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Abstract—The islanded and network-connected modes are ex-
pected to be modeled into a unified form as well as in a distributed
fashion for multi-energy system. In this way, the adaptability and
flexibility of multi-energy system can be enhanced. To this aim,
this paper establishes a double-mode energy management model
for the multi-energy system. It is formed by many energy bodies.
With such a model, each participant is able to adaptively respond
to the change of mode switching. Furthermore, a novel distributed
dynamic event-triggered Newton-Raphson algorithm is proposed
to solve the double-mode energy management problem in a fully
distributed fashion. In this method, the idea of Newton descent
along with the dynamic event-triggered communication strategy
are introduced and embedded in the execution of the proposed
algorithm. With this effort, each participant can adequately
utilize the second-order information to speed up convergence.
The optimality is not affected. Meanwhile, the proposed algo-
rithm can be implemented with asynchronous communication
and without needing special initialization conditions. It exhibits
better flexibility and adaptability especially when the system
modes are changed. In addition, the continuous-time algorithm
is executed with discrete-time communication driven by the pro-
posed dynamic event-triggered mechanism.It results in reduced
communication interaction and avoids needing continuous-time
information transmission. It is also proved that each participant
can asymptotically converge to the global optimal point. Finally,
simulation results show the effectiveness of the proposed model
and illustrate the faster convergence feature of the proposed
algorithm.

Index Terms—Newton-Raphson, Energy Internet, distributed
algorithm, multi-energy systems.

I. INTRODUCTION

W ITH the deep integration of advanced energy and
information technologies, the concept of Energy In-

ternet and multi-energy system (MES) are proposed recently.
The key objective is to tackle the challenges of integrating
multi-energy networks, accommodating high penetration of
renewable energy resources and developing hybrid energy
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utilization model, etc [1-6]. As a fundamental element of MES,
the energy management problem (EMP) studies how to coop-
eratively allocate energy generation resources and schedulable
energy loads. In this way, the total social welfare can be
maximized under multiple global supply-demand balance and
local operation constraints.

A lot of centralized algorithms have been presented to solve
the EMP. They mainly include analytical algorithms [7]–[9]
and heuristic algorithms [10], [11]. However, the centralized
algorithms rely on a powerful centralized controller, which
easily undergoes single-point failures, modeling errors [12]
and weakened privacy [13], etc. To overcome the drawbacks
of traditional centralized algorithms, the distributed algorithm
has become a popular and effective methodology to deal with
the EMP. A lot of researchers have committed themselves to
study the EMP by designing distributed algorithms in smart
grid or microgrid. These algorithms mainly include consensus-
based and alternating direction method of multipliers (AD-
MM) based methods. For instance, inspired by consensus
protocol, Yand et al [14] first proposed a lambda-iteration
approach to solve the economic dispatch problem in a fully
distributed manner with quadratic cost function. On this basis,
a distributed bisection method and a projected gradient method
by making use of average consensus protocol to estimate
critical variables were respectively proposed in [15] and [16],
which are suitable for non-quadratic cost function. To improve
convergence rate, some Newton-based distributed algorithms
have been proposed and used in distribution network operation
problems [17]–[19]. For instance, a distributed quasi-Newton
was proposed to solve multi-area economic dispatch problem
in [17]. This method is designed by using the concept of paral-
lel primal-dual interior-point (PDIP) algorithm along with the
quasi-Newton technology. Similarly, by decomposing interior-
point method and embedding Newton descent procedure, a
fully decentralized optimal power flow (OPF) algorithm and
an incremental-oriented ADMM were proposed in [18] and
[19], respectively. Note that literature [17]–[19] have done
outstanding contributions on solving the problem of economic
dispatch or OPF for multi-area interconnected power systems.
Meanwhile, the Newton concept is utilized to improve con-
vergence speed. However, the designed algorithms are built
upon synchronous and periodic communication [18], [19] (or
synchronous communication in initial step but needing multi-
step communication during each updating [17]). Meanwhile,
these algorithms require special initial conditions. It will lead
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to two challenges. On one hand, the synchronous communi-
cation strategies rely on a global synchronization clock and
require all areas to exchange information at the same time.
It results in weakened flexibility. Paper [17] only requires
synchronous information in initial step. However, each area
needs to exchange multiple variables and execute multi-step
communication interaction during each updating. Thus, the
flexibility is also decreased. On the other hand, the algorithms
with special initial procedure may not always ensure the
convergence and optimality when the system operation mode
or structure is changed. The most reliable method is to reset
the initial value for all areas synchronously and re-run system
algorithm. It results in weakened adaptability. Most recently,
the algorithms’ effectiveness under time delay [20], [21],
uncertainty of power generation [22], [23], network attacks
[24], [25], frequency control [26]–[28], and event-triggered
communication [29], [30] etc., have gained wide interests in
the field of distributed energy management for power systems.
The above research has made outstanding contributions for

the paradigm shift from centralized operations to distributed
operations. However, they mainly concentrate on solving the
EMP for power system. Therein, only electrical power is
seen as the major energy medium. Nevertheless, in MES,
multiple energy resources are integrated to achieve the co-
operative energy management of different energy networks
rather than electrical power only. There are various types
of energy mediums (i.e., power, heat and gas) with strong
coupling relationship. Thus, the EMP of MES is more complex
and difficult than smart grid EMP in both distributed model
development and theoretical analysis. To address this issue,
the energy body (EB) was recently presented within the
context of MES in our previous work [31]. It features multi-
coupling of different energy forms, diversified energy roles and
peer-to-peer energy supply/demand. Meanwhile, a consensus-
ADMM algorithm was proposed to find the optimal energy
generations/demands and market clearing prices. In [32] and
[33], the concept of two-stage modeling and optimization
approaches were proposed to better integrate renewable energy
into MES. However, they belong to centralized method. Our
paper concentrates on distributed modeling and solutions.
On the basis of [31], an event-triggered based distributed

gradient algorithm was further presented in [34]. This al-
gorithm can solve the day-ahead and real-time EMP with
less communication cost. Later, in [35], a neurodynamics-
based algorithm was proposed to solve the co-planning of
coupled power-heat-gas system, which is suitable for large-
scale MES. A distributed double-consensus based distributed
algorithm was proposed in [36] to achieve the cooperated
energy management for multiple We-Energy. The aforemen-
tioned research [31], [34]–[36] have obtained some satisfactory
results on dealing with the distributed EMP within the context
of MES, which operate in either islanded mode or network-
connected mode. To improve the adaptability of future MES,
it is expected to establish a unified energy management model
and strategy. In this way, the islanded and network-connected
modes can be simultaneously encompassed together. Addition-
ally, the buying and selling energy prices of the main networks
may be different [37], which is also needed to be considered in

the distributed system model development. More importantly,
the above distributed ADMM or consensus-based algorithms
mainly employ the gradient or sub-gradient descent direction.
These methods only use first-order information, resulting in
slower convergence rate. Note that the convergence rate is a
very important index for real-time EMP to ensure effective
operation scheduling. Although literature [17]–[19] have in-
troduced the Newton-descent concept to improve convergence
rate, they require synchronous and periodic communication as
well as special initial conditions. In this paper, we hope that
each participant within any EB can flexibly and adaptively
operate in islanded mode, network-connected mode and during
mode switching. To meet the expectation, further investigation
on the design of new Newton-based distributed algorithm
is necessary. Herein, the new method should be executed
in asynchronous communication fashion, avoid special ini-
tialization procedure, and maintain faster convergence speed
as well as global optimality. Additionally, although literature
[29], [30], [34] have introduced the idea of event-triggered
communication strategy into the distributed EMP, the em-
ployed triggering mechanisms are static. Further investigation
on dynamic triggering mechanism is needed to increase inter-
event time.

To overcome these challenges, this paper presents a double-
mode energy management model for MES under EB frame-
work [31]. Herein, a distributed dynamic event-triggered
Newton-Raphson algorithm is proposed to solve the double-
mode EMP in a distributed fashion. The contributions of this
paper are summarized as follows:

1) By splitting the aggregated objective function, we re-
group the items related to energy price of all participants
and equivalently assigned them to the main network (MN)
agent. Meanwhile, the corresponding decision variables and
objective function are designed for the MN agent based on
the global supply-demand constraints. To model the profit-
driven characteristic, a correction item is further designed and
added into the objective function of MN agent. In this way,
it can effectively take the different buying and selling energy
prices for the main networks into consideration. Subsequently,
a double-mode energy management model is built for the
MES with many EBs. It is a fully distributed model, which
supports that each participant adaptively runs in islanded
mode, network-connected mode and during mode switching.

