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1. Introduction

Modern technologies have made functional data increasingly prevalent in sciences and industries. For example,
functional magnetic resonance imaging (fMRI) records brain activities as a collection of functions on a time interval;
handwriting data, which can be regarded as two-dimensional vector-valued functions, are widely collected by electronic
devices; health data such as blood pressures are routinely recorded by smart wearable devices. Since functional data are
intrinsically infinite-dimensional, it is important to extract useful and interpretable information from them by suitable
dimension reduction methods.

Principal component analysis (PCA) is one of the most popular methods in exploratory data analysis for extracting
useful information from a sample of vectors. Intuitively, it seeks directions in the vectors that represent the greatest
variation. Let X be a p-dimensional random vector. At the population level, PCA solves the following problem

maximize var(u'X) subjectto |u| =1. (1)
This optimization is performed successively in a sequence of orthogonal spaces, resulting in a sequence of vectors
Ui, ..., uq. The projected random variables, u;"X, ..., uq"X, are then used as the principal components. See, for exam-
ple, [15].
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PCA was generalized to the nonlinear case by [28] by finding the nonlinear function of X in a similar way. The idea is
to replace the space of linear functions of X with a Hilbert space of nonlinear functions of X, say 9 = {¢ : RP — R}, so as
to capture the nonlinearity of the random vector X. Specifically, the first nonlinear principal component ¢ is an element
in 90 that satisfies

var[¢(X)] = max{var[y/(X)] : ¥ € M, [|Y¥[lm = 1}. (2)

Thus, the nonlinear PCA seeks the function of X in a much larger space so that it captures more complex features than
the linear PCA. The particular Hilbert space 9t used by [28] is the reproducing Kernel Hilbert space (RKHS), which is
computationally convenient. For this reason, the nonlinear-type PCA is called the kernel principal component analysis
(KPCA).

Another useful generalization of PCA is to functional data, where X is a function rather than a vector. The idea is to
enlarge RP to an infinite-dimensional Hilbert space to accommodate the random function X, and replace the Euclidean
inner product by a functional inner product. More specifically, let .77 be a Hilbert space of functions defined on an interval
and X be a random element in H. In functional PCA (FPCA), we seek the member f of .77 such that

var({f, X) ») = max{var((g, X) ) : g € 7, gl » = 1}.

See Ramsay and Li [24], Ramsay and Silverman [25], and [21].

In this paper, we further extend the functional PCA to accommodate nonlinear functions of functional data. The
nonlinear and functional nature of our problem requires two separable Hilbert spaces, say .77° and 0t; .7 is the space
where X resides, and 9t includes nonlinear functions from .77’ to R, which captures the nonlinear feature of X. To avoid
the curse of dimensionality, we assume 93t to be an additive space; that is, each kernel only contains one component of
X. We develop the numerical procedure and theoretical properties of this method, both at the population level and at the
asymptotic level.

The rest of the paper is organized as follows. In Section 2, we propose the Nonlinear Additive Functional Principal
Component Analysis (NAFPCA) at the population level. In Section 3, we present the sample-level estimation algorithm. In
Section 4, we develop the asymptotic results of the NAFPCA. In Section 5, we conduct simulation comparisons between
FPCA and NAFPCA. Some concluding remarks are made in Section 6. Real data applications to handwritten digits and EEG
data sets are shown in the supplementary material.

2. Population-level development

Let (£2, F, P) be a probability space. Fori € {1, ..., p}, let T; be a compact set in R% and let .7#; be a Hilbert space of
functions from T; to R with inner product (-, )z, Let = x - x jfp be endowed with the inner product

.8 = 1,800+ + . &)z

forany f = (fi,....f,)) € L, andg = (g1,...,8) € F€. Llet X : 2 — J€ be a random element in 7. Thus,
X =(X',...,XP), where each X' is a random element in .77;. The additive structure for .77’ has been imposed to reduce
complexity. For example, see [10] and [14]. This structure, in effect, imposes geometric orthogonality among components,
leaving any statistical dependence among them to be captured by the covariance operators. As soon to be shown, we also
apply the additive structure to the second-level Hilbert space.

In the above and throughout the rest of this paper, we use superscript to identify the component of a vector, and
subscript to identify a subject in a sample. Thus, X' is the ith component of the random vector X, and X! is the ith
component in the ath subject in the sample of observations on X.

