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- UDE-Based Robust Output Feedback Control
With Applications to a Piezoelectric Stage

Beibei Ren

Abstract—In this article, an uncertainty and disturbance
estimator (UDE)-based robust output feedback control tech-
nique without using a state observer is proposed for a
general class of nonlinear single-input single-output sys-
tems that are bounded-input bounded-output stable and
subject to input and output disturbances. Instead of design-
ing a controller for the original system directly, an equiva-
lent system consisting of a first-order linear system plus
a lumped uncertainty term is used to represent the input—
output relationship. Then, a UDE-based robust controller
is designed only using the system output feedback and
the bandwidth of the open-loop system, making the design
almost modeling-free. A prominent advantage of the pro-
posed approach is that it has converted a challenging ro-
bust control problem into an intuitive filter design problem.
The effectiveness of the proposed approach is validated
on an experimental piezoelectric stage in the presence of
hysteresis nonlinearity.

Index Terms—Hysteresis, output feedback, piezoelec-
tric stage, trajectory tracking, uncertainty and disturbance
estimator (UDE)-based robust control.

|. INTRODUCTION

EVELOPING robust control algorithms to achieve tra-

jectory tracking and disturbance rejection is a vital goal
of modern control theory. Among different robust control ap-
proaches, the uncertainty and disturbance estimator (UDE)-
based robust control [1] has obtained much attention in recent
years. It adopts a proper filter to estimate and compensate the
lumped uncertainty, which may include the model uncertain-
ties and external disturbances. This approach possesses a clear
structure, easy tuning, and robust performance. Over the past
years, it has been successfully applied to different applications,
such as microelectromechanical systems [2], power systems [3],
[4], industrial processes [5], unmanned aerial vehicles [6], [7],
robotics [8], and distributed parameter systems [9]. In [10],
its two-degree-of-freedom nature is revealed, decoupling the
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design of the reference model (to achieve the desired perfor-
mance) and the design of a low-pass filter (to attenuate the
effect of uncertainties and disturbances). Recently, the internal
model principle has been introduced to systematically design
the filter to achieve asymptotic performance [11].

Although a number of advancements have been made for
the UDE-based robust control, there still exist some challenges.
The first challenge comes from the structural constraint to be
met by the original UDE-based robust controller for systems
with the order greater than one [1]. The structural constraint
elaborates that the lumped uncertainty should be “matched”
with the control input, i.e., it should appear in the same channel
of the control input [12]. Otherwise, the tracking performance
can be degraded. The second challenge is that the original UDE-
based robust control requires a full state feedback. In other
words, all system states need to be measured for feedback,
which is not the case in many applications. This motivates the
development of an output feedback version of the UDE-based
robust control in [13], where a controller—observer structure is
proposed by constructing a Luenberger-like state observer to
estimate the system states. However, the preferred performance
can be guaranteed only when the lumped uncertainty varies
slowly.

In this article, a UDE-based output feedback control frame-
work without using a state observer is proposed for a general
class of nonlinear single-input single-output (SISO) systems
that are bounded-input bounded-output (BIBO) stable and sub-
ject to input disturbances and output disturbances. In order to
facilitate the design, a first-order linear system is introduced to
convert the original nonlinear system equivalently into a first-
order linear system plus a lumped uncertainty term that consists
of the original system dynamics and the opposite of the intro-
duced first-order linear system. Then, the lumped uncertainty
term is estimated through the UDE filter in the control design.
A prominent advantage of the proposed approach lies in its al-
most modeling-free feature, as only the system output feedback
and the bandwidth of the open-loop system are needed for the
controller design. Moreover, the requirements of the structural
constraint and the full state measurements are removed. This
is very significant because it extends the applicability of the
UDE-based robust control to a much larger class of systems. It
does not matter whether the system is of a low order or of a
high order. It does not matter whether the states of the system
are available for measurement or not, either. It reduces the num-
ber of required sensors to the minimum, which reduces system
cost.
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There are many other excellent alternative robust con-
trol methods in the literature, e.g., [14]-[18]. Among them,
proportional-integral-differential (PID) control is very popular,
and it does not need the information of the system model. How-
ever, the tuning of the PID controller parameters is sometimes
very challenging. Moreover, the scope of uncertainties a PID
controller can handle may be limited. The superior performance
of the UDE-based control over the PID has been discussed and
demonstrated in [19]. In [14], a sliding-mode controller with
a nonlinear disturbance observer (DOB) was proposed. This
method requires state feedback. In [15], a higher order sliding-
mode differentiation output feedback controller is studied to
estimate the disturbances in nonlinear systems with any relative
degree. In [16], an extended state observer (ESO) technique is
applied to a hydraulic system with experimental validation. In
[17], active disturbance rejection adaptive control is proposed to
systems with unknown parameters. The output feedback model
reference adaptive controller is studied for systems with time-
varying state delays in [18]. In most of output feedback con-
trol design, a state observer (including an ESO) is constructed.
This usually requires the information of system parameters and
structure, which is a hassle and can be challenging for some
applications. Instead of constructing a state observer, the pro-
posed approach converts a challenging robust control problem
into an intuitive filter design problem. It only requires the band-
width of the open-loop system, which can be easily obtained
through some preliminary studies of the system. Hence, one
advantage is its significantly simplified design process, making
it very attractive for practical applications.

