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Abstract. A popular approach in numerical simulations of black hole binaries is

to model black holes as punctures in the fabric of spacetime. The location and the

properties of the black hole punctures are tracked with apparent horizons, namely

outermost marginally outer trapped surfaces (MOTSs). As the holes approach each

other, a common apparent horizon suddenly appears, engulfing the two black holes and

signaling the merger. The evolution of common apparent horizons and their connection

with gravitational wave emission have been studied in detail with the framework of

dynamical horizons. We present a study of the dynamics of the MOTSs and their

punctures in the interior of the final black hole. The study focuses on head-on mergers

for various initial separations and mass ratios. We find that MOTSs intersect for most

of the parameter space. We show that for those situations in which they do not, it is

because of the singularity avoidance property of the moving puncture gauge condition

used in the study. Although we are unable to carry out evolutions that last long enough

to show the ultimate fate of the punctures, our results suggest that MOTSs always

intersect and that at late times their overlap is only partial. As a consequence, the

punctures inside the MOTSs, although close enough to each other to act effectively as

a single puncture, do not merge.

1. Introduction

An essential element in numerical relativity simulations involving black holes (BHs) is

tracking the location and properties of the holes. A natural structure to accomplish this

would be the event horizon of the BH. The problem with these horizons is that they are

teleological in nature; that is, we require knowledge of the entire space-time in order

to identify their location and dynamics. The alternative is to track apparent horizons

(AHs) [1] since to find them one only needs the intrinsic metric and extrinsic curvature

of the spacetime hypersurface at a given time. AHs can be used to determine the mass

and angular momentum of the BHs [2]. Once the common AH forms during the merger,

one can also estimate mass and spin multipole moments [3, 4] to quantify the rate at
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which the final BH approaches equilibrium and potentially identify when the ringdown

phase begins [5]. In addition, studies [6, 7, 8, 5, 9] have shown that fields at the AH

are correlated with fields in the wave-zone and thus the gravitational wave (GW) signal

itself.

The fate of the common AH resulting from a BH merger has been studied

extensively and is fairly well understood [10, 11, 4, 5]. Generally, after a common MOTS

forms it bifurcates into two surfaces. The outermost of these two surfaces expands and

forms the AH for the final BH, while the innermost surface contracts. Furthermore, the

two MOTSs that were initially the AHs of the two original BHs continue to exist well

after the formation of the common horizon. While these three interior MOTSs have

been studied in some detail [11, 12, 13, 5, 14], their ultimate fate remains uncertain and

is the main focus of our work.

In this paper, we present a study to investigate the dynamics of MOTSs in the

head-on collision of BHs for various separations and mass ratios, with the holes modeled

as punctures [15]. We find that the MOTSs of the merging punctures will in general

intersect. For the situations in which they do not intersect, we show that it is due to

the singularity avoidance properties of the moving puncture gauge condition [16, 17]

used in the study. Our simulations are not long enough to show the ultimate fate of the

MOTSs and their punctures. At the same time, the results provide evidence that the

punctures, although close enough to each other to act effectively as a single puncture,

do not merge and the MOTSs do not fully overlap. Section 2 provides a review of the

MOTS involved in the evolutions. In Section 3, we outline the computational methods

used for the simulations. Results are given in Section 4, and Section 5 provides the

conclusions.

2. Marginally Trapped Surfaces of Two Black Holes

We consider a spacetime foliation of spacelike hypersurfaces Σt labeled by a time

parameter t. The initial slice Σ0 consists of two BHs at a coordinate separation d.

Depending on d, Σt could have up to four MOTSs [11, 12, 13, 5, 14]. A MOTS is a

closed spacelike 2-surface in which the divergence of its outgoing null normals vanishes.

An AH is the outer-most of the MOTSs. For large enough d, Σt will have two non-

connected MOTSs, S1 and S2, which correspond also to the AH of each individual BH.

At a separation dc, a slice Σt will also have a MOTS Sc surrounding S1 and S2. Since Sc
is now the outer-most MOTS, the surface is an AH, called the common AH. In time, Sc
will become the event horizon of the final BH. For separations d < dc, a MOTS Si peels

off from the interior of Sc, shrinking and hugging S1 and S2. These four MOTSs, S1, S2,
Sc, and Si, are slices of four different dynamical horizons [10, 3, 18, 4]. However, in the

case of Si, this only applies for a short time before the surface becomes timelike [11].

For small initial separations, S1 and S2 are at all times nearly null surfaces [11], and

thus to good approximation they are isolated horizons [19].

A difficulty in studying the eventual fate of S1 and S2 is that, for the coordinate
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conditions typically used with punctures, the surfaces shrink after the formation of Sc,
requiring progressively finer spatial resolution to properly resolve them. As a result, it

is challenging to make any definitive statements as to whether or not the MOTSs exist

based solely on the fact that they could not be located.

