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Abstraci—There are a lack of quantitative measures
for clinically assessing upper limb function. Conventional
biomechanical performance measures are restricted to spe-
cialist labs due to hardware cost and complexity, while
the resulting measurements require specialists for analy-
sis. Depth cameras are low cost and portable systems that
can track surrogate joint positions. However, these motions
may not be biologically consistent, which can result in
noisy, inaccurate movements. This paper introduces a rigid
body modelling method to enforce biological feasibility of
the recovered motions. This method is evaluated on an ex-
isting depth camera assessment: the reachable workspace
(RW) measure for assessing gross shoulder function. As a
rigid body model is used, position estimates of new proxi-
mal targets can be added, resulting in a proximal function
(PF) measure for assessing a subject’s ability to touch
specific body landmarks. The accuracy, and repeatability of
these measures is assessed on ten asymptomatic subjects,
with and without rigid body constraints. This analysis is
performed both on a low-cost depth camera system and a
gold-standard active motion capture system. The addition
of rigid body constraints was found to improve accuracy
and concordance of the depth camera system, particularly
in lateral reaching movements. Both RW and PF measures
were found to be feasible candidates for clinical assess-
ment, with future analysis needed to determine their ability
to detect changes within specific patient populations.

Index Terms—Depth camera, upper limb, clinical metrics,
quantitative, range of motion, functional assessment, rigid
body modelling.
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[. INTRODUCTION

CCURATE and repeatable measures of human perfor-

mance are essential for tracking patient outcomes and
determining the efficacy of interventions. While highly accurate
methods for assessing an individual’s movement exist, these
methods typically require access to a specialised biomechanics
lab. The requirements for costly hardware, dedicated space for
setting up motion-capture cameras, and specialists needed to
collect and process this data are limiting factors that hinders the
use of these methods as part of standard patient care.

Existing clinical measurements instead focus on single joint
goniometry or task-specific scores. Some tests, such as the
Functional Independence measure and Fugl-Meyer assessment,
provide a point score based on the degree of assistance needed
during a set of daily living tasks. While these tests are easily
deployable in clinic, able to track function, have excellent inter-
rater reliability, and are highly recommended by professional
organisations [1]-[3], they are unable to distinguish between
compensation and true recovery [4]. Functional testing rarely
provides measures of compensation or movement synergies.
Instead these methods are scored based on task completion or a
subjective binary assessment of perceived difficulty. This results
in insufficient resolution to distinguish between varying levels
of function and may confound improvement with the adoption
of a potentially undesirable compensatory mechanism.

This is in contrast to the traditional model based approach used
in biomechanics [5]. High accuracy measurements of motion
capture markers can be obtained through television (i.e. Vicon),
optoelectric (i.e. OptoTrack), or magnetic (i.e. Ascension) meth-
ods. By placing these markers on specific anatomical landmarks,
a rigid body model can be used to estimate the corresponding
limb pose. Joint centre locations can be inferred from the relative
locations of markers or through the use of function recovery
and optimisation methods [6], [7]. This allows for the study
of compound motions of the sternum, clavicle and humerus
during arm motion [8] and the quantification of movement
during activity [9]. These methods are the gold standard for
biomechanics research, whose accuracy is only surpassed by
methods such as bi-planar fluoroscopy [10].

Depth camera systems can be used as an alternative method
for obtaining 3D joint positions. Popularised by the Microsoft
Kinect, there are a number of commercial depth camera sys-
tems including the Intel RealSense, VicoVR, Depthsense, PMD,
and SICK. These cameras estimate the depth of each image
pixel by projecting either known patterns onto the environment
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(structured light), from a scanned point (time of flight), or
triangulation [11]. This depth image can be converted into an
estimated skeletal pose natively, or can be combined with a
skeletal tracking library such as Nuitrack or OpenNI. These
libraries use a learned decoder that applies a pixel-wise labelling
to each RGB-D pixel to identify limbs. The joint centres can then
be estimated from the intersection of these limb segments [12].
This results in real-time frame-wise estimates of full-body pose.

Although the connections of the resulting skeleton are
biologically-consistent, the lengths of the limbs and joint limits
are not constrained, resulting in non-realistic movements [13].
These problems can be seen in cases of self-occlusion and cases
where the subject is not facing the camera [11], or during periods
of high speed movement [14]. The accuracy of the detected joint
centres and corresponding angles is therefore dependent on the
experimental motion protocol which is rarely standardised [11],
[15]. This limits the use of this technique as a clinical assessment
tool with a number of depth camera systems focusing on single
joint assessment and coaching using video games [16].

