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Abstract

Le Cam’s first lemma is of fundamental importance to modern theory of
statistical inference: it is a key result in the foundation of the Convolution
Theorem, which implies a very general form of the optimality of the maxi-
mum likelihood estimate and any statistic that is asymptotically equivalent
to it. This lemma is also important for developing asymptotically efficient
tests. In this note we give a relatively simple but detailed proof of Le Cam’s
first lemma. Our proof allows us to grasp the central idea by making analo-
gies between contiguity and absolute continuity, and is particularly attractive
when teaching this lemma in a classroom setting.

AMS (2000) subject classification. Primary: 62F12; Secondary: 62E20, 62F10.

1 Introduction

Le Cam’s first lemma (Le Cam, 1960; van der Vaart, 1998) plays a critical
role in the asymptotic theory of statistical inference. Along with Le Cam’s
third lemma, it laid the foundation of the Convolution Theorem (Le Cam
1953, 1960; Hájek 1970), which states that every regular estimate can be
decomposed into two asymptotically independent pieces, one of which is
asymptotically equivalent to the maximum likelihood estimate. A direct
consequence of this theorem is that the maximum likelihood estimate, or
any estimate asymptotically equivalent to it, has an asymptotic variance
smaller than or equal to that of any regular estimate in terms of Louwner’s
ordering. The publication of this rigorous statement about the optimality
of the maximum likelihood estimate resolved some long standing questions
about the maximum likelihood estimate ever since its introduction (Fisher
1922, 1925), that is, first, to what extent is the maximum likelihood estimate
optimal? and second, beyond the extent to which the maximum likelihood
estimate is optimal, how should we interpret the meaning of those estimates
whose asymptotic variances are smaller than that of the maximum likelihood
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2 G. Jogesh Babu and B. Li

estimate? Inevitably, any rigorous course on statistical inference should give
adequate answers to these fundamental questions. And, to answer them,
it is helpful to have a relatively easy and intuitive proof of Le Cam’s first
lemma.

Le Cam’s first lemma is a set of equivalent conditions for contiguity,
which is an asymptotic analogue of absolute continuity. Commonly known
proofs of Le Cam’s first lemma utilize intricate construction of intermediate
functions, and it is difficulty to see the central issue through this construc-
tion. van der Vaart (1998) provides a very concise proof of Le Cam’s first
lemma. What is presented in this note is not largely different from that
given in van der Vaart (1998), but a relatively simple and transparent ver-
sion that we hope can make the proof more easily accessible to graduate
students. Especially, this simple proof allows us to grasp the core issue by
making direct analogies between sequences of probability measures and in-
dividual probability measures. A somewhat different proof, under a stronger
assumption, was given in a recent text book on statistical inference by Li
and Babu (2019).

Professor C. R. Rao used to start his lectures/presentations with simple
basic ideas and then bring in analogies from related problems. This paper
is inline with that premise of his.

2 Contiguity

Contiguity is a relation between two sequences of probability measures
that resemble the relation of absolute continuity between two probability
measures. Recall that a probability measure P is absolutely continuous
with respect to a probability measure Q if and only if, for any measurable
set A, Q(A) = 0 implies P (A) = 0. This is symbolically written as P � Q.

Similarly, if (Ωn,Fn), n = 1, 2, . . ., is a sequence of measurable spaces and
{Pn} and {Qn} are sequences of probability measures with Pn, Qn defined
on Fn for each n, then we say that the sequence {Pn} is contiguous with
respect to the sequence {Qn} if and only if, for each sequence of subsets {An}
with An ∈ Fn, Qn(An) → 0 implies Pn(An) → 0. If {Pn} is contiguous with
respect to {Qn}, then we write Pn � Qn.

Despite their conceptual similarity, contiguity and absolute continuity are
technically very different: the former characterizes the collective behavior
of a pair of sequences of probability measures; the latter that of a pair
of probability measures. In particular, even if Pn � Qn holds for every
n, this does not imply Pn � Qn. For example, if Z is a standard normal
random variable and, for each n, Pn, Qn are probability distributions of
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A Revisit to Le Cam’s First Lemma 3

Z and 1 + (Z/n) respectively, then Pn � Qn for each n. However, since
the limiting distribution of Qn is a point mass at 1, if we let An be the
set (−∞, 0), then Qn(An) → 0 but Pn(An) = 1

2 for all n. Thus Pn is not
contiguous with respect to Qn.

3 The Main Result

Le Cam’s first lemma focuses on necessary and sufficient conditions for
contiguity between two sequences of probability measures. Again, it is help-
ful to make an analogy with the situation where two probability measures
are involved. For two probability measures ν and τ , if ν � τ , and if dν

dτ de-
notes the Radon-Nikodym derivative (Billingsley 1995, Theorem 32.2) then

Eτ

(
dν

dτ

)
=

∫
dν

dτ
dτ =

∫
dν = 1, (3.1)

where Eτ denotes the expectation with respect to the probability measure τ .
Le Cam’s first Lemma is similar to this result when ν and τ are replaced by
sequences of probability measures {Pn} and {Qn} and absolute continuity
ν � τ is replaced by contiguity Pn �Qn.

