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Abstract

Le Cam’s first lemma is of fundamental importance to modern theory of
statistical inference: it is a key result in the foundation of the Convolution
Theorem, which implies a very general form of the optimality of the maxi-
mum likelihood estimate and any statistic that is asymptotically equivalent
to it. This lemma is also important for developing asymptotically efficient
tests. In this note we give a relatively simple but detailed proof of Le Cam’s
first lemma. Our proof allows us to grasp the central idea by making analo-
gies between contiguity and absolute continuity, and is particularly attractive
when teaching this lemma in a classroom setting.

AMS (2000) subject classification. Primary: 62F12; Secondary: 62E20, 62F10.

1 Introduction

Le Cam’s first lemma (Le Cam, 1960; van der Vaart, 1998) plays a critical
role in the asymptotic theory of statistical inference. Along with Le Cam’s
third lemma, it laid the foundation of the Convolution Theorem (Le Cam
1953, 1960; Hajek 1970), which states that every regular estimate can be
decomposed into two asymptotically independent pieces, one of which is
asymptotically equivalent to the maximum likelihood estimate. A direct
consequence of this theorem is that the maximum likelihood estimate, or
any estimate asymptotically equivalent to it, has an asymptotic variance
smaller than or equal to that of any regular estimate in terms of Louwner’s
ordering. The publication of this rigorous statement about the optimality
of the maximum likelihood estimate resolved some long standing questions
about the maximum likelihood estimate ever since its introduction (Fisher
1922, 1925), that is, first, to what extent is the maximum likelihood estimate
optimal? and second, beyond the extent to which the maximum likelihood
estimate is optimal, how should we interpret the meaning of those estimates
whose asymptotic variances are smaller than that of the maximum likelihood
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estimate? Inevitably, any rigorous course on statistical inference should give
adequate answers to these fundamental questions. And, to answer them,
it is helpful to have a relatively easy and intuitive proof of Le Cam’s first
lemma.

Le Cam’s first lemma is a set of equivalent conditions for contiguity,
which is an asymptotic analogue of absolute continuity. Commonly known
proofs of Le Cam’s first lemma utilize intricate construction of intermediate
functions, and it is difficulty to see the central issue through this construc-
tion. van der Vaart (1998) provides a very concise proof of Le Cam’s first
lemma. What is presented in this note is not largely different from that
given in van der Vaart (1998), but a relatively simple and transparent ver-
sion that we hope can make the proof more easily accessible to graduate
students. Especially, this simple proof allows us to grasp the core issue by
making direct analogies between sequences of probability measures and in-
dividual probability measures. A somewhat different proof, under a stronger
assumption, was given in a recent text book on statistical inference by Li
and Babu (2019).

Professor C. R. Rao used to start his lectures/presentations with simple
basic ideas and then bring in analogies from related problems. This paper
is inline with that premise of his.

2 Contiguity

Contiguity is a relation between two sequences of probability measures
that resemble the relation of absolute continuity between two probability
measures. Recall that a probability measure P is absolutely continuous
with respect to a probability measure @) if and only if, for any measurable
set A, Q(A) =0 implies P(A) = 0. This is symbolically written as P < Q.

Similarly, if (Q,, F,), n = 1,2, ..., is a sequence of measurable spaces and
{P,} and {Q,} are sequences of probability measures with P,, @, defined
on F, for each n, then we say that the sequence {P,} is contiguous with
respect to the sequence {@,, } if and only if, for each sequence of subsets {4, }
with A, € Fp, Qn(A,) — 0 implies P, (A,) — 0. If {P,} is contiguous with
respect to {Q,}, then we write P, <4 Q.

Despite their conceptual similarity, contiguity and absolute continuity are
technically very different: the former characterizes the collective behavior
of a pair of sequences of probability measures; the latter that of a pair
of probability measures. In particular, even if P, < @, holds for every
n, this does not imply P, < @,. For example, if Z is a standard normal
random variable and, for each n, P,, @, are probability distributions of
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Z and 1+ (Z/n) respectively, then P, < @ for each n. However, since
the limiting distribution of @), is a point mass at 1, if we let A, be the
set (—o0,0), then Q,(A4,) — 0 but P,(A4,) = 1 for all n. Thus P, is not
contiguous with respect to @,.