In an effort to overcome some of these challenges, novel met-
rics and movement protocols have been introduced. Kurillo et al.
proposed the reachable workspace measure for the assessment
of shoulder function [17]. This method projects the motions of
the wrist onto an allometrically scaled sphere centred at the
shoulder. The area encompassed by the observed trajectories
can be computed and used as a quantitative measure of shoulder
function. The order of the arm movements and timing of each
action is kept consistent between trials by using a coaching video
which aids protocol consistency. This measure has seen success
in the assessment of subjects with muscular dystrophy and
amyotrophic lateral sclerosis and has been shown to correlate
with other clinical measures [18]-[23]. While this test appears
to be a promising measure, it is likely to be sensitive to the same
variable limb-length issues.

One approach for improving the biological feasibility of the
depth camera estimates is to combine frame-wise joint centre es-
timates from a depth camera with the traditional rigid body mod-
elling approach. This approach has been used in the collection
and analysis of sit-to-stand movements [24]. The kinematics and
dynamics of this motion can be recovered, providing estimates
of loading in the low-back and ground reaction forces [25]. This
method of combining a depth camera system with a rigid body
model and a fixed clinical protocol resulted in the identification
of cohort specific variables of performance [26]. Patients with
low back pain were found to move slower and with higher hip
and spine loading when compared to control subjects. This dif-
ference was less pronounced post-surgery, suggesting that some
of the identified measures are potentially useful for quantifying
patient outcomes. Furthermore, this analysis was able to identify
a single subject who later developed a post surgical complica-
tion (proximal joint fracture) before the fracture occurred. This
suggests that these metrics may be able to identify early signs
of complications before they result in mechanical failure.

A. Contributions

This paper assesses the feasibility and efficacy of combining
depth cameras with rigid body models for upper limb clinical

assessment. Two movement protocols are tested: the reachable
workspace measure for assessing distal arm movement and the
proximal function measure for assessing a subject’s ability to
reach specific body landmarks that are related to activities of
daily living. The performance of the depth camera (Kinect 2,
Microsoft) is compared to a gold-standard active motion capture
system (Impulse X2, Phasespace). The effect of constraining
the raw joint position estimates using an allometrically scaled
rigid body model is examined for both the depth camera and
baseline systems. Finally recommendations are given on the
appropriateness of using depth camera systems for upper limb
clinical assessment.

Il. METHODS

This section outlines an approach for correcting the non-
biological movements seen in the raw depth camera skeleton
and two proposed motions and measures for assessing upper
limb performance. Section II-A introduces the rigid body mod-
elling framework and a non-linear least squares approach to
inverse kinematics. Two movement protocols are proposed in
Section II-B, the reachable workspace (RW) for assessing gross
range-of-motion and the proximal function (PF) for reaching
body landmarks related to activities of daily living.

A. Models

To correct for non-biologically consistent movements, an
allometrically scaled rigid body model is used (Section II-A1).
Inman’s model of scapulohumeral rhythm is incorporated into
this model in Section II-A2 [27]. This rigid body model is used
to estimate the corresponding joint angles and re-projected limb
positions using framewise non-linear least squares optimisation
(Section II-A3).

1) Rigid Body Modelling: The rigid body model consists
of seven allometrically scaled segments which connect eight
anatomical landmarks. The seven segments are separated into
two serial chains for the left and right arms which originate at
the torso. The torso is modelled as the base link of the system,
with both scapulae rotating at a common torso origin.

The movement of the torso (T') in the world frame (W) is
modelled as a floating system with the associated homogeneous
transform:

(D

Bw,T = 0 1

3y O . tl

where t € R3*! is the translation from the world frame to the
torso frame, and R € SO(3) are standard rotations in the special
orthogonal group, each parameterised by angle 6.

The scapula (SC'), upper arm (UA) and forearm (F'A) are
then modelled as two branches from the torso with the right arm
modelled as:

oo Rop 0
coT 2
gT.RSC l o 1] (2)
R.zR vR
ERSC,RUA = l +z OY +z quJC] (3)
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Fig. 1.

Kinematic model used to enforce allometric constraints. Left: Joints and segment lengths. The scapulothoracic movement is modelled

as coincident Z and Y axis rotations, with rotation of the glenohumeral joint modelled as a sequence of Z, Y, and Z rotations. The elbow is
modelled as a single X rotation. Centre: Correspondence between the six landmarks estimated from the depth camera (red crosses) and their
approximate anatomical locations. The Torso segment is defined by the mid-shoulder and mid-torso markers which are an allometrically scaled
distance above and below the torso origin. Right: Model for capturing scapulohumeral rhythm. Scapulothoracic (615, red), scapulohumeral (95,

blue), and humerothroacic (61 g, purple) are shown.

)

Rix dgreic
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where SJC and E JC are the relative positions of the shoulder
and elbow joint centres in the torso and right upper arm frames
respectively. The left arm is modelled in a similar manner, but
with the direction of rotation reversed to allow for consistency
in anatomical rotation between the two limbs.