2) A novel distributed dynamic event-triggered Newton-
Raphson algorithm is presented. It is designed by employing
primal-dual analysis, Taylor expansion and the differentiat-
ed projection operation, while embedding dynamic event-
triggered communication strategy. Distinguished from existing
gradient-based and Newton-based distributed methods, the
proposed algorithm simultaneously possesses the advantages
of faster convergence speed, no special initialization condition,
and asynchronous communication, etc. With those efforts, each
participant can fast obtain its optimal operation and adaptively
respond to the model switching without needing to reset global
initial value. Meanwhile, the asynchronous communication can
avoid the requirement of global clock synchronization, which
is more flexible and easier to be implemented. Thus, the
proposed algorithm is more suitable for solving the double-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSG.2020.3005179

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON SMART GRID, VOL. XXX, NO. XXX, XXX 2019 3

TABLE I
FREQUENTLY USED NOTATION

Notations Description

p, h, g Electricity power, heat, gas outputs
lp, lh, lg Electricity power, heat, gas loads
fbg Index for the fuel-based generation device

referring to the FG or FHD used in variable
rbg Index for the renewable-based generation device

referring to the RG or RHD used in variable
st Index for the storage device referring to the ES

or HS used in variable
chp Index for CHP used in variable
gs Index for GS used in variable
mr Index for must-run energy load used in variable
sl Index for schedulable energy load used in variable
C(•), U(•) Indices for the cost function and utility function
γp
t , γ

h
t , γ

g
t Indices for the electricity power, heat gas

market clearing prices

mode EMP for MES considered in this paper.
3) By designing dynamic triggering mechanism, each partic-

ipant can exchange information at discrete instants if needed.
The direct and major benefits of the proposed event triggered
mechanism is to reduce the communication interaction and
significantly relax the dependency on precise continuous-
time information transmission. Meanwhile, it can also bring
some indirect benefits such as the reduced communication
expenditure and bandwidth, etc. Moreover, the proposed trig-
gering mechanism involves extra dynamic variable, which
holds longer inter-event time and explicitly excludes Zeno
behavior.
4) By using Lyapunov technique, it is proved that the pro-

posed algorithm holds asymptotic convergence. Meanwhile,
the equilibrium point satisfies the Karush-Kuhn-Tucker (KK-
T) conditions. Thus, the optimality and convergency of the
proposed algorithm is ensured in theory.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, the MES is expected to adaptively work in
not only islanded mode but also network-connected mode. In
islanded mode, all EBs are cooperative with each other to
maximize the total social welfare without being affected by
the main energy networks. The main energy networks include
electricity grid, heat network and gas network. In network-
connected mode, the energy (i.e., electric power, heat and
gas) prices of the main energy networks are further taken into
consideration to regulate the energy allocation among all EBs.
In the considered MES, there is an agent directly connected
to the main energy networks, which is named as MN agent.
The MN agent can monitor the energy prices of the main
energy networks and be required to share information with less
neighboring EBs. The proposed distributed algorithm will be
discussed in section III. By implementing this algorithm, each
participant can find its optimal operation under both islanded
and network-connected modes via local communication.

A. Energy Body Model
For each EB, it integrates various kinds of energy resources,

including renewable generators (RGs), renewable heating de-
vices (RHDs), fuel-based generators (FGs), fuel-based heating

devices (FHDs), combined heat and power (CHP) generators,
electricity storages (ESs), heat storages (HSs), gas providers
(GSs). Meanwhile, the energy loads in each EB contain
electricity loads, heat loads and gas loads. Each of them
contains an equivalent must-run energy load and a schedulable
energy load (SEL). For simplified definitions of variables and
symbols, please refer to Table I for quick reference. The
imbalance (deficit or overabundance) power, heat and gas of
the ith EB at time step t are respectively given by

∆pi,t =prbgi,t + pfbgi,t + pchpi,t + psti,t − lp,mr
i,t − lp,sli,t , (1)

∆hi,t =hrbg
i,t + hfbg

i,t + hchp
i,t + hst

i,t − lh,mr
i,t − lh,sli,t , (2)

∆gi,t =ggsi,t − lg,mr
i,t − lg,sli,t , (3)

where psti,t or h
st
i,t is positive for discharging and negative for

charging.
Under both islanded and network-connected modes, each

participant within an EB makes decisions subject to a set of
local constraints. In power system, we consider the power
capability constraint and ramp rate limits for FG shown in
(4) when ϕ = p and (8), respectively. The tradeoff constraint
between optimality and possibility for RG is shown in (6)
when ϕ = p (see Remark 1). The constraints for electricity
storage are shown in (10-12) when ϕ = p. The limits for
schedulable power load and the corresponding ratios are shown
in (13), (16) and (18), respectively. In heat system, we consider
the capability constraint of FHD shown in (4) when ϕ = h.
The tradeoff constraint between optimality and possibility for
RHD is shown in (6) when ϕ = h (see Remark 1). The
constraints for HS are shown in (10-12) when ϕ = h. The
limits for heat load and the corresponding ratios are shown in
(14), (17) and (18), respectively. In gas system, we consider
the capability constraint for the gas provider shown in (5). The
limits for gas load and the corresponding ratios are shown
in (15), (16) and (17). The CHP is in both power system
and heat system, whose local operation constraints are shown
in (7) and (9). Moreover, some energy loads can be more
flexible to be fed by different energy supplies. The concept
is considered and modeled in (16-18). This model of (16) is
first proposed for integrated electricity-gas system in [38]. It
is further expanded to (16-18) for multiple-energy system in
[31]. The mathematical expression of the above constraints are
as follows [31]

ϕfbg,min
i ≤ ϕfbg

i,t ≤ ϕfbg,max
i , ϕ ∈ p, h (4)

0 ≤ ggs,min
i ≤ ggsi,t ≤ ggs,max

i , (5)

ϕrbg,min
i,t ≤ ϕrbg

i,t ≤ ϕrbg,max
i,t , ϕ ∈ p, h (6)

0 ≤ ϖ1
i,κp

chp
i,t +ϖ2

i,κh
chp
i,t +ϖ3

i,κ, κ = 1, 2, 3, 4 (7)

− pfbg,rpi ≤ pfbgi,t − pfbgi,t−1 ≤ pfbg,rpi , (8)

− pchp,rpi ≤ pchpi,t − pchpi,t−1 ≤ pchp,rpi , (9)

− ϕch,max
i ≤ ϕst

i,t ≤ ϕds,max
i , ϕ ∈ p, h (10)

SOCϕ
i,t = SOCϕ

i,t−1 −ℑϕ
i ϕ

st
i,t−1∆t, ϕ ∈ p, h (11)

SOCϕ,min
i ≤ SOCϕ

i,t ≤ SOCϕ,max
i , ϕ ∈ p, h (12)
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0 ≤ lp,sli,t ≤ lp,max
i,t − lp,mr

i,t , (13)

0 ≤ lh,sli,t ≤ lh,max
i,t − lh,mr

i,t , (14)

0 ≤ lg,sli,t ≤ lg,max
i,t − lg,mr

i,t , (15)

Υmin
i,g→p ≤ lp,sli,t /(lp,sli,t +Ψlg,sli,t ) ≤ Υmax

i,g→p, (16)

Υmin
i,g→h ≤ lh,sli,t /(lh,sli,t +Ψlg,sli,t ) ≤ Υmax

i,g→h, (17)

Υmin
i,h→p ≤ lp,sli,t /(lp,sli,t + lh,sli,t ) ≤ Υmin

i,h→p, (18)

where superscript “min” and “max” refer to the lower and
upper bounds, respectively; ϖ1

i,κ, ϖ2
i,κ and ϖ3

i,κ are the
coefficients of κth linear inequality constraint determined by
the feasible operation region of CHP i; pfbg,rpi and pchp,rpi

are the ramp rates of pfbgi,t and pchpi,t between two consecutive
time steps; ϕch,max

i and ϕds,max
i are the maximum charging

and discharging rates; ℑϕ
i represents the charge and discharge

efficiency; SOCϕ
i,t represents the state of charge (energy stored

in the corresponding storage device); Υi,g→p, Υi,g→h and
Υi,h→p represent the ratio of electric power with reference to
combined power and gas load, the ratio of heat with reference
to combined heat and gas load, the ratio of electric power
with reference to combined power and gas load, respectively;
Ψ represents the transformation ratio from SCM/h to MW,
which is often set as 1/84 [31].
Driven by profit, each EB can simultaneously act as the

energy supplier and consumer. For instance, the EB may
purchase deficit power from other EBs or main grid if its
power demand cannot be satisfied. Under this circumstance,
it is viewed as a power consumer. Meanwhile, the EB may
also sell the overabundance heat to other EBs or main heat
network to make additional profit. Under this circumstance, it
is regarded as a heat supplier. At time step t, the objective
function of each EB composed of the profit part and the cost
part is expressed as [31]

Fi,t =−
∑
ϕ∈p,h

(
C(ϕfbg

i,t ) + C(ϕrbg
i,t ) + C(ϕst

i,t)
)
− C(ggsi,t)

− C(pchpi,t , hchp
i,t ) + U(lp,sli,t , lh,sli,t , lg,sli,t ) + γp

t ∆pi,t

+ γh
t ∆hi,t + γg

t ∆gi,t, ϕ ∈ p, h (19)

with

C(ϕfbg
i,t ) = aϕ,fbgi (ϕfbg

i,t )2 + bϕ,fbgi ϕfbg
i,t + cϕ,fbgi

+ εϕ,fbgi exp(ξϕ,fbgi ϕfbg
i,t ),

C(ϕrbg
i,t ) = aϕ,rbgi ϕrbg

i,t + ϵϕ,rbgi exp
(
ξϕ,rbgi

ϕrbg,max
i,t − ϕrbg

i,t

ϕrbg,max
i,t − ϕrbg,min

i,t

)
,

C(ϕst
i,t) = aϕ,sti (ϕst

i,t + bϕ,sti )2,

C(ggsi,t) = agsi (ggsi,t)
3 + bgsi (ggsi,t)

2 + dgsi ggsi,t + cgsi ,

C(pchpi,t , hchp
i,t ) = achpi (pchpi,t )2 + bchpi pchpi,t + dchpi pchpi,t hchp

i,t

+ echpi (hchp
i,t )2 + f chp

i hchp
i,t + cchpi ,

U(lp,sli,t , lh,sli,t , lg,sli,t ) = −αp
i (l

p,mr
i,t + lp,sli,t )2 + βp

i (l
p,mr
i,t + lp,sli,t )

− αh
i (l

h,mr
i,t + lh,sli,t )2 + βh

i (l
h,mr
i,t + lh,sli,t )

− αg
i (l

g,mr
i,t + lg,sli,t )2 + βg

i (l
g,mr
i,t + lg,sli,t ),

where aϕ,fbgi , bϕ,fbgi , cϕ,fbgi , εϕ,fbgi , ξϕ,fbgi , aϕ,rbgi , ϵϕ,rbgi ,
aϕ,sti , bϕ,sti , agsi , bgsi , cgsi , dgsi , achpi , bchpi , cchpi , dchpi , echpi and

f chp
i are cost coefficients; ξϕ,rbgi < 0 is penalty coefficient;
αp
i , β

p
i , α

h
i , β

h
i , α

g
i and βg

i are utility coefficients. Note that
C(ggsi,t) is convex in the region determined by (5).

