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Abstract We present a moment tensor catalog of 106 earthquakes in southern Alaska, and we perform
a conceptually based uncertainty analysis for 21 of them. For each earthquake, we use both body waves
and surface waves to do a grid search over double couple moment tensors and source depths in order to
find the minimum of the misfit function. Our uncertainty parameter or, rather, our confidence parameter is
the average value of the curve 𝒫(V), where 𝒫(V) is the posterior probability as a function of the fractional
volume V of moment tensor space surrounding the minimum misfit moment tensor. As a supplemental
means for characterizing and visualizing uncertainties, we generate moment tensor samples of the posterior
probability. We perform a series of inversion tests to quantify the impact of certain decisions made within
moment tensor inversions and to make comparisons with existing catalogs. For example, using an L1 norm
in the misfit function provides more reliable solutions than an L2 norm, especially in cases when all available
waveforms are used. Using body waves in addition to surface waves, as well as using more stations, leads to
the most accurate moment tensor solutions.

1. Introduction

The seismic moment tensor, visualized as a beach ball, represents the radiation pattern for a point-source
earthquake and plays an important role within the field of seismology [e.g., Isacks et al., 1968]. Moment ten-
sors are used to interpret the style of faulting and deformation in active tectonic settings, they are used within
seismic wavefield simulations to estimate ground motions in a particular region, and they are used within
earthquake-based tomographic inversions that seek to improve seismic velocity models. Despite these fun-
damental purposes, there have been few insights into how to characterize the uncertainty of moment tensors
[Riedesel and Jordan, 1989; Valentine and Trampert, 2012; Käufl et al., 2014; Stähler and Sigloch, 2014]. In this
paper we apply a new approach for estimating uncertainties [Tape and Tape, 2016] to a set of 21 earthquakes
in southern Alaska (Figures 1 and 2). We also present moment tensor solutions for an additional 85 smaller
earthquakes to form a catalog of 106 events.

We could have chosen any set of recorded earthquakes for our uncertainty analysis, but southern Alaska pro-
vides several advantages. First, it is a region of active tectonics and high seismicity rates (Figure S1 in the
supporting information) with events occurring throughout the crust and within the slab down to depths of
200 km. Second, there is a good network of broadband seismic stations, especially during the time period of
interest. Third, there are two existing moment tensor catalogs using two different techniques (section 2.1); this
allows us to compare different inversion algorithms and to compare the various choices made within these
algorithms. Finally, we are interested in better understanding the tectonics of this region, and we are inter-
ested in using our moment tensors within a tomographic inversion using earthquakes, wavefield simulations,
and adjoint methods [e.g., Tape et al., 2009]. One of the most prominent tectonic features within our region of
interest (Figure 1) is the Cook Inlet fore-arc basin, one of the largest in the world. The basin poses challenges
when performing waveform fits between data and synthetics at the stations in and around the basin.

In our study we assume that each earthquake is a shear dislocation that can be modeled as a double couple
moment tensor. A double couple moment tensor is a 3×3 symmetric matrix whose eigenvalues are (𝜆, 0,−𝜆).
We are concerned with estimating the magnitude and orientation (strike, dip, and rake) of the moment ten-
sor. Alternative terms for double couple moment tensors are “fault-plane solution” or “focal mechanism.”
Our approach to moment tensor estimation can also be applied to “full” moment tensors, which contain
an additional two parameters. The full moment tensor representation allows for modeling oblique opening
across faults [e.g., Aki and Richards, 1980; Dufumier and Rivera, 1997; Tape and Tape, 2013].
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Figure 1. Broadband station coverage for the time period of this study, 15 August 2007 to 15 August 2009. The
permanent stations in the regional network are plotted green; the MOOS stations are plotted magenta. Stations within
500 km of each epicenter were used for computing the moment tensor solution. The Tertiary basement surface of Cook
Inlet basin is color coded for depth [Shellenbaum et al., 2010]. Labels: A = Anchorage, F = Fairbanks, PA = Pacific plate,
NA = North American plate, and YK = Yakutat block. See Figure S1 for the seismicity distribution in the region. See
Figure 2 for the moment tensor beach balls inside the study region (inner box).

Seismic moment tensors are routinely estimated using different approaches, which can be divided into two
broad categories on the basis of data used:

1. High-frequency body waves measurements, such as the polarity of (first-motion) P waves or the amplitude
ratios of S to P waves. These observations can be extracted readily from catalogs containing P and S arrival
times. Two examples of codes that estimate double couple moment tensors from these data are HASH
[Hardebeck and Shearer, 2002] and FPFIT [Reasenberg and Oppenheimer, 1985].

2. Filtered seismic waveforms. Other moment tensor inversions involve comparing filtered synthetic wave-
forms with filtered recorded waveforms. Typically, some portion of the full waveform is used (e.g., P wave or
surface wave). Examples of this approach are Global Centroid Moment Tensor (GCMT) [Ekström et al., 2012],
Time Domain Moment Tensor (TDMT) [Dreger et al., 1998; Dreger and Woods, 2002], cut-and-paste (CAP)
[Zhu and Helmberger, 1996], and W-phase [Duputel et al., 2012].

The method of Dreger et al. [1998] is the most widely used algorithm for regional moment tensor deter-
mination. This method (Time Domain Moment Tensor INVersion Code, TDMT_INVC), which uses relatively
long-period surface waves (10–50 s) has been implemented in Alaska [Ratchkovski and Hansen, 2002], western
Canada [Ristau et al., 2007], Southern California [Clinton et al., 2006], Japan [Fukuyama et al., 1998; Fukuyama
and Dreger, 2000], New Zealand [Ristau, 2008], Spain [Rueda and Mezcua, 2005], and Italy [Scognamiglio
et al., 2009], and probably elsewhere. The algorithm constrains moment tensors to be deviatoric. The Alaska
Earthquake Center (AEC) uses TDMT to produce their moment tensor catalog, including 21 analyzed in our
study. We use the notation MAEC to denote a moment tensor in the AEC moment tensor catalog derived
using TDMT.
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Figure 2. Seismotectonic setting of south central Alaska showing the 106 moment tensor solutions obtained in this
study. Our catalog contains all earthquakes in this region from 15 August 2007 to 15 August 2009 with Mw ≥ 3.5 and for
which an AEC first-motion solution was available. Inverted green triangles are the permanent stations in Alaska during
this time period, and magenta are the temporary stations deployed during the MOOS array [Christensen et al., 2008;
Li et al., 2013]. The heavy blue line marks the lateral extent of slab seismicity, and the red lines delineate the active faults
[Koehler et al., 2012].

An example of an algorithm that uses first-motion polarities to determine double couple moment tensors is
FPFIT [Reasenberg and Oppenheimer, 1985]. This algorithm uses weighted sum of first-motion polarity differ-
ences (between observed and predicted) to find the global minimum and local minima. The uncertainty in
each solution parameter is estimated using the 90% confidence interval for the normalized misfit function
(0 to 1). The AEC routinely uses FPFIT to estimate double couple moment tensors for earthquakes,
including 85 analyzed in our study. We use the notation Mfm to denote a moment tensor from the AEC
first-motion catalog derived using FPFIT.

The “cut-and-paste” (CAP) method of Zhu and Helmberger [1996] uses both surface waves and body waves
from seismic waveforms filtered over relatively short periods, for example, 3–10 s of Tan et al. [2006] or 5–100 s
of Zhu and Helmberger [1996]. The body wave measurements are for the “Pnl” waveform which includes
multiple paths that follow the arrival of the direct P [Helmberger and Engen, 1980]; this is measured on the ver-
tical and radial components. The surface wave measurements target the Rayleigh wave (vertical and radial
components) and the Love wave (transverse component). Based on catalog comparisons in Tape et al. [2009,
Appendix D], as well as our desire to fit as much of the seismic wavefield as possible, we chose to use CAP
within this study. Details on CAP are presented in sections 2.2–2.4.

Most of the inversion methods discussed above do not have a clear approach for estimating uncertain-
ties in moment tensors. The most common method for estimating uncertainties involves “bootstrapping,”
which involves resampling the data and reinverting the moment tensor repeatedly to obtain a set of possible
solutions [e.g., Nayak and Dreger, 2014; Ross et al., 2015].

Part of the challenge in estimating uncertainties is that the properties of the moment tensor space under
consideration are not obvious. The notion of uniformly distributed moment tensors and the closely related
notion of volumes in moment tensor space need to be clarified. For us the space of moment tensors under
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consideration is the set of all double couples. For this set Tape and Tape [2015] show that uniform orientations
give uniformly distributed moment tensors.

