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SUMMARY 10

In many dimension reduction problems in Statistics and Machine Learning, such as principal
component analysis, canonical correlation analysis, independent component analysis, and suffi-
cient dimension reduction, it is important to determine the dimension of the reduced predictor,
which often amounts to estimating the rank of a matrix. This problem is called order determi-
nation. In this paper, we propose a novel and highly effective order-determination method based 15

on the idea of predictor augmentation. We show that, if we augment the predictor by an artifi-
cially generated random vector, then the part of the eigenvectors of the matrix induced by the
augmentation display a pattern that reveals information about the order to be determined. This
information, when combined with the information provided by the eigenvalues of the matrix,
greatly enhances the accuracy of order determination. 20

Some key words: Augmentation predictor; Dimension reduction; Eigenvalue; Eigenvector; Order determination.

1. INTRODUCTION

Many supervised and unsupervised statistical learning procedures operate by replacing the
original predictor with a few of its linear combinations. Commonly seen examples include prin-
cipal component analysis, canonical correlation analysis, independent component analysis, and 25

sufficient dimension reduction. Most of these problems can be formulated as estimating a matrix-
valued parameter M by a matrix-valued statistic M̂ . The reduced predictors are then the projec-
tions of the original predictors on the eigenvectors of M̂ corresponding to its significant eigen-
values. Typically, M is a symmetric and positive semi-definite matrix.

A crucial step in all these procedures is order determination; that is, to determine the dimension 30

of the reduced predictor. This amounts to determining the number of positive eigenvalues of M
or equivalently the rank of M , based on M̂ . As the sample estimate M̂ is usually of full rank,
the problem becomes that of determining the set of statistically significant eigenvalues of M̂ .

Due to the omnipresence of the order determination problem, research on this topic has been
extensive. Broadly speaking, existing methods can be categorized into three types. The first type 35

relies on the magnitude of the eigenvalues of M̂ . This includes sequential testing procedures (Li,
1991; Li & Wang, 2007) and information criteria (Gunderson & Muirhead, 1997; Bai & Ng,
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2002; Zhu et al., 2006). A sequential testing procedure gives p-values for each candidate rank,
which adds to the interpretability of the results. However, as its form depends on the specific M
and M̂ used, elaborate asymptotic expansions are often needed whenever it is applied to a new40

dimension reduction method. The information criteria avoid this drawback, as their forms are
unified across different dimension reduction settings. However, they commonly involve tuning
parameters, and appropriate choices of these parameters are highly model-dependent.

The second type of order-determination methods rely on the information contained in the
eigenvectors of M̂ . This type includes the bootstrap estimator (Ye & Weiss, 2003) and the val-45

idated information criterion (Ma & Zhang, 2015). The bootstrap estimator uses the bootstrap
re-sampling to approximate the variation of the linear space spanned by the first k sample eigen-
vectors, and estimates the rank of M , which we denote by d, based on the tendency that the
variation is large whenever k > d. The validated information criterion assesses whether the last
p− k eigenvectors of M belong to the same eigenspace, i.e. the null space of M , which holds if50

and only if k ≥ d.
The third type uses information from both the eigenvalues and the eigenvectors of M̂ , which,

in many examples, pinpoints the rank of M more accurately than the previous two types. So far,
the ladle estimator (Luo & Li, 2016) is the only member of this type. The idea behind the ladle
estimator is to exploit the compensatory pattern between the eigenvalues and the eigenvectors.55

That is, when the eigenvalues are far apart, their corresponding eigenvectors tend to have small
variances; but when the eigenvalues are close, their corresponding eigenvectors tend to have
larger variances. The combination of both quantities yields a ladle-shaped curve whose minimum
tends to occur at the true dimension d. Inspired by Ye & Weiss (2003), Luo & Li (2016) used the
bootstrap to estimate the variance of the eigenvectors.60

Building on the success of exploiting the information from both the eigenvalues and the eigen-
vectors, in this paper we introduce a different way — and in many cases a more efficient way
— of extracting the information from the eigenvectors. Instead of using the bootstrap to estimate
the eigenvector variation, we resort to predictor augmentation. We find that, if we add a ran-
dom component to the original predictor, then the augmented part of the first d eigenvectors are65

smaller than the augmented part of the subsequent eigenvectors by an order of magnitude. Thus,
once again, we can incorporate this information with the eigenvalues to obtain a ladle-shaped
curve whose minimum tends to occur at the true dimension d. Predictor augmentation not only
allows us to avoid the computationally intensive bootstrap procedure — which means we need
to perform the dimension reduction many times — but also has better finite-sample performance70

in all the examples we considered.
To the best of our knowledge, the method proposed in this paper is the first attempt at order

determination by adding noisy predictors. However, the idea of adding noisy predictors has been
used previously for variable selection and screening. For example, Wu et al. (2007) introduced
pseudo predictors to determine the entry significance level for forward selection by controlling75

two types of false selection rates. See also Luo et al. (2006), Johnson (2008), and Hu et al. (2018).
Zhu et al. (2011) used pseudo predictors to find tuning parameters for nonparametric variable
screening. Barber & Candès (2015, 2019) introduced knockoff variables to determine the tuning
parameters in sparse regression by controlling the false discovery rate in finite sample. The key
insight underlying all these methods is that we know, a priori, that the manufactured pseudo80

predictors bear no or little statistical relation with the response, and, if they are constructed to
resemble the observed predictors, then they will give us a benchmark for what an unimportant
predictor would look like statistically, thus helping us decide which predictors are important.
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This insight also underlies our order-determination method: indeed, our invariance assumptions
in §3 somewhat echo the knockoff condition for variable selection. 85

Although the invariance assumptions are weakened in §4 to a type of asymptotic contiguity,
the latter assumption serves the same purpose: to ensure that the artificially created predictors are
not too dissimilar to the original predictors. In this sense, the current method can be viewed as
a further development of the fruitful idea of pseudo or knockoff predictors in the arena of order
determination. 90

2. THE IDEA OF PREDICTOR AUGMENTATION

To motivate our exposition, we now use the four examples mentioned in §1 to illustrate the di-
mension reduction problems where order determination is needed. Let U be the random element
involved. For supervised learning, U contains a predictor X , which is a vector of dimension p,
and a response Y , which can be a scalar or a vector. For unsupervised learning, U only contains 95

X itself. let Z = Σ−1/2

XX {X − E(X)} be the standardized X with zero mean and identity covari-
ance matrix Ip, where ΣXX denotes the covariance matrix of X . Since a linear combination of
X can be equivalently expressed as a linear combination of Z, in some examples we use Z in
place of X for easy presentation.