In order to demonstrate its practical significance, the proposed
approach is applied to control a piezoelectric nanopositioning
stage, which can be widely found in microgrippers and scan-
ning probe microscopes (SPMs) indispensable for investigating
and manipulating nanoscale biological, chemical, material, and
physical processes [20], [21]. It is crucial to achieve precise po-
sition control as well as high-bandwidth control for piezoelectric
actuators, which would increase the operating speed of SPMs
and bring significant benefits to numerous varieties of emerg-
ing nanosciences and nanotechnologies. However, the existence
of vibration dynamics, coupled hysteresis, and other uncertain-
ties, like creep, presents significant difficulties in the control of
positioning and tracking over a wide bandwidth [22]. The cur-
rently commercially available high-resolution SPMs can only
operate at a frequency range up to 1-10% of the lowest resonant
frequency [22]. This motivated the development of control tech-
niques to enable high-bandwidth nanopositioning and tracking
of piezoelectric stages [23]-[26]. Compared to other approaches
in the literature, the proposed approach can avoid complicated
system modeling including hysteresis nonlinearity and lead to
a simpler implementation, which requires less computational
power. What is more important is that the presented control
framework can achieve fine tracking up to 1100 Hz, which has
reached 38% of the lowest resonant frequency, representing a
significant improvement compared to the commercially avail-
able range of 1-10%.

The preliminary results of this article were presented in a
conference paper [27]. New contributions of this journal version
are highlighted as follows.

u Uy % = f(x,uz) B%> y
+ i+ Yz = h(x,uz) + i+
du dy
(@)
u b ~ Y
s+a +1[+
z
b —
s+a +
+ y
Us | x=f(xrug) | Vs
f+ vz = h(x,ug) + T+
dy dy
(b)
l ug =z+az
1
b
+
u + b y
s+a
(©)
Fig. 1. System X in (a) and its equivalent transformations in (b)
and (c).

1) The implementation of the proposed control framework
has been redesigned to avoid internal instability issues
caused by unstable pole-zero cancellation, as illustrated
in Fig. 2.

2) The explicit conditions to guarantee the closed-loop sys-
tem stability are analyzed and provided in Theorem 1 and
its proof.

3) More details of the experimental validation are added,
including experimental setup, system feasibility, and
experimental results.

4) Comparisons with other works on the piezoelectric stage
control are summarized to demonstrate the effectiveness
of the proposed methodology.

The rest of this article is organized as follows. The problem
is formulated in Section II with the main results presented in
Section III. The application of the proposed approach to a piezo-
electric stage is presented in Section IV. Section V concludes
this article.

Il. PROBLEM FORMULATION

Consider the following general SISO nonlinear system, as
shown in Fig. 1(a), with the input disturbance d, (¢) and the
output disturbance d,, (t):

&(t) = f (x(t), ux (1))

: (1)
ys(t) = h(x(t), us(t))
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UDE-based Robust Controller
1= Hp(s)
T=G(s) ™
Reference Plant
Model N
e k 1 u Uy % = f(x U ) Vs y
Hp (s = — R
. m(s) " Y 1—G(s) "1 b +‘]f+ ys = h(x,ug) +T+
dy d,
(s+a)Gp(s) —a
Fig. 2. Implementation of the proposed output feedback control.
where z(t) € R" is the state vector, uy; (t) = u(t) + d, (t) € R, article. The input—output relationship can be rewritten as
with u(t) being the control input and y(t) = y» (t) + d,(t) € R b
being the system output, f(-) is an unknown vector function, y(t) = L1 { } xu(t) + z(t) 4)
and h(+) is an unknown scalar differentiable function. The input— s+a

output relationship is denoted as yx; (t) = X(uy (¢)). Three as-
sumptions are made for this system.

1) The system X(-) is BIBO with X (u) = 0 if and only if
u = 0.