We calculate a new uncertainty curve, or rather “confidence curve,” 𝒫(V), for each of 21 earthquakes. The
function 𝒫(V), to be defined precisely in section 3.1, describes how the posterior probability is concentrated
around a selected reference tensor within moment tensor space. For example, 𝒫(0.1) = 0.9 means that 90%
of the probability is contained within the 10% volume fraction around the reference moment tensor. The curve
𝒫(V) is calculated from the posterior probability and the fractional volume in moment tensor space. The
probability density p is scaled from a waveform difference misfit functionΦ as p(M) ∝ exp(−Φ(M)). Associated
with the curve 𝒫(V) are two useful scalar quantities: (1) The slope of the curve at the origin is proportional to
the probability density at the reference moment tensor. (2) The area𝒫AV under the curve, which is the average
value of 𝒫(V), gives a single measure of confidence.

Our study produces a moment tensor catalog of 106 events in southern Alaska. The catalog is divided into two
parts, as explained in section 2.1: Part I (Table 4) and Part II (Table S5). In section 2 we describe our moment
tensor inversion, including the estimation of uncertainties. Section 4.1 presents our uncertainty analysis for
a single earthquake. Section 5 summarizes a set of comparative inversions for the 21 events. It is intended to
provide insights into some of the choices made within moment tensor inversions.

We suggest two alternatives to reading the paper from start to finish. If you are primarily interested in our
approach to estimating moment tensor uncertainties, then please focus on sections 3, 4.1, and 7. If you
are primarily interested in our assessment of the impact of various decisions made within moment tensor
inversions—e.g., type of norm, body waves or surface waves, and number of stations—then please see
sections 2.4 and 5.

2. Methods

Our objective is to obtain the highest-quality catalog of moment tensors in southern Alaska, primarily for
future purposes of earthquake-based seismic tomographic inversion. Our study is centered on data acquired
by the MOOS (multidisciplinary observations of subduction) array in the Kenai Peninsula region of south cen-
tral Alaska [Christensen et al., 2008]. This array had up to 34 broadband stations active between 15 August 2007
and 15 August 2009 and provides the best coverage for studying earthquakes in this region. We also include
all permanent broadband stations that were active during this time period; a map of stations is shown in
Figure 1. All earthquakes in this study occurred within the bounding box of latitude (58∘, 62.5∘) and longitude
(−154∘,−146∘) (Figure 2).

2.1. Selection of Events and Processing of Waveforms
In addition to estimating the best possible moment tensors in southern Alaska, we are interested in perform-
ing comparative studies with existing catalogs. The Alaska Earthquake Center (AEC) maintains two moment
tensor catalogs:

1. AEC moment tensor catalog: This catalog contains deviatoric moment tensors for Mw ≥ 4 earthquakes. The
moment tensors, which we denote by MAEC, are estimated using the TDMT code [Pasyanos et al., 1996; Dreger
et al., 1998].

2. AEC first-motion catalog: This catalog contains double couple moment tensors for Mw ≥ 3.0 earthquakes.
The moment tensors, which we denote by Mfm, are estimated using the FPFIT code [Reasenberg and
Oppenheimer, 1985].

We use these two catalogs as a basis for selecting events in this study. The two catalogs form two parts of our
composite catalog of 106 earthquakes:

1. Part I catalog: all 21 events from the AEC moment tensor catalog within our region (Figure 2) and time
period of interest. We perform our uncertainty analysis on these events. By focusing on the events in the
AEC moment tensor catalog, we can perform direct comparisons between two moment tensor inversion
methods: CAP (used here) and TDMT (used by AEC).

2. Part II catalog: 85 events from the AEC first-motion catalog with magnitude Mw ≥ 3.5 and within our region
and time period of interest. For several of the smaller Part II catalog events we use first-motion polarity
observations in order to help constrain the solution. We do not calculate confidence curves for the
85 events, mainly because our current formulation of the misfit function—and subsequent confidence

SILWAL AND TAPE ALASKA MOMENT TENSORS AND UNCERTAINTIES 2775



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012588

curve—does not consider first-motion polarities. Our primary goal for the Part I events is to obtain the most
reliable moment tensor solutions and to compare them with the solutions obtained by AEC using P wave
polarities only.

We acquired three-component broadband seismic waveforms from the Alaska Earthquake Center and from
the MOOS waveform database [Christensen et al., 2008]. For each event we extracted 300 s of waveforms from
stations within 500 km of epicentral distance (Figure 1). Waveform processing, including instrument decon-
volution between periods 0.04–100 s (using a two-pole Butterworth band-pass filter), was performed using
the GISMO Waveform Toolbox for MATLAB [Reyes and West, 2011]. Additional band-pass filtering was applied
within the moment tensor grid search algorithm.

2.2. Cut-and-Paste (CAP) Approach
The cut-and-paste moment tensor inversion approach of Zhao and Helmberger [1994] and Zhu and Helmberger
[1996] is named for its cutting of sections of synthetic seismograms and pasting them on corresponding por-
tions of observed seismograms. A key feature is that each section of synthetic seismogram is allowed to be
time shifted to best match the observed seismogram. By using different time shifts, CAP accounts for some
of the errors associated with the seismic velocity model that is assumed. For example, for a given station we
might expect a different time shift between data and synthetics for the P wave, Rayleigh wave, and Love wave.
Allowing for different time shifts is especially important when considering a second feature of CAP: different
band-pass filters are generally applied to body waves and surface waves.

The seismic waveforms are rotated radial, transverse, and vertical components and are divided into five time
windows of body and surface waves: (1) PV: vertical component of the P wave, (2) PR: radial component of the
P wave, (3) SurfV: vertical component of the Rayleigh wave, (4) SurfR: radial component of the Rayleigh wave,
and (5) SurfT: transverse component of the Love wave.

Any of these time windows can be excluded based on the waveform selection criteria (section S2.1).

In our inversions we use three time shifts: one for PV and PR, one for SurfV and SurfR, and one for SurfT. For the
21 Part I events in our catalog (Table 4), we filtered body waves between 1.5 and 4.0 s and allowed a maximum
time shift of ±2 s, and we filtered surface waves between 16 and 40 s and allowed a maximum time shift of
±10 s. For the 85 smaller Part II events in the catalog, we made adjustments to the band-pass filters and time
shifts. Our goal was to fit as much of the wavefield as possible, both in terms of the broadest band pass and
the greatest sections of time.

2.3. Grid Search Moment Tensor Inversion
In a grid search moment tension inversion, one looks for the minimum of a misfit function Φ between
observed and synthetic seismograms. The CAP approach is distinguished by the details of howΦ is assembled
from pieces of filtered seismic waveforms. Our synthetic seismograms are computed using a frequency-wave
number method based on the Thomson-Haskell Propagator matrix method [Haskell, 1964; Zhu and Rivera,
2002]. We use the same layered seismic velocity model that is used by the Alaska Earthquake Center for
moment tensor inversions and for locating earthquakes (Table S1). Once a misfit function is established, the
approach to finding the minimum of the misfit function is a straightforward grid search over the space of
model parameters.

We consider five model parameters: earthquake depth z, earthquake magnitude m, and moment tensor
orientation: strike 𝜅, rake 𝜎, and dip 𝜃. We assume that the earthquakes occur as shear faulting without
opening; hence, our moment tensors are double couples. We fix the epicenter and origin time as those from
the AEC catalog.

The search ranges for our parameters are depth z: zAEC −35 ≤ z ≤ zAEC +35, where zAEC is the depth in the AEC
moment tensor catalog; magnitude m: search within ±1 unit of the AEC moment tensor catalog magnitude;
strike 𝜅: 0∘ ≤ 𝜅 <360∘; rake 𝜎: −90∘ ≤ 𝜎 ≤ 90∘; and h = cos 𝜃: 0<h ≤ 1, corresponding to dip 𝜃 ranging from
0∘ to 90∘.

The use of h instead of dip angle 𝜃 allows us to obtain uniformly distributed orientations by choosing 𝜅, 𝜎, and
h uniformly [Kagan, 1991; Tape and Tape, 2012]. Uniformly distributed orientations give uniformly distributed
double couple moment tensors [Tape and Tape, 2015].

While our grid search involves five parameters, most of the postprocessing uncertainty analysis involves only
the three parameters (𝜅, 𝜎, and h) that describe the moment tensor orientation. For each earthquake our
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Figure 3. Workflow for our uncertainty analysis, such as in Figure 7. The model parameters for the moment tensor
inversion are the strike angle 𝜅, the rake (or slip) angle 𝜎, cosine of the dip angle (h = cos 𝜃), the magnitude (m), and
depth z, all with ranges as specified in section 2.3. The uncertainty analysis (parts B and C) begins when we have
determined the magnitude and depth of the moment tensor M0 at the global minimum of the misfit function.

unknown model vector is

m = (𝜅, 𝜎, h,m, z)T . (1)

Our goal is to search over this parameter space to obtain the model vector m0 = (𝜅0, 𝜎0, h0,m0, z0) that
minimizes the misfit Φ. We let M0 be the corresponding moment tensor:

M0 = M(𝜅0, 𝜎0, h0,m0, z0) (2)

(The moment tensor M0 is not to be confused with the scalar seismic moment, also usually denoted by M0.)