Example 1. In canonical correlation analysis, the goal is to find lower-dimensional linear com- 100

binations of X and Y that fully capture the linear relation between them, which amounts to
estimating the leading eigenvectors of

MCCA = Σ
−1/2

XX ΣXY Σ−1Y Y ΣY XΣ
−1/2

XX , (1)

where ΣY Y denotes the covariance matrix of Y and ΣXY denotes the covariance matrix between
X and Y . The estimator M̂CCA is constructed using the sample covariance matrices. The order- 105

determination problem is to find how many eigenvalues of M̂CCA are significantly nonzero.

Example 2. In independent component analysis, one needs to find the linear combinations of
Z that are non-normally distributed. A popular method for independent component analysis is
the fourth order blind identification (Cardoso, 1989), where the non-normality is detected by
excessive kurtosis characterized by the matrix 110

MICA = {E(ZZᵀZZᵀ)− (p+ 2)Ip}2. (2)

Only those eigenvectors of MICA that correspond to positive eigenvalues have excess kurtosis
and are of interest, and the rest are normally distributed and discarded as noise. The estimator
M̂ICA is constructed by replacing the expectation in (2) with the sample average.

Example 3. In sufficient dimension reduction, we assume that there exists a matrix β ∈ Rp×d, 115

with d < p, such that

Y Z | βᵀZ, (3)

where means independence. For identifiable parametrization, Cook (1994, 1998) introduced
the notion of the central subspace, defined as the linear space spanned by the columns of β in (3)
with minimal dimension d. This space exists and is unique under fairly general conditions, and 120

is denoted by SY |X . Examples of sufficient dimension reduction methods include, among many
others, sliced inverse regression (Li, 1991), sliced average variance estimator (Cook & Weisberg,
1991), and directional regression (Li & Wang, 2007). For a recent comprehensive account of this
subject, see Li (2018).
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All these methods first construct a population-level matrixM , called the candidate matrix, and125

estimate it by a matrix-valued statistic M̂ . The central subspace is then estimated by the linear
span of the leading eigenvectors of M̂ . For example, the candidate matrices for sliced inverse
regression and directional regression are, respectively,

MSIR = E{E(Z | Y )Eᵀ(Z | Y )}, MDR = E[2Ip − E{(Z − Z̃)
⊗2 | Y, Ỹ }]⊗2

, (4)

where (Z̃, Ỹ ) is an independent copy of (Z, Y ) andA⊗2 denotesAAᵀ for any matrixA. Let S(·)130

represent the column space of a matrix. Then S(MSIR) is always a subspace of S(MDR). If

E(Z | βᵀZ) is linear in βᵀZ, (5)

then S(MSIR) is further a subspace of SY |X . Similarly, under (5) and the additional condition

var(Z | βᵀZ) is a nonrandom matrix, (6)

S(MDR) is a subspace of SY |X . Relaxation of (6) for directional regression can be found in Luo135

(2018). These conditions are exactly satisfied when Z follows a multivariate normal distribution,
and hold approximately in general when p is large (Hall & Li, 1993). The order determination
problem here is to estimate the rank ofMSIR orMDR. To construct M̂SIR and M̂DR, it is a common
practice to adopt the slicing strategy, which is to partition the support of Y into H intervals; see
Li (1991) and Li & Wang (2007) for details.140

Example 4. In principal component analysis, we assume that MPCA = var(X) has the form

MPCA = M0 + σ
2
Ip, (7)

where M0 is a positive semi-definite matrix and σ2 > 0 (Jolliffe, 2002). The principal compo-
nents are the eigenvectors of M0 that span its column space, or equivalently, the eigenvectors
of MPCA whose corresponding eigenvalues are greater than σ2. We use the sample covariance145

matrix of X as M̂PCA.

The estimation procedure in all of the above dimension reduction settings involve a sample-
level matrix-valued estimator M̂ that converges to a population-level matrix-valued parameter
M , and, with n denoting the sample size, the convergence rate of M̂ is typically the root-n rate.

The idea of predictor augmentation can be illustrated as follows. We augment the predictor150

X to X∗ by an r-dimensional random vector S that is independent of U , i.e. X∗ = (Xᵀ, Sᵀ)ᵀ

where S U . For simplicity, we generate S from N(0, Ir). We call X the original predictor,
S the augmentation predictor, and X∗ the augmented predictor. Let U ∗ be the corresponding
augmented version of U . Apply the same estimation procedure to U ∗, we have the statistic M̂ ∗,
which converges to its population-level counterpart M ∗. Because the column space of M ∗ gen-155

erates the reduced predictor for U ∗, and the random noise S must be absent from this reduced
predictor, it is intuitive that M ∗ must have the form

M
∗

=

(
M 0
0 0

)
. (8)

In particular, M ∗ and M must have equal rank. This can be justified in all the dimension reduc-
tion settings mentioned above, with the exception of principal component analysis. Adjustments160

for principal component analysis will be discussed in §6.

LEMMA 1. The form of M ∗ in (8) holds for Examples 1, 2, and 3.
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Denote the rank of M and M ∗ by d. Let λ1, . . . , λp+r be the eigenvalues of M ∗ in descend-
ing order, that is, λ1 ≥ . . . ≥ λd > 0 = λd+1 = . . . = λp+r, and let β1, . . . , βp+r be the corre-
sponding eigenvectors. We allow arbitrariness in βi’s if the corresponding eigenspace is multi- 165

dimensional, but assume that the eigenvectors in the same eigenspace form an orthonormal set.
We define λ̂1, . . . , λ̂p+r and β̂1, . . . , β̂p+r similarly for M̂ ∗. For any vector v ∈ Rp+r, we call
the sub-vector of its last r entries the augmentation sub-vector of v. For k = 1, . . . , p+ r, let
β̂k,S be the augmentation sub-vector of β̂k. Let Bk = (β1, . . . , βk) and Γk = (βk+1, . . . , βp+r).
By definition, Γd spans the null space of M ∗. 170

When k ≤ d, (8) implies that the augmentation sub-vector of βk must be zero. The consistency
of M̂ ∗ then implies the negligibility of the augmentation sub-vector β̂k,S. However, this is no
longer the case when k > d — one can easily imagine that the length of the augmentation sub-
vector β̂k,S converges to a continuous distribution because S and the noisy directions of X are
intuitively exchangeable. This change of asymptotic behavior of β̂k,S before and after k reaches 175

d provides us with extra information about d, beyond that provided by the eigenvalues of M̂ ∗.