Remark 1: The models of RG and RHD with the consid-
eration of uncertainties come from [31]. To be specific, it
is assumed that the forecast error of the power generation
of RG (or heat generation of RHD) caused by uncertainties
obeys Gaussian distribution. On this basis, the confidence
intervals of the forecasted power or heat generation can be
further obtained based on the preset confidence level of the
forecast error. Then, we get constraint (6) by letting the
forecasting value plus the corresponding forecast error to
obtain ϕrbg,min

i,t and ϕrbg,max
i,t , which takes the uncertainty

into account. Moreover, the exponential penalty of renewable
power or heat generation is considered in the cost function
C(ϕrbg

i,t ), i.e., the second item of C(ϕrbg
i,t ). The purpose is to

make the optimality and possibility be traded off suitably. By
using this model, it can be derived that the Hessian matrix
of C(ϕrbg

i,t ), i.e., ϵϕ,rbgi

(
ξϕ,rbgi /(ϕrbg,max

i,t − ϕrbg,min
i,t )

)2
exp

(
ξϕ,rbgi (ϕrbg,max

i,t − ϕrbg
i,t )/(ϕ

rbg,max
i,t − ϕrbg,min

i,t )
)

is positive
definite within local constraint (6). Thus, C(ϕrbg

i,t ) is convex
within constraint (6).

B. Double-Mode Energy Management of MES

Considering a MES with n EBs, the objective of the
optimal energy management is to maximize the total social
welfare under both islanded and network-connected modes.
The mathematical expression is given by

max Obj =
n∑

i=1

Fi,t. (20)

Although the islanded and network-connected modes hold
the same objective function, they have different forms. This
is caused by the different energy supply-demand balance
constraints and energy trading mechanism. To show it clearly,
Fi,t is divided into two terms as follows

Fi,t = F one
i,t + F two

i,t , (21)

where

F one
i,t =−

∑
ϕ∈p,h

(
C(ϕfbg

i,t ) + C(ϕrbg
i,t ) + C(ϕst

i,t)
)
− C(ggsi,t)

− C(pchpi,t , hchp
i,t ) + U(lp,sli,t , lh,sli,t , lg,sli,t ), (22)

F two
i,t =γp

t ∆pi,t + γh
t ∆hi,t + γg

t ∆gi,t. (23)

The first term, i.e., F one
i,t , is the same for both islanded

mode and network-connected mode. The difference is mainly
reflected in the second term, i.e., F two

i,t . To be specific, the
global energy supply-demand constraints for islanded mode
(24) and network-connected mode (25) at each time step t are
respectively given by

n∑
i=1

∆pi,t = 0,
n∑

i=1

∆hi,t = 0,
n∑

i=1

∆gi,t = 0, (24)

n∑
i=1

∆pi,t = pMt ,

n∑
i=1

∆hi,t = hM
t ,

n∑
i=1

∆gi,t = gMt , (25)
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where pMt , hM
t and gMt are the exchanged power, heat and

gas between the main networks and EBs. Therein, if the main
networks inject power, heat or gas into the EBs, then we let
pMt < 0, hM

t < 0 or gMt < 0. Otherwise, pMt ≥ 0, hM
t ≥ 0

or gMt ≥ 0. In addition, we let

|pMt | ≤ pM,max
t , |hM

t | ≤ hM,max
t , |gMt | ≤ gM,max

t , (26)

where pM,max
t , hM,max

t and gM,max
t represent the maximum

values of pMt , hM
t or gMt , respectively.

According to (24), we can get F two
i,t = 0, which also means

that Obj =
∑n

i=1 F
one
i,t in islanded mode. Different from

islanded mode, F two
i,t is not always equal to zero in network-

connected mode. Meanwhile, γp
t , γ

h
t and γg

t are the energy
prices set by the main networks. It can be observed from (1-
3) and (23) that the energy prices are included in the objective
function of individual participant. In distributed network, each
participant may not have direct access to γp

t , γ
h
t and γg

t . This is
because each participant only exchanges information with its
neighbors. To achieve fully distributed computation, we make
proper transformation for F two

i,t . From (23) and (25), it can be
derived that

F pr
T =

n∑
i=1

F two
i,t = γp

t p
M
t + γh

t h
M
t + γg

t g
M
t . (27)

Thus, we can make pMt , hM
t and gMt be seen as decision

variables in the main networks side and assign a local objective
function, i.e., F pr

T for the MN agent. In this way, the energy
prices are reflected only in F pr

T . Thus, we can eliminate
the requirement that each participant should access the main
network energy prices, which is conducive to distributed
implementation.
Moreover, the future MES shall operate in peer-to-peer

energy supply/demand structure. The monopoly of the main
networks will be weakened and one of the major profit
modes is to charge service fees. In this situation, the buying
energy prices and selling prices of the main networks may
be different. To be specific, the main networks tend to either
buy energy from the EBs if the clearing energy prices are
cheaper than bγp

t , bγ
h
t and bγg

t , or sell energy to the EBs
if the clearing energy prices are more expensive than bγp

t ,
bγh

t and bγg
t . Therein, bγp

t , bγh
t and bγg

t are named as
benchmark energy prices. It is worth noting that we do not
know the final trading status before calculation. To capture
this scenario, a corrected objective function is designed based
on the optimality conditions and the characteristics of pMt , hM

t

and gMt . The mathematical expression is given by

FMain
t =bγp

t p
M
t + bγh

t h
M
t + bγg

t g
M
t

− aMp (pMt )2 − aMh (hM
t )2 − aMg (gMt )2, (28)

where aMp , aMh and aMg are positive correction coefficients
(The detailed design of correction coefficients are illustrated
in Appendix A.). Next, we take the electric power price as an
example to show this concept. Based on (28), the final power
market clearing price in optimal state (without consideration
of (26) for example) is bγp

t − 2aMp pMt . Note that pMt > 0
if the main grid purchases power from the EBs. In this case,
bγp

t −2aMp pMt < bγp
t , which implies that the main grid will buy

cheaper power from EBs. Otherwise, pMt < 0 and the main
grid will sell more expensive power to the EBs. In addition, it
is worth noting that the buying and selling prices are the same
one when aMp = aMh = aMg = 0. In this scenario, FMain

t is
the same as F pr

t . Thus, F pr
t can be seen as a special case of

FMain
t .
Based on the aforementioned discussion, the double-mode

EMP for MES is rewritten as

max Obj =

n∑
i=1

F one
i,t + πFMain

t , (29)

subject to (4-18, 24) for islanded mode and (4-18, 25-26)
for network-connected mode. Therein, π = 0 or 1 represents
islanded mode or network-connected mode, respectively.

III. TRANSFORMATION AND DISTRIBUTED ALGORITHM

We consider a MES with n EBs and one MN agent, in which
each EB has ℘i participants (i.e., energy devices or schedulable
energy loads). To simplify notations, at time t, we make use
of {xij ∈ R3|i = 1, · · · , n; j = 1, · · · , ℘i} to represent the
decision variables of jth participant of ith energy body. {xij ∈
R3|i = 0; j = 1} is denoted as the decision variable of MN
agent. {dij ∈ R3|i = 1, · · · , n; j = 1, · · · , ℘i} is denoted
as the must-run energy loads connected to jth participant of
ith energy body. Note that xij is a three-dimensional decision
variable composed of power, heat and gas, some of which may
be zero(s). dij is also a three dimensional vector composed of
power, heat and gas loads. If some participant does not have all
the three energy variables, it can extend the dimension of its
variable(s) to xij by setting the bounds of zero variable(s) as
zeros. Meanwhile, the cost function of each zero variable is set
to any kind of strongly convex function like C(ϕfbg

i,t ). Then,
we use W (xij) to re-denote the corresponding cost function
or negative utility function or −FMain

t . Then, the double-
mode EMP for MES, i.e., (29), can be further expressed as
the following form,

min Obj =

n∑
i=0

℘i∑
j=1

W (xij) (30)

s.t.

n∑
i=0

℘i∑
j=1

Bijxij =

n∑
i=0

℘i∑
j=1

dij , (31)

g(xij) ≤ 0 → xij ∈ Ωij , (32)

where Bij = −I3 if xij represents schedulable energy load,
otherwise Bij = I3; g(xij) is the local inequality constraint
related to xij ; I3 represents a three-dimensional identify
matrix; Ωij is the local closed convex set determined by
g(xij). In the aforementioned EMP, the MN agent can also
be seen as a special EB with single participant, i.e., ℘0 = 1.
When the MN agent takes part in the EMP, the system is
running in network-connected mode; otherwise, the system is
running in islanded mode.