We can find M0 either by using a regular grid of points or by using random points. The values of M0 in our
catalog (e.g., Table 4) are based on the regular grid search; the intervals are listed in Table S2. Alternatively, we
could have found M0 from the set of random points used in our uncertainty analysis. The workflow in Figure 3
starts by generating 100,000 random points in the space of 𝜅-𝜎-h. We then choose a regular grid for searching
over depth and magnitude (Table S2). We evaluate the misfit function Φ at the moment tensors to obtain
the minimum.

Our analysis of uncertainties begins at this stage, with both the magnitude m = m0 and the depth z = z0 fixed;
the analysis therefore only involves the moment tensor orientation, which is determined by (𝜅, 𝜎, and h).

2.4. Misfit Function 𝚽
Let s(M) represent a predicted time series for a moment tensor M. We can think of s(M) as a forward model
that will input a moment tensor and output a time series of ground motion on the surface. The underlying
physics is wave propagation in a simple layered medium.

Our misfit function measures the difference between recorded seismograms (“data”) and modeled seismo-
grams (“synthetics”). Each station records ground motions in three components, which are recorded on
three seismograms. Let u represent a discretized time series of one component of the seismometer-recorded
ground velocity, so uk would be the ground velocity at time tk . The goal is to find the M that minimizes the
difference between u and s(M).

SILWAL AND TAPE ALASKA MOMENT TENSORS AND UNCERTAINTIES 2777



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012588

Seismograms at each station are split into different time windows. We use i for the time window index and j for
the station index. We adopt the commonly used L2 norm as a measure of misfit between data and synthetic
waveforms. The L2 norm waveform difference within a single time window is given by

𝜙ij(M) =
[(

uij − sij(M)
)T

Wij

(
uij − sij(M)

)]1∕2
, (3)

where the matrix Wij is a weighting matrix that can be thought of as an inverse data covariance matrix
[e.g., Aster et al., 2012]. For our purposes it is a diagonal square matrix with the same weight factor wij on the
diagonal. This gives the flexibility of adjusting the weights for any time window.

We define a misfit function for each earthquake. Each earthquake is recorded by Ns stations. Each seismogram
at each station is split into five time windows (PV, PR, SurfV, SurfR, and SurfT). We consider two norms for the
misfit function, which we refer to as L1 and L2:

ΦL1(M) =
Ns∑

j=1

5∑
i=1

𝜙ij(M) (4)

ΦL2(M) =
Ns∑

j=1

5∑
i=1

𝜙2
ij(M). (5)

Equation (5) is actually the square of an L2 norm and is what was implemented in the CAP code of Zhu and
Helmberger [1996]. We are not directly comparing values of these two norms, rather we are comparing the
moment tensors that give the minima. The L1 norm is less sensitive to outliers than the L2 norm [Aster et al.,
2012]. The moment tensor that minimizes ΦL1(M) may be very different from the one that minimizes ΦL2(M),
as we will see later in section 5.1.

In the explanation and notation above we have omitted some details. Each waveform within a syn-
thetic seismogram is time shifted to match the data. Furthermore, the data and synthetics are filtered
(identically) over a specified band pass. Finally, there is a built-in weighting of waveforms by source-station
distance that allows the more distant stations to have influence comparable to closer stations [Zhu and
Helmberger, 1996].

2.5. Scaling the Misfit Function
We define a scaled version Φ of the L1 norm misfit function by

Φ(M) = k
uL1

ΦL1(M) = k
uL1

Ns∑
j=1

5∑
i=1

𝜙ij(M), (6)

where uL1 is defined in terms of the observed waveforms by

uL1 =
Ns∑

j=1

5∑
i=1

[
uT

ij Wij uij

]1∕2
. (7)

The reason we need a scale factor in the misfit function is that as with most seismological studies, the errors in
the data are poorly known. If we had a good estimate for errors in the data, then our weighting matrix for each
time window, Wij , could be represented by the inverse data covariance matrix. Furthermore, if we knew how
the uncertainties varied with each source-station path, then we could incorporate this information explicitly
within the summations in equations (4) and (5). Because these quantities are unknown, we account for the
lack of information with the scale factor k∕uL1.

The constant k is the same for all events. The scaling by k∕uL1 does not impact our best fitting moment tensors
M0, but it does impact our uncertainty analysis; we return to this topic in section 7.2.
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3. Estimation of Uncertainties

Our uncertainty analysis is summarized in Figure 3 and described below. The notion of distance in the space
of moment tensors is important. The (angular) distance between two moment tensors X = (xij) and Y = (yij) is
defined in terms of their euclidean inner product:

∠(X, Y) = cos−1 X ⋅ Y
||X|| ||Y|| , (8)

where X ⋅ Y =
3∑

i, j=1
xij yij and ||X|| = √

X ⋅ X .

The moment tensor for the global minimum of the misfit function is denoted by M0. We define 𝜔(M) to be the
distance from M0 to M:

𝜔(M) = ∠(M0,M). (9)

The angle 𝜔(M) ranges from 𝜔(M0)= 0∘ to 𝜔(−M0) = 180∘.

Our moment tensor space is taken to be the set of all double couple moment tensors with fixed norm
(i.e., fixed magnitude). We denote it by M. The probability density p on M is defined from the misfit function
by [Tarantola, 2005]

p(M) = 1
a

e−Φ(M), a = ∫
M

e−Φ(M) dM, (10)

where, for us, Φ(M) = Φ(m(𝜅, 𝜎, h,m0, z0)) and M = M(𝜅, 𝜎, h). The probability that the true moment tensor
for the earthquake is in a given subset A of M is the integral of p over A:

P(A) =
∫
A

e−Φ(M)dM

∫
M

e−Φ(M)dM
. (11)

We sometimes refer to the probability P as the posterior probability. The “prior” probability would then be the
homogeneous probability, that is, the fractional volume.

3.1. Quantification of Uncertainty
Our confidence curve 𝒫(V) is from Tape and Tape [2016]. The curve depends on a reference moment tensor,
which will usually be the moment tensor M0 with lowest misfit (or highest probability density). To define
𝒫(V), we first let N(𝜔) be the neighborhood of M0 consisting of moment tensors within angular radius 𝜔 of
it. We then let P̂(𝜔) and V̂(𝜔) be the probability and fractional volume of N(𝜔). Then 𝒫(V) is defined to be the
probability that the true moment tensor for the earthquake lies in the neighborhood of M0 that has volume V .
That is, as illustrated in Figure 4,

𝒫(V) = P̂(𝜔) when V̂(𝜔) = V. (12)

The confidence curve 𝒫(V) shows to what extent the probability in moment tensor space is concentrated
around the tensor M0. For a high-quality event, we would expect 𝒫(V) to be near unity for some small V ;
equivalently, the curve 𝒫(V) should resemble the Greek letter Γ.

The average value of 𝒫(V) is

𝒫AV = ∫
1

0
𝒫(V)dV. (13)

The closer 𝒫AV is to unity, the better.

To calculate 𝒫(V) from equation (12), we need both V̂(𝜔) and P̂(𝜔). To get V̂(𝜔) (approximately), we can
construct a sequence M1,M2,… ,MN of uniformly distributed moment tensors in M; according to Tape and
Tape [2015], this can be done by choosing each of the corresponding 𝜅i, 𝜎i, andhi uniformly. Uniformity of the
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Figure 4. Construction of the confidence curve 𝒫(V) for a moment tensor M0. (a) The fractional volume and probability
curves V̂(𝜔) and P̂(𝜔). The value 𝒫(V) is defined in terms of V̂(𝜔) and P̂(𝜔) by requiring that 𝒫(V) = P̂(𝜔) when V̂(𝜔) = V ,
as indicated by the arrows. The number V̂(𝜔) is the fractional volume of the neighborhood NM0

(𝜔) of moment tensors
within angular distance 𝜔 of M0, and P̂(𝜔) is likewise the probability of NM0

(𝜔). Hence, 𝒫(V) is the probability that the
true moment tensor for the earthquake lies in the neighborhood of M0 that has volume V ; large 𝒫(V) for small V is
desirable. (b) The confidence curve 𝒫(V). The orange and brown trajectories correspond to those in Figure 4a. The area
under the curve is our confidence parameter 𝒫AV. The 45∘ line (dashed) would be 𝒫(V) if the probability had been
homogeneous.

moment tensors Mi in M means that subsets of M having equal volumes should contain equal numbers of
the Mi. Since V̂(𝜔) is the fractional volume of N(𝜔), then

V̂(𝜔) ≈ n(𝜔)
N

, (14)

where n(𝜔) is the number of the Mi with∠(M0, Mi) ≤ 𝜔. Thus, the fractional volume V̂(𝜔) is found by counting
the number of moment tensors Mi within the expanding neighborhood defined by 𝜔.