3. A MOTIVATING SPECIAL CASE

In this section, we rigorously establish the asymptotic behavior of the augmentation sub-vector
of the eigenvectors of M̂ ∗ in a special case where certain invariance assumptions are satisfied.
This special case is developed separately from the general case because its proof is the most 180

intuitive, and because it can be readily generalized to the high dimensional settings, as we will
do in §5. We also discuss appropriate sufficient conditions for the invariance assumptions under
different dimension reduction settings.

For ease of presentation, we use Z in place of X as the original predictor. Since Z and S
are independent, Z∗ = (Zᵀ, Sᵀ)ᵀ is the standardization of X∗. For any (p+ r − d)-dimensional 185

orthogonal matrix A, let M ∗(A) and M̂ ∗(A) be the matrix-valued parameter and its estimator,
respectively, if Z∗ is replaced with its rotation (Bd,ΓdA)ᵀZ∗. Using (Bd,ΓdA)ᵀZ∗ as the hy-
pothetical augmented predictor, the reduced predictor at the population level is the projection
of (Bd,ΓdA)ᵀZ∗ onto the column space of M ∗(A), or equivalently the projection of Z∗ onto
the column space of (Bd,ΓdA)M ∗(A)(Bd,ΓdA)ᵀ. Our first invariance assumption is that the re- 190

duced predictor is invariant under the rotation of the noisy part of the augmented predictor, both
at the population level and at the sample level; that is,

(Bd,ΓdA)M
∗
(A)(Bd,ΓdA)ᵀ = M

∗ and (Bd,ΓdA)M̂
∗
(A)(Bd,ΓdA)ᵀ = M̂

∗
. (9)

We call this assumption “the invariant predictor assumption”. As shown next, this assumption is
satisfied by all the dimension reduction methods considered in Examples 1 through 4 in §2. 195

LEMMA 2. The invariant predictor assumption (9) is satisfied in all the five methods consid-
ered in Examples 1 through 4.

Our second invariance assumption is that the distribution of the matrix-valued estimator is
invariant under the rotation of the noisy part of the augmented predictor; that is,

M̂
∗
(A)

D
= M̂

∗
(Ip+r−d), (10) 200

where D= means that the two random elements on both sides have the same distribution. As-
sumption (8) implies that M ∗(A) is always invariant of A; that is, M ∗(A) = M ∗(Ip+r−d) for all
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orthogonal matrix A. The above assumption states that this property also holds for M̂ ∗(A) in
distribution. We refer to this assumption as “the invariant matrix assumption”.

The invariant matrix assumption (10) requires various additional assumptions on U under205

different dimension reduction settings. As an example, we next illustrate such assumptions for
sufficient dimension reduction. For simplicity, we assume that, in addition to S(M) ⊆ SY |X , the
two spaces coincide. This means Bᵀ

dZ
∗, which is indeed a linear combination of Z, satisfies (3).

The result can be extended to the general cases by slight modifications.

LEMMA 3. Suppose Z has a standard multivariate normal distribution andBᵀ
dZ
∗ can replace210

βᵀZ in (3). Then, for any (p+ r − d)-dimensional orthogonal matrix A,

(Bᵀ
dZ
∗
,Γᵀ

dZ
∗
, Y )

D
= (Bᵀ

dZ
∗
, AΓᵀ

dZ
∗
, Y ). (11)

Clearly, (11) implies the invariant matrix assumption (10). Intuitively, the multivariate normal
distribution of Z, together with the sufficient dimension reduction assumption (3), indicate that
the noisy directions of Z have the standard multivariate normal distribution and are marginally215

independent of (Bᵀ
dZ
∗, Y ). Since S also has the standard multivariate normal distribution and

is marginally independent of (Bᵀ
dZ
∗, Y ), the random vector Γᵀ

dZ
∗, which consists of the noisy

directions of Z and S, must also be independent of (Bᵀ
dZ
∗, Y ). Thus, any rotation of Γᵀ

dZ
∗ is

indistinguishable from the pattern of the augmented data.
Conversely, the invariant matrix assumption implies the exchangeability between the noisy220

directions of Z and the components of S, which means that the noisy directions of Z must have
the standard multivariate normal distribution. Because the central subspace SY |X is unknown
in practice, this condition needs to be strengthened to that the entire Z must have the standard
multivariate normal distribution. In this sense, for sufficient dimension reduction, the invariant
matrix assumption is satisfied exclusively for normally distributed original predictor.225

Similar to Lemma 3, one can also show that the invariant matrix assumption (10) holds for
canonical correlation analysis if Z has a multivariate normal distribution and the noisy directions
Γᵀ

dZ
∗ are independent of Y ; for independent component analysis, the independent components

of Z must be independent of the normally distributed noise. Details are omitted.
The invariance assumptions (9) and (10) together imply that the distribution of230

(Bd,ΓdA)ᵀM̂ ∗(Bd,ΓdA), and hence also those of (Bd,ΓdA)ᵀβ̂k, are invariant of the orthog-
onal matrix A. Thus, given ‖Γᵀ

d β̂k‖, the Euclidean norm of Γᵀ
d β̂k, Γᵀ

d β̂k must follow a uniform
distribution on a hyper-sphere centered at the origin and with radius ‖Γᵀ

d β̂k‖. Under Assumption
(8), the augmentation sub-vector β̂k,S is a linear function of Γᵀ

d β̂k, so it must be non-negligible
whenever ‖Γᵀ

d β̂k‖ is non-negligible.235

Throughout the section, we assume the consistency of M̂ ∗; that is,

‖M̂ ∗ −M ∗‖ = oP (1), (12)

where ‖ · ‖ denotes the spectral norm of a matrix. The assumption is fairly general, as it holds
for all the examples in §2 by the weak law of large numbers. Assumptions (8) and (12) imply
that ‖Γᵀ

d β̂k‖ is negligible when k ≤ d and non-negligible otherwise. Following the discussion in240

the previous paragraph, this means the negligibility of β̂k,S when k ≤ d and non-negligibility of
β̂k,S otherwise. Consequently, the function k 7→ ‖β̂k,S‖2 can characterize d as its unique jumping
point. This property is formally established in the following theorem. We denote a sequence of
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random variables Wn by Ω+

P (1) if they are non-negligible in probability; that is,

lim
n→∞

P (Wn > δn) = 1 for any δn = oP (1). 245

For more descriptions about Ω+

P (1), see the Supplementary Material and also Luo & Li (2016).

THEOREM 1. If Assumptions (8), (9), (10), and (12) are satisfied, then the following state-
ments hold:

(i) for any k = 1, . . . , d, ‖β̂k,S‖2 = oP (1);
(ii) for any k = d+ 1, . . . , p, ‖β̂k,S‖2 = Ω+

P (1). 250

The use of the Euclidean norm in Theorem 1 is rather an arbitrary choice. Other commonly
used norms, or appropriate monotonically increasing functions of these norms, can also be em-
ployed and deliver the same result.

