3; labeled by a time
parameter t. The initial slice ¥y consists of two BHs at a coordinate separation d.
Depending on d, ¥; could have up to four MOTSs [11, 12, 13, 5, 14]. A MOTS is a
closed spacelike 2-surface in which the divergence of its outgoing null normals vanishes.
An AH is the outer-most of the MOTSs. For large enough d, ¥; will have two non-
connected MOTSs, §; and Sy, which correspond also to the AH of each individual BH.
At a separation d., a slice 3; will also have a MOTS S, surrounding &7 and S;. Since S,
is now the outer-most MOTS, the surface is an AH, called the common AH. In time, S,
will become the event horizon of the final BH. For separations d < d., a MOTS S; peels
off from the interior of S, shrinking and hugging &; and S;. These four MOTSs, S, Ss,
S, and §;, are slices of four different dynamical horizons [10, 3, 18, 4]. However, in the
case of §;, this only applies for a short time before the surface becomes timelike [11].
For small initial separations, S; and S, are at all times nearly null surfaces [11], and
thus to good approximation they are isolated horizons [19].

A difficulty in studying the eventual fate of §; and S, is that, for the coordinate
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conditions typically used with punctures, the surfaces shrink after the formation of S,
requiring progressively finer spatial resolution to properly resolve them. As a result, it
is challenging to make any definitive statements as to whether or not the MOTSs exist
based solely on the fact that they could not be located.

Many investigations into &1 and S, have focused on locating them on a series
of initial data slices varying their separations, avoiding the computational cost of
performing high resolution simulations. Jaramillo, Ansorg, and Vasset [12] studied
Bowen-York [20] initial data and found that at decreasing separations S; and Sy merely
shrink and show no indications of intersecting. Instead, S; becomes highly distorted,
and Sy and S, ‘accumulate’ against it. Pook-Kolb et al. [14, 21, 22] studied an analogous
series of time symmetric Brill-Lindquist initial data [23, 24] and found that S; and S,
intersect and merge with S; at the exact moment of intersection. Schnetter, Krishnan,
and Beyer [11] carried out simulations of head-on collision of Brill-Lindquist initial data.
While they did lose the ability to track S; rather early due to its high distortion, they
made no statements about its ultimate fate or what happens to &7 and S;. They did
however speculate that if these three surfaces do in fact merge, it is more likely that S;
and S, merge first to form a new surface that then merges with ;.

3. Numerical Methods

All simulations were done with our MAYA code [25, 26, 27, 28, 29, 30|, which is based
on the BSSN formulation of the Einstein equations [31, 16], with the moving punctures
gauge condition [16, 17] and the CARPET [32, 33] adaptive mesh refinement driver.
The MAYA code is our local version of the EINSTEINTOOLKIT code [34]. We use Brill-
Lindquist initial data [23, 24] representing two initially at rest, non-spinning BHs with
total mass M = mj+my, mass ratio ¢ = my/ms, and separated by a coordinate distance
dp. During the evolution, we use AHFINDERDIRECT [35] to locate the MOTSs.

As 81 and S; approach each other, they will shrink in coordinate radius. The spatial
resolution required to properly resolve and track them will thus increase accordingly.
To ensure proper resolution, we activate additional refinement levels (one level each
time the MOTS radius reduces by half) to maintain roughly the same number of points
within each MOTS. When S, is first located, §; and Sy are each completely covered
by three refinement levels, with each refinement having 60® points. The resolutions for
each refinement are: A/100, M /200 and M /400. Towards the end of a simulation, we
activate up to five additional refinement levels, with a resolution of M /12800 at the
finest level.

Our code solves the y formulation of the BSSN equations [16] and enforces a floor
value y > x. to hande regions where the conformal factor diverges, e.g. at the punctures
or singularities, where y = 0. We carried out a series of ¢ = 1 and fixed d; simulations
in the range 107 > y. > 107% We found that the final time ¢; at which we cease
locating S; and S varied as t; ~ x7%%. With a floor value of x, = 107%, we obtain
stable evolutions lasting ¢ ~ 20 M.
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Figure 1. Parameter space of simulations. Simulations are characterized by mass
ratio ¢ and initial coordinate separation dg. Cases for which &1 and Sy intersect are
denoted by filled circles and non-intersecting by open boxes. In gray is the region of
non-intersecting simulations.

4. Results

Figure 1 shows the parameter space ¢ vs. dy of the simulations. There are two distinct
regions: one in the lower right corner (shaded gray) in which & and S; do not
intersect and the rest in which they do. The boundary separating these two regions
is ¢ ~ 1.135 + 1/4.065 (dy/M) — 6.674.