Finding P̂(𝜔) is only slightly more involved. Since P̂(𝜔) is the probability of the set N(𝜔), it is given by
equation (11) with N(𝜔) in place of A. Using M1,M2,… ,MN as before, we can replace the ratio of the integrals
in equation (11) with a ratio of sums:

P̂(𝜔) ≈
∑

∠(M0 ,Mi)≤ 𝜔

e−Φ(Mi)
)/ N∑

i=1

e−Φ(Mi). (15)

Notice that if the probability P were the homogeneous probability, for which the function p would be constant,
then equation (15) would reduce to equation (14), and P̂(𝜔) would coincide with V̂(𝜔).

The fractional volume V̂(𝜔) depends neither on M0 nor on the earthquake. Its derivative V̂ ′(𝜔) has a mesa-like
shape. Values of V̂ ′(𝜔) are tabulated in Appendix A of Tape and Tape [2016].

3.2. Samples of the Posterior Probability
There is an alternate perspective on the calculation of P̂(𝜔). It begins with the generation of a large number
of samples of the posterior probability. This is done by starting with a set of uniformly distributed moment
tensors and applying the rejection method [von Neumann, 1951; Tarantola, 2005]. The fraction of the resulting
moment tensors M with ∠(M0,M) ≤ 𝜔 is then P̂(𝜔). Since P̂(𝜔) can be interpreted in terms of samples of the
posterior probability, then so can 𝒫(V). For example, 𝒫(0.1) = 0.8 means that 80% of the posterior samples
are concentrated in only 10% of the volume around M0.

We use samples of the posterior to further characterize and visualize uncertainties associated with our
moment tensor solutions. This is best seen in the context of a real example, described next.

4. Example Waveform Fits and Uncertainty Analyses
4.1. Full Analysis for Example Event
We show the complete results for one of the 21 events in Part I. The event occurred on 7 April 2009 just north-
west of Anchorage, Alaska. Results for this event are shown in Figures 5–7. Results for the other 20 Part I events
are in Silwal [2015].

A subset of waveform fits for our moment tensor inversion are shown in Figure 5; the full set of waveform
fits are in Silwal [2015]. The observed waveforms are plotted in black, and the synthetic waveforms are red.
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Figure 5. Moment tensor solution and waveform comparisons for the example event in this study. Each column is a
different section of the three-component waveform: PV = vertical component P wave, PR = radial component P wave,
SurfV = vertical component Rayleigh wave, SurfR = radial component Rayleigh wave, and SurfT = transverse component
Love wave. The stations are ordered by increasing epicentral distance from the top row. The observed waveforms are
plotted in black; the synthetic waveforms are plotted in red. The body waves are filtered 1.5–4.0 s, and the surface
waves are filtered 16–40 s. The numbers below each station name are the station epicentral distance (top) and station
azimuth (bottom). The four numbers below each pair of waveforms are, from top to bottom, (1) the cross-correlation
time shift ΔT = Tobs − Tsyn required for matching the synthetics s(t) with the data u(t) (a positive time shift means that
the synthetics arrive earlier than the data); (2) the maximum cross-correlation percentage between u(t) and s(t − ΔT);
(3) the percentage of the total misfit; and (4) the amplitude ratio ln(Aobs∕Asyn) in each time window. The four header
lines are described in Silwal [2015].
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Figure 6. Grid search for the best fitting depth for the event in Figure 5. The red inverted triangle marks the AEC catalog
depth, and the white inverted triangle marks the depth obtained from our moment tensor inversion. The gray line with
solid circles denotes the variance reduction (VR) for the moment tensor solution obtained at that particular depth
(scale at right). The best solution occurs at the maximum in variance reduction VRmax = 56.2. The beach balls are
plotted at the value of ln(VRmax∕VR), which gives the variance reduction relative to the maximum (scale at left). Note
that the orientation and magnitude are free to change for each depth; for this event we see that deeper depths produce
larger magnitude estimates (4.6 versus 4.4), as we would expect. The black dashed line is the best fitting parabola,
which is used for estimating the uncertainty in depth; here the best fitting depth is 39 ± 2 km. The long tick marks on
the x axis mark the layer boundaries in the 1-D model (Table S1) used in the moment tensor inversions.

In this example the body waves are filtered 1.5–4.0 s and the surface waves are filtered 16–40 s. The synthetic
seismograms have been time shifted by the time shift listed beneath each seismogram pair (section 2.2).

For this event the value of the scaled misfit function (equation (6)) at the global minimum isΦ(M0) = 27.00 and
the probability density (equation (10)) is p(M0) = 3.30. (A related measure, variance reduction, is discussed
in section S2.3.) The waveform fits in Figure 5 are good but not exceptional: the probability p(M0) = 3.30 is
exactly in the middle of the 21 events listed in Table 4.

Figure 6 shows the grid search over depth for this event. The depth increment in the grid search is 2 km. For
each depth we search over the full space of orientations and magnitudes to obtain the best fitting moment
tensor. For this event, the best fitting moment tensor has magnitude Mw4.5 and occurs at depth 39 km; for
comparison, the AEC catalog depth is 33 km, and the AEC moment tensor catalog depth is 45 km.

Figure 7 is a summary of the uncertainty analysis for the event. This analysis is performed after we have deter-
mined the best fitting depth and magnitude for the event, and after we have evaluated the misfit function
throughout the space of moment tensor orientations. Three cross sections of the strike-rake-dip “brick” are
shown in Figure 7b, with colors giving values of the misfit function Φ. Each section contains the solution
M0 (white star), which is at 205∘, dip 49, −85∘. Also shown are contours of the angular distance 𝜔 from M0

(equation (9)). They do not correspond to distances in the brick and may at first look peculiar. For example,
in the strike-rake cross section the two seemingly separate dark blue patches are close to each other when
considered in moment tensor space, as shown by their small values of 𝜔. In moment tensor space, the two
patches are parts of a single small neighborhood of M0. The three light blue patches near the right edge of the
strike-rake section are parts of a single small neighborhood of−M0 when considered in moment tensor space.
Incidentally, there are never any repeated moment tensors strictly inside the strike-rake-dip brick; repetitions
can only occur on the boundary [Tape and Tape, 2012].

Our uncertainty analysis contains two parts. In the first part (Figures 7e and 7f and part B of Figure 3) we calcu-
late the confidence curve𝒫(V) and, from it, the confidence parameter𝒫AV : The fractional volume curve V̂(𝜔)
and the probability curve P̂(𝜔) (blue and green, respectively, in Figure 7e) are calculated from equations (14)
and (15). Then 𝒫(V) (Figure 7f ) is calculated from V̂(𝜔) and P̂(𝜔) using equation (12). The area under the
confidence curve gives the average value of 𝒫(V) (equation (13)), which in this example is 𝒫AV = 0.95.
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Figure 7. Summary of the moment tensor solution M0 for an earthquake near Anchorage. The moment tensor M0 is the
moment tensor with minimum misfit. The set of moment tensors under consideration is the set of double couples.
(a) Map showing the earthquake source and the station coverage. The stations used in calculating the misfit are
identified with ray paths. (b) Colored map of misfit Φ(M), shown on sections of strike-rake-dip space that pass through
the strike-rake-dip point for M0 (white star). The black curves are not contours of misfit Φ but rather contours of 𝜔,
where 𝜔(M) = ∠(M0,M) is the angular distance from M0 to M. (c) A two-dimensional summary of the three-dimensional
plot of misfit in Figure 7b. The blue region consists of all pairs (𝜔(M), Φ(M)). The green dots are pairs (𝜔(M), Φ(M)) for
200 posterior samples. (d) The curves P̂′(𝜔) and V̂′(𝜔). (e) The curves V̂(𝜔) and P̂(𝜔); they are used to construct the
confidence curve 𝒫(V) in Figure 7f, as explained in Figure 4. (f ) The confidence curve 𝒫(V) for M0. The more the curve
resembles the shape of a capital gamma (Γ), the better. The shaded area is the average confidence 𝒫AV. (g) Strike, rake,
and dip for a set of 2000 posterior samples. There are two possible fault normal and slip vector pairs for a double
couple; green indicates the pair having its coordinates in the strike-rake-dip box in Figure 7b, and black indicates its
conjugate. (h) Beach ball for M0. The two big black dots are the P-T axes of M0, and the small red and blue dots are the
P-T axes of 200 posterior samples. (i) The 20 posterior samples. The number above each beach ball M is its angular
distance 𝜔(M) from M0, and the color of the ball gives its relative misfit, using the same color scale as in Figure 7b.
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Figure 8. Uncertainty analysis for an event with good station coverage. The figure is like the upper diagram in Figure 7, but for an earthquake near Denali, Alaska.
The 𝒫(V) curve resembles a Γ and gives high confidence (𝒫AV = 0.98) for M0. See section 4.2 for details.