We first introduce some notation. Let X,Xn, n = 1, 2, . . . be random
vectors in R

k, νn the distribution ofXn, and ν the distribution of the random
vector X. We use the notation

Xn
D−→
νn

X,

to denote weak convergence of Xn to X under the sequence {νn}; that is, for
every bounded and continuous function f on R

k, Eνn(f(Xn)) → Eν(f(X)).
Similarly, if Xn converges in νn-probability to a constant a; that is,

νn(‖Xn − a‖ > ε) → 0,

for every ε > 0, then we write Xn
νn−→a.

For any two probability measures ν, τ , we have ν = νac+νs by Lebesgue
decomposition (see Billingsley 1995, equation (32.8)) where νac � τ , and νs

and τ are mutually singular (i.e., τ(Sc) = 1 = νs(S) for some measurable set
S). In addition, by Radon-Nikodym Theorem (see Billingsley 1995, Theorem
32.2) νac(A) =

∫
A

dνac

dτ dτ for all measurable sets A. For ease of notation we
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4 G. Jogesh Babu and B. Li

write dν
dτ for Radon-Nikodym derivative dνac

dτ . Analogous to Eq. 3.1, we have
for any measurable set B,

Eτ

(
dν

dτ
IB

)
=

∫
B

dν

dτ
dτ = νac(B) ≤ ν(B) ≤ 1. (3.2)

The statements (a) and (c) of the theorem given below are comparable
to absolute continuity and to Eq. 3.1. For completeness some results on
probability measures and convergence of random variables that are needed
in the proof of the Theorem are collected following the proof.

Theorem (Le Cam’s first lemma). Let {Pn} and {Qn} be sequences of prob-
ability measures on measurable spaces (Ωn,Fn). Then the following state-
ments are equivalent:

(a) Pn � Qn;

(b) If
dQn

dPn

D−→
Pn

U along a sub-sequence, then P (U > 0) = 1;

(c) If
dPn

dQn

D−→
Qn

V along a sub-sequence, then EQ(V ) = 1,

where U, V are random variables defined on probability spaces (Ω,F , P ) and
(Ω′,F ′, Q) respectively.

Proof of (a) ⇒ (b). We need to show that if Pn � Qn and
dQn′

dPn′

D−→
Pn′

U

along some subsequence {n′}, then P (U > 0) = 1. Clearly, P (U ≥ 0) = 1,

as Pn′

(
dQn′

dPn′
≥ 0

)
= 1. Thus it suffices to show that P (U = 0) = 0. By

item (ii) of the Proposition, for any ε > 0,

lim inf
n′→∞

Pn′

(
dQn′

dPn′
< ε

)
≥ P (U < ε) ≥ P (U = 0). (3.3)

By Lemma 1, there exists a sequence εn′ ↓ 0 such that

lim inf
n′→∞

Pn′

(
dQn′

dPn′
< εn′

)
≥ P (U = 0). (3.4)

It remains to show that the left-hand side of Eq. 3.4 is 0. Let μn be the
probability measure 1

2(Pn +Qn). Then Pn � μn and Qn � μn. Let pn and
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qn denote the densities of Pn and Qn with respect to μn. By part (ii) of
Lemma 2,

Qn′

((
dQn′

dPn′
< εn′

)
∩ (pn′ > 0)

)
= Qac

n′

(
dQn′

dPn′
< εn′

)
=

∫
(

dQ
n′

dP
n′ <εn′

) dQn′

dPn′
dPn′

≤ εn′

∫
dPn′ = εn′ → 0. (3.5)

Since Pn′ � Qn′ , Eq. 3.5 and part (i) of Lemma 2 imply

Pn′

(
dQn′

dPn′
< εn′

)
= Pn′

((
dQn′

dPn′
< εn′

)
∩ (pn′ > 0)

)
→ 0.

Therefore the left-hand side of Eq. 3.4 is 0.
Proof of (b) ⇒ (c). First note that clearly,

pn + qn = 2, and 0 ≤ pn ≤ 2, 0 ≤ qn ≤ 2. (3.6)

By Lemma 2,

Pn{pn = 0} = Qn{qn = 0} = 0, (3.7)

Pn

(
qn �= pn

dQn

dPn

)
= Qn

(
pn �= qn

dPn

dQn

)
= 0. (3.8)

Now suppose
dPn

dQn

D−→
Qn

V along a sub-sequence {n′}, then we need to

establish E(V ) = 1. By Eqs. 3.6 and 3.7, we have for any K > 0,

Pn

(
qn
pn

> K

)
≤ 1

K
EPn

(
qn
pn

)
=

1

K
EPn

(
qn
pn

I{pn>0}

)
≤ 1

K
Eμn(qn) ≤

2

K
.