Since all the simulations are head-on collisions with the holes along the z-axis, we

track the coordinate separation between S; and S, with Az = z; — 25 where z; and 2
are respectively the z-components at the surface of S; and S, that face each other. The
coordinate origin is set at the center of mass of the initial configuration. Initially, z; > 0
and zo < 0. Thus, when the two surfaces intersect, z; < 2o, and Az becomes negative.
Figure 2 shows for a few ¢ = 1 cases |Az| as a function of coordinate time ¢. The left
panel shows three cases in which §; and Ss intersect. The time axis has been shifted so
the cases align when the surfaces intersect at time t,, which depends on dy. The right
panel shows three other cases in which &) and Sy do not intersect. The panels show
that at late times the separation for the non-intersecting cases and the overlap for the

intersecting cases both decrease as |Az| ~ e*/*

. The same exponential decay extends
to the ¢ # 1 cases. For all cases, we find that A & 2M. The exponential decay in the
surface separation is also present in the coordinate separation, d, of the two punctures.

Shortly after the formation of S,, we find again that d oc e=/* with A ~ 2M/.
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Figure 2. Coordinate separation |Az| between S; and S, for a few ¢ = 1 examples as
a function of coordinate time ¢t. The left panel depicts three intersecting cases aligned
at the time of intersection. The right panel shows three non-intersecting cases. Solid
dots denote the time at which the common AH appears.

To understand the exponential decay in the separation between S; and S, as well as
between the punctures, we recall that in the moving puncture gauge the lapse function
« satisfies the 1 + log type slicing condition: (0; — 3'0;) @ = —nakK, with 3% the shift
vector, K the trace of the extrinsic curvature, and n a constant. As is customary, we
choose n = 2. With this choice, stationary slices of a single Schwarzchild puncture are
given by a family of trumpet slices [36], for which the surface of zero isotropic radius
(the trumpet surface) has a non-zero areal radius, and the lapse on the trumpet surface
vanishes, thus avoiding the singularity at the puncture. With the moving puncture
gauge, the position of the punctures x’LQ are found from integrating 0, xiQ = —B{"Q [16].
Since for the Schwarzchild trumpet slices, 7 = /A near the puncture [36, 37], the
radial coordinate distance to each puncture is given by 71, e YA, with the decay
rate A computed from \? = %BT&,BT. Substituting the solution for 1+log trumpet slices
found by Hannam et al. [38] into this expression yields (\/M)? ~ (Ry/M)3/(2—Ry/M) ,
in which Ry ~ 1.3124 M. This gives A\ = 1.82 M, which is consistent with our numerical
value from our simulations. The minor disagreement is easily explained by the fact that
our numerical simulations do not reach full stationarity before completion and the shift
vector is evaluated slightly away from the puncture.

To demonstrate how the lapse function is connected to the behavior observed in
S; and S, we show in Figure 3 the lapse function at the origin, «g, as a function of
coordinate time ¢ (left panel) and as function of Az (right panel). Two cases are plotted:
one in which the surfaces do not intersect (do/M = 2) and another in which they do
(do/M = 1). Tt is clear from the left panel that in both cases the lapse eventually
collapses and thus halts the evolution. The difference on how the collapse proceeds in
each case and affects the final outcome is more evident in the right panel. We see in
this panel that at Az ~ 0.42 both cases are at the same separation. The solid dots in
the left panel label o at this separation. For the non-intersecting (do/M = 2) case,
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Figure 3. Lapse at the coordinate origin g for ¢ = 1 and do/M = 1, 2. The left
panel shows how ag changes as a function of coordinate time t. The right panel shows
how «ag changes with Az. For do/M = 2, by the time Az = 0, the lapse has already
collapsed. In contrast, for do/M = 1, Az = 0 is reached when ag =~ 0.25. After this
point, as ag collapses, Az reaches a minimum and at late times Az — 0.
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Figure 4. Left panel shows proper time 7, (crosses) at the origin when S; and S,
intersect at time ¢, for ¢ = 1 as a function of dy. Included is also a quadratic fit 7, and
in gray the 90% confidence interval. With solid dots are the proper time 74 elapsed
at the origin by the end of the simulations for three non-intersecting cases. The right
panel shows 7. — 79 as a function of ¢ for those three non-intersecting cases.

ap is already starting to collapse. On the other hand, for the intersecting (dy/M = 1)
case, aq is still growing; thus, the evolution lives longer and the surfaces are able to
intersect before the end of the simulation. What is also interesting is that the degree
of intersection or surface overlap reaches a maximum and then decreases as the lapse
enters collapse. As we will show later, this is a coordinate effect.