Some preliminary knowledge are presented in Appendix
B, including strongly convex property of the aforementioned
EMP, the differentiated projection operation and its relevant
properties. These will be employed for the convergence anal-
ysis of the subsequent distributed algorithm.
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A. Distributed Communication Network Topology

The communication network topology among EBs and MN
agent can be modeled as a graph G = (V , E ,A). Therein,
V = {vij |i = ℵ, · · · , n; j = 1, · · · , ℘i} is a set of nodes
representing participants or MN agent. E ⊂ V × V is a set of
edges representing the communication links. A = [aij,ij ] is
the adjacency matrix. Therein, ℵ = 0 (or 1) refers to network-
connected mode (or islanded mode indicating that the MN
agent is not considered). Node vij is called the neighbor node
of vij if vij can get the information from vij . Then, we
have (vij , vij) ∈ E with aij,ij = 1; otherwise aij,ij = 0.
Meanwhile, the neighbor set of vij is denoted as Nij with
degree |Nij |. Currently, there are two ways to design the com-
munication links among nodes. One is to make communication
network overlay the physical network. In this way, the com-
munication links are aligned with the physical transmission
lines. Thus, the neighbors of each node in communication
network are the same as the ones in physical structure. The
second one is not limited by the physical structure. In this
way, each node can exchange information with any other one
as needed. In this paper, we take multiple types of energy
resources into consideration. The physical links may not be
available among some of them, but any needed communication
links can be achieved. Thus, we employ the second way to
design communication structure in this paper. This implies
that the definition of “neighbors” in communication network
may be different from the one in physical structure. To avoid
confusion, the “neighbors” used in this paper refers to the
definition of “neighbors” in communication network.
When the possible expansion of the energy (power, heat

and gas) transaction restrictions are taken into consideration,
there are two feasible methods to design the corresponding
communication network. For the first one, we can let the
communication network mimic the physical network. This
method possesses good compatibility when considering the
energy (power, heat and gas) transaction restrictions directly.
However, it may also reduce the flexibility. For the other one,
the communication network can be designed to be independent
of the physical topology. This kind of method has been widely
employed in distributed networks, such as [14-15, 20-21, 34,
37]. It implies that a suitable communication network can be
designed in light of cost, location, convenience and technology,
etc. Note that if the physical transaction restrictions can be
modeled and translated as the local inequality constraints
for each agent, we can employ the second one. Since the
transaction restrictions have been included in the local op-
eration constraints, each participant can obtain the feasible
solution. Otherwise, it is better to employ the first one. Note
that no matter what kind of communication network is used,
each participant needs to collect its local and neighboring
information. More importantly, this paper only requires the
communication graph to be connected. Thus, the proposed
algorithm can be implemented in any kind of connected
communication network architectures. This means that the
communication network architecture can be chosen based on
actual condition and different application scenarios.
The system Laplacian matrix of G is defined as L = D−A,

where D = diag{|Nij |} is called the degree matrix. In this
paper, it is assumed that G is a connected graph. Then, L
has one simple zero eigenvalue and positive eigenvalues. The
eigenvalues of L are ordered as 0 = λ1 < λ2 ≤, · · · ,≤ λN ,
where N is the total number of nodes.

B. Main Algorithm

In this section, we would like to solve the problems (30-
32) with faster convergence rate, reduced communication,
asynchronous implementation and without special initializa-
tion condition. To this end, we focus on embedding the New-
ton descent concept along with the dynamic event-triggered
communication strategy into the design of the distributed opti-
mization algorithm. By primal-dual analysis, Taylor expansion
and differentiated projection operation, the distributed dynamic
event-triggered Newton-Raphson algorithm is proposed as
follows

ẋij =ΓΩij

(
∇2W (xij)

−1xij ,∇2W (xij)
−1

(
−∇W (xij)

+BT
ij ŷij

))
, (33)

ẏij =−
∑

ij∈Nij

aij,ij(ŷij − ŷij)

−
∑

ij∈Nij

aij,ij(ẑij − ẑij) + dij −Bijxij , (34)

żij =
∑

ij∈Nij

aij,ij(ŷij − ŷij), (35)

Q̇ij =− ϑ1,ijQij + ϑ2,ij

(1
4

∑
ij∈Nij

aij,ij ||ŷij − ŷij ||
2

− ϑ3,ij ||(ŷij − yij)||2 − ϑ4,ij ||(ẑij − zij)||2
)
, (36)

with triggering mechanism

tk+1
ij =max

{
t > tkij |ϑ5,ij

(
ϑ3,ij ||(ŷij − yij)||2

+ ϑ4,ij ||(ẑij − zij)||2

− 1

4

∑
ij∈Nij

aij,ij ||ŷij − ŷij ||
2
)
≤ Qij

}
, (37)

where ϑ1,ij , ϑ2,ij , ϑ3,ij , ϑ4,ij and ϑ5,ij are positive param-
eters; ΓΩij represents the differentiated projection operator,
whose detailed definition can be seen in Appendix B; ij ∈ Nij

is the neighbor of node ij; ŷij ≡ yij(t
k
ij), ẑij ≡ zij(t

k
ij)

and t ∈ [tkij , t
k+1
ij ); {tkij}∞k=1 and {tk+1

ij − tkij}∞k=1 refer to
the triggering times and inter-event time intervals; yij ∈ R3

and zij ∈ R3 are designed auxiliary variables. Therein, yij
is the Lagrangian dual multiplier with respect to (31), whose
physical significance is the energy market clearing prices; Qij

is the designed extra dynamic state to achieve dynamic event-
triggering communication. In addition, there is no initialization
requirement for the Lagrange dual multipliers and primal
variables. Thus, choosing different initial values does not
affect the convergence of the algorithm.
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In the proposed algorithm, formulation (33) is used to up-
date primal variable xij . ∇2W (xij)

−1
(
−∇W (xij)+BT

ij ŷij
)

is obtained by calculating the Newton descent direction of xij

related to the dual problem of (30) with (31). To further deal
with the inequality constraint (32), we employ differentiated
projection operator (see Appendix B). In this way, the infea-
sible point can be projected into the corresponding feasible
region. In addition, the second-order information is embedded
into (33) to speed up the convergence, which will be discussed
in Remark 2 for details. Formulations (34) and (35) are
designed to estimate the global Lagrangian dual multiplier. The
major purpose is to make all the local estimated Lagrangian d-
ual multipliers yij’s converge to the same value, while meeting
the global supply-demand balance, i.e., (31). In this process,
the consensus protocol (i.e., −

∑
ij∈Nij

aij,ij(ŷij − ŷij) and
−
∑

ij∈Nij
aij,ij(ẑij− ẑij)) is employed to achieve distributed

communication and calculation. The item dij − Bijxij is
designed to ensure that the global supply-demand balance
can be achieved when the algorithm converges. Moreover, to
achieve asynchronous communication and reduce communica-
tion interaction among participants and MN agent, we further
design the extra dynamics (36) and triggering mechanism (37).
Dynamics (36) generates a positive variable Qij . It is further
used as a threshold value in judgement condition (37). Based
on the information at current triggering time instant, the next
triggering time tk+1

ij is determined by the designed triggering
mechanism. An event is triggered once the inequality in (37)
is not satisfied. The major functionality of (36) and (37) is
to make each participant or MN agent share the information
of variables ŷij and ẑij with its neighbors only at some
intermittent instants, i.e., triggering times. The proposed event-
triggering strategy possesses two major advantages. On one
hand, the continuous-time algorithm is implemented by using
discrete-time communication in this paper. As a result, the
communication interaction can be greatly reduced. On the
other hand, each participant or MN agent can independently
decide the next triggering time, which results in the ability of
asynchronous communication. In other word, the proposed al-
gorithm can be implemented in asynchronous communication
fashion without a global clock synchronization. As a conse-
quence, it is more feasible and convenient for applications.
Based on the aforementioned discussion, for each participant
or MN agent, the updating of xij , yij , zij and Qij in (33-
36) only involves neighbors’ information, i.e., ŷij and ẑij ,
and its own information. Thus, the proposed algorithm can
be implemented in a distributed fashion. In addition, each
participant does not need to switch algorithm or strategy
when the system operation mode is changed. In this way,
the designed algorithm is adaptive and suitable for not only
islanded mode but also network-connected mode.

Remark 2: It is worth noting that the proposed algorithm
can effectively employ Newton descent direction by making
use of both first- and second-order information, i.e., ∇W (xij)
and∇2W (xij). As a consequence, the convergence rate can be
sped up, which is one of the most important advantages when
compared with (sub)-gradient-based algorithms. Additionally,
the computation complexity of ∇2W (xij) is not very big,

because xij is only three-dimensional. Here, we focus on
the comparison of computational burden for Newton descent
method and for gradient descent method. Let ϱ represent the
dimensionality of xij . The computational complexity of the
proposed Newton method and the gradient method in [34]
are O(ϱ3) and O(ϱ2), respectively. The proposed algorithm
undergoes heavy computational burden only when ϱ becomes
very large. Note that ϱ = 3 for each individual participant
in our considered system model. Thus, the computational
burden of the proposed distributed algorithm when used in this
paper is not very big, although it is higher than the gradient
method in [34]. But the overall computation time needed to
achieve optimal solution is much shorter with our proposed
algorithm due to the faster convergence rate. As we know, for
each participant or MN agent, they are expected to calculate
the global optimal solutions as fast as possible to guarantee
effective energy allocation. Thus, the proposed algorithm is
more suitable for solving the EMP considered in this paper.

Remark 3: The event-triggering based energy management
strategies have been studied in [29], [30], [34]. Different from
those work, this paper aims at designing a dynamic triggering
mechanism, i.e., (37), which takes advantages of the extra
dynamic stateQij in (36) to increase inter-event time intervals.
If Qij is not involved, then the dynamic triggering mechanism
will reduce to the static one. It can be viewed as a limit case
of (37). Since Qij > 0 (seen from (62) in Appendix C),
the dynamic triggering mechanism processes larger inter-event
time intervals than the static ones. In addition, we focus on
designing Newton descent method to improve the convergence
rate, while literature [29], [30], [34] are based on gradient
descent information.

Remark 4: Note that (19) is the objective function of each
EB. Therein, the exponential items exist only in the cost
functions C(ϕfbg

i,t ) and C(ϕrbg
i,t ). The local constrains for ϕ

fbg
i,t

and ϕrbg
i,t , i.e., (4) and (6), are linear constraints. Unlike

the strong conic constraint in [39], (26) is a special conic
constraint. It is equivalent to −pM,max

t ≤ pMt ≤ pM,max
t ,

−hM,max
t ≤ hM

t ≤ hM,max
t and −gM,max

t ≤ gMt ≤ gM,max
t .

Thus, in our considered system model shown in Section-II, it
can avoid involving conic constraints. Moreover, it should be
pointed out that the proposed algorithm can be expanded and
used to solve general optimization problems with the common
form shown in (30-32). Therein, g(xij) can be chosen as conic
constraint or any other kinds of inequality constraints as long
as Ωij is a closed convex set. Note that the physical limits of
power, heat or gas transactions can be modeled and accounted
for with some of the inequality constraints. In this case, we
need to model the corresponding cone when calculating the
differentiated projection.