2) The system satisfies the Lipschitz condition |[3(u;) —
Y(ug)| < plug — us|, with = [|X|| being a positive
number.

3) d,(t) and d, (t) are bounded. Without loss of generality,
the bandwidth of the open-loop system is assumed to be
wy rad/s.

In system (1), signals z(t), ux (t), ys (£), d, (t), and d,, (t) are
unmeasurable or not measured, and only the system output y(¢)
is measured for control design. The goal is to design a control
law u(t) to make the system output y(t) track a desired reference
signal y, () € R. y, (¢) is not necessarily continuous and can be
smoothed after passing through a reference model H,, (s) as
Ym (t). In order to simplify the exposition, the following first-
order reference model is adopted:

ym (t) = —amYm (t) + am Yr (t) (2)

with a,, > 0 chosen to guarantee y,, (t) = v, (¢) in the steady
state. The control objective is then to design a control law w(t)
such that y(t) tracks y,, (t) fast and accurately, with the tracking
error dynamics given as

é(t) = —ke(t) 3)

where e(t) = y,, (t) — y(t) is the tracking error, and k& > 0.

I1l. UDE-BASED RoBUST OUTPUT FEEDBACK CONTROL
A. Control Framework

The system, as shown in Fig. 1(a), can be rearranged as shown
in Fig. 1(b) after introducing a first-order linear system HLG,
where a > 0, and the sign of b is the same as that of the system

gain. Without loss of generality, b > 0 is considered in this

[T 2]

where “x” is the convolution operator, £~ *{-} is the inverse
Laplace operator, and

2(t) = y(t) — L7! {S jz a} s u(t).
From (4), there is
y(t) = —ay(t) + bu(t) + ua(t) ®)
as shown in Fig. 1(c), where
ua(t) = #(t) + az(t) 6)

is a lumped uncertainty, including the original system dynamics
and the opposite of the introduced first-order linear system. It is
worth highlighting that representing the original system (1) in
(5) with a first-order linear system plus the lumped uncertainty
term (6) does not introduce any error. Moreover, the selection
of the parameters of the first-order linear system is straightfor-
ward, as will be shown later. The introduction of the first-order
linear system is purely to facilitate the design of the control law.
Subtracting (5) from (2) results in

e(t) = —ke(t) + [ke(t) — amym () + any, (t)
+ay(t) — bu(t) — uq(t)]. (7)

In order to satisfy the error dynamics (3), the controller should
satisfy
u(t) =+ [—amym (t) + amyr (1) + ke(t) + ay(t) — ua(t)]
®)

Everything on the right-hand side of the equation is known,
except the lumped uncertainty w,(t) that can be rewritten,
according to (5), as

uq(t) = y(t) + ay(t) — dbu(t).

S =
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According to the UDE-based robust control strategy [1], it can
be estimated as

aq(t) = g7 (t) x ua(t) = g5 (t) * (9(t) + ay(t) — bu(t)) )

where g7 (t) = L7'{G(s)} is the impulse response of a strictly
proper and stable filter G;(s) with the unity gain and zero
phase shift over the bandwidth of the open-loop system and
zero gain elsewhere. In practice, its bandwidth, denoted as wy,
can be much wider than the open-loop system bandwidth w;. By
replacing w4 (t) in (8) with 4,4 (t) in (9), the UDE-based robust
output feedback controller can be derived as

u(t) = % [ay(f) - L {%}
sy(t) + L7 {ﬁ}

k (—am Ym (1) + amy, () + ke(t))} . (10)
This leads to the overall control structure, which can be imple-
mented, as shown in Fig. 2. Compared to the results in [27],
the implementation in Fig. 2 avoids possible internal insta-
bility issues caused by unstable pole-zero cancellation. Nor-
mally, H,, (s) and G (s) have a unity static gain, which means
H,,(0) =1 and G¢(0) = 1. Hence, there is an integrator in
hclw’ and there is a differentiator in 1 — H,, (s). If these two
blocks are implemented separately as in [27], there is a pole-
zero cancellation at s = 0, which leads to an internal instability
problem. The implementation in Fig. 2 can avoid this via imple-
menting lliléf ((;)) as a whole after canceling the zero and pole
ats = 0.

B. Stability Analysis

After rearranging the blocks in Fig. 2 and representing the
plant by its equivalent representation in Fig. 1(b), the closed-
loop system shown in Fig. 2 can be expressed as shown in
Fig. 3(a), where

2
Gl (S) =a,, — Ay, + amk _ Am (S —+ k) (11)
S+an, s+ap S+ a,
1
T 1-Gils) 12
Gs(s) =G, (5 1)

G3(s)=k+sGy—a(l—Gy)=(k—a)+ (s+a)Gy (13)
and d(t) represents the effect of d,, (¢) and d, (t) given by
d(t) = S(u(t) 4 dy (t)) — S(u(t)) + d, (t).