Many investigations into S1 and S2 have focused on locating them on a series

of initial data slices varying their separations, avoiding the computational cost of

performing high resolution simulations. Jaramillo, Ansorg, and Vasset [12] studied

Bowen-York [20] initial data and found that at decreasing separations S1 and S2 merely

shrink and show no indications of intersecting. Instead, Si becomes highly distorted,

and S1 and S2 ‘accumulate’ against it. Pook-Kolb et al. [14, 21, 22] studied an analogous

series of time symmetric Brill-Lindquist initial data [23, 24] and found that S1 and S2
intersect and merge with Si at the exact moment of intersection. Schnetter, Krishnan,

and Beyer [11] carried out simulations of head-on collision of Brill-Lindquist initial data.

While they did lose the ability to track Si rather early due to its high distortion, they

made no statements about its ultimate fate or what happens to S1 and S2. They did

however speculate that if these three surfaces do in fact merge, it is more likely that S1
and S2 merge first to form a new surface that then merges with Si.

3. Numerical Methods

All simulations were done with our Maya code [25, 26, 27, 28, 29, 30], which is based

on the BSSN formulation of the Einstein equations [31, 16], with the moving punctures

gauge condition [16, 17] and the Carpet [32, 33] adaptive mesh refinement driver.

The Maya code is our local version of the EinsteinToolkit code [34]. We use Brill-

Lindquist initial data [23, 24] representing two initially at rest, non-spinning BHs with

total mass M = m1+m2, mass ratio q = m1/m2, and separated by a coordinate distance

d0. During the evolution, we use AHFinderDirect [35] to locate the MOTSs.

As S1 and S2 approach each other, they will shrink in coordinate radius. The spatial

resolution required to properly resolve and track them will thus increase accordingly.

To ensure proper resolution, we activate additional refinement levels (one level each

time the MOTS radius reduces by half) to maintain roughly the same number of points

within each MOTS. When Sc is first located, S1 and S2 are each completely covered

by three refinement levels, with each refinement having 603 points. The resolutions for

each refinement are: M/100, M/200 and M/400. Towards the end of a simulation, we

activate up to five additional refinement levels, with a resolution of M/12800 at the

finest level.

Our code solves the χ formulation of the BSSN equations [16] and enforces a floor

value χ ≥ χε to hande regions where the conformal factor diverges, e.g. at the punctures

or singularities, where χ = 0. We carried out a series of q = 1 and fixed d0 simulations

in the range 10−3 > χε > 10−6. We found that the final time tf at which we cease

locating S1 and S2 varied as tf ∼ χ−0.05ε . With a floor value of χε = 10−6, we obtain

stable evolutions lasting tf ≈ 20M .
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Figure 1. Parameter space of simulations. Simulations are characterized by mass

ratio q and initial coordinate separation d0. Cases for which S1 and S2 intersect are

denoted by filled circles and non-intersecting by open boxes. In gray is the region of

non-intersecting simulations.

4. Results

Figure 1 shows the parameter space q vs. d0 of the simulations. There are two distinct

regions: one in the lower right corner (shaded gray) in which S1 and S2 do not

intersect and the rest in which they do. The boundary separating these two regions

is q ≈ 1.135 +
√

4.065 (d0/M)− 6.674.

Since all the simulations are head-on collisions with the holes along the z-axis, we

track the coordinate separation between S1 and S2 with ∆z = z1 − z2 where z1 and z2
are respectively the z-components at the surface of S1 and S2 that face each other. The

coordinate origin is set at the center of mass of the initial configuration. Initially, z1 > 0

and z2 < 0. Thus, when the two surfaces intersect, z1 < z2, and ∆z becomes negative.

Figure 2 shows for a few q = 1 cases |∆z| as a function of coordinate time t. The left

panel shows three cases in which S1 and S2 intersect. The time axis has been shifted so

the cases align when the surfaces intersect at time t∗, which depends on d0. The right

panel shows three other cases in which S1 and S2 do not intersect. The panels show

that at late times the separation for the non-intersecting cases and the overlap for the

intersecting cases both decrease as |∆z| ∼ e−t/λ. The same exponential decay extends

to the q 6= 1 cases. For all cases, we find that λ ≈ 2M . The exponential decay in the

surface separation is also present in the coordinate separation, d, of the two punctures.

Shortly after the formation of Sc, we find again that d ∝ e−t/λ with λ ≈ 2M .
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Figure 2. Coordinate separation |∆z| between S1 and S2 for a few q = 1 examples as

a function of coordinate time t. The left panel depicts three intersecting cases aligned

at the time of intersection. The right panel shows three non-intersecting cases. Solid

dots denote the time at which the common AH appears.