Next, the following Theorem 1 is developed to show that the
proposed algorithm (33-36) with triggering mechanism (37)
can asymptotically converge to the Karush-Kuhn-Tucker (KK-
T) point of problem (30-32). Namely, each participant and MN
agent can locally obtain its optimal operation by implementing
the proposed algorithm. Thus, the studied double-mode EMP
can be solved.

Theorem 1: Suppose that the communication graph G is
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connected. We choose ϑ1,ij > 0, 0 < ϑ2,ij < 1, ϑ3,ij =
1

2∅ij
+ 5|Nij | + 4£4|Nij |, ϑ4,ij = 5£4|Nij | + 4|Nij |,

ϑ5,ij >
1−ϑ2,ij

ϑ1,ij
, where 0 < λ2

3λ2−4£3
< £4 < 3λ2

λ2+4£3
,

0 < £3 < min{ 1
2λ2

,

√
λ2
2∅2

ij+48∅ijλ2−∅ijλ2

8∅ij
} and ∅ij is the

strongly convex coefficient obtained from (38) in Appendix B.
Then, given the first triggering time t1ij = t0 and Qij(t0) >
0, the implementation of algorithm (33-36) with triggering
mechanism (37) is asymptotically convergent. Meanwhile, the
equilibrium point of dynamics (33-35) satisfies the optimality
(KKT) conditions for problem (30-32).
The proof of Theorem 1 is presented in Appendix C.

On the basis of Theorem 1, we also provide the theoretical
analysis for the lower bound between two adjacent triggering
time, i.e., tk+1

ij − tkij . The theoretical analysis is built upon
the condition of guaranteed global optimality. The theoretical
result is presented in Appendix D.
The proposed algorithm possesses better robustness property

against the change of the system model parameters and algo-
rithm parameters. On one hand, we only let Qij(t0) > 0 in
the proposed algorithm. It is also proved that Qij > 0 after t0
(seen from (62) in Appendix C). More importantly, xij , yij and
zij are free of initialization. Thus, when some system model
parameters change (e.g., the change of W (xij) and dij), each
participant only needs to independently adjust local data and
projects its local generation or consumption onto its feasible
region, and then to reach a new equilibrium. In this process, the
execution of the algorithm is continuous, and we do not need
to stop the dynamics, reset the initial value, and then re-run the
dynamics. This implies that the proposed algorithm responds
automatically to the changes in system model parameters and
converges to new equilibrium with better robustness as well
as adaptation properties. On the other hand, it can be seen
from the results in Theorem 1 that the proposed algorithm can
converge to the global optimal solutions if parameters ϑ1,ij ,
ϑ2,ij , ϑ3,ij , ϑ4,ij and ϑ5,ij meet the designed requirements.
This implies that the proposed algorithm can be robust against
the bounded perturbations in regard to ϑ1,ij , ϑ2,ij , ϑ3,ij , ϑ4,ij

and ϑ5,ij if they are within the limits as shown in Theorem 1.

C. Benefits of Distributed Computation Implementation

The major differences in computational implementation be-
tween Newton-based centralized methods (e.g, [8], [9]) and the
proposed Newton-based distributed method are summarized
as follows. For centralized method, all the computation tasks
are implemented in a centralized controller. The centralized
controller needs to collect all the information (including the
objective functions and constraints) of all participants and
formulate the global optimization problem. In general, the
individual participant is unwilling to reveal its private infor-
mation to external centralized controller. Thus, the central-
ized computation suffers from weakened privacy. Next, the
centralized controller computes the (approximated) Hessian
matrix of the whole system. Then, the centralized controller
determines the feasible search direction and step size for all
primal and dual variables. It is worth noting that the centralized
controller suffers from a huge computing burden as the system

Fig. 1. Test system with five EBs and one MN agent.

scale expanses. In addition, if the centralized controller is
in fault, the optimal calculation results cannot be obtained.
Different from the centralized computation scheme, we aim at
disaggregating the global computation problem and letting the
individual participant and the MN agent solve it locally. Each
of them only needs to be equipped with a small programmable
processor. As discussed earlier, each participant or MN agent
only needs to exchange the information of ŷij and ẑij with
its neighbors. And the updating of xij , yij , zij and Qij are
implemented via local calculation. It results in better privacy.
More importantly, we can avoid making all heavy computa-
tional tasks be executed in the powerful centralized controller.
The computational process can be implemented in individual
participant or MN agent, each of which performs a local
optimization. Meanwhile, a very small amount of computation
is required for the distributed and small processor, resulting
in reduced computational burden. Moreover, the failure of the
individual processor only affects itself. The rest of participants
can still calculate the new optimal operation as long as the
graph connectivity is maintained. Consequently, the system
possesses better robustness against single-node failure by using
the distributed calculation. Meanwhile, it also provides better
flexibility and scalability for integration of distributed energy
resources.

IV. SIMULATION RESULTS

The performance of the proposed distributed Newton-
Raphson algorithm is tested on a MES system with five EBs
and one MN agent, whose configuration and communication
structures are shown in Fig. 1. Each EB is equipped with
its own energy (i.e., electricity, heat, and gas) generation
devices and energy loads (including schedulable energy loads

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSG.2020.3005179

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON SMART GRID, VOL. XXX, NO. XXX, XXX 2019 9

(a) (b) (c)

(d) (e) (f)
Fig. 3. Energy prices and energy generations/demands in case study A: (a) power price, (b) heat price, (c) gas price, (d) power generation/demand, (e) heat
generation/demand, (f) gas generation/demand.
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Fig. 2. Energy mismatch in case study A: (a) distributed dynamic event-
triggered Newton-Raphson algorithm, (b) gradient-based method.

and must-run energy loads). The MN agent serves as the
interface between the EBs and the main networks. The system
is operated in network-connected mode if the MN agent takes
part in the EMP; otherwise, it is operated in islanded mode.
EBs are connected with each other via the interconnected lines,
where the green, red and yellow solid lines represent the elec-
tricity, heat and gas lines, respectively. Moreover, the point-
to-point communication network topology is adopted, which
is also exhibited in Fig. 1 via dashed lines. Each participant
only exchanges information with its neighbors. It is not very
difficult to verify that the communication graph is connected,
which meets the assumption in Theorem 1. The point-to-point
communication is also a typical communication structure,
which is much simpler than mesh network. We can employ
either the wired or wireless communication technologies to
achieve point-to-point communication in the real-world. Mean-

while, multiple communication protocols are also available,
such as the Ethernet TCP/IP, ZigBee over IEEE 802.15.4 and
Bluetooth over IEEE 802.15.1, etc. To simplify notation, we
use “N.ij” as the index for the participant or MN agent, each
of which is seen as a node. Therein, “N.” is the abbreviation
of number, {ij|i = 1, · · · , n; j = 1, · · · , ℘i} represents jth
participant of ith EB, and {ij|i = 0; j = 1} represents the
MN agent. For example, the third participant, i.e., the FG in
EB1 is numbered as N.13. The simulation test platform is
built in the MATLAB environment. We coded the proposed
algorithm for each participant and MN agent by programing
individual M-function with ode45 solver. The algorithm is
implemented on a computer with Intel Xeon E-2186M (Six
Core Xeon 2.90GHz, 4.80GHz Turbo, 12MB 45W) and 64
GB memory. The parameters of cost and utility functions and
constraints of each participant within each EB are obtained
from [31]. The bases for the per-unit calculation are as follows:
1 p.u.=1MW for power or heat, 1 p.u.=84SCM/h for gas, and
1 p.u.=1$/MWh for price.

A. Convergence Analysis and Comparison

In the case study, the system is running in islanded
mode. We focus on showing convergence of the proposed
algorithm toward optimality. We also show its better
performance in terms of faster convergence speed and
less communication times by comparing with the most
recent gradient-based method proposed in [34]. Without
loss of generality, the must-run power, heat and gas loads
for EB1 to EB5 are set as [150(p.u.), 124(p.u.), 50(p.u.)],
[105(p.u.), 150(p.u.), 60(p.u.)], [85(p.u.), 135(p.u.), 80(p.u.)],
[100(p.u.), 90(p.u.), 50(p.u.)], [50(p.u.), 140(p.u.), 0(p.u.)],
respectively. By implementing the proposed algorithm, the
trajectories of global energy supply-demand mismatches, dual
variables (i.e., energy market clearing prices), and energy
generation/demand of each participant are depicted in Fig. 2.
(a), Figs. 3. (a)-(c), and Figs. 3. (d)-(f), respectively. It can be
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TABLE II
COMMUNICATION TIMES

CE -1 -2 -3 -4 -5

Proposed algorithm 2710 3405 4105 4830 5870
Gradient-based method 8286 10696 12904 15212 17530

seen that the global energy mismatches gradually converge to
zeros, which implies that the global energy supply-demand
balances have been satisfied. As shown in Fig. 3(a), the
estimated power prices for the corresponding participants
converge to a common value which is the final power market
clearing price. Since there are multiple curves in Fig. 3(a), it
is hard to identify the trajectories of different participants. To
clearly exhibit the convergence process, we plot the zoomed-
in trajectories from 2.5s to 5s. Furthermore, the legend for the
Fig. 3(d) is the same as that Fig. 3(a). It can be observed from
Fig. 3(d) that the corresponding power generation/demand of
each participant can finally converge to steady value satisfying
the local operation constraints. Similarly, the estimated heat
and gas prices for the corresponding participants converge
to the final heat and gas market clearing prices as shown in
Fig. 3(b) and Fig. 3(c), respectively. Meanwhile, the heat and
gas generation/demand of each participant also converges to
the feasible steady value. Therein, Fig. 3(b) and Fig. 3(c) use
the same legends with Fig. 3(e) and Fig. 3(f), respectively.
Besides, as a demonstration, Fig. 4 shows the event-triggered
instants of the participants in EB 1 (i.e., the participants
from number N.11 to N.18). Therein, the marker “+” is
used to represent the instant that an event is triggered by
the corresponding participant. It can be observed from Fig.
4 that the communication pattern of each participant follows
asynchronous and discrete-time fashion. The aforementioned
results illustrate the behavior ensured by Theorem 1. Thus,
the correctness and effectiveness of the proposed algorithm
are verified.
Next, with the same topology and load conditions, the

gradient-based method is employed to solve the problems
(30-32). The results of the energy mismatches are depicted
in Fig. 2(b). Comparing Fig. 2(a) with Fig. 2(b), it can
be observed that the proposed Newton-Raphson algorithm
converges within 11s, whereas it takes 50s for gradient-based
method to converge. This implies that the proposed Newton-
Raphson algorithm can greatly accelerate the convergence rate.
The reason is that the Newton method can take advantages of
both second-order and first-order information rather than first-
order information (or gradient information) only. Furthermore,
to clearly show the better performance in terms of the less
communication times, we define the computation error as
CE = 1

N ln(
∑n

i=1

∑℘i

j=1 |xij − x∗
ij |). The total numbers of

communication times of all participants for different computa-
tion accuracy by using the proposed algorithm and the method
in [34] are listed in Table II. It can be seen that the proposed
algorithm needs less communication times than the method
in [34] to reach the same CE. This is mainly because that
we employ dynamic triggering mechanism which significantly
improves the inter-event time.
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Fig. 4. Event-triggered instants.