To further support the view about the effect of the lapse, we have measured the
proper time 71y(t) = ftt:o ag dt’ at the origin. The left panel in Fig. 4 shows with crosses
Te = To(ts), where t, is the time when S; and S, intersect. Also plotted is a quadratic fit
7/ M = 0.337 (do/M)? + 1.170 (dy/M) + 0.417 and in gray the 90% confidence interval.
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Figure 5. Proper separation |AZ| between S; and S for a few ¢ = 1 examples as a
function of proper time 7y measured at the origin of the coordinate system. The left
panel depicts three intersecting cases aligned at the time of intersection. The right
panel shows three non-intersecting cases. Solid dots denote the time at which the
common AH appears.

The insert shows extrapolation of 7,/M beyond the intersecting cases, with three data
points (solid dots) denoting non-intersecting cases in which 7, = 7(tf), with ¢ty the
time at the end of the simulation. Notice that 7; < 7, suggesting that, if in those
cases the evolution had lasted 7, — 7 longer, the surfaces would have intersected. The
right panel in Fig. 4 shows 7, — 7y as a function of coordinate time ¢ for the three non-
intersecting cases. Notice that 7, — 79 — constant, as the lapse collapses, signaling that
the progression of proper time has halted.

As mentioned before, tracking the separation or overlap of &; and Sy with
coordinate distances has the complication that the choice of gauge influences the
outcome. To circumvent this, we show in Figure 5 the proper distance separation |AZ| as
a function of proper time 7y corresponding to the cases in Fig. 2. The left panel depicts
the intersecting cases with time shifted by the time at intersection, 7,. The right panel
shows three non-intersecting cases with the time also shifted but in this case by 7, from
the fit in Fig. 4. It is clear from both panels that for 7o — 7. < 0 and 79 — 7. < 0, the
proper separation is independent of dy. Also, if we were to combine the data from both
panels, it would show that for these times all cases lie on top of each other; thus, there
is no difference between intersecting and non-intersecting cases. Therefore, here again
the data suggest that, if the evolutions for the non-intersecting cases had proceeded, the
surfaces would have eventually intersected. The differences in |AZ| with d arise when
To — Tx > 0, namely when the surfaces overlap. The left panel shows that at late times
S1 and S reach a constant proper overlap, the smaller the value of dy the larger the
overlap. Furthermore, we find that the final overlap volume is never large enough to
contain the punctures; they remain in the non-overlapping regions.

To gain further insight about the final state of the MOTSs and punctures, we show
in Fig. 6 the evolution of the areal radius R = \/A/4m with A the area of the MOTS for
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Figure 6. Evolution of the areal radius of S; for intersecting cases with ¢ = 1. The
areal radius of Sy is the same as that for S; since the holes have equal masses.

a few intersecting cases with ¢ = 1. It is clear that toward the end of the simulation, the
surfaces S and S, reach a constant areal radius and thus become isolated horizons [1].
This together with the finding that &7 and S, have a constant proper overlap strongly
suggest that the configuration is essentially frozen and the punctures will not merge.

5. Conclusions

We have presented results from a two-parameter study (mass ratio ¢ and initial
separation dy) of head-on collisions of BHs. The focus was on the ultimate fate of
the MOTSs &1 and S, that initially were the AHs of the colliding BHs. Depending on
the values of ¢ and dj, once inside the common AH the surfaces §; and Ss intersect
if the lapse function ag takes longer to collapse before the end of the simulation. The
collapse of the lapse is intrinsic to the singularity avoidance properties of the moving
puncture gauge condition [16, 17] used in the simulations. We find that at late times for
all cases, the coordinate separation of the BH punctures and of the MOTS surfaces S
and S, decrease o< e~/* with A &~ 2M. When the separation of S; and S, is measured
by proper distances, we find that at early times all cases exhibit the same behavior as
a function of proper time. The data suggest that, if it were not for the collapse of the
lapse, all cases would intersect. Furthermore, at late times the intersection or overlap
freezes. Similarly, at late times, the areal radius of &; and S, reach a constant, thus
becoming isolated horizons. These two facts, the freezing of the areal radius and the
overlap, strongly suggest that the punctures do not merge. However, since this occurs
at very small separations, (JAz| ~ 107*M), for practical purposes, the two punctures
act as a single puncture, namely the singularity of the final BH.
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