These homogeneous transforms can be used to write the
forward kinematic map FIKC(x). FK is a function that maps
the system states x = [t, 6]T to positions on the rigid body
structure. This allows the positions of anatomical landmarks p;
to be found given some system state x; and the local positions
of these landmarks in a segment frame q;.

For the recovery of upper body motion, the predicted locations
of the eight anatomical landmarks (Figure 1) can be written as:

Ptorso = 8w,T (t, 9) Qtorso (5)
Prsro = gw,rsc (t,0)drsHo (6)
PreLB = gw,rvA (t,0) drELB )
PrwRI = 8w,rFA (t,0) qQrwrr (8)

with the homogenous transforms g found from the relative
transforms (Equations 2, 3, and 4). This allows the forward
kinematic map to be written as:

prwnr|, = FK (x) ©)

The anatomical landmark locations and segment dimensions
(Figure 1) are estimated from the subject’s standing height [28]—
[32].

2) Modelling Scapulohumeral Rhythm (SHR): While the for-
ward kinematics model presented in Equation 9 allows for
independent movement of the scapula and humerus, the relative
motions of these joints are coupled based on the overall position

[p torso

of the humerus relative to the torso. This coupled movement
is known as scapulohumeral rhythm, and can be represented
as a ratio of expected scapula-humeral motion to torso-scapula
motion, and is typically taken to be 2:1 [27]. It is important
to note that this ratio has been found to vary due to an added
load [33], increasing the speed of the motions [34], and due
to fatigue [35], with ratios ranging from 1.25:1 [36] to 7.9:1
(unloaded passive range of motion) [35].

In order to capture some of the features of SHR in the proposed
model, the angles used to parameterise the transforms g s and
gsc,ua are expressed as fractions of the total torso-humeral
angle 0y 4. Although this is a simplified model of the complex
shoulder motions, the 2:1 ratio is commonly used and is a first
approximation for this proposed modelling method.

The underlying abduction-adduction of the shoulder can
therefore be represented by:

0 for O < 45°
6TS = 1 a o
3 (v —45°) for Ory = 45

B 22 {QTH for Orpg < 45 10)

2 (0rm —45°) +45° for Orp > 45°

where 61, Org, and f5p are the humerothoracic, scapulotho-
racic, and glenohumeral elevations (Figure 1 right). A similar
model is used for the protraction-retraction of the scapula and
humerus, where the 2:1 ratio is still used, but without the 45°
offset.

While the centre of rotation of the scapula does not occur at
mid-line [37], this model is designed to be a first approximation
for capturing shoulder movement. As such this removes the
necessity of finding an additional allometric relationship for the
mediolateral centre of rotation of the scapula.
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3) Kinematic Recovery: This rigid body model was used to
estimate the joint angles corresponding to the observed joint
centres. This was formulated as a non-linear least squares (NLS)
problem, enforcing the fixed limb length and joint range of
motion constraints. Given a single Kinect observation k£ of
anatomical landmarks y, the model states x; that best fit these
observations can be found via the optimisation problem:

arg min llyx — FK (xx) II3
X
subject to: X S X=X (11)

where FK is the forward kinematic map, and x, X are bounds
on the system states that are used to keep joint angles within a
physiologically consistent range.

As the kinematic recovery process is performed on each frame
separately, this approach can be parallelised decreasing the time
needed for computation.

B. Motions and Measures

The proposed method for obtaining an improved estimate of
upper limb function is evaluated on two upper-limb assessments.
The reachable workspace measure is designed to assess the
limits to gross range of motion, while the proximal function
measure is designed to assess the ability of the subject to perform
self care activities such as feeding, grooming, and toileting.
These motions are performed while seated, with guidance from
an instructional video keeping the timing and order of actions
consistent between trials and study sites.

1) Reachable Workspace (RW): The reachable workspace
measure is performed for each arm separately from a seated
position. Subjects are asked to move with their out-stretched arm
through several planes of movement (Figure 2). The movements
of the wrist relative to the shoulder centre are projected onto an
allometrically-scaled sphere. The projected area is used as a
quantitative measure of shoulder function. A full description of
this method is given by [17], [38].

2) Proximal Function (PF): In contrast to the distal assess-
ment of reach found by the RW measure, the proximal function
measure assesses a person’s abilities to reach key anatomical
landmarks. Subjects are asked to move the tested arm to each
landmark in series while seated (Figure 3). In cases where the
landmark is not part of the original Kinect model (back pocket,
stomach, etc.), an allometrically scaled model of these locations
in the torso frame is used. The distance between the tested wrist
and each landmark is measured. If the wrist is below a pre-set
threshold, that landmark is said to be reached at that instant.
The total duration of time that the hand is at each landmark can
therefore be used as a quantitative assessment of their ability to
move and hold their arm at each landmark.