To characterize the nonlinear features of X, we need a second-level Hilbert space of functions defined on .77, To do
so, we introduce a positive definite kernel ; based on the inner product of 77, For a, b € J¢, let

ki(a, b) = p({a, a) sz, (a, b) 5. (b, b) ) (3)
be a positive definite kernel in the sense that, for any finite subset {ay, ..., any} of 57}, the matrix {x(a;, as) : 1,5 €
{1, ..., m}} is positive definite. Here, p is a known function. There are many ways to construct such kernels in the classical

setting where .77 is a Euclidean space; see Berlinet and Thomas-Agnan [2] and Rasmussen and Williams [26, Chapter 4].
To adapt these kernels to the current setting, all we need to do is to replace the Euclidean inner product by the .7%;-inner
product. For example, two of the most commonly used kernels are

ki(a, b) = exp(—ylla = bl%,), «i(a, b) = (c + (a, b) )", (4)

where, in the first expression, y > 0, and in the second expression, ¢ > 0 and k is a positive integer. The first kernel
is the Gaussian radial basis function (RBF), and the second kernel is the polynomial kernel, each adapted to functional
context. One advantage of the Gaussian RBF is that the RKHS generated by it is dense in Ly(%¢), which is rich enough to
approximate any square-integrable nonlinear function on .77, See [23], [4, Chapter 4]. For this reason, we use the Gaussian
RBF as the reproducing kernel for the second-level Hilbert space throughout the paper.
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We use the kernel «; to generate a reproducing kernel Hilbert space 90;; that is
9 = span{k;i(-, a) : a € F}.

This notation means 9i; is the completion of the space of all the functions of the form ci«(-, a;)+ - - - + cmx (-, an,) where
ci,...,cp€Randay,...,a, € . The inner product in 9 is uniquely determined by the relation

(Ki('5 a)’ Ki(" b))‘)ﬂ,‘ = Ki(a5 b)

We call the pair {7}, ;) nested Hilbert spaces, because the kernel for 9t; is determined by the inner product of ..
We call S7; the first-level spaces and 9i;’s the second-level spaces. The role played by .77 is to accommodate functional
data; the role played by 9; is to characterize the nonlinearity in the functional data.

Having constructed My, ..., M, we let M be the direct sum of 9y, ..., M,. That is, M consists of the functions

{1+ F+dp:Ppr €My, ..., ¢0p €M},
and the inner product between two members of 9, say ¢ = ¢1 +--- + ¢p and ¥ = Yy + - - - + s, is defined by
{1+ + G Y1+ -+ Pplom = (D1, Y1)y + -+ + (Dps Yp)om, -

Note that, according to this definition, the 91;’s are subspaces of 1. We denote this direct sum by 9t = @leim,-. We now
introduce the Nonlinear Additive Functional Principal Component Analysis at the population level.

Definition 1. The population-level nonlinear additive functional principal components are defined through the following
iterative maximization: at step k, ¢ is obtained by

maximizing var[¢(X)]

subjectto ¢ € M, (p, ¢ M) =+ = (¢, ¢ )y = 0, [|$llmn = 1.
The random variable

B = B (XN + -+ $X7)
is called the kth nonlinear additive functional principal component of X.

We next express the solutions in Definition 1 as eigenfunctions of a linear operator. We make the following assumption.

Assumption 1. Forie {1,...,p}, E[ki(X, X')] < o0.
The function,
- R, ar~ E[ki(a, X)),

is called the mean element in 9% and is denoted by Ex;(-, X'). Let 2 (;, 21;) be the class of all bounded linear operators
from 90 to 9. This is a Banach space in terms of the operator norm. A random operator A in 2 (9, 9%) is a mapping
from £2 to % (9n;, 901;) that is measurable with respect to the Borel o-field generated by the open sets in B (m;, o). For
a random operator A in % (M;, M), if the bilinear form

(¢1, &5) > E{Adi, djox;
is bounded, then by Theorem 2.2 of [5], there exists a (nonrandom) operator B € 28 (", 901;) such that
(Boi, j)am; = E{Adi, dj)ox;

The operator B is then defined as the expectation of A, and is written as E(A). For two members ¢ and ¥ of 901, the tensor
product ¢ ® v is the operator

Py M—>M, 1> @Y, n)m.