The second part of our uncertainty analysis uses samples of the posterior probability, which we generate
using the rejection method. Two hundred posterior samples are plotted in the misfit-versus-𝜔plot in Figure 7c
as green dots; they can be compared with the blue background, which is the corresponding plot for “prior”
samples, that is, for uniformly distributed moment tensors. The curves P̂(𝜔) and P̂′(𝜔) (green in Figures 7d
and 7e) can both be interpreted in terms of posterior samples: For a large set of posterior samples, P̂(𝜔) is the
fraction of them within angular distance 𝜔 of M0, and P̂′(𝜔)d𝜔 is the fraction of them whose angular distance
from M0 is between 𝜔 and 𝜔+d𝜔. A normalized histogram of values ∠(M0,M) for posterior samples M would
therefore have the curve P̂′(𝜔) as its upper boundary. In each of Figures 7c–7e, the green color pertains to the
posterior probability, and blue pertains to the prior probability, that is, to fractional volume.

A set of 2000 posterior samples is used to plot distributions of strike, dip, and rake in Figure 7g. There are two
distributions (green and black), since there are two sets of strike-rake-dip angles for each moment tensor. The
global minimum M0 is plotted as a beach ball in Figure 7h along with P-T axes for 200 posterior samples. Beach
balls for 20 posterior samples are shown in Figure 7i. Stähler and Sigloch [2014] offered a similar perspective
by averaging posterior beach balls to get a “Bayesian beach ball.”

4.2. Additional Earthquake Examples
In Figures 8 and 9 we show condensed versions of the uncertainty analysis for two events that are outside
our region of interest and not in our catalog. These examples suggest the range in quality of solutions that
we might expect in Alaska, and they provide some reference for the values of 𝒫AV. The first event, a slab
earthquake beneath the Alaska Range, represents one of the best possible data sets for a moment tensor
inversion in Alaska. For this 2014 earthquake there is complete azimuthal coverage, with 76 stations used in
the inversion. The 𝒫(V) curve resembles Γ, and 𝒫AV = 0.98 is nearly unity (good).

The second event, a crustal earthquake in northwestern Alaska (near Noatak), has poor data coverage, with
almost all stations situated within a 60∘ azimuth of the source. For this event the curve𝒫(V) is near the 45∘ line
(Figure 9f ), indicating that M0 is not a reliable solution. This earthquake was well-recorded globally, and the
GCMT solution indicated a normal-fault mechanism with Mw5.7, whereas the (unreliable) solution in Figure 9
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Figure 9. Uncertainty analysis for an event with poor station coverage. The figure is like the upper diagram in Figure 7, but for an earthquake near Noatak, Alaska.
Examining the curve P̂′(𝜔), we see that the probability is widely distributed over moment tensor space, which leads to a low confidence (𝒫AV = 0.61) for M0. The
closeness of 𝒫(V) to the 45∘ line (dashed) is another indication that M0 is not a reliable solution. See section 4.2 for details.

is a strike-slip mechanism with Mw5.2. Smaller events, which, like the Noatak earthquake, are near the margins
of the Alaska regional network, will not appear in global moment tensor catalogs. In such cases we will need
to rely on assessing the confidence of our regional moment tensor solutions.

In Figures 10 and 11 we compare the moment tensor solution and waveform fits from our catalog with those
from the AEC moment tensor catalog. The moment tensor in Figure 10 clearly provides better waveform fits,
and it results in a larger variance reduction (39% versus 25%). Among the 21 Part I events, the event in Figure 10
had the largest difference (𝜔 = 54∘) from the solution in the AEC moment tensor catalog. A visual inspection
of the beach balls in Figures 10 and 11 shows that these solutions are quite different and would imply two
different tectonic interpretations for this Mw5.0 earthquake.

5. Moment Tensor Catalog: Part I (21 Events)

There are 21 events in the AEC moment tensor catalog that occurred within our region during the time period
of interest. For each of these events we perform a range of inversions with different subsets of data, in order
to quantify the influence of various factors on the estimated model parameters and their uncertainties. The
different types of inversions and comparisons are listed in Tables 1 and 2. We note that the 21 events are all
high-quality events: Mw ≥ 4 recorded by dozens of stations at regional distances. The inferences we make in
the comparisons below may not generalize to the smaller Part II events.

Implicit in these comparisons is our choice of the “best” moment tensor, which we take to be the one whose
synthetic seismograms fit the most observed seismograms (this is explained in section 7.3). This corresponds
to the M111 case in Table 1. We can then measure the angular difference between another moment tensor
to M111.

We use Table 3 to explain the different inversions for the example event. The different subsets of data produce
similar moment tensors, as indicated by 𝜔 ≤ 26∘ from M111. However, two cases (M110 and M101) have low
values of p(M0) and 𝒫AV, and we would not consider these to be reliable solutions. The table also shows the
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Figure 10. Moment tensor solution and waveform fits at a subset of 11 stations for event 20071003140612444 (depth
32 km, Mw5.0). The angle between this solution and the AEC moment tensor catalog solution is 56∘ . See Figure A in
Silwal [2015] for the waveform fits for the full set of 45 stations. See Figure 11 for the waveform fits when using the AEC
moment tensor. See Figure 7 caption for details.

distance of the two AEC catalog moment tensors, MAEC and Mfm, from M111. Table 3 is reproduced for the other
Part I catalog events in Table S3. The information in Table S3 is presented in abridged form in Table 5. We will
refer to these results while discussing the six comparisons listed in Table 2.

5.1. The Effect of Using Bad Stations
Manual review and selection of waveforms can be an extremely time-consuming part of seismological stud-
ies. We expect there to be differences between data and synthetics. Some differences are due to errors in
representing the earthquake source or Earth structure, while other differences are due to inherent errors in
the observed waveforms for a particular earthquake and a particular station at a particular time. We generally
do not know what the estimated errors are in the observed waveforms, but we have some idea of errors in our
synthetic seismograms due to errors in our assumed Earth model. For example, in our region the presence of
Cook Inlet basin produces larger amplitudes and larger time shifts for source-station paths that interact with
the basin. Therefore, some systematic amplitude anomalies may be expected.

SILWAL AND TAPE ALASKA MOMENT TENSORS AND UNCERTAINTIES 2786



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012588

Figure 11. Same as Figure 10 but showing synthetic waveforms for the moment tensor and depth (40 km) in the AEC
moment tensor catalog. Our preferred moment tensor solution in Figure 10, obtained using both body and surface
waves, provides better waveform fits (CAP VR = 39%; AEC VR = 25%). Here we allow the magnitude of the AEC moment
tensor to vary in order to achieve the best possible waveform fits for this fixed hypocenter and orientation; the best
fitting magnitude of Mw4.6 is much lower than Mw5.0 in Figure 10. See Figure S4 for the AEC waveform fits when the
magnitude is fixed to be the AEC magnitude.

Our motivation for using the L1 misfit function (equation (6)), rather than the L2 misfit function, was to reduce
the effort of manually reviewing waveform comparisons [Maceira et al., 2000; Aster et al., 2012; Tarantola,
2005]. In Figure 12 we show inversion results for 21 events for four cases: L1 with good waveforms, L1 with all
waveforms, L2 with good waveforms, and L2 with all waveforms. We find that (1) the L2 norm fails dramati-
cally for some events (red beach balls) and (2) the L1 norm gives stable results even when bad stations are not
thrown out. Except for Figure 12, all the results presented in this study (Tables 4 and S5) are based on using
the L1 norm in the misfit function (equation (6)).