3 The Main Result

Le Cam’s first lemma focuses on necessary and sufficient conditions for
contiguity between two sequences of probability measures. Again, it is help-
ful to make an analogy with the situation where two probability measures
are involved. For two probability measures v and 7, if v < 7, and if % de-
notes the Radon-Nikodym derivative (Billingsley 1995, Theorem 32.2) then

dv dv

where E- denotes the expectation with respect to the probability measure 7.
Le Cam’s first Lemma is similar to this result when v and 7 are replaced by
sequences of probability measures {P,} and {Q,} and absolute continuity
v < 7 i8 replaced by contiguity P, < Q.

We first introduce some notation. Let X, X,, n = 1,2,... be random
vectors in R¥, v, the distribution of X,,, and v the distribution of the random
vector X. We use the notation

X, 25X,

Un,

to denote weak convergence of X,, to X under the sequence {v,}; that is, for
every bounded and continuous function f on R*, E, (f(X,)) — E,(f(X)).
Similarly, if X,, converges in v,-probability to a constant a; that is,

Un (| Xn — al| > €) — 0,

for every € > 0, then we write X, —*a.

For any two probability measures v, 7, we have v = v+ v® by Lebesgue
decomposition (see Billingsley 1995, equation (32.8)) where v*¢ < 7, and v*
and 7 are mutually singular (i.e., 7(5¢) = 1 = v*(S) for some measurable set
S). In addition, by Radon-Nikodym Theorem (see Billingsley 1995, Theorem

32.2) v*(A) = [, ‘Z’:C dr for all measurable sets A. For ease of notation we
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wrlte 7= for Radon-Nikodym derivativ
for any measurable set B,

joR C”hg L/<h— °(B) < v(B) < 1. (3.2)

The statements (a) and (c) of the theorem given below are comparable
to absolute continuity and to Eq. 3.1. For completeness some results on
probability measures and convergence of random variables that are needed
in the proof of the Theorem are collected following the proof.

Theorem (Le Cam’s first lemma). Let {P,} and {Q,} be sequences of prob-
ability measures on measurable spaces (U, Fn). Then the following state-
ments are equivalent:

((1) P, < Qn;

dQn
(b) If d?D HU along a sub-sequence, then P(U > 0) = 1;

dpb;,
o) HV along a sub-sequence, then Eg(V) =1,

where U,V are random variables defined on probability spaces (0, F, P) and
(', F',Q) respectively.

(c) If

dQ
O D,y

Proof of (a) = (b). We need to show that if P, <@, and PP
along some subsequence {n'}, then P(U > 0) = 1. Clearly, P(U > 0) ~1

dQ,,
@n > 0] = 1. Thus it suffices to show that P(U = 0) = 0. By

/

as P
n

item (i7) of the Proposition, for any ¢ > 0,

0w
1mmH@L£ <QZPW<02PW=W- (3.3)

n/—o00 n’
By Lemma 1, there exists a sequence €, | 0 such that
daQ),,
lim inf P,/ dQw <ey | >PU=0). (3.4)
n/—o0 dPn/

It remains to show that the left-hand side of Eq. 3.4 is 0. Let u, be the
probability measure ( + Q). Then P, < p, and @, < iy Let p, and
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qn denote the densities of P, and @, with respect to u,. By part (i) of
Lemma 2,

dQn’ __ ac dQn/ _/ dQn’
@ ((dPn, < e,,) N (pp > 0)) =Quw <dpn, < 6”’) (<., P AP

< € /dPn/ =€, — 0. (35)

Since P,/ < Q,, Eq. 3.5 and part (i) of Lemma 2 imply

dQn o dQn’
Py <dP <e /) =Py ((dPn/ <€n/> N (pp >0)> — 0.