Define a linear operator from 9i; to 9,
CX X" = [k, X)) = Exi(, X1 @ [i(-, X') — Exi(-, X')].

Under Assumption 1, for each (i,j) € {1,...,p} x {1, ..., p}, the bilinear form
My x My — R, (¢i, ¢y) — E[(i. CX', X))o, ]

is bounded, so that the expectation E[C(X/, X!)] is a well defined operator in B (m;, 2%;). This operator is called the
covariance operator from 9 to 9; (or simply from X' to X’) and is written as Xyjyi.
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Let Xxx be the p x p matrix of operators {Xyiy; : i,j € {1, ..., p}}, by which we mean Xxx : 9t — 9t maps a function
¢ =¢1+ -+ ¢p € M to the function Y + - - + ¥ € 0 where

p
!ﬁl = Z inxf'd’f
j=1
Then,

p p
(¢, Dxx)an = Y Y cov[gi(X'), ¢(X))] = var[(X)].

i=1 j=1

Using these operators, we can state the iterative maximization in Definition 1 equivalently as: at the kth step, obtain ¢
by

maximizing (¢, Zxx¢)m,

(5)

subject to ¢ € M, (¢, ¢ V) =--- = (¢, 9" ) =0, [Pl = 1.
In other words, ¢ is the kth eigenfunction of the operator Xxx.
We can further simplify the iterative maximization in (5). For eachi=1,...,p, let

ker( Xyixi) = {¢i € My 1 Zxixih = 0},  ran(Zyiyi) = {xixihi : i € My}

be the kernel and range of the operator Xyiyi, respectively. Let Tan(Xyiyi) denote the closure of ran(Xyixi). Since ¢; €
ker(Xyiyi) if and only if var[¢;(X')] = 0, we can assume, without loss of generality, that all the maximizers in (5) are
contained in

@, ker(Zyiyi)" = @, Tan(Zyixi) = Mo.
In fact, it is easy to see that, for any ¢ € 9, there exists a ¢’ € My such that var[¢(X)] = var[¢/(X)]. Thus, the iterative
procedure in (5) can be further restated as: at the kth step, obtain ¢ by
maximizing (¢, Xxx®)on,
subject to ¢ € Mo, (¢, ¢V)an =+ = (¢, " ) = 0, [|$llm = 1.
By Lemma 1 of Li and Song [22], each Tan(Xyiyi) is, in fact, the following space
spaniki(-, a) — Exi(-,X') : a € M}
Hence the subspace 91, can be explicitly written as

Mo = @f_, spanik;(-, a) — Exi(-, X') : a € M;}.
3. Sample-level implementation

In this section, we implement the population-level NAFPCA defined in the last section as a sample-level algorithm. Let
X1, ..., X, be an i.i.d. sample of X. The algorithm hinges on representing relevant linear operators as n x n matrices in a
finite sample. Throughout the rest of the paper, we assume each T; to be a closed interval in RR.

3.1. Coordinate system

The following notation for coordinate representation and various related results stated without proof are taken
from [11,19,20,22]. Let %] be a generic finite-dimensional Hilbert space with spanning system % = {bs, ..., b,}. Then
for any member f e 7], there is a vector @ = (a1, ..., ;)" € R" such that f = Zf 1 aibi. We call the vector o
the coordinate of f with respect to 4, and denote it [f] . Let J, be another Hilbert space with spanning system
% ={c1,...,cm}, and let A be a linear operator in A (.77}, .7%>). Then we define the coordinate of A with respect to %
and & by the m x n matrix, denote «[Al, whose (i, j)-th entry is ([Abjl«);, the ith component of the vector [Ab;]¢. Then
it is easy to see that for any f € J#7, [Afly = (¢[Al% )[f1%. Furthermore, if % is a third Hilbert space with spanning
system & = {di, ..., d,} and B is a linear operator in % (9>, 73), then 4[BAlz = (4[Bl)(«[Al%). For convenience,
when the spanning systems are obvious from the context, we drop the subscript and write the coordinate of A simply as
[A].
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3.2, Construction of first-level function space

)

At the sample level, we can only observe the random function X! at a finite set of time points, say S} = {fép e t;k
a

fori e {1,...,p}and a € {1,...,n}. Define t' = sort(Uj_,S;) = (, ..., 7, )" to be a vector consisting of all observed
time points with 7/ < ... < rui, where u; is the cardinality of U?_,Si. Let Ji be the set of indices of the members of 7'
that are the observed time points for X!