B. Effectiveness Analysis in Mesh Communication Network

In this case study, we aim at showing the effectiveness of
the proposed algorithm in mesh communication architecture
instead of the point-to-point communication architecture in
Fig. 1. To simplify communication, only one data concentrator
is employed in each EB. The data concentrator collects the
information of all the participants within the corresponding EB
and achieves the information interaction with other data con-
centrators. The five data concentrators are interconnected with
each other to form a typical mesh network. In this structure,
the privacy of each participant is compromised. The system
parameters and initial values are the same as the first case
study. The trajectories of the energy generations/demands are
shown in Fig. 5. It can be seen that the proposed algorithm is
convergent. In addition, the final energy generations/demands
of each participant under point-to-point communication struc-
ture and the mesh communication architecture are both listed
in Table III. It can be observed that the final convergence
values are almost the same. The results show that the proposed
algorithm can work well in mesh communication architecture.
In fact, as shown in Theorem 1, this paper only requires the
communication graph to be connected. Thus, the proposed
algorithm can be implemented in any kind of communication
network architectures such as the typical mesh network, tree
network as well as point-to-point network.

C. Mode Switching Test

In this case study, the system will be switched to different
modes to verify the effectiveness of the proposed energy man-
agement model. All the topology, load and initial conditions
are the same as those in the first case study. Then, at t1 = 25s,
the system is switched from islanded mode to network-
connected mode. We set pM,max

t , hM,max
t and gM,max

t as
the 50% of the total capabilities of power, heat and gas
generations of all participants, respectively. For the MN agent,
it buys power, heat and gas at prices 31.5(p.u.) ∼ 35(p.u.),
22.5(p.u.) ∼ 25(p.u.) and 12.6(p.u.) ∼ 14(p.u.), respectively.
Meanwhile, it sells power, heat and gas at prices 35(p.u.) ∼
38.5(p.u.), 25(p.u.) ∼ 27.5(p.u.) and 14(p.u.) ∼ 15.4(p.u.), re-
spectively. According to Appendix A, we have aMp = 0.0063,
aMh = 0.0047 and aMg = 0.0019. The trajectories of global
energy supply-demand mismatches, energy market clearing
prices, and energy generations/demands are shown in Fig. 6,
Figs. 7(a)-(c), and Figs. 7(d)-(f), respectively. It can be seen
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TABLE III
RESULTS OF ENERGY GENERATIONS AND CONSUMPTIONS

Node Point-to-point architecture Mesh architecture
Power Heat Gas Power Heat Gas

EB1

N.11 48.7267 0.0000 0.0000 48.7267 0.0000 0.0000
N.12 99.9955 0.0000 0.0000 99.9955 0.0000 0.0000
N.13 81.9282 0.0000 0.0000 81.9282 0.0000 0.0000
N.14 205.9113 175.0625 0.0000 205.9113 175.0625 0.0000
N.15 150.9604 0.0000 151.1226 150.9603 0.0000 151.1224
N.16 0.0000 0.0000 697.1799 0.0000 0.0000 697.1795
N.17 0.0000 140.4004 0.0000 0.0000 140.4004 0.0000
N.18 0.0000 93.8493 0.0000 0.0000 93.8494 0.0000

EB2

N.21 79.8126 0.0000 0.0000 79.8126 0.0000 0.0000
N.22 40.0000 0.0000 0.0000 40.0000 0.0000 0.0000
N.23 97.5582 124.7394 0.0000 97.5582 124.7394 0.0000
N.24 368.7100 234.9923 640.0000 368.7102 234.9922 640.0000
N.25 0.0000 149.9000 0.0000 0.0000 149.9000 0.0000
N.26 0.0000 94.9339 0.0000 0.0000 94.9338 0.0000
N.27 0.0000 -50.9574 0.0000 0.0000 -50.9574 0.0000

EB3

N.31 43.0000 0.0000 0.0000 43.0000 0.0000 0.0000
N.32 86.3168 0.0000 0.0000 86.3168 0.0000 0.0000
N.33 139.1637 145.6757 0.0000 139.1637 145.6757 0.0000
N.34 247.9712 214.2603 100.0000 247.9711 214.2604 100.0000
N.35 0.0000 -66.9451 0.0000 0.0000 -66.9451 0.0000
N.36 0.0000 115.3434 0.0000 0.0000 115.3434 0.0000

EB4

N.41 57.3022 0.0000 0.0000 57.3022 0.0000 0.0000
N.42 63.8648 0.0000 0.0000 63.8648 0.0000 0.0000
N.43 74.8884 0.0000 0.0000 74.8884 0.0000 0.0000
N.44 137.9981 168.0150 0.0000 137.9981 168.0150 0.0000
N.45 34.6088 169.6300 77.3928 34.6087 169.6301 77.3927
N.46 0.0000 0.0000 731.8677 0.0000 0.0000 731.8679

EB5

N.51 59.7181 0.0000 0.0000 59.7181 0.0000 0.0000
N.52 107.4697 155.1540 0.0000 107.4697 155.1540 0.0000
N.53 131.4039 104.8088 220.5323 131.4040 104.8087 220.5323
N.54 0.0000 117.5203 0.0000 0.0000 117.5203 0.0000

(a) (b) (c)

Fig. 5. Effectiveness test in mesh communication architecture: (a) power generation/demand, (b) heat generation/demand, (c) gas generation/demand.

that each participant can automatically respond to the changes
of mode switching and converge to new optimal states. The
final convergence values of energy market clearing prices
for power, heat and gas are 33.4060(p.u.), 24.0344(p.u.) and
14.5382(p.u.), respectively. The final values of pMt , hM

t and
gMt are 143.3578(p.u.), 109.1287(p.u.), and −122.6236(p.u.),
respectively. This implies that the main networks will buy
power and heat from the EBs and sell gas to the EBs. In
addition, it can be seen that the power (or heat) market
clearing price is cheaper than the benchmark power (or heat)
price. Meanwhile, the gas market clearing price is more
expensive than the benchmark gas price. The results show the
effectiveness of the designed model. Further, at t2 = 50s, the
system switches to islanded mode. The simulation results are
also shown in Figs. 6 and 7. It can be observed that each

participant again converges to the new solutions responding
to the new mode switching. Moreover, the final solutions are
the same as those prior to the islanded mode. The results again
exhibit the effectiveness of the proposed model and better
adaptive performance of the proposed algorithm.

D. Fluctuations of Renewable Energy Sources

In this case study, we analyze the effectiveness of the
proposed algorithm considering large output fluctuations of
RGs and RHDs in islanded mode. The system structure and
parameters are the same as those in the first case study. We
let the forecasting output of each RG and RHD randomly
change to the 50%-150% of the current value at t1 = 25s,
and then change back to the original one at t2 = 50s. By
implementing the proposed algorithm, the trajectory of the
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Energy prices and energy generations/demands in case study C: (a) power price, (b) heat price, (c) gas price, (d) power generation/demand, (e) heat
generation/demand, (f) gas generation/demand.

(a) (b) (c)

Fig. 8. Effectiveness test for fluctuations of renewable energy generations: (a) power generation/demand, (b) heat generation/demand, (c) gas genera-
tion/demand.
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Fig. 6. Energy mismatch in case study C

energy generation/demand of each participant is shown in Fig.
8. At t1, it can be observed that each participant is able
to automatically adjust its local output/demand in response
to the fluctuations of renewable energy generations. After
a few seconds, each participant finally converges to a new
equilibrium point. Further, at t2, each participant again adjusts
its local operation and gradually converges to a new solution
responding to the new changes of RGs and RHDs. In addition,
it can be seen that the final convergence solutions of all
participants after t2 are the same as the original ones before t1.
The results show that the proposed algorithm possesses better
adaptability and flexibility to accomodate to the fluctuations

of renewable energy generations.

E. Robustness Analysis under Model Change and Perturba-
tions

In this case study, we focus on verifying the better robust-
ness of the proposed algorithm under the change of system
model and parameter perturbations by comparing with the
most recently proposed method in [36]. From the results in
the fourth case study, it has been verified that the proposed
algorithm can better accomodate to renewable energy fluc-
tuations. In this section, we will mianly analyze the model
change caused by device fault and bounded perturbations for
algorithm parameters.

Firstly, on the basis of the first case study, the CHP of
EB2 and the SEL of EB5 are in fault and removed from
the system at t1 (after system convergence). It can be seen
from Fig. 9 that each participant can automatically respond
to the fault and converge to new states. More importantly,
as shown in Fig. 10(a), the global power, heat and gas
supply-demand mismatches gradually converge to zeros. With
the same conditions, the consensus-based distributed method
proposed in [36] is used to solve the same problem. We do
not reset the initial values after the sudden model change.
The trajectories of global energy supply-demand mismatches
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Fig. 9. Energy generation/demand after model change: (a) power generation/demand, (b) heat generation/demand, (c) gas generation/demand.