[ll. EXPERIMENTAL VALIDATION

A convenience sample of ten subjects (6F/4 M, 27.3 +
3.1yrs., 1.70 & 0.11 m) were recruited under informed consent
(UCB IRB: 2016-01-8261). The cohort did not have any upper
limb impairment, a history of upper limb surgery, nor an injury
to the upper limbs within the prior six months. Subjects were

ABOVE HEAD

SHOULDER

BELT

FRONT
S 45°

Fig. 2. Reachable workspace motions. In the RW protocol, subjects
are instructed to move with their arm as straight as possible, through
several planes. Each movement moves through the maximal volitional
range of motion on each plane with the elbow only bending when cross-
ing the torso. Subjects move their arm through three planes about the
cranial-caudal axis in front, at 45 degrees, and to the side of the subject.
Subjects are also asked to move their arm though three planes normal
to the ground at the belt and shoulder levels, and above their head. The
position of the wrist relative to the shoulder can then be projected on to
a sphere providing a surface area metric of reaching [17], [38].
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Fig. 3. Proximal function targets. In the PF protocol, subjects are
instructed to move the tested hand to discrete anatomical landmarks in
sequence. Starting with their hand resting by their side, they are asked
to move their hand to their stomach, back-pocket, ipsi-and contra- lateral
shoulders, mouth, top and back of their head, before returning their hand
to their side. A delay of three seconds is given between each command.

asked to wear athletic clothing and sat on a chair which was
adjusted so that the thigh ran parallel with the ground. A single
Microsoft Kinect for Xbox One (Kinect v2) depth camera was
positioned 300 cm in front of the subject, and 130 cm off the
ground. A computer monitor was placed just under the camera,
and used to present the instructional video for the RW and PF
measures. The instructional video was initially shown to the
subject to demonstrate the action. Subjects were then asked to
follow each video three times for each arm for both the RW and
PF movement protocols.
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Fig. 4.
on the torso, scapula, elbow, and wrist [7], [39]-[41].

A. Baseline Model

In addition to the Kinect measurements, an eight camera,
twenty six marker, active motion capture setup (Phasespace)
was used as an independent measure of the torso and upper limbs.
The torso and scapulae were modelled as floating bodies, with
the upper arm and forearm modelled as serial chains connected to
their respective scapula. This approach removed any underlying
assumptions on the movement of the scapula relative to the torso,
in contrast to the assumed scapula-humeral rhythm used in the
constrained model (Section II-A2).

Markers were placed at common anatomical landmarks, with
an additional marker placed midway between the suprasternal
notch and xiphoid process (Figure 4). This allows for rigid body
recovery in cases where the xiphoid process is occluded by
clothing. Three markers were placed on the C7, T8, and T12
spinous processes. The markers on the scapulae were based on
the standard trigonum spinae, angulus acromialis, and angulus
inferior placements which can be used to define a scapula
reference frame [7], [39]-[41]. Two additional markers were
added at the acromioclavicular joint, and processus coracoideus
to improve robustness in cases of marker occlusion [42]. Markers
were also placed at the medial and lateral epicondyles of the
humerus, and the processes of the radial and ulnar styloids. A
final marker was placed between the radial and ulnar styloids on
the dorsal side of the hand.

The instantaneous transforms for the floating segments (torso
and scapulae) were computed for each frame using NLS per-
forming an initial parameter fit to identify a marker model and
a state estimateor to identify the transform for each frame. This
process was repeated to find functional shoulder and elbow
joint centres for each arm. The recovered functional centres
were compared to allometric and landmark based methods. The
markers and their corresponding anatomical locations are shown
in Figure 4.

B. Implementation

All code was implemented in MATLAB, with the NLS op-
timisations performed in parallel using the parallel computing

Placement of active motion capture markers (red crosses) for validation. Markers were placed on the skin on palpable anatomical landmarks

toolbox. To decrease the effect of erroneous readings, the raw
joint centre estimates from the Kinect were pre-processed using
a fifth order 1D median filter on the X, Y, and Z coordinates.
Both the raw joint centre estimates from the Baseline (BR) and
Kinect (DR) sensors were processed through the same rigid body
model to obtain constrained Baseline (BC) and Kinect (DC) joint
centre estimates.

The RW computation was performed on all four sets of joint
centre trajectories as described in [17]. For the PF action, a
second order, 1 Hz low-pass Butterworth filter was used to
smooth the estimated distance between the tested wrist and each
target location.

IV. RESULTS

Representative motion traces for the RW and PF tests are
shown in Figures 5 and 6. The signal-to-noise ratios (SNR) of the
raw and constrained movement trajectories are shown in Table L.
The mean percentage error of the reachable workspace test is
shown in Table II, with the concordance correlation coefficients
shown in Table III. Table IV shows the mean percentage errors
for the proximal function test. Each of the tests are examined
separately, with analysis of the estimated joint positions and the
final metrics.