5.2. The Effect of Ignoring Body Waves
The effect of ignoring body waves can be seen by comparing the columns of M111 with those of M011 in
Table 5. The angular differences range from 0∘ (three events) to≥50∘ (two events). The two anomalous events
here are both Mw ≥ 5.0; one is a slab event to the west with decent station coverage, the other is a crustal
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Table 1. Moment Tensor Labels Used in the Study to Distinguish Among Inversions Using Different Subsets of Waveform
Dataa

Label Description

M111 using both body and surface waves at selected stations

M011 using only surface waves at selected stations

M101 using only body waves at selected stations

M112 using both body and surface waves at stations used in AEC moment tensor catalog

M012 using only surface waves at stations used in AEC moment tensor catalog

M110 using both body and surface waves at all stations

MAEC AEC moment tensor catalog (should be close to M012)

Mfm AEC first-motion catalog
aThe three indices in the label Mabc represent the choice of body waves (a = 0, 1), the choice of surface waves (b = 0, 1),

and the choice of stations (c = 0, 1, 2). The index c covers three cases: c = 0 is for all available stations, c = 1 is a subset of
stations that pass our waveform selection criteria, and c = 2 is a smaller subset of stations used for the inversions in the
AEC moment tensor catalog. See section 5 for details.

event to the southwest with relatively poor station coverage. A further analysis could provide insights into
the scenarios where using body waves is particularly important for obtaining the correct moment tensor
solution.

5.3. The Effect of Using Fewer Stations
The effect of using fewer stations, while using both body waves and surface waves, can be seen by comparing
case M111 with M112. The comparison shows that there are significant differences (five events with 𝜔 ≥ 50∘)
in the moment tensor solution when we use fewer stations. In practice, it is not easy to determine which
station will “pull” the solution toward the true solution. Our tabulation implies that using as many stations as
possible is desirable. It is important to have good azimuthal coverage of stations, but we did not systematically
investigate this.

5.4. Improvement Over Existing Catalogs
We can also compare the angular difference from our preferred solution (M111) to the moment tensors in the
two AEC catalogs (MAEC and Mfm) (Table 5). For the 21 Part I events the differences with the AEC moment
tensor catalog are generally small (𝜔 < 30∘), with one exception (20071003140612444: 𝜔 = 54∘) highlighted
in Figures 10 and 11. We discuss catalog comparisons in section 7.4.

5.5. The Effect of Using Either Body Waves or Surfaces Waves
From Figure 13 we see that moment tensor solutions obtained using only surface waves (M011) are consistently
better than solutions obtained using only body waves (M101). Furthermore, the confidence measure 𝒫AV is
higher for the surface-wave-only solutions (Table S3).

5.6. Additional Comparisons
When considering only surface waves, there is a small effect of adding more stations. This can be seen in
Figure 13 for the columns M012 (few stations) and M011 (more stations). This possibly justifies the practice

Table 2. Examples of Comparisons Between Different Sets of Moment Tensors Listed in Table 3a

Misfit Function Analysis

M111 versus M110 effect of using bad stations (for testing multiple norms)

M111 versus M011 effect of ignoring body waves

M111 versus M112 effect of using fewer stations (both body and surface waves)

M111 versus MAEC improvement over existing catalog

M101 versus M011 effect of using either body waves or surface waves

M012 versus M011 effect of adding more stations (only surface waves)

M012 versus MAEC effect of using a different inversion method with the same seismograms

MAEC versus Mfm comparison between two catalogs (AEC moment tensor and AEC first motion)
aSee section 5 for details.
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Table 3. Summary of Inversions for the Example Event (20090407201255351) for the L1 Misfit Function Using Different
Subsets of Dataa

Misfit Function Depth 𝜔

(See Table 1) (km) Mw (deg) p(M0) 𝒫AV

L1 M111 39 4.5 – 3.30 0.95

L1 M110 39 4.4 26 0.04 0.52

L1 M011 41 4.5 9 9.26 0.98

L1 M101 39 4.6 21 2.26 0.77

L1 M112 39 4.5 10 2.27 0.95

L1 M012 47 4.6 10 10.44 0.98

L1 MAEC 45 4.6 17 – –

L1 Mfm 33 4.5 32 – –
a𝜔 = ∠(M111,M), where M is a different moment tensor solution. Previously published catalog results are included as

MAEC and Mfm; for these events, no p(M0) and 𝒫AV are listed, since we did not perform the inversion. Table S3 contains
similar results for the other Part I events in the catalog. See Figure 7 (M111) and Figures S11–S15 (M110, M011, M101, M112,
and M012) for the uncertainty analysis for each case Mabc .

of using small (<10) subset stations for surface-wave-only moment tensor inversion [e.g., Dreger et al., 2000;
Ratchkovski and Hansen, 2002; Clinton et al., 2006].

For completeness we also compare the effect of using a different inversion code with same seismograms.
This is achieved by performing a CAP inversion (M012) using the same stations and same band-pass filter as
those used in the AEC moment tensor catalog (MAEC). Any differences would arise from the minor differences
(e.g., how time windows are cut and how stations are weighted by distance) between the CAP algorithm that
we use and the TDMT algorithm that is used by AEC. The differences shown in the M012 and MAEC columns in
Figure 13 are small, as we would hope. Note that much of the visual difference arises from comparing a double
couple moment tensor (M012) to a deviatoric but non–double couple moment tensor.

6. Moment Tensor Catalog: Part II (85 Events)

Part I of our moment tensor catalog contains 21 events. For each event we performed a grid search over depth,
an uncertainty analysis, and a series of comparison inversions (section 5). Table 4 lists the moment tensor
parameters, and Silwal [2015] contains figures of waveform fits, depth grid searches, and uncertainty analyses.

We performed moment tensor inversions for an additional 85 events that make up Part II of our catalog. These
events were the largest events within the AEC first-motion catalog (but not within the AEC moment tensor
catalog) that occurred during the time period of interest (section 2). For these smaller events we decided to
use a limited number of first-motion polarity measurements to help guide the inversion by excluding moment
tensors that fail to match the polarities. The moment tensor parameters are listed in Table S5, and waveform
fits are provided in Silwal [2015]. In principle it should be possible to perform the uncertainty analyses for a
misfit function that uses both waveform differences and first-motion polarities. It would be interesting to see
the𝒫AV curves for earthquakes with worse data than the high-quality events in Part I. The example in Figure 9
suggests that the uncertainty analysis could provide insights into local minima in the misfit function that
may occur.

In the supporting information we provide waveform fits for two Part II catalog events (Figures S5–S7 and
Figures S8–S10). These examples show the challenges associated with moment tensor inversions for events
with lower signal-to-noise ratios (like smaller events): the waveform fits for two very different moment tensors
appear to be qualitatively comparably good. An uncertainty analysis would benefit these events, as would a
detailed investigation of the inclusion of first-motion polarities along with the waveforms.

7. Discussion
7.1. The Confidence Curve 𝓟(V)
We provide several examples to elucidate the confidence curve 𝒫(V). In all of them we are dealing with dou-
ble couple moment tensors. The normalized eigenvalues are therefore 𝚲=(1, 0,−1)∕

√
2, and the fractional
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Figure 12. The effect of using an L1 versus an L2 norm in the misfit function for the 21 Part I events. (first column) Using
only the best stations (M111) and applying the L1 norm. (second column) Using all stations (M110) and applying the L1
norm. (third column) Using only the best stations (M111) and applying the L2 norm. (fourth column) Using all stations
(M110) and applying the L2 norm. The number above each beach ball is the angle 𝜔 to the preferred beach ball in
Figure 12 (first column); if 𝜔 ≥ 50∘ , then the ball is colored red and is considered to be significantly wrong.

volume curve V̂(𝜔) takes the shape of a mesa. (The curve will change for full moment tensors or for a different
choice of 𝚲 [Tape and Tape, 2016].)

The calculation of 𝒫(V) is shown in Figure 4. While the curve itself is our indicator of confidence, we also rely
on two scalar quantities derived from it. The first is the average 𝒫AV of 𝒫(V); this is the area under 𝒫(V). The
second is the slope of 𝒫(V) at the origin, which is proportional to the probability density at M0. Traditionally,
an estimated moment tensor M would be considered good if the curve 𝒫(V) were steep at the origin. Our
philosophy in this paper is that we need to look at the rest of the curve 𝒫(V) as well; it should be Γ-shaped if
M is truly reliable.

We present three examples of𝒫(V) curves in Figures 7–9. Two are for high-quality solutions, where the curves
resemble a Γ shape, while one is a low-quality solution, where the curve is close to the 45∘ line, 𝒫(V) = V .