The dashed block A in Fig. 3(a) characterizes the deviation of
the introduced first-order linear system from the original system.

Theorem 1: For the nonlinear BIBO system ys(t) =
Y (ux (t)) described in (1) with bounded disturbances d,, (t) and
d, (t) and open-loop system bandwidth wj, rad/s, the closed-loop
system described in Fig. 2, which involves the reference model
(2) and the control law (10), is finite-gain £ stable ! if: i) the

A system & : R — R is said to be finite-gain L, stable, if there exist
nonnegative constants  and 3 such that ||Yu|| s < v||lullz. + 5 [28].

d
Yr + u + y
6, 0—6mH L b LAy
b s+a +
] N E a -
A +
L E f—
G3(s)
(a)
d
Yr 1 f + u
3 61()6G2(5)
A
1
3 G2(5)G3(5)
(b)
6 e Y1
o A
‘ +
G(s) *
V2 e, d
(©)
Fig. 3. Equivalent representations of the UDE-based robust output

feedback control system in Fig. 2 for analysis.

first-order linear system L is chosen with a = nw,, where

st+a
0> 1, and b= k,a, where k, > Y 1; ii) the UDE-filter
satisfies |G (s)||oo = 1, and iii) the error dynamics gain k& > a.

Proof: The closed-loop system shown in Fig. 3(a) can be
represented as Fig. 3(b) and (¢) to facilitate the analysis. Fig. 3(c)
illustrates the feedback connection between A = ¥ — wLa and

a linear part G(s), where

~ 3Ga(9)Gs(s)

¢ = T T amae) e
a1 $G1(5)Ga(s)

ot) =L {1 +bsi—aG2(s)G3(s)} * yr(t)

er(t) =u(t), yi(t)=A e (t), ex(t)=wyi(t)+d(t), and
yo(t) = L7H{G(s)} * ea(t). According to assumptions 2) and
3), 6(t) and d(t) are bounded. Applying (12) and (13) into (14)
results in

(s+a)*Gy(s)+ (k—a)s+ a(k — a)
b(s + k) '

Since G (s) is stable and k > 0, G(s) is asymptotically stable.

Moreover, G(s) is proper because G(s) is a low-pass filter.

Hence, G(s) is bounded on the right half s-plane and has a
finite co norm.

G(s) = (15)
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According to the BIBO assumption about the system (-),
i = ||3]|x exists, and the bandwidth wy, of the system is known.
Once the parameters are chosen to satisfy the conditions i)—iii),
the following estimations can be made.

The oo norm of A can be estimated as v, = |[|Allx <
(nks//1+n?>—¢€), where 0 < e < pu. Furthermore, the
0o norm of G(s) can be estimated as v = |G|« <

(s+a)? (k—a)s+a(k—a) kawb V1472 *7])
R e o] Fonon

Therefore let n — o0 and k = nNwy + d) > a, where (b > 0;
there is

ksmwy

n nwb+¢+wb(\/1+n2—n)
Ny = | ——=ks —¢
V1+n?

(16)

Hence, according to the small-gain theorem [28], this feedback
connection is finite gain £, stable. This completes the proof. H

This theorem indicates that all the signals (eq(t),y1(t),
es(t), y2(t)) in Fig. 3(c) are bounded under the conditions. Both
O(t) and d(t) are bounded based on the boundedness of e (),
Y (t), dy (t), and d, (t). The system output is

L1 b
s+ a

which is also bounded.

y(t) = } cer(t) +es(t)

C. Asymptotic Convergence Analysis

As discussed before, the closed-loop system can be equiva-
lently represented, as shown in Fig. 3(a) and (b), which include
a block Go(s) = PC}W’ as given in (12). According to the
internal model principle, in order to guarantee that the tracking
error converges to 0 asymptotically, i.e., lim; ., e(t) = 0, the
filter G (s) can be designed in such a way that G5 (s) includes
the generation models of the reference command vy, (¢) and the
disturbances d,, (t) and d,, (t). The details about this can be found
in [11]. For example, when there exist harmonic components at
frequencies nw and the step signals in the system, the following
filter can be used:

s[1,(s* + (nw)?)
(s+a) ], (s> +ans+5,)

where «, o, and 3, are positive design parameters [11]. This
guarantees that G (s) has the unity gain and zero phase shift at
the frequencies nw.