By Theorem 1, if we draw the plot of ‖β̂k,S‖2 against k = 1, . . . , p, then we will observe a
substantial jump from nearly zero at k = d to significantly positive at k = d+ 1 when the sample 255

size is large enough. As seen in the next section, with the aid of additional regularity conditions
on M̂ ∗, this characterization of d also holds when the invariant matrix assumption (10) fails. It
can then be used along with the sample eigenvalues to carry out effective order determination.

4. THE PREDICTOR AUGMENTATION ESTIMATOR

As mentioned in §2, under Assumption (8), the augmentation sub-vector is zero for any vector 260

lying in the column space of M ∗. Intuitively, the consistency assumption (12) alone is sufficient
to guarantee that the augmentation sub-vectors of the leading eigenvectors of M̂ ∗ be asymp-
totically negligible. However, the proof of statement (ii) of Theorem 1 (see the Supplementary
Material) involves both the invariant predictor assumption (9) and the invariant matrix assump-
tion (10), the latter of which, as discussed below Lemma 3, is not granted. Hence, the proof of 265

statement (ii) of Theorem 1 is not applicable in the general case.
For this reason, in the absence of the invariant matrix assumption (10), we make the following

assumption in addition to (12). This assumption is also to replace the invariant predictor assump-
tion (9), although the generality of the latter is justified in Lemma 2. First, we slightly generalize
the concept of contiguous probability measures. Let (Ω,F , P ) be a probability space. Let q be a 270

positive integer, and Rq be the Borel σ-field on Rq. Let Vn : Ω→ Rq be a sequence of random
vectors, and Pn = P ◦ V −1n the distribution of Vn. We say that Vn is contiguous with respect to
the Lebesgue measure µ on (Rq,Rq), denoted by Vn � µ, if for any sequence of sets An ∈ Rq,
µ(An)→ 0 implies Pn(An)→ 0. Contiguity (see, for example, Li & Babu 2019) is commonly
defined with respect to two sequences of probability measures. But here, one of the sequences is 275

taken as the Lebesgue measure. We assume

f(n)vech{Γᵀ
dM̂

∗
Γd − (Γᵀ

dM̂
∗
Bd)(B

ᵀ
d M̂

∗
Bd)
−1(Bᵀ

d M̂
∗
Γd)}� µ (13)

where f(n) is an appropriate function of n and vech(·) stacks the columns of the upper triangle
of a symmetric matrix into a vector. The transformation of M̂ ∗ in (13) can be interpreted as the
squared remainder of the noisy directions Γᵀ

d(M̂ ∗)1/2 after removing the effect of the informative 280

directions Bᵀ
d (M̂ ∗)1/2, much like the residual sum of squares in linear regression.

In many cases, including all the examples in §2, M̂ ∗ is a statistical functional of the empirical
distribution of U ∗, with the leading term of its von Mises expansion being zero, and the second
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term of this expansion converging to a quadratic function of a multivariate normal distribution.
Some examples of von Mises expansions for dimension reduction methods can be found in (Li,285

2018, Chapter 9). Under these circumstances, Assumption (13) is satisfied for f(n) = n. Hence,
it is much weaker than the invariant matrix assumption (10). In particular, it does not require X
or S to have a multivariate normal distribution. Furthermore, since f(n) is flexible, Assumption
(13) can potentially cover the nonparametric dimension reduction methods such as outer product
gradient and minimum average variance estimator (Xia et al., 2002).290

Intuitively, Assumption (13) regulates M̂ ∗ so that, after zooming in by a factor of f(n), the
transformed matrix inside the brace of the left-hand side of (13) does not fall into a region
of Lebesgue measure zero with non-negligible probability. Consequently, the eigenvectors of
this transformed matrix will not contain asymptotically negligible entries, as the set of all (p+
r − d)-dimensional symmetric matrices whose eigenvectors contain zero entries has Lebesgue295

measure zero. By Lemma A in the Supplementary Material, these eigenvectors are close to those
of M̂ ∗ corresponding to non-significant eigenvalues, subject to left-multiplication of the latter by
Γd. Hence, the augmentation sub-vector of the latter must also be non-negligible, which yields
the same pattern as discussed in §3. This is formulated in the following theorem.

THEOREM 2. If Assumptions (8), (12), and (13) are satisfied, then300

(i) for any k = 1, . . . , d, ‖β̂k,S‖2 = oP (1);
(ii) for any k = d+ 1, . . . , p, ‖β̂k,S‖2 = Ω+

P (1).

Theorem 2 justifies that, similar to the special case where the invariance matrix assumption
(10) holds, in general the magnitude of the augmentation sub-vector of the kth sample eigen-
vector also stays negligible before k reaches d+ 1, jumps to a significantly positive value at305

k = d+ 1, and remains large thereafter.
Next, we use this pattern to construct an estimator of the order d. To further stabilize the pat-

tern, we generate the augmentation predictor s times independently, and conduct dimension re-
duction on each augmented sample. Specifically, for j = 1, . . . , s, let β̂k,S,j be the augmentation
sub-vector of the kth eigenvector at the jth replication. We use the average s−1

∑s

j=1
‖β̂k,S,j‖2310

to characterize d. Clearly, this average also has the pattern described in Theorem 2.
We follow the same idea of Luo & Li (2016) to combine the information provided by predictor

augmentation with the eigenvalues of M̂ ∗. Define the objective function Φ : {0, . . . , p} → R:

Φ(k) =
∑k

i=0
(s−1

∑s

j=1
‖β̂i,S,j‖2) + λ̂k+1/(1 +

∑k+1

i=1
λ̂i), (14)

where β̂0,S,j is set to be the origin in Rr. We estimate d by minimizing Φ(·); that is,315

d̂ = arg min{Φ(k) : k = 0, . . . , p}. (15)

Because the estimator is characterized by augmenting the original predictor, we call it the pre-
dictor augmentation estimator.

In the first term of (14), we employ the accumulation of s−1
∑s

j=1
‖β̂i,S,j‖2 over i = 0, . . . , k,

instead of the single term s−1
∑s

j=1
‖β̂k,S,j‖2, to elevate Φ when k > d. This modification320

does not affect the asymptotic behavior of the objective function that uses the single summand
s−1

∑s

j=1
‖β̂k,S,j‖2, but it makes a subtle but important difference when d is much smaller than

p and the sample size is limited: in that case, the accumulation makes the first term of (14) suffi-
ciently large as k approaches p, so that the value of Φ at d is still less than those at large values
of k, even though the (d+ 1)th sample eigenvalue is not yet small due to limited sample size.325
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Another relative advantage of the modification in the high-dimensional settings will be discussed
in §5.