Therefore the left-hand side of Eq. 3.4 is 0.
Proof of (b) = (c). First note that clearly,

Pntgn=2, and 0<p, <2, 0<¢q, <2 (3.6)
By Lemma 2,
Pn{pn = 0} = Qn{Qn = 0} =0, (3'7)
dQ, P,
Pn n n n n n = U. .
(q # P dP”) Q <p #qun> 0 (3.8)

7 Q —>V along a sub-sequence {n’}, then we need to
establish F(V) = 1. By Egs. 3.6 and 3.7, we have for any K > 0,

4n dn 1 dn 1 2
Pl—>K)< —E =—=F —1 < —F n) < —.
<pn > > K P, (pn) K Py, (pn {pn>0}> - K Hn (q ) - K

Hence the sequence {q,/py} is tight under { P, }. By Prohorov’s theorem
(see Billingsley 1995, Theorem 25.10) there is a further sub-sequence {n’}
of {n'}

such that

Now suppose

In P—)U for some random variable U, (3.9)
D Fypnr

which, by Eq. 3.8, implies d@,,~ /dPnu%U . Moreover, because dP,/dQ,

converges in distribution to V under Q,, along 7/, it also converges in distri-
bution to V under @, along n”. To summarize, we have
dQn// D dPTL” D

. 1
dPnu a) U, and dQnu w V. (3 0)
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Thus by Eq. 3.2, the second convergence in Eq. 3.10, and item (i) of the
Proposition,

P 1
Eq(V) < lémigEQ <;ZQ:/'> <1.

Since P, (p, = 0) = 0, we have for any ¢ > 0,

p
EQn <q:I{pn/QnSC}> Z Eﬂn (pnl{pn/%ﬁa pn>0, qn>0})

Po((Pn/an) < ¢ pu >0, g > 0)
((gn/Pn) = 1/c; pp >0, g, > 0)
((gn/pn) = 1/¢, pn > 0)
((gn/pn) = 1/c)

(( ) >1/c).

I
S

v
s

QTL/pn

n

Hence

DPn
1> Eq(V) > Eq (VIv<s)) > limsupEq,, (q,,f{pn///qnusd>

n/'—o00

> liminf P ((gnr/pnr) > 1/c)
n'’ —o00

> P(U >1/e),

where the third inequality follows by applying item (%ii) of the Proposition
to the upper semi-continuous function f(x) = zl{y<1/cy that is bounded
from above, and the last inequality follows by applying item (i) of the
Proposition to the open set (z > 1/c¢). By the continuity of probability,
limeyoo P(U > 1/¢) = P(U > 0). Hence Eg(V) > P(U > 0). By the
first convergence in Eq. 3.10 and statement (b), P(U > 0) = 1. Hence
Eq(V) =1, thus establishing statement (c).

Proof of (¢) = (a). Suppose that statement (c¢) holds. If @, (A,) — 0 for
a sequence of measurable sets {4, }, then we need to show that P, (A,) — 0.
First note that, by Eq. 3.2,

dP, dP, 1
@ <dQn > K) K Fer (d%) K

and hence the sequence of Radon-Nikodym derivatives {55:} is tight under

the sequence of measures {@,}. By Prohorov’s Theorem (see Billingsley

1995, Theorem 25.10) every subsequence {n’} has a further subsequence

{n”}, and a random variable V', such that filg z AV
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Let B,, denote the complement of the measurable set A4,,. Since @, (4,) —
0=1 Bn% 1, by a version of Slutsky’s theorem (see for example Billingsley

1995, Theorem 25.4)

Since

Po(By) > P™(B,) — / In, dQndQn,

we have by item (i) of the Proposition, and Eq. 3.2,

Py
Eq(V) < liminfEqg , (d = IBn">

n'’—oo dQn//
S liminf P, //( //) =1-—1lim sup Pn//(An//).
n'’'—oo n' =00

By statement (c), Eq(V) =1, so P (Ayp») — 0. Thus we have shown that
every subsequence of {P,(4,)} contains a further subsequence {P,(A,)}
that converges to 0. Hence P,,(A,) — 0. This completes the proof.