(a)

(b)

1t

1t

Fig. 10. Energy mismatch after model change: (a) distributed dynamic event-
triggered Newton-Raphson algorithm, (b) the method proposed in [36] with
setting 0.05s for each iteration.

are shown in Fig. 10(b). It can be observed that the global
energy supply-demand mismatches cannot go back to zeros,
which implies that the results are not feasible. This is because
the method proposed in [36] requires strict initial conditions.
Once the system model is changed, it is necessary to reset the
global initial values. Otherwise, the corresponding algorithm
may fail to provide a feasible solution. It results in weakened
robustness. Compared with the method in [36], our proposed
algorithm is free of initialization. The proposed algorithm
can adaptively respond to the change without resetting initial
values and re-running system dynamics. Thus, the proposed
algorithm possesses strong robustness for the change of the
system model.
Next, for each participant, we randomly added bounded

perturbations for the parameters shown in Theorem 1 at t2 =
2.5s. The topology and load conditions are the same as those
in the first case study. The trajectories of energy generation
or demand are shown in Fig. 11. It can be seen that each
participant can converge to the corresponding optimal solution.
The results verify that the proposed algorithm also possesses
strong robustness against bounded parameter perturbations.

V. CONCLUSION

In this paper, a double-mode energy management model is
established to achieve the adaptive switching between islanded

and network-connected modes. It is finally formulated as a dis-
tributed optimization problem by transforming some decision
variables. To solve this problem, a distributed dynamic event-
triggered Newton-Raphson algorithm has been proposed. The
proposed algorithm possesses some satisfactory characteristics
such as faster convergence speed, asynchronous implementa-
tion, no special initialization condition and reduced commu-
nication. By using Lyapunov technique, the convergence and
optimality of the proposed algorithm have been proved. In the
future, we would like to take more physical limits of power-
heat-gas networks into consideration, explore effective relaxed
method to expand the application of our proposed algorithm,
and study the coordination control of electric, heat and gas
energy systems.

APPENDIX

A. Choice of Parameters

As seen in Fig. A1, the main grid buy at price from bγp,min
t

to bγp
t and sell at price from bγp

t to bγp,max
t , where bγp,min

t

and bγp,max
t are the minimum buying price and maximum sell-

ing price at time t. The lower the purchasing price, the more
power the main grid would like to buy, and vice versa. Ac-
cording to the linear relationship between pMt and the market
clearing price, we can set aMp = (bγp,max

t −bγp,min
t )/pM,max

t .
The similar method can be applied to aMh and aMg .

B. Preliminary Knowledge

Based on the characteristics of the considered EMP in
MES, some important properties are introduced in this section.
Firstly, it should be noted that, for each participant or MN
agent, the term of local objective function is of exponential-
form, quadratic-form or cubic-form. Thus, it is not very
difficult to verify that W (xij) is strongly convex within closed
convex set Ωij for all i = 0, · · · , n, j = 1, · · · , ℘i. Therefore,
there exists positive constants ∅ij and ϵij such that for any
xij , x̆ij ∈ Ωij , the following inequalities are satisfied, i.e.,

(xij − x̆ij)
T (∇W (xij)−∇W (x̆ij))

≥ ∅ij ||xij − x̆ij ||2, (38)

∇2W (xij) ≥ ϵijI3, (39)

where ∇ represents differentiation operator. In addition, we let
∇2W (xij) be as an approximation of Hessian for CHP unit
by employing Jacobi approximation. The purpose is to reduce
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Fig. 11. Bounded parameter perturbations: (a) power generation/demand, (b) heat generation/demand, (c) gas generation/demand.
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Fig. A1. Power price.

underlying computation accordingly. We define ∇2W (xij)
−1

as the inverse of ∇2W (xij).
We use 1d (resp. 0d) to denote the d-dimensional column

vector with all elements being 1 (resp. 0). Next, for each par-
ticipant or MN agent, the normal cone of local Ωij is defined
as Λ(xij) = {o|oT (x̆ij − xij) ≤ 0, ∀x̆ij ∈ Ωij}. We further
let Λ̃(xij) = {o|oT (x̆ij − xij) ≤ 0, ||o||2 = 1, ∀x̆ij ∈ Ωij} if
xij ∈ Ωbo

ij , and Λ̃(xij) = 03 if xij ∈ Ωin
ij . Therein, Ω

bo
ij and

Ωin
ij denote the boundary and inside of Ωij , respectively. Since

Ωij is closed convex set, the tangent cone of Ωij at xij can be
defined as ΥΩij (xij) = {x̆|x̆T d ≤ 0, ∀d ∈ Λ(xij)}. Then, for
xij ∈ Ωij , the projection and differentiated projection operator
are defined as PΩij (xij) = arg minx̆ij ||xij − x̆ij || and
ΓΩij (xij , ø) = limλ̄→0

(
PΩij (xij + λ̄ø)−xij

)
/λ̄, respectively.

Lemma 1 [40]: 1) ΓΩij
(xij , ø) = ø if xij ∈ Ωin

ij (or xij ∈
Ωbo

ij and maxρij∈Λ̃(xij)
øT ρij ≤ 0); 2) ΓΩij (xij , ø) = ø −

øT ρ∗ijρ
∗
ij if xij ∈ Ωbo

ij and maxρij∈Λ̃(xij)
øT ρij ≥ 0, where

ρ∗ij = arg maxρij∈Λ̃(xij)
øT ρij .

Lemma 1 implies that ΓΩij (xij , ø) is equivalent to
PΥΩij

(xij)(ø).

C. Proof of Theorem 1

Firstly, the dynamics (33-35) shown in Algorithm 1 can be
rewritten in state space as

Ẋ =ΓΩ

(
∇2W (X)−1X,∇2W (X)−1

(
−∇W (X) +BŶ

))
,

(40)

Ẏ =− (L⊗ I3)Ŷ − (L⊗ I3)Ẑ +D −BX, (41)

Ż =(L⊗ I3)Ŷ , (42)

where ⊗ denotes Kronecker product; Ω =
∪
{Ωij |i =

ℵ, · · · , n; j = 1, · · · , ℘i} represents the Cartesian product of

the sets {Ωij}; X is the column vector made from concatena-
tion of xij’s. Similarly, Y , Z, ∇W (X) and D are the column
stack vector forms of yij , zij , ∇W (xij) and dij , respectively;
∇2W (X)−1 = diag{∇2W (xij)

−1} and B = diag{Bij}.
The symbol “ ∗ ” is used to represent equilibrium point. It

follows that

03N =ΓΩ

(
∇2W (X∗)−1X∗,∇2W (X∗)−1

(
−∇W (X∗)

+BY ∗)), (43)

03N =− (L⊗ I3)Y
∗ − (L⊗ I3)Z

∗ +D −BX∗, (44)
03N =(L⊗ I3)Y

∗. (45)

We consider that the implementation of the proposed algo-
rithm is in a connected graph. Thus, it can be derived from
(44) and (45) that

(1TN ⊗ I3)BX∗ =(1TN ⊗ I3)D (46)
Y ∗ =1N ⊗ y∗. (47)

In our considered model, W (xij) is a diagonal and positive
definite matrix. According to the definition of normal cone,
we have Λ(∇2W (xij)

−1xij) = ∇2W (xij)
−1Λ(xij). It can

be derived from Lemma 1 and (43) that

03 ∈ ∇W (x∗
ij)−Bijy

∗
ij + Λ(x∗

ij). (48)

Equations (46-48) are the optimality conditions of the
studied problem by Theorem 3.34 in [41]. This implies that
the equilibrium point is the optimal point.

To study the convergence, we transfer the optimal point to
the origin and make use of some change of variables

X =X −X∗ = Θµ; µ = ΘTX ; (49)

Y =Y − Y ∗ = Θν; ν = ΘTY; e = ν̂ − ν; (50)

Z =Z − Z∗ = Θω; ω = ΘTZ; f = ω̂ − ω; (51)

where X∗, Y ∗ and Z∗ are the optimal point of X , Y and Z
respectively. ΘT = [r,R]T ⊗ I3, r = 1√

N
1N , rTR = 0TN ,

RRT = IN − 1
n1N1TN and RTR = IN−1. The new variables

are partitioned as µ = col(µ1, µ2:N ), ν = col(ν1, ν2:N ), ω =
col(ω1, ω2:N ), e = col(e1, e2:N ) and f = col(f1, f2:N ).

It can be derived from Lemma 1 that

ΓΩij

(
∇2W (xij)

−1xij ,∇2W (xij)
−1

(
−∇W (xij) +BT

ij ŷij
))

=∇2W (xij)
−1

(
−∇W (xij) +BT

ij ŷij

− ζij(xij)ρij(xij)
)
, (52)
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where ρij(xij) ∈ Λ̃(xij), ζij(xij) ≥ 0. Thus, at the optimal
point, one has

−∇W (x∗
ij) +BT y∗ij = −ζij(x

∗
ij)ρij(x

∗
ij). (53)

We denote ΞΩ(X) and ΞΩ(X
∗) as the column stack vector

forms of ζij(xij)ρij(xij) and ζij(x
∗
ij)ρij(x

∗
ij), respectively.