Following the similar adjustment in the ladle estimator (Luo & Li, 2016), we introduce the
denominator in the second term of (14) as a normalization, so that the objective function Φ(·)
is robust to the scale change of M̂ ∗. The constant one is included in the denominator as a regu- 330

larization for the case d = 0, that is, when all the eigenvalues of M̂ ∗ are oP (1). In addition, as
the denominator increases with k, it sharpens the decreasing pattern of the second term of Φ(·),
which enhances the effectiveness of the predictor augmentation estimator when the (d+ 1)th
sample eigenvalue is not small due to the limited sample size. In contrast to the adjustment in
the ladle estimator that employs all the eigenvalues of M̂ ∗ at once, the denominator used here 335

only involves the first k + 1 eigenvalues of M̂ ∗ at each candidate rank k. This is crucial to the
asymptotic study of Φ(k) for small k in the high-dimensional settings in §5.

When the matrix-valued parameter M is zero, as is the case when d = 0, all the sample eigen-
vectors have non-negligible augmentation sub-vectors, and all the sample eigenvalues are neg-
ligible, which, together, make Φ asymptotically minimized at zero. At the other extreme, when 340

M is of full rank, all the sample eigenvectors have negligible augmentation sub-vectors, and all
the sample eigenvalues are non-negligible except for the (p+ 1)th that corresponds to the aug-
mentation predictor, which, together, make Φ consistently minimized at p. Thus the predictor
augmentation estimator is still applicable in these two cases.

WhenM is of reduced rank but nonzero, for any k < d, the eigenvalue term in (14) is large; for 345

any k > d, the eigenvector term in (14) is large. Moreover, since we shift the sample eigenvalues
one unit to the left in the eigenvalue term in (14), both the eigenvector term and the eigenvalue
term are small at k = d. Thus, similar to the ladle plot, the graph of Φ tends to reach its minimum
at d, resulting in consistent order determination. This is proved in the following theorem.

THEOREM 3. Suppose Assumptions (8), (12), and (13) are satisfied. The predictor augmenta- 350

tion estimator d̂ defined in (15) is consistent in the sense that

lim
n→∞

P (d̂ = d) = 1.

As mentioned earlier, the predictor augmentation estimator shares the same advantage as the
ladle estimator, as it also combines the information from both the eigenvalues and the eigenvec-
tors for order determination, which in principle is more effective than the other existing methods. 355

Compared with the ladle estimator, the predictor augmentation estimator does not involve boot-
strap re-sampling or rely on the corresponding self-similarity condition (Luo & Li, 2016), so it
is computationally more efficient and potentially less demanding on the sample size.

5. CONSISTENCY IN HIGH-DIMENSIONAL SETTINGS

As mentioned in §1, many dimension reduction methods have been adapted to the high- 360

dimensional settings, where the dimension p increases with the sample size n at some rate. For
example, Zhu et al. (2006) studied the consistency of sliced inverse regression when p = o(n1/2).
Li (2007) and Chen et al. (2010) assumed that the central subspace only involves a few compo-
nents of the original predictor — only a few rows and columns ofM are nonzero — and modified
M̂ by incorporating the lasso penalty, which have been shown effective in practice when p < n. 365

Lin et al. (2019) incorporates the same sparsity structure on MSIR and proposed the lasso-sliced
inverse regression, which is consistent when p = o(n2).
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In this section, we prove the consistency of the predictor augmentation estimator in the high-
dimensional settings. Because the argument is greatly simplified under the invariant predictor
assumption (9) and the invariant matrix assumption (10), we will make these assumptions in the370

high-dimensional settings. The general case is deferred to future research.
As p increases, M becomes a sequence of matrices of increasing dimensions, whose ranks

d may also increase with p. Here, we assume that d is fixed for all large p. This assumption
has been adopted frequently in the literature of high-dimensional sufficient dimension reduction
(Zhu et al., 2006; Yu et al., 2016; Luo, 2018), and our experiences also suggest that a few linear375

combinations of the predictor often explain most of the variations of the response, making the
rest of the predictor essentially noise.

In general, to establish any consistent order determination, it is a minimal requirement that the
matrix-valued parameter M is consistently estimated; that is,

‖M̂ −M‖ = OP (ωp,n) (16)380

where ωp,n = o(1) as p and n diverges and ‖ · ‖ again denotes the spectral norm of a matrix. It is
the reader’s choice either to set ωp,n at a general o(1) for simplicity, or to specify a convergence
rate of ωp,n for a particular dimension reduction method, e.g. ωp,n = p1/2n−1/2 for principal com-
ponent analysis and sliced inverse regression (Johnstone & Lu, 2009; Lin et al., 2018). We do
not impose any additional restriction on p beyond that required by (16).385

Because the consistency of matrix estimation typically depends on the order of the predictor’s
dimension, we assume that the order of magnitude of r does not exceed that of p; that is,

r = O(p). (17)

Under (16) and (17), it is reasonable to assume the consistency of M̂ ∗ in terms of

‖M̂ ∗ −M ∗‖ = OP (ωp,n) (18)390

which reduces to (12) if we set ωp,n at a general o(1).

THEOREM 4. Suppose Assumptions (8), (9), (10), (17), and (18) are satisfied. If, furthermore,
r satisfies rp−1ω−1p,n →∞ as n and p diverge, then the predictor augmentation estimator d̂ de-
fined in (15) is consistent in the sense that

lim
n,p→∞

P (d̂ = d) = 1.395

When ωp,n is set at a general o(1), (17) and Theorem 4 together require r to have the same
order of magnitude as p. When a convergence order is specified for ωp,n, a smaller order of
magnitude is allowed for r. The lower limit of r depends on how fast ωp,n converges to zero.
It is not surprising that the consistency of d̂ requires a certain rate of r: when r is too large,
an oversized augmentation predictor will hamper the estimation accuracy of M̂ ∗; when r is too400

small, the augmentation predictor only has a minor contribution to the augmented predictor,
rendering negligible the magnitude of the augmentation sub-vectors of all the eigenvectors of
M̂ ∗, due to the unit-length restriction of the eigenvectors. In the literature of using augmentation
predictor, Wu et al. (2007) empirically studied the insensitivity of their method to the choice of
r, and Johnson (2008), Zhu et al. (2011), and Barber & Candès (2015, 2019) simply took r = p.405

Clearly, the characterization of the choice of r here is more specific.
In the high-dimensional settings, the accumulated form in the eigenvector term of (14) is

crucial to the consistency of the predictor augmentation estimator. Had a single summand been
used, the objective function Φ would still be negligible at k = d and bounded below from zero
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in probability at each k > d. However, for the function Φ to be minimized at d, we need 410