Hence the sequence {qn/pn} is tight under {Pn}. By Prohorov’s theorem
(see Billingsley 1995, Theorem 25.10) there is a further sub-sequence {n′′}
of {n′}

such that
qn′′

pn′′

D−→
Pn′′

U for some random variable U, (3.9)

which, by Eq. 3.8, implies dQn′′/dPn′′
D−→

Pn′′
U . Moreover, because dPn/dQn

converges in distribution to V under Qn along n′, it also converges in distri-
bution to V under Qn along n′′. To summarize, we have

dQn′′

dPn′′

D−→
Pn′′

U, and
dPn′′

dQn′′

D−→
Pn′′

V. (3.10)
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6 G. Jogesh Babu and B. Li

Thus by Eq. 3.2, the second convergence in Eq. 3.10, and item (i) of the
Proposition,

EQ(V ) ≤ lim inf
n′′→∞

EQn′′

(
dPn′′

dQn′′

)
≤ 1.

Since Pn(pn = 0) = 0, we have for any c > 0,

EQn

(
pn
qn

I{pn/qn≤c}

)
≥ Eμn

(
pnI{pn/qn≤c, pn>0, qn>0}

)
= Pn((pn/qn) ≤ c, pn > 0, qn > 0)

= Pn((qn/pn) ≥ 1/c, pn > 0, qn > 0)

= Pn((qn/pn) ≥ 1/c, pn > 0)

= Pn((qn/pn) ≥ 1/c)

≥ Pn((qn/pn) > 1/c).

Hence

1 ≥ EQ(V ) ≥ EQ

(
V I{V≤c})

)
≥ lim sup

n′′→∞
EQn′′

(
pn′′

qn′′
I{pn′′/qn′′≤c}

)

≥ lim inf
n′′→∞

Pn′′((qn′′/pn′′) > 1/c)

≥ P (U > 1/c),

where the third inequality follows by applying item (iii) of the Proposition
to the upper semi-continuous function f(x) = xI{x≤1/c} that is bounded
from above, and the last inequality follows by applying item (ii) of the
Proposition to the open set (x > 1/c). By the continuity of probability,
limc→∞ P (U > 1/c) = P (U > 0). Hence EQ(V ) ≥ P (U > 0). By the
first convergence in Eq. 3.10 and statement (b), P (U > 0) = 1. Hence
EQ(V ) = 1, thus establishing statement (c).

Proof of (c) ⇒ (a). Suppose that statement (c) holds. If Qn(An) → 0 for
a sequence of measurable sets {An}, then we need to show that Pn(An) → 0.
First note that, by Eq. 3.2,

Qn

(
dPn

dQn
> K

)
≤ 1

K
EQn

(
dPn

dQn

)
≤ 1

K
,

and hence the sequence of Radon-Nikodym derivatives
{
dPn
dQn

}
is tight under

the sequence of measures {Qn}. By Prohorov’s Theorem (see Billingsley
1995, Theorem 25.10) every subsequence {n′} has a further subsequence

{n′′}, and a random variable V , such that
dPn′′
dQn′′

D−→
Qn′′

V .
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A Revisit to Le Cam’s First Lemma 7

LetBn denote the complement of the measurable setAn. SinceQn(An) →
0 ⇒ IBn

D−→
Qn

1, by a version of Slutsky’s theorem (see for example Billingsley

1995, Theorem 25.4)

0 ≤ dPn′′

dQn′′
IBn′′

D−→
Qn′′

V.

Since

Pn(Bn) ≥ P ac
n (Bn) =

∫
IBn

dPn

dQn
dQn,

we have by item (i) of the Proposition, and Eq. 3.2,

EQ(V ) ≤ lim inf
n′′→∞

EQn′′

(
dPn′′

dQn′′
IBn′′

)

≤ lim inf
n′′→∞

Pn′′(Bn′′) = 1− lim sup
n′′→∞

Pn′′(An′′).

By statement (c), EQ(V ) = 1, so Pn′′(An′′) → 0. Thus we have shown that
every subsequence of {Pn(An)} contains a further subsequence {Pn′′(An′′)}
that converges to 0. Hence Pn(An) → 0. This completes the proof.

The above detailed proof is simpler than the “standard proof”, say, given
in van der Vaart (1998). The proofs of (a) ⇒ (b) and (c) ⇒ (a) are relatively
straightforward and intuitive, but the proof of (b) ⇒ (c) is more intricate,
and the complexity lies in the passage from U to V . In the proof of (van der
Vaart 1998, Lemma 6.4) V is related to U via a third random variable W .
In comparison, in our proof V is directly linked to U . This more intuitive
proof allows us to see exactly how the sequences of measures Pn and Qn are
interchanged, just like in the two-measure case.