Figure 14 shows 𝒫AV versus p(M0) for our 21 events and for all the cases listed in Table 1. The modest
correlation seen in the figure suggests that high confidence may reasonably be expected for high p(M0).
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Table 4. Moment Tensor Catalog, Part I (21 Out of 106 Events), Generated by CAP Using Body Waves and Surface Wavesa

Event Latitude Longitude Strike Dip Rake Mw Depth (km) p(M0) 𝒫AV Ns

1 20070911234634153 61.53 −151.53 80 40 80 4.4 94 (100.9) 3.19 0.89 37

2 20070919112226549 61.38 −146.11 225 62 −70 4.5 47 (30.8) 2.35 0.92 42

3 20071003140612444 58.28 −151.29 45 83 60 5.0 32 (45.5) 4.38 0.88 45

4 20071010180326301 59.96 −147.41 40 87 5 4.2 27 (11.8) 1.56 0.90 44

5 20071128235703849 61.91 −151.13 35 83 65 4.9 69 (69.6) 7.65 0.97 48

6 20080314093821771 61.07 −152.64 265 28 90 5.1 139 (143.7) 8.28 0.94 38

7 20080327230745201 59.01 −152.17 240 90 −25 5.1 65 (68.5) 1.66 0.90 28

8 20080828231418631 62.12 −149.60 220 76 −30 4.2 54 (43.0) 4.36 0.95 33

9 20080918194353069 59.50 −152.79 75 58 65 4.6 81 (90.2) 0.88 0.78 29

10 20081228071310738 62.35 −151.05 90 54 50 4.6 82 (89.3) 4.28 0.95 21

11 20090124180950811 59.43 −152.89 70 76 55 5.8 105 (97.9) 1.33 0.85 35

12 20090215193500098 61.60 −146.33 80 40 −55 4.5 43 (37.2) 1.80 0.93 59

13 20090223000427175 58.92 −153.63 60 80 75 4.9 81 (87.8) 11.76 0.94 18

14 20090317011333066 60.24 −152.15 60 58 60 4.3 96 (90.1) 0.75 0.78 13

15 20090407201255351 61.45 −149.74 205 50 −85 4.5 39 (33.0) 3.30 0.95 25

16 20090414171427415 60.16 −153.06 145 40 75 4.3 111 (117.8) 0.89 0.83 29

17 20090430045457938 58.99 −151.31 40 28 −45 4.8 40 (52.7) 5.52 0.89 41

18 20090524094004552 59.78 −153.25 70 54 40 4.6 109 (125.5) 2.02 0.89 32

19 20090622192805162 61.94 −150.70 25 50 −20 5.4 62 (64.6) 4.30 0.94 57

20 20090626164820729 61.91 −150.64 25 35 −25 4.2 56 (59.5) 7.72 0.95 27

21 20090730223910267 59.93 −151.09 220 20 15 4.6 60 (44.1) 3.62 0.94 23

Figure 8 20140416202423770 62.89 −149.91 110 69 30 4.9 72 (82.9) 1.77 0.98 76

Figure 9 20140418184418152 63.93 −145.77 340 86 0 5.2 20b (20) 12.29 0.61 54
aThe depth is obtained from grid search and is based on variations in the amplitudes of waveforms (e.g., Figure 6). The AEC catalog depth, derived from P and S

traveltimes, is listed in parentheses. The last three columns are the maximum probability density (p(M0)), the confidence parameter (𝒫AV), and the number of
stations used in the inversion (Ns). See Table S5 for the complete catalog of 106 events. Additional inversions with these events are tabulated in Table 5.

bFor the Noatak event the inversion was performed at the AEC catalog depth.

In geometrical terms, if 𝒫(V) starts at the origin with a high slope (high p(M0)), then there is a good chance
that 𝒫(V) will result in a Γ shape with its area near 1. Yet it is no guarantee, as illustrated by the Noatak event
(Figure 9). But the main message of Figure 14 is that for a given value of the misfit function at the global
minimum Φ(M0)—or, more appropriately, the value of the probability density p(M0)—we can expect a wide
range of values in 𝒫AV. As we might have hoped in our endeavor, 𝒫AV provides useful information about the
probability density that is not available from just the information at M0.

Thus far, we have chosen to calculate 𝒫(V) for the global minimum of misfit (or highest probability density)
M0. But we can calculate 𝒫(V) for any reference tensor M, and in some cases it may be useful to do so. In
the supporting information we show the uncertainty analysis for our example event when choosing the ref-
erence moment tensor to be the maximum misfit solution Mx (Figure S17) and then again when it is the
opposite −M0 of the minimum misfit solution (Figure S18). For Mx the slope of 𝒫(V) at the origin is near zero,
as expected, yet the average confidence is 𝒫AV = 0.66, which, although it is not good, it is not as bad as one
might expect. One might have hoped that the worst fitting point would also have low confidence (as hinted by
Figure 14), but we can understand why this is not the case. If we examine cross sections of the misfit function
(Figure S18b), we can see that, as expected, the misfit goes down as we look in any direction away from the
moment tensor with maximum misfit. But∠(Mx ,M0) = 74°, so Mx “sees” the region of high probability around
M0 at an angular distance of only about 74∘. The curve 𝒫(V) therefore rises steeply for V ≈ V̂(74°) = 0.308.

The confidence curve for −M0 is always a 180∘ rotation of the confidence curve for M0 [Tape and Tape, 2016].
Since in this example the confidence curve for M0 resembles a Γ (Figure 7f ), then the confidence curve for
−M0 resembles a backward L. And since 𝒫AV for M0 was 0.95, 𝒫AV for −M0 is only 0.05. The reason for this low
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Table 5. Angular Difference 𝜔 Between Our Preferred Solution (M111) and Solutions Obtained Using Different Waveform
Data Setsa

𝜔 = ∠(M111,M)
Event M111 M110 M011 M101 M112 M012 MAEC Mfm

1 20070911234634153 – 0 16 0 37 15 21 12

2 20070919112226549 – 22 18 23 20 31 34 21

3 20071003140612444 – 13 62 119 55 61 54 67

4 20071010180326301 – 10 7 53 41 41 19 20

5 20071128235703849 – 29 0 12 16 0 4 77

6 20080314093821771 – 10 50 0 53 43 32 67

7 20080327230745201 – 0 8 68 19 8 11 19

8 20080828231418631 – 0 10 14 19 19 14 13

9 20080918194353069 – 19 11 56 151 10 8 27

10 20081228071310738 – 18 26 17 21 26 25 27

11 20090124180950811 – 10 10 52 20 10 30 29

12 20090215193500098 – 0 12 36 17 17 25 27

13 20090223000427175 – 10 0 110 0 10 26 25

14 20090317011333066 – 31 0 59 55 13 17 19

15 20090407201255351 – 26 9 21 10 10 17 32

16 20090414171427415 – 10 27 125 50 20 24 21

17 20090430045457938 – 0 10 118 28 16 25 65

18 20090524094004552 – 13 24 0 43 24 29 27

19 20090622192805162 – 0 10 24 10 10 13 13

20 20090626164820729 – 13 19 10 14 30 25 20

21 20090730223910267 – 28 10 29 36 30 17 28
aThe column labels are described in Table 1. See Figure 13 for the corresponding beach balls. See Table S3 for details,

including values of p(M0) and 𝒫AV.

value is that as we move away from −M0 in any direction in moment tensor space, we do not encounter the
concentrated probability near M0 until we are nearly 180∘ from −M0, at which point the 𝒫(V) curve shoots
up toward 1 to make the backward L.

7.2. The Misfit Function Scale Factor k
The scale factor k (equation (6)) in the misfit function Φ is arbitrary, and it will systematically alter 𝒫(V). If
k is near zero, then the probability density will be nearly constant, 𝒫(V) will be nearly the 45∘ line, and the
moment tensor orientations (depicted in Figures 7h and 7i) will be nearly random. As k increases, 𝒫(V) will
sharpen toward a Γ shape, 𝒫AV will correspondingly increase (assuming that 𝒫(V) was at least slightly favor-
able to begin with), and the moment tensor orientations will become more consistent. This is a reminder that
one can only meaningfully compare 𝒫(V) (and 𝒫AV) for different earthquakes when the misfit function is the
same. In our study we fix k to be the same for all events, and then our results give a relative measure of con-
fidence among all events in the catalog. A similar qualification faces any moment tensor catalog or any study
that attempts to compare results from different catalogs (using different misfit functions).

7.3. Finding the Best Moment Tensor Solution
We have discussed three factors in determining the quality of a moment tensor solution: (1) the “amount” of
the wavefield that is fit within the moment tensor inversion, (2) the confidence curve 𝒫(V) and its average
𝒫AV, (3) the difference between observed and synthetic waveforms.