A. Reachable Workspace

Figure 5 shows the movement traces of the wrist during
the reachable workspace action. Both the raw and processed
baseline positions perform well throughout the entire movement.
The raw and processed depth camera trajectories match the
baseline data through the majority of the workspace. The raw
depth camera diverges from the baseline at the extremes of the
workspace: when the wrist moves across or behind the body.
These effects appear to be reduced using the proposed model,
improving consistency throughout the movement.

Table I shows the SNRs for the baseline and depth camera
trajectories. The two baseline trajectories exhibit high SNR (>
20) for both the left and right arms. This performance is lower,
but acceptable (10-20), in the spine and shoulder Z directions.
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Fig. 5. Representative traces from a right reachable workspace test. Movements of the wrist are shown, with the origin centred at the mean GH

shoulder position. Dotted black and blue lines are the positions of the wrist from the raw baseline and raw depth camera sensors respectively.
These are filtered using the proposed rigid body model to give the solid red and purple trajectories. The four reachable workspace quadrants are
highlighted with the medial above shoulder (quadrant 1) shown in red, medial below shoulder (quadrant 2) in green, lateral above shoulder (quadrant
3) shown in blue, and lateral below the shoulder (quadrant 4) shown in purple respectively. For clarity, only the data from the right, front, and top

hemispheres are plotted, with the opposite hemisphere hidden.
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Representative traces from a right proximal function test. Movements of the wrist are shown, with the origin centred at the mean GH

shoulder position. Dotted black and blue lines are the positions of the wrist from the raw baseline and raw depth camera sensors respectively.
These are filtered using the proposed rigid body model to give the solid red and purple trajectories. Each proximal function landmark is shown as a
sphere with the radius corresponding to the threshold value of one hand length.

The raw depth camera trajectories (DR) have lower SNR
across joints and axes. This decrease is more pronounced in
the mid-spine and ipsilateral GH joint, where the Z axis SNR
decreases below 10. The processed depth camera trajectories
(BR) have higher mid-spine and ipsilateral GH SNR compared
to the raw depth camera data, though these improvements are
still below that of the raw baseline trajectories.

The percentage error in the corresponding reachable
workspace area scores are presented in Table II. The processed
baseline data has low percentage error (<5%) for all four

quadrants and the total area. In contrast, the raw depth camera
errors are higher in all quadrants with the percentage errors
in the range of 4% to 26%. The constrained depth camera
data has lower errors, particularly in quadrants 2 to 4, with a
corresponding decrease in the quadrant totals.

The concordance between the different scores are presented in
Table III. The processed baseline scores were found to have ex-
cellent concordance (>0.75) when compared to the raw baseline
data. The raw depth camera areas were found to have poor (<0.4)
and fair (0.4—0.59) concordance for the left arm, and fair and
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TABLE |
SIGNAL TO Noise RaTI0S IN JOINT CENTRE PosiTions COMPARED TO THE CONSTRAINED BASELINE (BC) JoINT CENTRE TRAJECTORIES. SNR VALUES
ARE SHOWN FOR EACH COORDINATE SEPARATELY, AND FOR BOTH THE LEFT AND RIGHT HAND REAcHABLE WoRKsPACE (RW) AND PROXIMAL FUNCTION
(PF) TesTs. SNRs For THE Raw BaseLINE (BR), Raw KINECT (DR), AND PROCESSED KINECT (DC) ARE SHOWN. COORDINATES ARE GIVEN IN THE
WoRLD FRAME- X FROM LEFT TO RIGHT, Y POSTERIOR TO ANTERIOR, AND Z CAUDAL TO CRANIAL. CASES WHERE THERE IS A Two DB OR MORE
DiFFERENCE BETWEEN THE RAw AND CONSTRAINED DEPTH CAMERA VALUES ARE HIGHLIGHTED WiTH THE HIGHER SNR IN BoLD

Left RW Right RW Left PF Right PF
Segment Axis | BR DR DC|BR DR DC| BR DR DC|BR DR DC
X 21 22 21 [ 19 23 22 || 20 2da 24 | 19 25 25
Spine Shoulder Y 15 12 1517 15 w617 16 18|18 17 20
Z 2 11 1 f1w 11 ow2ffrz 1 12w 12 14
X 19 19 17 | 17 18 18 || 18 20 18 | 17 21 19
Spine Mid Y 20 9 8|25 9 9 |23 15 142 12 12
zZ B3 5 9|12 5 w1z 6 mf13 s 13
X 20 18 19 | 29 18 20 |20 19 23|19 19 23
Ipsilateral GH Y 15 12 111 12 12|18 @ 12|22 16 15
Z 12 5 10 15 6 10 11 7 10 15 8 11
X || 26 17 19 | 27 15 14 || 25 15 17 | 24 14 14
Ipsilateral Elbow Y 24 14 15|29 12 12 || 24 15 17 |28 15 15
z 25 15 16 | 30 15 15 || 25 15 18 | 29 14 11
X 31 20 22 | 30 17 18 || 20 15 17 | 30 15 16
Ipsilateral Wrist Y 31 15 16 |32 15 15|29 11 12 |31 12 13
Z 31 18 19 |30 17 17 || 32 20 21|31 18 19
X 20 22 21 | 21 21 22 || 20 24 23 | 21 21 24
Contralateral GH Y 20 13 13|21 15 14|23 12 13|21 16 16
z 4 100 12|10 12 113 1w 15|10 12 15
TABLE Il