In the following, the actual tracking error is analyzed. Denote
the Laplace transform of a signal with a capitalized letter, e.g.,
Y (s) and U,(s) are the Laplace transforms of y(t) and wu,(t),
respectively. After taking the Laplace transform, the system (5)
becomes

G'f (S) =1- (17)

sY(s) = —aY (s) +bU(s) + Uy(s) (18)
the reference model (2) becomes
SKn (S) = —Qm Y;u (S) + an Y; (S) (19)

and the controller (10) becomes

bU(s) = —am Yy (s) + an Y, (s) + kE(s) + aY (s)

— Ud(S)Gf (S) (20)
according to (8) and (9). Combining (18)—(20) results in
sE(s) = —kE(s) —Uq(s)[1 — Gy(s)] 21
which indicates that the actual error dynamics is
1
E(s)=— 1-Gy . 22
(8) = =7 L= Gr()] Uals) (22)

As a result, the lumped uncertainty signal u,(t) is attenuated
twice, first by a low-pass filter HL/C and then by a frequency-
selective high-pass filter 1 — G (s). The high-frequency com-
ponents of u,(t), such as measurement noises, are attenuated
by the low-pass filter, and the low-frequency components of
ug (t) are attenuated by the high-pass filter after passing through
the low-pass filter. Hence, the functions of these two filters are
decoupled in the frequency domain, similar to the case in [10].
When G (s) is designed to include the generation models of
the reference command vy, (¢) and the disturbances d,, (t) and
dy (t), it is equivalent for 1 — G/ (s) to have zero gain at the
corresponding modes (frequencies). As a result, the contribu-
tion of the reference command y, (¢) and the disturbances d,, (¢)
and d, (t) will eventually converge to zero. In other words, the
actual tracking error will asymptotically converge to zero.

For a required attenuation ratio 6 > 0 over the bandwidth of
the system, the design should guarantee

’1 — Gr(jw)

jw + k @3

<

D. Achievable Control Bandwidth of the Closed-Loop
System

According to the definition of the tracking error in (3) and the
actual tracking error in (22), the system output is

Y(s) = Hin(s)Y;(s) — E(s)

T s+ am Yr(s) + s _|1_ k [1—Gr(s)]Ua(s).

According to the analysis in the previous subsection, the track-
ing error e(t) converges to zero. Moreover, the bandwidth wy
of the UDE filter G4 (s) and the error dynamics gain k can be
chosen to be much larger than a,, . In this way, the error e(t) con-
verges to zero faster than the reference output y,, (t) converges
to the reference input y, (t). As a result, the closed-loop system
response is dominated by the reference model. In other words,
the bandwidth of the closed-loop system is the bandwidth of
the reference model, which is w. = a,, for the reference model
Hy(s) = ﬁlg— selected in (2).

IV. APPLICATION TO PIEZOELECTRIC STAGE CONTROL

In this section, the effectiveness of the proposed control ap-
proach is demonstrated on a piezoelectric actuator experimental
platform. The tracking performance of piezoelectric actuator can
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Host computer ‘ dSPACE Piczoelectric nanopositioning system frequencies f J— 1HZ, 50 sz 100 HZ, where Yy = kgu iS the
o | bi E-505.00 / i i i .
e _’}[ Lobi J_’ [L vpzmm;,fmej" P apprpxnnated axis of symmetry of hysteresis loops .
3 ma : Different models have been proposed to characterize the rate-
Sim..unk}i ‘_:[ tohn J - [ ES9.CIA J‘_ st tage dependent hysteresis, as shown in [29]-[32]. The rate-dependent
ControlDes] 1 sensor monitor . .. . . e .
‘ Prandtl-Ishlinskii hysteresis model in [29] can be utilized in the
Fig. 4. Experimental setup. plez.oele.(.:tnc stage: To formulate the rate-dependent Prandtl—
Ishlinskii hysteresis model, the rate-dependent play opera-
tor, w(t) = Fy, (a)[u](t) = fr, ) (w(t), Fr,@)lul(t;j-1)), with
TABLE | dynamic threshold r; () > 0, is first defined as
SYSTEM PARAMETERS
[ Module | Parameter [ Value* | Unit | F., (1) [u](()) = fr-,,;(zl) (u(O), O)
Control input -2to0 12 V u. wt; —
DC-offset to control input 0 to 10 V fr7 (“)( ’ ( J 1))
E-505.00 Voltage gain 10+0.1 - .
Output voltage w030V max(u(t) —r; (@), w(tj-1)), u(t) > u(tj-1)
Mass 250 g min(u(t) + 7 (@), w(tj—1)),  u(t) <u(tj—1)
Nominal expansion 38 wm ’ ’
P-753.31c | Unloaded resonant frequency | 2.9+20% kHz w(tjfl )v u(t) = u(t.ifl)
Stiffness in motion direction 16+£20% N/pm ) _
Full-range repeatability £3 nm fort; 1 <t<tjand1<j<M 24)
Output 0to 10 \%
Sensitivity 3.8 pm/V where u(t) € AC[0, tg] is the input voltage, with AC|0, tg]
E-509.C1A Resolution 0.2 nm . h £ absolutel . f .
Bandwidh 3 TH= repre.:sent.mg the space of absolutely continuous uncthns on
Lincarity 0.05% - the time interval [0, tg]. 0 =ty <t < --- < t;; = tp is par-