The above detailed proof is simpler than the “standard proof”, say, given
in van der Vaart (1998). The proofs of (a) = (b) and (c) = (a) are relatively
straightforward and intuitive, but the proof of (b) = (c) is more intricate,
and the complexity lies in the passage from U to V. In the proof of (van der
Vaart 1998, Lemma 6.4) V is related to U via a third random variable W.
In comparison, in our proof V is directly linked to U. This more intuitive
proof allows us to see exactly how the sequences of measures P, and ), are
interchanged, just like in the two-measure case.

We now present some results on probability measures and convergence
of random vectors in a form useful to the proof of the Theorem.

First, a technical lemma is established, which is used only in the proof
of (a) = (b) of the theorem.

Lemma 1. Let a be a real number. Suppose that g, : R — R is a sequence
of functions such that, for any € > 0, liminf, o gn(€) > a. Then there is a
sequence €y, }. 0 such that iminf, . g,(€,) > a.

PROOF. Since for each integer k > 1, liminf,, o g,(1/k) > a, there is a
positive integer ny such that, for all n > ng, g,(1/k) > a — 1/k. Without
loss of generality, we can assume that ngi1 > ng for all k = 1,2,.... Let
€n = 1/k for np < n < ngy1. Then g,(€,) > a — €, for all n > ny. Clearly
€n 4 0 and liminf,, o gn(€n) > a.

The next lemma connects three probability measures.
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Lemma 2. Let u, P, P» be probability measures on a measurable space
(QF), P, < u, pi = Cg;i, for i = 1,2. Then the following statements
hold.

(i) Pi{pi =0} =0, i=1,2.
(i) If
Py(A) = P,(AN(p1 >0)), and P3(A) = Py(AN (p1 =0)),
then Po = Py°+ Py, P3¢ < Pp, and Py and Py are mutually singular.
Py <p2 # Z]]ij) =0.
PROOF.

(i) This follows from Radon-Nikodym Theorem (see Billingsley 1995, The-
orem 32.2).

(ii) The equality P, = Py¢ + Pj follows by construction. Since, for every

AeF,
Pi(A) = / prdp = / p1du,
A AN(p1>0)

by Theorem 15.2(ii) of Billingsley (1995), if P;(A) = 0 then u(AN(p1 >
0)) = 0. This implies

Pi(A) =P,(AN(p1 >0)) =0 as P < p.
Therefore Py¢ < P;. Since Pi(p; =0) =0 and
P3(p1 > 0) = Pa((p1 > 0) N (p1 = 0)) = P(0) =0,
Pj and P; are mutually singular.

(iii) By statement (i7), and Radon-Nikodym Theorem, we have for all A €
F,

/A P2 Ly >0y dp = Po(AN (p1 > 0))

dPy dPs

= PJ¢(A) = —dP; = —pd
2() /Adpl 1 Adplplﬂ
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dPs
= N dTDlpl I{p1>0} dp,

Jz ((p2 # Zﬁjm) N (p1 > 0)) = 0.

As Py < p, and Py(p; > 0) = 1, this leads to
dPs
P, —— = 0.
1 <I?27é ) p1> 0

This completes the proof.

and hence

The proposition below collects versions of Fatou’s lemma and portman-
teau theorem.

Proposition. Let X, X,, be random wvariables defined on the probability
spaces (U, F, P), (Q, Fn, Pn). Suppose XN%X. Then the following state-

ments hold.

1. B(|X|) < liminf Ep, (|Xn]).
n—oo

2. For any open set G, liminf,,_, - P,(X, € G) > P(X € G).

3. If g is an upper semi-continuous function that is bounded from above,
then

limsup Ep, (9(Xy)) < E(9(X)).
n—oo
PROOF. By Skorohod’s Theorem (see Billingsley 1995, Theorem 25.6)
there exist random variables Y, Y,, defined on a common probability space
(Q0, Fo, Py) such that Y,, has distribution P, o X,;!, Y has distribution P o
X! such that Y, (w) = Y (w) for all w € Q. Now (i) follows from Fatou’s
lemma (see Billingsley 1995, Theorem 16.3) as

E(|X])=Ep(Y]) < liniinpro(\YnD = liniinprn(\XnD.

Statements (i¢) and (i77) are part of Portmanteau Theorem (see for example
Billingsley 1995, Theorem 29.1 and Problem 29.1).
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