The normalized waveform difference is represented by probability density p(M0) and geometrically depicted
by the slope 𝒫 ′(0) of the confidence curve for M0. Our comparison tests in section 5, tabulated in Table S4,
show how p(M0) tends to decrease as we include more stations, more seismic phases (like body waves), and
shorter-period waveforms in the inversion [see also Zahradník and Custódio, 2012]. Yet what we want is to fit
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Figure 13. Beach balls obtained using different data sets and applying an L1 norm. See Tables 1 and 2 for comparing
the differences between different columns. The solution used in our catalog (Table 4) is M111 (the first column). The last
two columns show the moment tensors in the Alaska Earthquake Center catalogs (MAEC and Mfm). A beach ball is
colored red if it is 𝜔 ≥50∘ from the M111 solution.

more of the seismic wavefield, and we cannot simply assume that the moment tensor with the largest p(M0) is
the better solution. Our guide for establishing our preferred solution M111 is to fit the most waveforms, rather
than just to achieve the lowest waveform difference (highest p(M0)). In principle it should be possible to adapt
the misfit function to up-weight the amount of time of seismograms used in waveform fitting.

The confidence curve provides insights into the concentration of the posterior probability near M0. In the
case of the Noatak earthquake (Figure 9), the steep slope of 𝒫(V) at zero implies a high probability density
(low misfit) at M0. Yet the confidence curve reveals that M0 is not a reliable solution.

SILWAL AND TAPE ALASKA MOMENT TENSORS AND UNCERTAINTIES 2793



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012588

Figure 14. Confidence parameter 𝒫AV versus probability density
p(M0) for the 21 Part I catalog events for inversions performed with
different subsets of data (see Table 1): M111 (black), M011 (red), M101
(cyan), M112 (green), M012 (blue), and M110 (magenta). The plot
reveals some correlation between 𝒫AV and log-scaled p(M0),
though, in general, a range of 𝒫AV values are possible for any given
p(M0). See Figure 13 for the set of beach balls corresponding to
the dots in this figure. Values for the black dots (M111) are listed in
Table 4; the two large black dots are for the Denali (Figure 8) and
Noatak (Figure 9) events.

7.4. Comparison of Catalogs
The availability of two different catalogs
from the Alaska Earthquake Center allows
us to make comparisons with the solutions
from our catalog. At the simplest level, we
can compare the angular differences among
moment tensors for the same event in each
catalog. Figure 15a shows a comparison
between the AEC moment tensor catalog
(MAEC) and the AEC first-motion catalog (Mfm)
for the 21 Part I events in our study. These
can be seen in Table 5 and in Figure 13
(last two columns), and it is clear that in
some cases there are notable differences.
Keep in mind that the techniques for estimat-
ing these moment tensors are very different:
one technique uses long-period (T>16s for
Mw>4) surface waves, while the other tech-
nique uses first-motion P polarities from raw
waveforms.

A direct comparison between our catalog
and the AEC moment tensor catalog is shown
in Figure 15b for 21 events. A direct compari-
son between our catalog and the AEC first-
motion catalog is shown in Figure 15c for
85 events. We identify a small discrepancy in

magnitudes between our moment tensors and the magnitudes in the AEC catalog (Figure 15d); the average
difference 0.2 agrees with Ruppert and Hansen [2010]. Figure S19 shows these different moment tensor
catalogs in map view.

We designed this study to provide more than just angular measures between moment tensors in two catalogs.
Some of our tests in section 5 allow us to quantify the influence of different choices that are made within a
particular approach. To perform one-to-one comparisons, we evaluate the AEC moment tensor (MAEC) using
the same misfit function as was used to obtain our solution (MCAP). By design, the misfit Φ(MAEC) will always
be greater than Φ(MCAP), since MAEC is a point within the global grid search. Our assumption in section 7.3 is
that MCAP is the best solution because it fits the most of the seismic wavefield; therefore, MAEC will be a worse
solution, and we can quantify this difference.

8. Summary

We present a catalog of 106 moment tensors in southern Alaska. In order to isolate the impact of decisions
made in moment tensor algorithms—stations, band-pass filter, seismic phases, weights, and norm in misfit
function—we perform a series of tests in section 5. Our main assumption is that the best solution (section 7.3)
is the one that fits the most of the seismic wavefield, in terms of number of stations, number of seismic phases,
and broadest range of periods (notably shortest periods). We compare 21 of our moment tensor solutions
with those in the Alaska Earthquake Center (AEC) moment tensor catalog, and we compare 85 with the AEC
first-motion catalog. We have an inherent advantage over the AEC catalogs in that we use data from the MOOS
deployment. We nevertheless can test the influence of choices within the moment tensor inversion by using
the same stations as those used in the AEC inversion. Our comparisons are based on the matrix angle between
moment tensors; for example, 𝜔 = ∠(MCAP,MAEC) is the angle between our preferred solution derived from
the CAP [Zhu and Helmberger, 1996] and the AEC moment tensor solution derived from TDMT [Dreger and
Woods, 2002; Ratchkovski and Hansen, 2002].

When comparing two moment tensors, “close enough” depends strongly on how one intends to use the
information. If one is interested in understanding the tectonics of a region, then it may be enough to say, for
example, that an earthquake is a normal-fault mechanism. In that case𝜔 < 50∘ may be acceptable. If, however,
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Figure 15. Comparison among three moment tensor catalogs for earthquakes in this study: (1) the Alaska Earthquake
Center moment tensor catalog (MAEC), (2) the AEC first-motion catalog (Mfm), and (3) our catalog (MCAP). The
difference between two moment tensors for the same event is quantified by the matrix angle 𝜔 between the closest
double couple moment tensors. (Only the MAEC moment tensors allow for a non–double couple component.)
(a) 𝜔 = ∠(MCAP,MAEC): AEC first-motion solution versus AEC moment tensor for the 21 Part I events. This shows the
influence of using long-period waveforms or first-motion polarities. These results are computed directly from the AEC
catalogs. (b) CAP moment tensor versus AEC moment tensor for the 21 Part I events. (c) CAP moment tensor versus AEC
first-motion solution for all 106 events. The differences are larger than those in Figure 15b, likely because the set of
106 events includes smaller events than the higher-quality, larger events in Figure 15b. Larger uncertainties in either the
CAP solutions or the AEC first-motion solutions will result in larger differences between the two sets of solutions.
(d) Differences in magnitude, mCAP − mAEC, for all 106 events in the catalog. The average difference in magnitude is 0.2,
indicating that our CAP magnitude estimates tend to be larger than those from AEC. It is possible that these differences
are partly due to how the magnitudes are determined: mCAP is measured as moment magnitude (Mw), and mAEC is
measured as local magnitude (Ml).

one is performing a tomographic inversion based on amplitude and traveltime differences, or if one is inter-
ested in calculating ground motions from a 3-D wavefield simulation, then it is important to have the best
possible moment tensor; this will minimize the propagation of errors from the moment tensor to the seismic
velocity structure, or to the ground motion predictions. For these purposes one might want the moment ten-
sor to be 𝜔 < 20∘ of the true solution. Our motivation for this study is to use this catalog for a tomographic
inversion using wavefield simulations and adjoint methods [e.g., Tape et al., 2009; Lee et al., 2014]. Our
improved moment tensor catalog will allow us to more confidently associate differences in traveltimes and
amplitudes with structural differences within a 3-D reference Earth model. An additional consideration in such

studies is whether to perform additional moment tensor inversions using the 3-D reference model [Liu et al.,
2004; Chen et al., 2005; Covellone and Savage, 2012; Zhu and Zhou, 2016].

Three summary points are as follows:

1. We present an improved catalog of moment tensors in southern Alaska. We use both body waves and sur-
face waves from as many broadband stations as possible (both permanent and temporary). Examples in

SILWAL AND TAPE ALASKA MOMENT TENSORS AND UNCERTAINTIES 2795



Journal of Geophysical Research: Solid Earth 10.1002/2015JB012588

section 5 show that using more stations and using body waves, in addition to surface waves, can substan-
tially improve the moment tensor solutions. For 33 (out of 106) events, our moment tensor differed from
the AEC first-motion solution by 𝜔 ≥ 50∘ (Figure 15).

2. We demonstrate that using an L1 norm in the misfit function will provide more stable moment tensor solu-
tions (section 2.4 and section 5.1). This should allow for less manual (or automatic) thresholding of bad
stations, which could be valuable in operational settings. The modification to the misfit function in the code
is trivial.

3. We introduce an approach for quantifying and visualizing the uncertainty in a double couple moment
tensor solution (section 3 and Figure 7). The confidence curve 𝒫(V) in Figure 7f is shaped like a Γ for a
high-quality event, and it is close to the 45∘line for a low-quality event. The slope of 𝒫(V) at the origin is
related to the probability density at the best fitting moment tensor, and the area under the curve𝒫(V) pro-
vides the average confidence [Tape and Tape, 2016]. Results for 21 events are presented in Silwal [2015] and
summarized in Table 4.
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