* from http://www.pi.ws

30

y (um)

u(V)

Fig. 5. Major hysteresis loops resulted from sinusoidal signals u(t) =
3(sin(27 ft) + 1)V at different frequencies f = 1Hz, 50Hz, 100 Hz. «
is the input voltage and y is the output displacement.

be pushed to the hardware limit in the sense of high precision
and high bandwidth.

A. Experimental Setup and System Information

Fig. 4 shows the experimental setup, including a piezoelec-
tric nanopositioning system from Physik Instrumente GmbH &
Co. KG, a dSPACE-DS1104 board, and a host computer. In the
piezoelectric nanopositioning system, the piezoelectric stage P-
753.31c, of which the maximum displacement is 38 pm from its
static equilibrium point, is driven by a linear voltage amplifier E-
505.00 with a fixed gain of 10 to amplify the control signal from
dSPACE. Then, its real-time displacement is measured by an in-
tegrated capacitive sensor and transferred to analog voltage via
the sensor monitor E-509.C1A. The detailed specification of the
piezoelectric nanopositioning system is listed in Table I. More-
over, the sampling time adopted in the experiment is 0.01 ms.
The resolution of this system is around 0.0012 pm.

Fig. 5 shows the major hysteresis loops resulting from
the sinusoidal inputs w(t) = 3(sin(27 ft) + 1)V at different

tition of [0, ¢g], and the function w(¢) is monotone on each
of the subintervals (¢;, ¢;11]. The argument of the operator,
which is written in square brackets, indicates the functional de-
pendence, since it maps a function to a function. Similar to
the rate-independent Prandtl-Ishlinskii hysteresis model that is
constructed by the superposition of weighted play operators
with different thresholds, the rate-dependent Prandtl-Ishlinskii
model can be formulated as follows [29]:

N
y(t) = Hul(t) = agu(t) + > a;F,, ) [ul(t) (25)

i=1

where y(t) is the system output displacement, a;,
1=0,1, 2,..., N, are positive weights, and N is the total
number of rate-dependent play operators. It should be noted
that the dynamic thresholds r; (<) need to satisfy 0 < ry(4) <
ro(t) < -+ <ry(u). Specifically, r; (1) = a; + g(4) = (i +
Bl from [29] is utilized in this article.

B. System Feasibility

The studied system should be verified to satisfy the BIBO
assumption and Lipschitz condition mentioned in Section II.

Lemma 2: 1f the reference trajectory y, (¢) is Lipschitz con-
tinuous, then the UDE-based robust controller (10) generates an
absolutely continuous control signal wu(t).

Proof: Since both L’l{lé;ccfj(fz)} and L’l{kcjw} are
continuous operators, and y, (¢) and y,, () are continuous sig-
nals, then the control input u(t) is a continuous signal. More-
over, y(t) is a Lipschitz continuous signal, since the generalized
Prandtl-Ishlinskii model is Lipschitz continuous [33]. Conse-
quently, u(t) is also a Lipschitz continuous signal and thus
absolutely continuous. |

Proposition 3: The hysteresis system (25) is BIBO and
satisfies the Lipschitz condition.
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Proof: According to Lemma 2, u(t) is absolutely con-
tinuous, which satisfies the condition in the rate-dependent
Prandtl-Ishlinskii model. And from (24), if u(t) > u(t;_1),i.e.,
u(t) >0, then f. (4 (u, w) = max(u —r;(i), w) > u(t) —
r;(w). Therefore, F,. 4[u](t) > u(t) —r;(u). Hence, from
(25), we have

N

y(t) = agu(t +ZazFr1
i=1
N

> agu(t) —|—Zaz ) —ri(w))

i=1

N

= D ailGi o+ Bll)

N
a; — Z a;((N + fmax(|il))

N
= u(t) — (CN + Bmax(ja))) Y a;
i=0 i=1

= pu(t) — DH

where p = va 0 @i, and Dy = ((N + fmax(|4])) 27 1 Qi
Similarly, if w(t) <wu(t;—1), ie., a(t) <0, then
frs (o) (w, w) = min(u + i (4), w) < u(t) +ri(w). There-
flore, Fy ylu](t) < u(t) +ri(u). Hence, from (25), we
ave

N N
=u(t)Y a;i+ Y ai(Ci+ Blil)
i=0 i=1
N N
<u(t)Y ai+ Y a;(CN + Smax(|ul))
i=0 i=1
N N
= u(t) Z + (N + Gmax (|u|)) Z
i=0 i=1
= pu(t) + Dy.