To understand the exponential decay in the separation between S1 and S2 as well as

between the punctures, we recall that in the moving puncture gauge the lapse function

α satisfies the 1 + log type slicing condition: (∂t − βi∂i)α = −nαK, with βi the shift

vector, K the trace of the extrinsic curvature, and n a constant. As is customary, we

choose n = 2. With this choice, stationary slices of a single Schwarzchild puncture are

given by a family of trumpet slices [36], for which the surface of zero isotropic radius

(the trumpet surface) has a non-zero areal radius, and the lapse on the trumpet surface

vanishes, thus avoiding the singularity at the puncture. With the moving puncture

gauge, the position of the punctures xi1,2 are found from integrating ∂t x
i
1,2 = −βi1,2 [16].

Since for the Schwarzchild trumpet slices, βr = r/λ near the puncture [36, 37], the

radial coordinate distance to each puncture is given by r1,2 ∝ e−t/λ, with the decay

rate λ computed from λ2 = 1
r
βr∂rβ

r. Substituting the solution for 1+ log trumpet slices

found by Hannam et al. [38] into this expression yields (λ/M )2 ≈ (R0/M)3/(2−R0/M) ,

in which R0 ≈ 1.3124M . This gives λ ≈ 1.82 M , which is consistent with our numerical

value from our simulations. The minor disagreement is easily explained by the fact that

our numerical simulations do not reach full stationarity before completion and the shift

vector is evaluated slightly away from the puncture.

To demonstrate how the lapse function is connected to the behavior observed in

S1 and S2, we show in Figure 3 the lapse function at the origin, α0, as a function of

coordinate time t (left panel) and as function of ∆z (right panel). Two cases are plotted:

one in which the surfaces do not intersect (d0/M = 2) and another in which they do

(d0/M = 1). It is clear from the left panel that in both cases the lapse eventually

collapses and thus halts the evolution. The difference on how the collapse proceeds in

each case and affects the final outcome is more evident in the right panel. We see in

this panel that at ∆z ≈ 0.42 both cases are at the same separation. The solid dots in

the left panel label α0 at this separation. For the non-intersecting (d0/M = 2) case,
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Figure 3. Lapse at the coordinate origin α0 for q = 1 and d0/M = 1, 2. The left

panel shows how α0 changes as a function of coordinate time t. The right panel shows

how α0 changes with ∆z. For d0/M = 2, by the time ∆z = 0, the lapse has already

collapsed. In contrast, for d0/M = 1, ∆z = 0 is reached when α0 ≈ 0.25. After this

point, as α0 collapses, ∆z reaches a minimum and at late times ∆z → 0.
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Figure 4. Left panel shows proper time τ∗ (crosses) at the origin when S1 and S2
intersect at time t∗ for q = 1 as a function of d0. Included is also a quadratic fit τ̂∗ and

in gray the 90% confidence interval. With solid dots are the proper time τf elapsed

at the origin by the end of the simulations for three non-intersecting cases. The right

panel shows τ̂∗ − τ0 as a function of t for those three non-intersecting cases.

α0 is already starting to collapse. On the other hand, for the intersecting (d0/M = 1)

case, α0 is still growing; thus, the evolution lives longer and the surfaces are able to

intersect before the end of the simulation. What is also interesting is that the degree

of intersection or surface overlap reaches a maximum and then decreases as the lapse

enters collapse. As we will show later, this is a coordinate effect.

To further support the view about the effect of the lapse, we have measured the

proper time τ0(t) =
∫ t
t=0

α0 dt
′ at the origin. The left panel in Fig. 4 shows with crosses

τ∗ ≡ τ0(t∗), where t∗ is the time when S1 and S2 intersect. Also plotted is a quadratic fit

τ̂∗/M = 0.337 (d0/M)2 + 1.170 (d0/M) + 0.417 and in gray the 90% confidence interval.
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Figure 5. Proper separation |∆z̄| between S1 and S2 for a few q = 1 examples as a

function of proper time τ0 measured at the origin of the coordinate system. The left

panel depicts three intersecting cases aligned at the time of intersection. The right

panel shows three non-intersecting cases. Solid dots denote the time at which the

common AH appears.

The insert shows extrapolation of τ̂∗/M beyond the intersecting cases, with three data

points (solid dots) denoting non-intersecting cases in which τf = τ0(tf ), with tf the

time at the end of the simulation. Notice that τf < τ̂∗, suggesting that, if in those

cases the evolution had lasted τ̂∗ − τf longer, the surfaces would have intersected. The

right panel in Fig. 4 shows τ̂∗ − τ0 as a function of coordinate time t for the three non-

intersecting cases. Notice that τ̂∗− τ0 → constant, as the lapse collapses, signaling that

the progression of proper time has halted.