Φ(d) < min{Φ(k) : k > d} (19)

in probability. Considering that the cardinality of the set on the right-hand side grows to infinity
with n, it would be much harder for this inequality to hold; in fact, the inequality may even
fail without further conditions. The accumulated form ensures that the eigenvector term of (14)
monotonically increases with k, so that, together with the positive semi-definiteness of M̂ ∗, 415

inequality (19) will be satisfied if a single summand s−1
∑s

j=1
‖β̂d+1,S,j‖2 in the eigenvector

term is greater than the (d+ 1)th sample eigenvalue, which is much easier.
To our knowledge, only the information criteria have been shown to be consistent in the litera-

ture for order determination in the high-dimensional settings (Bai & Ng, 2002; Zhu et al., 2006).
However, the tuning parameters for these methods depend heavily on the order of dimension p 420

and the convergence rate of the matrix estimator, which makes it hard to find tuning constants
that work universally well across different models and dimensions. By contrast, the proposed es-
timator has the same simple form without additional adjustment in the high-dimensional settings,
making it more stable across different model and dimension settings.

Though we have made the invariant matrix assumption (10) in Theorem 4, we can relax it in 425

the following way. As mentioned at the beginning of this section, consistency of the estimation
of M in the high-dimensional settings is often achieved by making a certain sparsity assumption
on M , accompanied by a sparse estimate M̂ . In this case, the task of order determination is to
estimate the rank of the nonzero (symmetric) sub-matrix of M , and we can apply our predictor
augmentation estimator to the corresponding sub-matrix of M̂ . If it is reasonable to assume that 430

the nonzero sub-matrix of M has a bounded dimension as p grows, then the consistency of d̂ is
governed by Theorem 3, which does not require the invariant matrix assumption (10).

6. ADJUSTMENT FOR PRINCIPAL COMPONENT ANALYSIS

Principal component analysis has been commonly used as a simple and effective means of
dimension reduction for many decades. As (7) indicates, order determination for this method 435

amounts to estimating the smallest number of leading eigenvalues of MPCA such that all the
remaining eigenvalues are equal to a positive constant σ2. Thus, it differs slightly from the pre-
viously discussed dimension reduction settings, where the remaining eigenvalues are zero.

As mentioned in §2, Assumption (8) is not feasible for principal component analysis, as it
would require the augmentation predictor to be degenerate. Because MPCA is of full rank, this 440

assumption is not useful either: if it were true then the augmentation predictor would distinguish
itself from the noisy directions of the original predictor, defeating the purpose of augmentation.
Ideally, an augmentation predictor should have covariance matrix σ2Ir, so that it is indistinguish-
able from the noisy directions of the original predictor, i.e.

M
∗
PCA =

(
MPCA 0

0 σ2Ir

)
=

(
M0 0
0 0

)
+ σ

2
Ip+r. (20) 445

Since σ2 is unknown, we must estimate it from M̂PCA. For this purpose, we assume

d < p/2, (21)

which is mild in practice, as a reasonably small number of principal components can often ex-
plain a large percentage of variation in the data. A similar assumption can be found in Luo et al.
(2009) for directional regression. Under (21), the median of the sample eigenvalues from M̂PCA, 450
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denoted by σ̂2, converges to σ2 asymptotically. We generate the augmentation predictor under
N(0, σ̂2Ir). Again, following the discussion under (13), this choice is not unique.

We first study the consistency of the predictor augmentation estimator for principal component
analysis when p is fixed. By the strong law of large numbers, Assumption (12) holds. Because
M ∗

PCA is nonsingular, we can apply the central limit theorem and strengthen (13) to455

n
1/2

vech(Γᵀ
dM̂

∗
PCAΓd − σ2

Ip+r−d)
D−→ Q (22)

where Q is a multivariate normal distribution with nonsingular covariance matrix. Following
the proof of Theorem 2 in the Supplementary Material, we can show the same pattern for the
augmentation sub-vector of the eigenvectors derived from the augmented sample. On the other
hand, although all the sample eigenvalues are significantly positive, they still display a decreas-460

ing pattern with a sudden drop at k = d and negligible differences after k > d. Therefore, the
objective function Φ is still consistently minimized at d. This intuition is rigorously formulated
in the following theorem. The proof closely resembles that of Theorem 3, and is omitted.

THEOREM 5. Suppose Model (7) for principal component analysis holds, and Assumptions
(12), (21), and (22) are satisfied. Then the predictor augmentation estimator d̂ defined in (15) is465

consistent in the sense that

lim
n→∞

P (d̂ = d) = 1.

In the literature, principal component analysis has also been studied under the high-
dimensional settings (Zou et al., 2006; Johnstone & Lu, 2009). Following the reasoning in §5, we
expect the predictor augmentation estimator to be consistent under these settings as well, subject470

to the normality of the original predictor and a more careful estimation of the baseline eigenvalue
σ2, etc. The detailed development will be left to future research.

Finally, it is conceivable that the adjustment presented in this section also applies to the similar
order determination problems where one needs to detect the number of largest eigenvalues of M
when the rest are equal but nonzero.475

7. SIMULATION STUDIES

We now use simulated models to investigate the effectiveness of the predictor augmentation es-
timator. Since the estimator can be applied to various dimension reduction settings and may favor
normally distributed predictors, for comprehensiveness, we investigate it under each dimension
reduction setting mentioned in §2, and under various distributions of the original predictor.480

For principal component analysis, we use

Model 1: X = Σ
1/2

XXZ,

where Σ1/2

XX is a diagonal matrix with diagonal elements (2, 2, 2, 0.5, . . . , 0.5), and Z follows a
uniform distribution on the hypersphere {z ∈ Rp : ‖z‖2 = p}. The number of leading eigenval-
ues of the matrix-valued parameter MPCA in (7) is d = 3.485

For canonical correlation analysis, we let Y be a p-dimensional random vector with

Y1 = X1 +X2 + ε1, Yi = Xi+1 + εi, for i = 2, . . . , d, Yj = 2 εj for j > d, (23)

where X has a standard multivariate t distribution with five degrees of freedom and ε1, . . . , εp
are independent errors distributed asN(0, 0.52). The rank ofMCCA in (1) is d. We first let d = 2,
and label (23) by Model 2. To evaluate the performance of the proposed estimator when d is490

larger, we also set d to be the smallest integer to the right of p1/2, and label (23) by Model 2∗.
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For independent component analysis, we use:

Model 3: X = AU,

whereA is a square matrix whose diagonal entries are one and off-diagonal entries are 0.5, and U
consists of independent components, with the first two components having the exponential distri- 495

bution with mean equal to one and the other components having the standard normal distribution.
The rank of MICA in (2) is d = 2.