We now illustrate two ways to construct the first-level function space: one with a set of given functions as a basis
and the other with the RKHS over the observed time points. In both cases, the coordinates are found by each functional
component.

Here we assume that .7¢; is spanned by a given set of functions, ' = {b{, ..., b}, }. We further assume that the inner

product in 77 is the L,-inner product with respect to the Lebesgue measure; that is,
0.8 = [ St
T;

To evaluate the above inner product for f or g equal to X‘Q, we need to estimate the entire function Xé forallt € T;.
We do so by finding the member of .7#; closest to Xé at the observed points with a roughness penalty. Let Xé(t) =
Cl 1} ()4 - -+ Clambl (t) = [X;]Tbiljmi(t), where bi];m,-(t) = (bi(t), ..., b}, (t))". We minimize the penalized least-squares
criterion,

2 2

?)ﬁ(t) - (6)

ka
D {Xi(ta) — Xi(ta))? + €}

In terms of coordinates, the first term of (6) can be written as
IX3U8) — BLIXEI,

where | - || is the Euclidean norm, X!(J!) is the vector {X\(z;) : r € Ji}, and B! is card(Ji) x m; matrix whose rows are
b1, Tz, r e]a The derivative in the second term is

2

d P
dr ZXG( ) [X;]Tbltmi(t)'

It follows that

2

~ A ~

sio| =@’ /b1m1( b7, () []] = (R TRIRI],
I T

dr2 a

where

/ by. m; (€ )b] m (£)dE.

T
The objective function (6) can now be rewritten as

IX5U5) — BLIXI® + eg[XIRX].
This is a quadratic equation in [)A( i1, and has the explicit solution
[X!] = (BL"B. + €.R'BIXL(JD).

The tuning parameter 6{1 > 0 is chosen by Generalized Cross-Validation (GCV, Golub et al. [8]), that is, efl is the minimizer
of

[T Ao
Zjil(xtll(tcllj) - X‘;(t"zj))z
[tr(I — Bi(BTB + €iRI)'BIT)/m;]*

GCV(el) =

over a grid. A N

The function X,(t), t € T, is then estimated by X(t) = [X;]Tblzmi(t). These functions are used in computing the inner
products <X§,Xl§> s, Which are then substituted into (3) to construct the n x n kernel matrix whose (a, b)-th entry is
KI(XI, ) In terms of coordinate for [Xé], the inner product can be expressed as

X2 XD oz = X GRIXi1,

where Gy is the m; x m; Gram matrix of B' whose (r, s)-th element is (b, b) ,»
Alternatively, we can estimate Xé based on RKHS. Let k7, : T; x T; — R be a positive definite kernel and let %, be
the RKHS generated by {«r,(-, ‘L'j') :j € {1,...,u;}}. Note that if we assume the kernel is universal - which is the case

5
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for the Gaussian RBF, for example - then .77 is a large enough subset to approximate any functions in L,(T;). See, for
example, [29] and [3]. o
Let Ky, be the u; x u; Gram matrix with (Kr,)a, = «7(7}, 74). Let br,(-) be the vector-valued function from T; to R"

br(t) = (k. 7)), . .. kgt 7))

Correspondingly, let 281 be the set of functions {rer, (-, r{), oo k(e tli,')}' Then the inner product in 7 can be expressed
as

(@, V), = ([91'bry, [W1'br) s, = [T K[y, for ¢,y € 5.

It is natural to use only those functions «r,(-, t) with t € Si to estimate X!, which means that the entries of [)A([",] are

0 except its components with indices in j&, and X!(-) = e [X lkkr,(+, 7}). Let [X!1° be the ki-dimensional sub-vector of

[X ] whose elements are nonzero. Define kT %) be a sub-matrix of Ky, with indices in J; x Jp. Since, for any £ € ]’ we have
a(rg) = (Xg, (-, r,j) = Zkej}, [Xa]kKTl.(‘L'Z, ‘L'k), the vector [Xa]0 is the solution to the following equation,

XiUh) = Kr, “OIXi°.
To enhance model parsimony, we use Tychonoff regularization when solving the equation, which gives us
(X0 = (K9 + er i ) XUL).
Equivalently, the above process can be obtained by minimizing the objective function
kg
Y (x(tg) = X3t + enlIxlSy
j=1
subject to x € J7,.