As mentioned before, tracking the separation or overlap of S1 and S2 with

coordinate distances has the complication that the choice of gauge influences the

outcome. To circumvent this, we show in Figure 5 the proper distance separation |∆z̄| as

a function of proper time τ0 corresponding to the cases in Fig. 2. The left panel depicts

the intersecting cases with time shifted by the time at intersection, τ∗. The right panel

shows three non-intersecting cases with the time also shifted but in this case by τ̂∗ from

the fit in Fig. 4. It is clear from both panels that for τ0 − τ∗ < 0 and τ0 − τ̂∗ < 0, the

proper separation is independent of d0. Also, if we were to combine the data from both

panels, it would show that for these times all cases lie on top of each other; thus, there

is no difference between intersecting and non-intersecting cases. Therefore, here again

the data suggest that, if the evolutions for the non-intersecting cases had proceeded, the

surfaces would have eventually intersected. The differences in |∆z̄| with d0 arise when

τ0 − τ∗ > 0, namely when the surfaces overlap. The left panel shows that at late times

S1 and S2 reach a constant proper overlap, the smaller the value of d0 the larger the

overlap. Furthermore, we find that the final overlap volume is never large enough to

contain the punctures; they remain in the non-overlapping regions.

To gain further insight about the final state of the MOTSs and punctures, we show

in Fig. 6 the evolution of the areal radius R =
√
A/4π with A the area of the MOTS for
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Figure 6. Evolution of the areal radius of S1 for intersecting cases with q = 1. The

areal radius of S2 is the same as that for S1 since the holes have equal masses.

a few intersecting cases with q = 1. It is clear that toward the end of the simulation, the

surfaces S1 and S2 reach a constant areal radius and thus become isolated horizons [1].

This together with the finding that S1 and S2 have a constant proper overlap strongly

suggest that the configuration is essentially frozen and the punctures will not merge.

5. Conclusions

We have presented results from a two-parameter study (mass ratio q and initial

separation d0) of head-on collisions of BHs. The focus was on the ultimate fate of

the MOTSs S1 and S2 that initially were the AHs of the colliding BHs. Depending on

the values of q and d0, once inside the common AH the surfaces S1 and S2 intersect

if the lapse function α0 takes longer to collapse before the end of the simulation. The

collapse of the lapse is intrinsic to the singularity avoidance properties of the moving

puncture gauge condition [16, 17] used in the simulations. We find that at late times for

all cases, the coordinate separation of the BH punctures and of the MOTS surfaces S1
and S2 decrease ∝ e−t/λ with λ ≈ 2M . When the separation of S1 and S2 is measured

by proper distances, we find that at early times all cases exhibit the same behavior as

a function of proper time. The data suggest that, if it were not for the collapse of the

lapse, all cases would intersect. Furthermore, at late times the intersection or overlap

freezes. Similarly, at late times, the areal radius of S1 and S2 reach a constant, thus

becoming isolated horizons. These two facts, the freezing of the areal radius and the

overlap, strongly suggest that the punctures do not merge. However, since this occurs

at very small separations, (|∆z| ∼ 10−4M), for practical purposes, the two punctures

act as a single puncture, namely the singularity of the final BH.
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[7] José Luis Jaramillo, Rodrigo P. Macedo, Philipp Moesta, and Luciano Rezzolla. Black-hole

horizons as probes of black-hole dynamics. I. Post-merger recoil in head-on collisions. Physical

Review D, 85(8):084030, April 2012.

[8] J. L. Jaramillo, R. P. Macedo, P. Moesta, and L. Rezzolla. Towards a cross-correlation approach to

strong-field dynamics in black hole spacetimes. AIP Conference Proceedings, 1458(1):158–173,

July 2012.

[9] Vaishak Prasad, Anshu Gupta, Sukanta Bose, Badri Krishnan, and Erik Schnetter. News from

horizons in binary black hole mergers. arXiv e-prints, page arXiv:2003.06215, March 2020.

[10] Abhay Ashtekar and Badri Krishnan. Dynamical horizons and their properties. Physical Review

D, 68(10):104030, November 2003.

[11] Erik Schnetter, Badri Krishnan, and Florian Beyer. Introduction to dynamical horizons in

numerical relativity. Physical Review D, 74(2):024028, July 2006.
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[37] Bernd Brügmann. Schwarzschild black hole as moving puncture in isotropic coordinates. General

Relativity and Gravitation, 41(9):2131–2151, September 2009.

[38] Mark Hannam, Sascha Husa, Frank Ohme, Bernd Brügmann, and Niall Ó Murchadha. Wormholes
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