For sufficient dimension reduction, we use

Model 4: Y = sin(X1) + ε,

Model 5: Y = X1 +X
2

2 + ε, 500

Model 6: Y = X
2

1 +X
2

2 + ε,

where ε X and ε ∼ N(0, 0.52). For Model 4, X follows the same distribution as Z in Model
1; for Models 5 and 6, X follows the standard multivariate normal distribution.

Since condition (5) is satisfied for Models 4, 5, and 6, we apply sliced inverse regression to
all these models. As the method cannot detect variations in Y that are symmetric about X , the 505

ranks of MSIR in these models are d = 1, d = 1, and d = 0, respectively. Since condition (6) is
satisfied in Models 5 and 6, we apply directional regression to these two models. Now with the
symmetric patterns recoverable, the rank of MDR is d = 2 for both models.

We compare our predictor augmentation estimator (PA) with four types of order-determination
methods. The first type is the various sequential testing procedures designed for different di- 510

mension reduction settings. For canonical correlation analysis, we apply SF(T2

d) introduced by
Fujikoshi (1977). For both sliced inverse regression and directional regression, we follow Bura
& Yang (2011) to use the weighted chi-square test and the Wald-type chi-square test, and re-
fer to them as BY1 and BY2, respectively. We choose the numbers of slices to be H = 10 and
H = 3 for implementing M̂SIR and M̂DR, respectively. The significance level for all the sequen- 515

tial testing procedures is taken to be α = 0.05. For principal component analysis and independent
component analysis, we are not aware of any sequential testing procedures available for order
determination.

The second type of methods are those based on various forms of information criteria. Specif-
ically, we use the PCp1 criterion (Bai & Ng, 2002) for principal component analysis, the K̂MC 520

criterion (Gunderson & Muirhead, 1997) for independent component analysis, and the Bayesian
information criterion (Zhu et al., 2006) for both sliced inverse regression and directional re-
gression. In implementing Zhu et al.’s method, we fix the number of slices H at n/20 as they
suggested and use their suggested tuning parameter.

As mentioned in the Introduction, the above two types of methods are based on the eigenvalues 525

of M̂ . The third method is the aforementioned validated information criterion (Ma & Zhang,
2015) based on the eigenvector variations of M̂ , and the fourth method is the aforementioned
ladle estimator (Luo & Li, 2016) based on both the eigenvalues and eigenvector variations of M̂ .
Both of these methods apply to all the four dimension reduction settings we considered. To make
the situation clear, we list the various comparison scenarios in Table 1. 530

From an omitted simulation experiment, we found that the performance of the predictor aug-
mentation estimator is not sensitive to the repetition number s, so we set it to ten. To evaluate
the effect of the dimension r of S on the performance of the predictor augmentation estimator,
we choose r to be the smallest integer to the right of p/20, p/10, p/5, p/2, respectively, and
additionally choose r to be p. The corresponding estimators are denoted by PA1, PA2, PA3, PA4, 535



14 WEI LUO AND BING LI

Table 1: Index for order-determination methods

Method Model d ST IC VIC Ladle PA
PCA 1 3 – PCp1 VIC Ladle PA
CCA 2 2 SF(T

2

d) K̂MC VIC Ladle PA
CCA 2

∗ dp1/2e SF(T
2

d) K̂MC VIC Ladle PA
ICA 3 2 – – VIC Ladle PA
SIR 4 1 (BY1, BY2) ZMP VIC Ladle PA
SIR 5 1 (BY1, BY2) ZMP VIC Ladle PA
SIR 6 0 (BY1, BY2) ZMP VIC Ladle PA
DR 5 2 (BY1, BY2) ZMP VIC Ladle PA
DR 6 2 (BY1, BY2) ZMP VIC Ladle PA

“PCA” stands for the principal component analysis, “CCA” for the canonical
correlation analysis, “ICA” for the independent component analysis, “SIR” for
sliced inverse regression, and “DR” for directional regression. “ST” stands for
the sequential testing procedures, where “BY1” and “BY2” denote the weighted
chi-square test and the Wald-type chi-square test, respectively, proposed by
Bura & Yang (2011), “IC” for information criteria, where “ZMP” denotes the
Bayesian information criterion for sufficient dimension reduction introduced by
Zhu et al. (2006), “VIC” for validated information criterion, and “PA” for pre-
dictor augmentation estimator. dp1/2e denotes the smallest integer to the right
of p1/2.

Table 2: Comparison of order-determination methods at p = 10

Method Model n d ST IC VIC Ladle PA1 PA2 PA3 PA4 PA5
PCA 1 50 3 – 30 100 99 100 100 100 100 100
CCA 2 100 2 93 97 100 92 89 99 99 100 100
CCA 2

∗
100 4 93 96 53 99 98 100 100 100 100

ICA 3 500 2 – – 0 90 86 95 95 87 69
SIR 4 200 1 (89, 0) 0 100 97 91 99 99 100 100
SIR 5 200 1 (89, 22) 0 34 89 86 98 100 100 99
SIR 6 200 0 (88, 3) 100 100 25 70 91 98 99 100
DR 5 200 2 (78, 91) 0 6 81 98 99 98 90 0
DR 6 200 2 (64, 96) 0 9 55 85 96 99 98 90

Entries in Columns 5− 13 are the percentages of correct order determination for the corresponding method
and model, based on 1000 runs.

and PA5. In addition to the standard normal distribution, we also generate S in the same way as
Z in Model 1. The results are similar and deferred to the Supplementary Material.

We first take p = 10, which means d = 4 in Model 2∗ and r = 1, 2, 3, 6, 10, respectively, in the
five predictor augmentation estimators. To make the matrix estimator M̂ reasonably accurate but
not too accurate to make order determination trivial, we let n = 50 for principal component anal-540

ysis, n = 100 for canonical correlation analysis, n = 500 for independent component analysis,
and n = 200 for sufficient dimension reduction. For each model and each order-determination
method, we generate 1000 simulation samples, and record the percentage of correct order deter-
mination. The results are presented in Table 2.