An advantage of using RKHS to construct the function space is that the optimization over the finite-dimensional space,
¢, is equivalent to that over the infinite-dimensional RKHS generated by the kernel kt,; that is, the space span{kr,(-, t):
t € T;}. This result is known as the representer theorem: see Scholkopf et al. [27]. The penalty term ||x|| depends on
the choice of reproducmg kernel. For example, if we use Brownian covariance function as the reproducmg kernel, then

(1112 . ||x|| LT where X is the derivative of x. In many cases, the construction with RKHS tends to find smoother
functlons than those given by the b-spline basis.
Using the individual Hilbert spaces .7Z; for X, i = 1,...,p, we then construct the joint Hilbert space .77 for

(X', ...,XP)as S x --- x ¢, with its inner product defined by the sum of the inner products for J77, ..., J&,.
3.3. NAFPCA for scalar-valued functional data

With the first-level space of .7 constructed, we now construct the second-level space that captures nonlinearity in
the data. This space is also called the feature space in the machine learning literature. In this subsection, we first deal
with scalar-valued function X. Thus, in this case, ¢ = %”0 For simplicity, we denote X, by X,. As described in Section 2,
the crucial step is to construct the variance operator, Sy, in the feature space, and its coordinate representation. Let

M = span{kx(-, Xy) : ae{l,...,n}}.

Again, it is sufficient to use this finite-dimensional space due to the representer theorem for kernel PCA. See Example 3
of [G]. Let Kx be the n x n Gram matrix whose (a, b)-th element is kx(X;, Xp). Let

bx(-) = (rex (-, X1), - s kx (- Xa))Ts
and let Q =1, — n~'1,1,". At the sample level, the centered space 9 is
Mo = span{xx(-, Xa) — Enkx (-, X) : a € {1,...,n}}.

Lemma 1. Let B x = {kx(-, Xa) — Enkx(-,X): a € {1,...,n}}, and let
Sxx = Enl(kx(+, X) — Enkx (-, X)) ® (kx (. X) — Eniex (-, X))).
Then g, [Sxx15, = n"'QkxQ = n"'Gx.

Tpe proof is simila; to that used in [7], and is omitted. Since the Gram matrix of & is Gx = QKxQ, the inner product
(¢, Dxx¢) is [#]"Gx[Zxx1[¢] = n~'[¢]"Gx[¢]. Similarly, the inner product (¢, ¥) is [¢]"Gx[¥]. Hence the eigenvalue

6
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problem in (5) in Section 2 becomes
maximizing [¢] Gx[#],
subject to  [¢]'Gx[¢] = 1, [¢]"Gx[p1] = - - - = [¢]"Gx[d—1] = 0.

If we let v be the n-dimensional vector v = G;/ 2[¢], then the above problem is converted to the following eigenvalue
problem:

maximizing v'Gy /*G2Gy *v = v Gy,
subjectto v'v=1,v"v;=---=v v =0.
Let Ay > --- > Ay and vy, ..., v, be the eigenvalues and eigenvectors of Gy, and let ¢, be the kth eigenfunction of the

operator ﬁxx. Then the coordinates [¢] is given by G Ik zvk. Hence the kth eigenfunction of 3 is or(x) = vaG; Ik 2cx(x),
where

ox(+) = (kx (-, X1) = Enliex (-, X)), - -+ dex (-, Xn) — Enliex (-, X))

The kth principal component is defined as the vector (¢(X1), ..., ¢r(X:))".
If we take first d principal components, then the dimension of observed data in function space is reduced to d:

X eI X =(p1(X), ..., paX)" € RY,
where X* contains the amount of information of X of proportional Z;j:] )»,-/Z?Il Ai. In practice, the eigenvalues of Gy
often decreases sharply after the first few eigenvalues.