MeAN ERRORS FOR THE REACHABLE WORKSPACE TEST, PRESENTED AS PERCENTAGE ERRORS FROM THE RAw BASELINE DATA. PERCENTAGE MEAN
ERRORS ARE SHOWN FOR THE LEFT AND RIGHT HAND REacHABLE WORK-SPACE (RW) AnD ProxiMAaL FUNCTION (PF) TESTS, AND THE Raw BASELINE
(BR), Raw KinecT (DR), AND CONSTRAINED KINECT (DC) ARE SHOWN. QUADRANT 1 1S MEDIAL ABOVE THE SHOULDER, QUADRANT 2 IS MEDIAL BELOW
THE SHOULDER, QUADRANT 3 IS LATERAL ABOVE THE SHOULDER, AND QUADRANT 4 IS LATERAL BELOW THE SHOULDER. CASES WHERE THERE IS A 3 OR
MoRe PERCENT DIFFERENCE BETWEEN THE RAW AND CONSTRAINED DEPTH CAMERA VALUES ARE HIGHLIGHTED WITH THE LOWER VALUE IN BOLD

LRW RRW
Quadrant BC DR DC BC DR DC

1: Medial Above Shoulder 6.5+88 246+20.1 18.9+13.5 271132 2561242 18.7 £ 18.4
2: Medial Below Shoulder 1.6 £10.3 444212 4.7+ 174 24+99 731222 761233
3: Lateral Above Shoulder 1.9+ 8.0 11.8 +13.4 5.5+ 8.4 0.7+9.4 73+122 2.6 +£10.3
4: Lateral Below Shoulder 03+83 8.2+ 154 4.0+9.9 1.14+100 53x124 2.1+10.4

Total 24481 12.0+ 15.0 7.8+98 1.44+99 944123 5.6 +£10.5

TABLE llI

Lin's CoNcORDANCE CORRELATION COEFFICIENTS FOR THE REACHABLE
WoRksPACE TEST COMPARED TO THE RAw BASELINE DATA. HIGHEST CCC
VALUE BETWEEN THE RAw AND CONSTRAINED DEPTH CAMERA VALUES
ARE HIGHLIGHTED IN BOLD

LRW RRW
Quad. BC DR DC | BC DR DC
1 085 031 05308 069 079
2 078 007 039 | 092 049 052
3 086 058 083 | 082 068 077
4 083 043 077 | 081 062 0.76
Total 081 036 069 | 080 064 076

good (0.6 — 0.74) concordance with the right arm. In contrast,
the concordance is higher for the processed depth camera, with
quadrants 3 and 4 and the total areas having good/excellent
scores.

B. Proximal Function

The wrist trajectories for the proximal function test are shown
inFigure 6. The raw and constrained baseline trajectories overlap
throughout the test and across all landmarks. Both the raw and
constrained depth camera trajectories are close to baseline for

most targets, though error is seen for the back pocket, contralat-
eral shoulder, and mouth targets. The processed depth camera
trajectories appear smoother, especially at these higher error
targets.

The SNRs shown in Table I show a similar pattern to the
reachable workspace test. SNRs are high between the raw
and processed baseline data, with decreases seen in the raw
depth camera joint positions. The constrained depth camera
data exhibits higher SNR compared to the raw depth camera
data, particularly in the Z direction for the GH joints and the
mid-spine.

The mean percentage errors in target duration for each of the
different methods are presented in Table I'V. All methods show
low percentage error (< 5%) for the torso landmarks. The error
increases dramatically for the head landmarks, with the back
of head target being extremely inconsistent. To aid analysis, the
three head targets were combined to provide a head total metric.
The duration that the hand was found to be at all head targets
was found to have low mean percentage error (< 5%). These low
errors correspond to estimated target durations that were within
0.1 s for the torso and shoulder targets for all methods. The head
total metric was found to agree between the two raw methods
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TABLE IV
MEAN PERCENTAGE ERROR IN DURATION FOR THE PROXIMAL FUNCTION MEASURE. TARGET DURATION ESTIMATED FROM THE CONSTRAINED BASELINE
(BC), Raw DepPTH CaMERA (DR), AND CONSTRAINED DEPTH CAMERA (DC) ARE COMPARED AGAINST THE RAw BASELINE (BR) DURATION