We now present some results on probability measures and convergence
of random vectors in a form useful to the proof of the Theorem.

First, a technical lemma is established, which is used only in the proof
of (a) ⇒ (b) of the theorem.

Lemma 1. Let a be a real number. Suppose that gn : R → R is a sequence
of functions such that, for any ε > 0, lim infn→∞ gn(ε) ≥ a. Then there is a
sequence εn ↓ 0 such that lim infn→∞ gn(εn) ≥ a.

Proof. Since for each integer k ≥ 1, lim infn→∞ gn(1/k) ≥ a, there is a
positive integer nk such that, for all n ≥ nk, gn(1/k) > a − 1/k. Without
loss of generality, we can assume that nk+1 > nk for all k = 1, 2, . . .. Let
εn = 1/k for nk ≤ n < nk+1. Then gn(εn) > a − εn for all n ≥ n1. Clearly
εn ↓ 0 and lim infn→∞ gn(εn) ≥ a.

The next lemma connects three probability measures.
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8 G. Jogesh Babu and B. Li

Lemma 2. Let μ, P1, P2 be probability measures on a measurable space
(Ω,F), Pi � μ, pi = dPi

dμ , for i = 1, 2. Then the following statements
hold.

(i) Pi{pi = 0} = 0, i = 1, 2.

(ii) If

P ac
2 (A) = P2(A ∩ (p1 > 0)), and P s

2 (A) = P2(A ∩ (p1 = 0)),

then P2 = P ac
2 +P s

2 , P ac
2 � P1, and P s

2 and P1 are mutually singular.

(iii)

P1

(
p2 �=

dP2

dP1
p1

)
= 0.

Proof.

(i) This follows from Radon-Nikodym Theorem (see Billingsley 1995, The-
orem 32.2).

(ii) The equality P2 = P ac
2 + P s

2 follows by construction. Since, for every
A ∈ F ,

P1(A) =

∫
A
p1 dμ =

∫
A∩(p1>0)

p1 dμ,

by Theorem 15.2(ii) of Billingsley (1995), if P1(A) = 0 then μ(A∩(p1 >
0)) = 0. This implies

P ac
2 (A) = P2(A ∩ (p1 > 0)) = 0 as P2 � μ.

Therefore P ac
2 � P1. Since P1(p1 = 0) = 0 and

P s
2 (p1 > 0) = P2((p1 > 0) ∩ (p1 = 0)) = P2(∅) = 0,

P s
2 and P1 are mutually singular.

(iii) By statement (ii), and Radon-Nikodym Theorem, we have for all A ∈
F ,

∫
A
p2 I{p1>0} dμ = P2(A ∩ (p1 > 0))

= P ac
2 (A) =

∫
A

dP2

dP1
dP1 =

∫
A

dP2

dP1
p1 dμ
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A Revisit to Le Cam’s First Lemma 9

=

∫
A

dP2

dP1
p1 I{p1>0} dμ,

and hence

μ

((
p2 �=

dP2

dP1
p1

)
∩ (p1 > 0)

)
= 0.

As P1 � μ, and P1(p1 > 0) = 1, this leads to

P1

(
p2 �=

dP2

dP1
p1

)
= 0.

This completes the proof.

The proposition below collects versions of Fatou’s lemma and portman-
teau theorem.

Proposition. Let X, Xn be random variables defined on the probability

spaces (Ω,F , P ), (Ωn,Fn, Pn). Suppose Xn
D−→
Pn

X. Then the following state-

ments hold.

1. E(|X|) ≤ lim inf
n→∞

EPn(|Xn|).

2. For any open set G, lim infn→∞ Pn(Xn ∈ G) ≥ P (X ∈ G).

3. If g is an upper semi-continuous function that is bounded from above,
then

lim sup
n→∞

EPn(g(Xn)) ≤ E(g(X)).

Proof. By Skorohod’s Theorem (see Billingsley 1995, Theorem 25.6)
there exist random variables Y, Yn defined on a common probability space
(Ω0,F0, P0) such that Yn has distribution Pn ◦X−1

n , Y has distribution P ◦
X−1 such that Yn(ω) → Y (ω) for all ω ∈ Ω0. Now (i) follows from Fatou’s
lemma (see Billingsley 1995, Theorem 16.3) as

E(|X|) = EP0(|Y |) ≤ lim inf
n→∞

EP0(|Yn|) = lim inf
n→∞

EPn(|Xn|).

Statements (ii) and (iii) are part of Portmanteau Theorem (see for example
Billingsley 1995, Theorem 29.1 and Problem 29.1).
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