Therefore, there always exists ||y(¢)|] < pllu(t)|| + Dy. And
the Lipschitz condition can be easily verified. This completes
the proof. |

C. Control Design

The reference signal is chosen as vy, () =1+ sin(wt —

7 /2)um, where w = 27 f represents the operating frequency of
the piezoelectric stage, with f € [1 Hz, 2500 Hz]. The reference
S 00007 \ith a bandwidth

model (2) is selected as f=— =
(U, s+50000m
am = 500007. This bandwidth is around ten times greater than

0.06

o
005 .
s 0.04
2 003}
w 0.02F
0.01F °
o o o {0} Q... 9 .
10° 10' 10° 10° 10*
Frequency (Hz)
Fig. 6. Root-mean-square error when tracking sinusoidal signals with

different frequencies with the proposed control scheme.

the maximum operating frequency, 2500 Hz, which is sufficient
to obtain a good reference state y,, (). The first-order system
is chosen as T where a = 600007 and b = 260 0007. The
ratio b/a = k,, which is the approximated slope in Fig. 5. Since
there is only one major frequency, i.e., n = 1 in (17), the filter
G/ (s) can be designed as

s(s? + w?)
(s+a)(s? +as+5)
The parameters of the filter are chosen as « = 1000,

aq = 18007, and 3; = 81000072. If the tolerance of distur-
bance attenuation is specified as the design

Gf (S) =1- (26)

0 = 0.000001,
should satisfy | H; (jw)| < 201og é = —120dB. The error feed-
back gain is chosen as k = 200 000. The parameters satisfy the
stability condition (16). The controller is then implemented as
(10). All parameters keep constant except w in (26).

D. Experimental Results

In Fig. 6, the tracking errors e(t) = y,, (t) — y(t) are shown
in terms of root-mean-square (rms) error Fyn,g calculated as

N

% Z(ym (tn) —y(ta))?

n=1

Erms =

where N is the total number of data points, and y,, (¢,) and
y(t, ) are the reference state and the system output at ¢ = t,,,
respectively. In the low-frequency range (<100 Hz), the rms
error is around 0.0022 ym, which is very close to the hard-
ware resolution limit. As the frequency increases, the rms error
increases, as expected. The proposed approach can track the
reference signal well up to 1100 Hz, with the rms error around
0.025 pm. Fig. 7(a) and (b) depicts the tracking performance for
the frequencies at 100, 500, 1000, and 1100 Hz, and Fig. 7(c)
shows the Bode plots of the filters, which are designed to
achieve over —120-dB attenuation of the lumped uncertainty at
corresponding frequencies.

The Bode plots of the reference model (2), the open-loop sys-
tem, and the closed-loop system are shown in Fig. 8. Their trans-
fer functions are Y, (s)/Y,(s), Y(s)/U(s), and Y (s)/Y,(s),
respectively. For the purpose of comparison, the results of the
UDE-based state feedback controller [2] and the DOB-based
controller in [2] are also presented. In [2], the UDE-based
state feedback controller is derived based on the modeling of a
second-order system, which requires the derivative of the sys-
tem output. As seen in Fig. 8, the reference model has nearly

Authorized licensed use limited to: Texas Tech University. Downloaded on October 30,2020 at 16:40:46 UTC from IEEE Xplore. Restrictions apply.