LPF RPF
Quadrant BC DR DC BC DR DC
Stomach —0.2+41 —-0.8+0.9 —-0.1x+4.3 —-3.7£18.9 -03+1.1 -0.3+29

Back Pocket -1.9+39 08+1.7 —1.8+33 —4.5+ 3.9 -0.1+21 —4.0+3.8

Ipsi. SHO 0.5+26 00+1.1 —0.7+ 2.6 04424 —0.24+0.6 -1.8+1.8
Contra. SHO 2.6+ 1.7 03+1.3 5.1+11.4 4.4+ 4.5 0.6+ 1.5 49+4.9
Head Mouth 10.9 +52.5 2.4+ 281 29+422 21.3+74.7 —72+213 12.9+63.8

Head Top —341+564 —-09+496 —-339=£56.5 | —24.1+£65.2 8.6+ 24.6 —-13.5+:63.8

Head Back X —21.7 + 81.8 X X X

Head Total -26+12.2 —-0.14+0.5 -35+127 —-0.7+0.8 —0.3+06 -09+1.0

(< 0.1 s), and between the two processed methods (< 0.1 s),
though the raw and processed methods were found to not be
consistent between each other with a difference of 0.3 s between
the totals.

V. DISCUSSION
A. Reachable Workspace Measure

The results presented in Section IV-A support the use of
both the proposed rigid body model for post-processing motion
data, and support the use of depth cameras to perform the
reachable workspace assessment. The excellent concordance
and low mean percentage error between the raw and constrained
baseline data suggests that the proposed rigid-body model is
appropriate for modelling the reachable workspace movements.
The low percentage error and good/excellent concordance seen
in quadrants 3 and 4 suggest that the constrained depth camera
data is suitable for use as a performance metric.

Quadrants that correspond to self-occluding movements (1
and 2) exhibit higher percentage error, and lower concordance.
This is likely due to the limitations of using a single depth
camera for this application. As the tested limb moves in front
of the subject, the instantaneous estimates of the occluded joint
centre positions are likely to become worse. This is supported
by the low SNR seen at the ipsilateral GH joint. This effect
is compounded by the need for the elbow to bend during the
medial arm movements. This reduces the maximal area during
reaching in quadrants 1 and 2 (as seen in the Front and Top views
of Figure 5. Increased error in tracking the elbow bend, and an
overall decrease in area could both disproportionately increase
the percentage mean error in these quadrants. The addition of
rigid body constraints reduces this effect resulting in improved
SNR, lower mean percentage error, and concordance of the final
reachable workspace area.

The low error (< 5%) and excellent concordance between the
baseline and processed depth camera measures in quadrants 3
and 4 suggest that these quadrants may be the most appropriate
for clinical assessment. The lower mean percentage error and
higher concordance seen for the total area metric should be
treated with caution. As quadrants 3 and 4 are likely to have
a larger areas than quadrant 2, the improved performance in
total area may be based on improvements in the quadrant 3 and
4 sub-scores.

B. Proximal Function Measure

The results presented in Section I'V-B support the use of depth
cameras for assessing proximal function, though at a coarser
spatial resolution than initially planned. As only the wrist does
not move significantly between the mouth, top, and back of head
positions, these three targets have to be merged into a single head
target.

The benefit of using the proposed rigid-body-model for the
PF test is less clear, with signs that it may introduce a systematic
error. The mean percentage errors for both constrained methods
are higher than their raw counterparts for the back pocket,
contra-lateral shoulder, and head positions. This systematic error
is likely to be caused by a combination of self occlusion and
scapular movement that does not match the model used in
Section II-A2. In the raw methods, the target landmarks are
based on a rigid body model that only incorporates the estimated
locations of the left, right, and mid shoulders and the mid-spine.
In contrast, the constrained methods use all of the observed joint
estimates, including the elbows and wrists of both arms. The
addition of these joint centres may decrease the overall pose
estimate due to multiple erroneous estimates of joint position.

Despite the differences in the duration measured by the raw
and constrained methods, this duration metric does seem feasible
for assessing proximal function. Performance could be improved
by reducing this metric into a binary value by comparing the
measured duration to a preset threshold, similar to other clinical
scores. Extensions to determine improvement to the PF test are
included in Section VI-B.

It is interesting to note how the addition of a rigid body model
was of benefit to the RW protocol, but may introduce error into
the PF protocol. It is likely that this is due to a fundamental
difference in how these protocols function. In RW, the accuracy
of the GH centre is important as the GH metrics are all based
on the relative positions of the wrist and the shoulder centre. As
the rigid body model allows for improved estimates of position
by constraining limb lengths and adding in scapular-humeral
rhythm, there is a corresponding improvement in the estimated
RW areas when compared to the raw depth camera trajecto-
ries. This improvement is highlighted at the extremes of the
workspace. When the arms are outstretched above or behind
the subject, the skeletonisation algorithm used by these cameras
may have difficulty identify consistent shoulder positions. By
anchoring the shoulder position to landmarks that are more
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consistent at these times (contralateral shoulder and torso), these
constraints improve the accuracy of the joint centres. Further-
more, the SHR model used in Section II-A2 is based on relatively
pure arm abduction. This is similar to the arm movements seen
in the RW quadrants 3 and 4, potentially resulting in improved
correlation and lower mean percentage errors. In contrast, the
cross body motions required in the RW quadrants 1 and 2 may
be dissimilar to the movement pattern assumed by the model
resulting in higher errors and lower concordance.