Then, in the new variables, dynamics (40-42) read as[
µ̇1

µ̇2:N

]
=ΘT∇2W (X +X∗)−1BTΘ(ν + e)

−ΘT

(
∇2W (X +X∗)−1

(
∇W (X +X∗)

−∇W (X∗) + ΞΩ(X)− ΞΩ(X
∗)
)
, (54)[

ν̇1
ν̇2:N

]
=−

[
03(

(RTLR)⊗ I3
)
(ν2:N + e2:N + ω2:N + f2:N )

]
−ΘTBΘµ, (55)[

ω̇1

ω̇2:N

]
=

[
03(

(RTLR)⊗ I3
)
(ν2:N + e2:N )

]
. (56)

In this paper, we use Jacobi as an approximation of Hessian
for CHP units. For simplification, we define Ξ as the set of
CHP units and {V−Ξ} as the set without CHP units. Note that
each CHP unit has a convex cost function in quadratic-form.
Hence, the corresponding Jacobi matrix is a positive definite
matrix with all elements being constants. Recalling (39), it
follows that

V a
ij =

1

2
(xij − x∗

ij)
T∇2W (xij)(xij − x∗

ij)

≥1

2
ϵij ||(xij − x∗

ij)||2, ∀ij ∈ Ξ. (57)

Moreover, in light of (38), we have the following

V b
ij =W (x∗

ij)−W (xij)− (x∗
ij − xij)

T∇W (xij)

≥1

2
∅ij ||xij − x∗

ij ||2, ∀ij ∈ {V − Ξ}. (58)

Based on the change of variables shown in (49), one has

Vone =
∑
ij∈Ξ

V a
ij +

∑
ij∈{V−Ξ}

V b
ij ≥ ∅ϵ||Θµ||2. (59)

where ∅ϵ = min
{

1
2∅ij |ij ∈ Ξ, 1

2ϵij |ij ∈ {V − Ξ}
}
. In

addition, it should be pointed out that Vone is also a function
related to the new variable µ.
Next, we construct the following candidate Lyapunov func-

tion,

V =£1Vone +
1

2
£1||ν||2 +

1

2
(£1 +£2)||ω2:N ||2

+
1

2
£2||ν2:N + ω2:N ||2 +£1

n∑
i=0

℘i∑
j=1

Qij , (60)

where £1 and £2 are positive constants.
According to (36) and (37), we have

Q̇ij ≥ −ϑ1,ijQij −
ϑ2,ij

ϑ5,ij
Qij . (61)

It follows that

Qij(t) ≥ Qij(t0)e
−(ϑ1,ij+

ϑ2,ij
ϑ5,ij

)t
> 0, ∀t > t0. (62)

The Lie derivative of V along (54-56) and (36) is

V̇ =£1µ
TΘT∇2W (Θµ+X∗)Θµ̇

+£1ν
T ν̇ + (£1 +£2)ω

T
2:N ω̇2:N

+£2(ν2:N + ω2:N )T (ν̇2:N + ω̇2:N ) +£1

n∑
i=0

℘i∑
j=1

Q̇ij

=−£1X T
(
∇W (X)−∇W (X∗)− ΞΩ(X

∗) + ΞΩ(X)
)

+£1µ
TΘTBTΘe

− 1

2
£1ν

T
2:N

(
(RTLR)⊗ I3

)
ν2:N

−£1ν
T
2:N

(
(RTLR)⊗ I3

)
(
1

2
ν2:N + e2:N + f2:N )

+£1ω
T
2:N

(
(RTLR)⊗ I3

)
e2:N

− 1

2
£2ω

T
2:N

(
(RTLR)⊗ I3

)
ω2:N

−£2ω
T
2:N

(
(RTLR)⊗ I3

)
(
1

2
ω2:N − e2:N + f2:N )

−£2ν
T
2:N

(
(RTLR)⊗ I3

)
f2:N

−£2(ν
T
2:N + ωT

2:N )(RT ⊗ I3)B(R⊗ I3)µ2:N

+£1

n∑
i=0

℘i∑
j=1

Q̇ij . (63)

Since Bij = I3 or −I3 and RTR = IN−1, we have

£2(ν
T
2:N + ωT

2:N )(RT ⊗ I3)B(R⊗ I3)µ2:N ≤
£2£3

2
(||ν2:N ||2 + ||ω2:N ||2) + £2

2£3
X TX , (64)

µTΘTBTΘe ≤ 1

2
X T ∅X +

n∑
i=0

℘i∑
j=1

1

2∅ij
||(ŷij − yij)||, (65)

where ∅ = diag{∅ij}.
Based on the definition of normal cone, we have

X TΞΩ(X) =−
n∑

i=0

℘i∑
j=1

ζij(xij)(x
∗
ij

− xij)
T ρij(xij) ≥ 0, (66)

−X TΞΩ(X
∗) =−

n∑
i=0

℘i∑
j=1

ζij(x
∗
ij)(xij

− x∗
ij)

T ρij(x
∗
ij) ≥ 0. (67)

In addition, we also have the following facts

−νT2:N
(
(RTLR)⊗ I3

)
(
1

2
ν2:N + e2:N )

=
1

2
(Ŷ − Y )T (L⊗ I3)(Ŷ − Y )

− 1

2
Ŷ T (L⊗ I3)Ŷ , (68)

−ωT
2:N

(
(RTLR)⊗ I3

)
(
1

2
ω2:N + f2:N )

=
1

2
(Ẑ − Z)T (L⊗ I3)(Ẑ − Z)

− 1

2
(Ẑ − Z∗)T (L⊗ I3)(Ẑ − Z∗), (69)
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(Ŷ−Y )T (L⊗ I3)(Ŷ − Y )

≤2(Ŷ − Y )T (D ⊗ I3)(Ŷ − Y )

=
n∑

i=0

℘i∑
j=1

2|Nij | · ||ŷij − yij ||2, (70)

(Ẑ−Z)T (L⊗ I3)(Ẑ − Z)

≤
n∑

i=0

℘i∑
j=1

2|Nij | · ||ẑij − zij ||2, (71)

νT2:N
(
(RTLR)⊗ I3

)
f2:N

≤1

8
νT2:N

(
(RTLR)⊗ I3

)
ν2:N

+ 2(Ẑ − Z)T
(
(RTLR)⊗ I3

)
(Ẑ − Z), (72)

ωT
2:N

(
(RTLR)⊗ I3

)
e2:N

≤1

8
ωT
2:N

(
(RTLR)⊗ I3

)
ω2:N

+ 2(Ŷ − Y )T
(
(RTLR)⊗ I3

)
(Ŷ − Y ), (73)

νT2:N
(
(RTLR)⊗ I3

)
ν2:N ≥ λ2||ν2:N ||2, (74)

ωT
2:N

(
(RTLR)⊗ I3

)
ω2:N ≥ λ2||ω2:N ||2. (75)

We let £4 = £2

£1
. Based on the selected coefficients in

Theorem 1 and the facts (38, 66-75), we have

V̇ ≤− 1

2
£1X T ∅X +

£2

2£3
X TX

− £2

2
(Ẑ − Z∗)T (L⊗ I3)(Ẑ − Z∗)

−
(
(
3

8
£1 −

1

8
£2)λ2 −

£2£3

2

)
||ν2:N ||2

−
(
(
3

8
£2 −

1

8
£1)λ2 −

£2£3

2

)
||ω2:N ||2

+£1

n∑
i=0

℘i∑
j=1

( 1

2∅ij
+ 5|Nij |+ 4

£2

£1
|Nij |

)
||(ŷij − yij)||2

+£1

n∑
i=0

℘i∑
j=1

(5
£2

£1
|Nij |+ 4|Nij |)||(ẑij − zij)||2

−£1

n∑
i=0

℘i∑
j=1

∑
ij∈Nij

1

4
aij,ij ||ŷij − ŷij ||

2

−£1

n∑
i=0

℘i∑
j=1

ϑ1,ijQij (76)

−£1

n∑
i=0

℘i∑
j=1

ϑ2,ij

(
ϑ3,ij ||(ŷij − yij)||2

+ ϑ4,ij ||(ẑij − zij)||2 −
1

4

∑
ij∈Nij

aij,ij ||ŷij − ŷij ||
2
)

≤− 1

2
X T diag{£1∅ij −

£2

£3
}X

− £2

2
(Ẑ − Z∗)T (L⊗ I3)(Ẑ − Z∗)

−
(
(
3

8
£1 −

1

8
£2)λ2 −

£2£3

2

)
||ν2:N ||2

−
(
(
3

8
£2 −

1

8
£1)λ2 −

£2£3

2

)
||ω2:N ||2

−£1

n∑
i=0

℘i∑
j=1

(ϑ1,ij −
1− ϑ2,ij

ϑ5,ij
)Qij < 0. (77)

Based on the Lyapunov stability theory by Theorem 4.1 in
[42], it is concluded that dynamics (33-36) can converge to
the equilibrium point, i.e., optimal point. The proof is thus
completed.

D. Lower Bound of tk+1
ij − tkij

It can be driven from (34) that the right-hand derivative of
||(ŷij − yij)||, denoted as d+

dt ||(ŷij − yij)||, satisfies

d+

dt
||(ŷij − yij)|| ≤||

∑
ij∈Nij

aij,ij(ŷij − ŷij)||

+ ||
∑

ij∈Nij

aij,ij(ẑij − ẑij)||

+ ||dij −Bijxij || = £ij,y. (78)

Similarly, in light of (35), we have

d+

dt
||(ẑij − zij)|| ≤||

∑
ij∈Nij

aij,ij(ŷij − ŷij)|| = £ij,z. (79)

According to (78) and (79), one has

ϑ3,ij ||(ŷij − yij)||2 + ϑ4,ij ||(ẑij − zij)||2

≤(ϑ3,ij£
2
ij,y + ϑ4,ij£

2
ij,z)(t− tkij)

2. (80)

Note that
∑

ij∈Nij
aij,ij ||ŷij − ŷij ||2 ≥ 0 and (62) hold.

Recalling the triggering mechanism (37), when the next trig-
gering occurs, it follows that

ϑ5,ij(ϑ3,ij£
2
ij,y + ϑ4,ij£

2
ij,z)(t

k+1
ij − tkij)

2

≥Qij(t0)e
−(ϑ1,ij+

ϑ2,ij
ϑ5,ij

)tk+1
ij . (81)

Thus, the estimated lower bound of tk+1
ij − tkij can be

obtained form (81), that is√
Qij(t0)

ϑ5,ij(ϑ3,ij£2
ij,y + ϑ4,ij£2

ij,z)
e
− 1

2 (ϑ1,ij+
ϑ2,ij
ϑ5,ij

)tk+1
ij . (82)
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