3.4. NAFPCA for vector-valued functional data

We now consider the case of p > 1. Foreachi=1,...,p, let «; : I x £, — R be a positive definite kernel and
let Byi = {i(+, X}) — Enki(-, X') : a = 1, ..., n}. Let M; be the Hilbert space spanned by A with the inner product
determined by the kernel «;. For eachi,j=1,...,p, let

Exix = Enl (kG- X) = Eari(-, X)) ® (ii(-, X') — Entci(-, X')].
Then Xyjyi is an operator from 90 to M; with the coordinate representation
,@Xj[ﬁx,-x,-] B, =n'Gxi =n"'QxiQ. (7)

Again, the derivation is similar to that given in [7], and is omitted.
Let 90t be the direct sum €D!_, 9 in the sense explained in Section 2. Let

Bx={p1+ +¢p: 1€ Bxr,....¢p € Bxo}.

Then 97t is spanned by . For a function ¢ = ¢; + - - - + ¢, in 9M, its coordinate with respect to A x can be expressed
as

[$1z, = ¢z, T lgla,, )
That is,
¢=1[9lz,, oo+ +blg, o
where ¢y is the vector-valued function
((kiC. X1) = Entei(+, X)), .. (i, Xg) = Enei(-, X))

Let Sxx be the p x p matrix of operators whose (i, j)-th entry is the operator i‘xixj.
Equipped with the coordinate representation, we now express the eigenvalue problem (5) at the sample level. First,
the inner product (¢, Xxx¢)sn can be reexpressed as

p p
(¢, Exxpln =D Y (i Exixidj)am;»
i=1 j=1
where the summand has coordinate representation
(i Sxig b = 9, Cui(z,, [ Exivlz, 9]z,
By (7), the right hand side is
n'[$ilz, CxiGxldilz ;-
Thus, if we let M = (Gy1, ..., Gxp)"(Gy1, . .., Gxp), then we can express (¢, 2‘7xx¢)gﬁ = n‘l[qb]%xTM[d)]@

By
7
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Second, the inner product (¢, ¢©))s in (5) has the following coordinate representation:

n

(6. 6 = > (1. 8" Z[m 2., Gxilg["]
i=1 i=1

Thus, if we let D = diag(Gy1, ..., Gxv), then (¢, ¢!");x = [¢], 'DI¢'”],. As in the scalar-valued function case, we
make the transformation v = D'/?[¢] 4, . Then the eigenvalue problem becomes: at the kth step,

maximizing v'D~V2MD™ 2y,

subjectto vv=10v0"=0,¢€e{1,....k—1}.
Since Gyi = QK,iQ is of rank n — 1, the np x np matrix D~'/2MD~'/2 also has rank n — 1. So it has n — 1 eigenvectors, say
v, ..., v with nonzero eigenvalues. The corresponding eigenfunctions of 3y are ¢'© = (v\9)'D~12¢cy, where

cx =(c1’y o)

The vector (¢O(Xy), ..., (X)) is the £-th functional additive principal component.
3.5. Tuning parameters selection

The NAFPCA requires selection of the following items:

(1) A set of basis functions for the first-level Hilbert space 7 if we use basis expansion method to estimate X, or a
reproducing kernel and its associated tuning parameters if we use the RKHS method to estimate X.

(2) The tuning parameter y for the second-level RKHS 9.

(3) The number of significant NAF-principal components d.

For the choices in (1), we have experimented with spline basis and the Gaussian RBF-based RKHS. The tuning parameters
for Gaussian RBF can be chosen using the method described in [22]. Since, in the applications we considered, the functional
data are observed in relatively densely placed intervals, the choices in (1) do not affect the result significantly.

An important choice is that of y in (2), which directly determines the degree of nonlinearity in the NAFPCA. In
particular, with a large y, the resulting principal components tend to be highly nonlinear; whereas with a small y, they
tend to be approximately linear. This feature can be explained by the geometry of the RKHS with the Gaussian RBF kernel.
See [1]. For X,, X, € 77, the squared distance between two elements in 91 is

lliex (-, Xa) — tex (-, Xb)llzy = kx(Xas Xa) + kx(Xp, Xp) — 2kcx(Xa, Xp) = 2{1 — kx(Xa, Xp)} = 2{1 — exp(— X _Xb||?;f)}~
By Taylor approximation,
llix (- Xa) = ex (- Xp)llag = 2{1 = 1 = ¥ [1Xa — Xpll% + O(y?)} = v IXa — Xp 1%+ O(y?).