In contrast, the PF measure measures the time that the wrist is
near each anatomical landmark. While the error in the ipsilateral
GH joint centre position decreases using the rigid body model
this does not result in an improvement in the estimated duration
that the hand was at each target. This may be due to two factors,
the choice of assessment metric, and the underlying model
assumptions. The duration metric was chosen as it should be
robust to the different strategies used by subjects when they
reach each target. As there are a number of different ways a
subject could reach their shoulder, measuring the duration of
time that the wrist is one hand’s length from each target is a
convenient assessment of function. This metric only depends
on the pose of the torso and the relative position of the wrist. In
cases of self occlusion, the addition of rigid body constraints and
an explicit SHR may introduce artefacts in positions of the wrist
and torso. This explains the consistency between the two raw
and two processed measures, with a consistent offset between
each measure. In this case, adding constraints on the torso by
either reducing the expected movement, or adding in landmarks
(such as the hips) could reduce these effects.

C. Clinical Applicability

This paper indicates the potential for the RWS and PF mea-
sures to provide a quantitative measure of upper limb movement
and function. The repeatability and accuracy of these measures
indicate their viability for tracking changes in function due to
pathology or treatment. The total time required to perform both
tests on both limbs is under four minutes, allowing for inte-
gration into existing clinical workflows and requiring minimal
supervision and expertise to conduct the test. As the observed
movements are stored after each test, reference motions can be
presented to subjects as part of patient education or to highlight
changes in function. The motion paths and joint angles obtained
during these tests allow for analysis of movement synergies
and stereotyped motion patterns. This suggests the clinical
utility of this approach, providing measures that can be used
for assessment and tracking immediately, while allowing for
the development of new metrics based on aggregating patient
cohorts. These additional measures would provide insight on
the degree of compensation and the presence of movement syn-
ergies, two key factors for the accurate assessment of individuals
with neuromusculoskeletal conditions.

VI. SUMMARY

This paper introduced and assessed two upper limb functional
assessments that can be used clinically with a depth camera.
The effect of adding a rigid body model to raw estimates of
joint centre was assessed. These initial tests suggest that both

assessment measures can be performed on individuals without
upper limb impairment and that these measures are accurate
when compared to a baseline motion capture system.

For the RW measure, it is recommended that a rigid body
model is used to improve the accuracy of the resulting areas.
Investigators should also note that quadrants 3 and 4 may be
less susceptible to errors due to self occlusion.

The proposed duration measure for PF also appears to be a fea-
sible measure for assessing subjects, though there is insufficient
evidence to accept or reject the use of the rigid body model.
Further testing is needed with individuals with limitations in
upper limb function to determine if these models are beneficial,
if the models needs to be changed for these populations, or if
the variations seen in this study can simply be neglected by
comparing the duration to a pass/fail threshold.

A. Limitations

While this paper shows the initial feasibility of using these
methods, testing was limited to ten people without any upper
limb impairment. To determine if these measures are able to
quantify and distinguish varying levels of function, these tests
should be repeated for a larger cohort with varying levels of
ability.

There are also limitations due to the methods and sensor
choice. Depth camera systems are limited by a single viewpoint,
making them sensitive to self-occlusion. The algorithms used to
perform the initial joint centre estimation may also be sensitive
in cases where the upper limbs are close to the torso, increasing
joint centre error. The scapular-GH model used in this work may
not be appropriate for individuals with shoulder dysfunction, or
individuals who have undergone shoulder surgery. Additional
study of specific clinical cohorts is needed to determine the
efficacy and to assess the effect of each of these limitations.

B. Future Work

To determine the clinical utility of these methods, additional
testing will be performed on individuals with varying degrees of
musculoskeletal function specificially investigating individuals
with shoulder replacement and muscular weakness/dystrophy.
To reduce any errors in unrealistic rotation of the torso, the hip
joint centres from the depth camera could be added, or additional
rotational constraints can be placed on torso movement. True
movement of the torso could also be reduced by providing a
hard-backed chair, with subjects being coached to keep their
back in contact. An Unscented Kalman Filter [43] could be used
to reduce high frequency noise in the joint angles by adding
dynamic constraints to the recovered motion. The addition of
this filtering step should be treated with caution though as
it is a sequential processing method which will prevent the
parallelisation of the kinematic recovery step.
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