Table 2 shows that the effectiveness of the sequential testing procedures heavily depends on the545

models they are applied to, especially for the Wald-type test, which consistently misspecifies d
for sliced inverse regression in Models 4 and 6, but correctly specifies d for directional regression
in Model 6. Overall, the sequential testing procedures fail to reach their nominal significance
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Table 3: Comparison of order-determination methods at p = 80

Method Model n d ST IC VIC Ladle PA1 PA2 PA3 PA4 PA5
PCA 1 100 3 – 87 100 100 100 100 100 100 100
CCA 2 400 2 96 100 0 100 95 100 100 100 100
CCA 2

∗
400 9 93 100 0 100 100 100 100 0 0

SIR 4 400 1 (0, 0) 0 0 99 93 99 100 100 93
SIR 5 400 1 (0, 0) 0 0 85 91 99 100 96 14
SIR 6 400 0 (100, 0) 0 100 27 51 92 99 100 100

level 0.05 at the current sample sizes. The performance of the information criteria, in particular
the Bayesian information criterion, also varies considerably from model to model, indicating 550

that the tuning parameter suggested in Zhu et al. (2006) may not be universally optimal. The
validated information criterion, while mostly superior to the ordinary information criteria, still
performs rather poorly for four models.

By contrast, both the ladle estimator and the five predictor augmentation estimators clearly
outperform the others. The former fails only in Model 6. Among the five predictor augmentation 555

estimators, the choice of r = 3 is optimal, with the choices of r = 2 and r = 6 being gener-
ally comparable. All these three choices lead to consistently high performance of the resulting
estimator across all the models, superior also to the ladle estimator. The choice of r = 1 also
leads to a consistent predictor augmentation estimator but is clearly suboptimal to the above
three choices, and the choice of r = 10 leads to an estimator that is mostly consistent but com- 560

pletely fails when applied to directional regression in Model 5. These observations reconfirm the
theoretical trade-off in choosing r discussed in §5.

We then increase the dimension p to 80. We take n = 100 for principal component analysis,
and n = 400 for both canonical correlation analysis and sliced inverse regression. These repre-
sent the cases where p is moderately large compared with n. Independent component analysis 565

and directional regression are omitted because, at this dimension, they require much larger sam-
ple sizes to be effective. Since the invariant matrix assumption is satisfied only by Models 5 and
6, the asymptotic theory in §5 is appropriate only for these two models. At the current dimension
p, d equals nine in Model 2∗, and r in the five predictor augmentation estimators are 5, 9, 17, 41,
and 80, respectively. We generate 1000 simulation samples, and record the percentage of correct 570

order determination for each method in Table 3.
A comparison of Table 3 with Table 2 shows that the adverse effect of increased dimension

is severe on the sequential testing procedures, the information criteria, and the validated infor-
mation criterion, which consistently misspecify d in most models. By contrast, this effect is
negligible on the ladle estimator and the predictor augmentation estimators. The performance of 575

the ladle estimator is actually improved, becoming comparable with even the optimal predictor
augmentation estimator for Models 1, 2, 2∗, and 4. This is likely due to the enlarged sample size
that enhances the effectiveness of bootstrap re-sampling. Similar to Table 2, the choice of r as
the smallest integer to the right of p/5 is optimal for the proposed estimator, followed closely by
r being the smallest integer to the right of p/10. Both choices are the clear winners among all 580

the methods. The proposed estimators for r = 5, 41, and 80 also perform well for most models.
A comparison on the performance of the proposed estimator between Model 2 and Model 2∗

indicates that a small r is preferred when d is large. This is reasonable: while the accumulation
procedure in the first term of Φ(·) in (14) may lift up Φ(d) to be non-negligible, a small r down-
weighs each summand of this term and balances out the adverse effect. 585
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Table 4: Comparison of order-determination methods when p > n

Method Model n p d ST IC VIC Ladle PA1 PA2 PA3 PA4 PA5
Sparse PCA 1 100 400 3 – 100 0 25 99 100 100 99 88
Lasso-SIR 7 300 600 1 – 0 0 65 100 100 100 100 100

“Sparse PCA” stands for the sparse principal component analysis proposed by Zou et al. (2006), and “Lasso-SIR”
stands for the method proposed by Lin et al. (2019). The other abbreviations follow those in Table 1.

We next further increase the dimension p to be greater than n. To ensure the consistency
of M̂ , we apply the sparse principal component analysis (Zou et al., 2006) to Model 1 with
(n, p) = (100, 400). For sufficient dimension reduction, we follow Lin et al. (2019) to use

Model 7: Y = 0.5(βᵀX)
3

+ ε

with (n, p) = (300, 600), where both X and the first 20 entries of β are generated independently590

from the standard multivariate normal distribution for each simulated sample, and the rest of
β are zero. We apply their lasso-sliced inverse regression to this model, which has d = 1. The
results are summarized in Table 4. The sequential testing procedures are inapplicable, as the
asymptotic distributions of the sample eigenvalues are unknown.

Table 4 shows that the predictor augmentation estimator outperforms the other methods for all595

the five choices of r. Together with Table 3, these results also show that the proposed estimator
is consistent in the high-dimensional settings even if the invariant matrix assumption (10) is
violated.

8. APPLICATION

We now use the residential building data set in Rafiei & Adeli (2015) to illustrate the effective-600

ness of the proposed estimator as applied with directional regression. The data set was collected
to study the effect of certain physical, economic, and financial variables on the construction cost
and the sale price of residential buildings, which helped to gauge the future profit before a new
construction was started. 103 variables, including eight physical and financial variables and 95
economic variables falling into five different time lags, were recorded as the predictor. With one605

extreme outlier removed, the data contained 371 observations.
We focus on modeling the construction cost of the residential buildings using directional re-

gression. With r = 21, i.e. the smallest integer to the right of p/5, the predictor augmentation
estimator suggests that the central subspace is of dimension two. To assess the plausibility of
this estimate, we conduct directional regression with d = 3, leading to a reduced predictor with610

three components. We first plot the response variable against the first component in the left panel
of Figure 1, which shows a clear monotone pattern by the loess curve and the corresponding
confidence band. We next plot the residual of the loess regression from the left panel against
the second component in the middle panel of Figure 1, which again shows a significant pattern.
Thus, a sufficient reduced predictor must be at least two-dimensional. The heteroscedasticity615

in both plots also suggests that the reduced predictor contributes to the conditional variance of
the response variable. We then plot the residual of the nonparametric regression on the first two
components against the third component, as shown in the right panel of Figure 1, which no
longer shows any pattern. In particular, the confidence band of the loess fit covers a horizontal
line (representing zero) entirely. Hence, the third component is redundant for modeling the re-620

sponse variable in the presence of the first two, indicating the minimal sufficiency of the first two
components.
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Fig. 1: In the left panel, the y-axis represents the response variable, the construction cost of residential buildings; in the
middle panel, it represents the residual after the loess regression on the first component of the reduced predictor; in the
right panel, it represents the residual after the loess regression on the first two components of the reduced predictor. In
each panel, the solid curves are the loess regression fit and its confidence band. The horizontal dashed line in the right
panel is the x-axis.
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