7826

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 67, NO. 9, SEPTEMBER 2020

f=100Hz f=500Hz f =1000H z f=1100Hz
3 3 3 3
——y —— =YY, — ==Yy, — ==Y, ey, — ==Yy,
25 Y ! " 25 Y ' " 25 4 ' " 25 Y ! "
E 2 E o2 E 2 g2
2 ES 2 e
JE LS JE 1S JE LS JELS
) > > -
s 1 o1 =1 -1
05 0.5 0.5 0.5
0 0 0 0
1 1005 101 1015 102 1 1001 1.002 1003  1.004 1 1.0005  1.001  1.0015  1.002 1 10005 1.001  1.0015
Time (s) Time (s) Time (s) Time (s)
(a)
0.04 0.04 0.04 0.04
0.02 0.02 0.02 0.02
E E g Bl
= 0 E 0 E2 0 e 0
Pt > s >
—0.02 —0.02 —0.02 -0.02
~0.04 -0.04 —0.04 -0.04
1 1005 101 1015  1.02 1 1001 1.002 1.003  1.004 1 10005 1.001  1.0015  1.002 1 10005  1.001  1.0015
Time (s) Time (s) Time (s) Time (s)
(b)
60 60 60 60
-G o) LG T e 1-G((s) - 1=GGs)
- = — 1s+k) - — = 1/s+k) -——usto | et ()
~ 0 D] PR RIRR R S ~ 0 T S ~ 0 BRI
g H (s) g Hy(s) g ) - H,(s) g ‘ - H (s)
o | e o o ) Q
T 60} T 60 E 60 E o0
g - = £
g L ______ g 2 L £y L
= _120 S— ~ = 120 = 120 = 120
/\( —172dB
—180 0 1 : ’ 3 4 5 ~180 0 1 2 3 4 5 ~180 0 1 2 3 4 5 —180 0 1 2 3 4 S
10° 100 100 100 10t 10’ 10° 100 10" 100 10" 10 10° 100 10° 10°  10° 10 10° 100 100 100 10" 10
Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz)
©
Fig. 7. Results of tracking sinusoidal signals with different frequencies. (Left to right) First column: f = 100 Hz; second column: f = 500 Hz; third

column: f = 1000 Hz; and fourth column: f = 1100 Hz. (a) Output. (b) Tracking error. (c) Bode plots of 1 — G (s),

20 y y
4 D IR <« < < g <t
& B -e- -0 — a8 -0 — -0 —NsE 1
)
'i; I - — Reference model 1
£ 4o <4 Openloop i
¥ - B -UDEin[2]
= _gob — * -DOBin[2) ]
O - proposed approach
—80 0 ‘l “' 3 4
10 10 10° 10’ 10
Frequency (Hz)
240 T T T
% @@~ @ G = e — J
E o —Q Q- - *“Fﬁ‘ﬁf}
= <
2 240f 1
3
£ a0} 1
~ * %
\ /
720 " | ‘W ‘ﬂ E 3 X
10° 10 10° 10° 10
Frequency (Hz)
Fig. 8. Bode plots of the reference model, open-loop system, and the

closed-loop system, with comparative results from [2].

0-dB magnitude and 0° phase shift. This indicates that Y, (s)
tracks Y,.(s) very well. For the closed-loop system with the
proposed approach, its frequency response matches the refer-
ence model in a wide range, with only one resonant peak at
3000 Hz, close to the system’s first resonant frequency, 2900 Hz,

1
s+k?

and H,(s).

TABLE Il
COMPARISON OF TRACKING PERFORMANCE WITH SOME RESULTS
AVAILABLE IN THE LITERATURE

Approach Stage Max tracking RMS error at
resonant freq. freq. achieved max freq.
Proposed approach 2900H z 1100H = 0.025pum
UDE in [2] 2900H z 450H z 0.027pm
DOB in [2] 2900H z 200H z 0.577um
RAC in [24] 2900H z 100H =z 0.039um
PI in [34] 1633H z 510H z 0.057um
DOB in [35] 1552H = 150H z 0.080pm
RAC in [36] 5100H z 100H 2z 0.007pm
ILC in [37] 300H z 100H 2z 0.012pm

* RAC: Robust adaptive control; ILC: Iterative learning control; PI: Proportional and
integral control.

which is provided in the user manual. The proposed approach
can track the reference signal well up to 1100Hz, which is
much broader than the bandwidths achieved in [2]. Further-
more, the tracking bandwidth, 1100 Hz, which is 37.93% of
the lowest resonant frequency, has exceeded the recommended
operating frequency, 1000 Hz, provided in the user manual. In
order to better illustrate the performance of the proposed ap-
proach, the results from several major works in the literature
are summarized in Table II. The advantage of the proposed
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approach is clear, achieving higher accuracy and wider
bandwidth simultaneously.

V. CONCLUSION

In this article, the UDE-based robust output feedback con-
trol was proposed to remove the structural constraint and
the requirement of full state measurements in the traditional
UDE-based control design. The almost modeling-free feature
of the proposed approach will enable more applications. The
proposed approach was validated on an experimental piezo-
electric nanopositioning system in the presence of hysteresis
nonlinearity. Experimental results showed that high-precision
and high-bandwidth trajectory tracking performance can be
achieved.
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