Consequently, when y is small, the NAFPCA can be approximated by the linear FPCA, which is based on the distance
1Xa — Xp |l s~

In the rest of this subsection, we propose a two-step procedure to select the tuning parameter y in (2) and the number
of principal components d in (3) as follows.

1. Find the number of NAF-principal components by the following BIC-type criterion:

k

d = argmax{G,(k) = ZX,— —logn+1)""k:ke{l,2,...}}, (8)
i=1
where A; are the eigenvalues in the optimization problem in Sections 3.3 and 3.4.
2. Find y4, ..., yp which maximize
varg{pV(X) + - - + 00}, 9)
where var, is the sample variance based on the sample X1, ..., X, and ¢(V(-), ..., ¢@(.) are the first d-principal
components computed with the reproducing kernel, «j(a, b) = exp(—y;lla — b||2j%),j ef{l,...,p}
7]

Since the goal of NAFPCA is to search for a nonlinear function of X which maximizes the variance of predictors, it is natural
to let (9) be the objective function for choosing y as well. The proposed estimator of d in the first step is similar to the
BIC-type criteria in [18] and [22]. It can be justified by the following lemma.

Lemma 2. Suppose that EXX is a random operator that converges to X'xx in probability, k1 > Az > ... > 0 are the eigenvalues
of EXX and Ay > Ay > --- > Ag > Agy1 = O are the elgenvalues of Xxx. Suppose that kk = A+ Op(an)for some positive

sequence {a,} such that a, = o( log(n+l)) Let G,(k) = Zl 1A, log(n+ 1)"'k and d= argmax{Gp(k) : k € {1,2, ..., }}. Then

P(d=d)— 1.
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Proof of Lemma 2. When k < d,

d d d
Ga(k) = G(d) = — Y Ay —log(n+1)""(k—d) = — Y {2+ Oplan)} —0(1) = — Y i+ 0p(1)

i=k+1 i=k+1 i=k+1

Since the eigenvalues A1, ..., A4 are positive, we have P(G,(k) < G,(d)) — 1.
When k > d,

Gn(k) — Gp(d) = Z A, logln+1)"(k—d)=0+ Op(ay) — log(n + 1)k —d),

i=d+1
where, because a, = O(W]H)), the negative term — log(n + 1)~!(k — d) dominates the right hand side. Hence P(G,(k) <
Gyd)— 1. O
In practice, we find the y in Step 2 by maximizing (9) via a grid search over p € [10~8, 10?] defined by
_ 2 2 _ (M 2
y =p/Q20°), o= (2> 12 1Xe — X112 (10)

The simulation results in Section 5 show that this tuning method is very effective. We should mention that the above
estimator of d can also be applied to nonlinear sufficient dimension reduction in [17] and [22] to determine the number
of sufficient predictors. In that context, we replace step 2 by the k-fold cross-validation as used in [22].

4. Asymptotic results

Since our method involves two layers of function spaces, 7 and 9, if we can assume that the functions, X, . .., X,, are
observed in their entirety, then «x(-, X1), ..., kx(-, X;;) are an i.i.d. sample of random elements in 9. In the functional data
analysis literature, asymptotic theories of random elements in a generic Hilbert space have been developed and can be
adapted to the current setting. See Hall et al. [9], Horvath and Kokoszka [12], and Hsing and Eubank [13]. Our asymptotic
development consists of two steps. First, we show the asymptotic normality assuming each Xj is fully observed for all t.
We then derive the convergence rate of NAFPCA allowing X, to be partially observed at a set of sampled time points, and
the rate is adapted to the convergence rate of the estimate of X,.

4.1. Asymptotic distribution of estimated covariance operator

Assume first p = 1. Suppose X, . .., X, are fully observed as i.i.d. random elements in .77 Since the reproducing kernel
kx(-, -) is a known function, kx(-, X1), ..., kx(-, X) are i. i d. copies of the random element «x(-, X) in the separable Hilbert
space 9. The sample mean element, jix = n~! Z ), and the sample covariance operator, Syx, are random

elements in 9t and 28 (9, M) respectively. Let 1x denote the mean element, Exx(-, X), in 9. Since E|xx(, )||zm =
E[{kx(-, X), kx(-, X))am] = Elxx(X,X)] and E|lkx(-, X)II* = E[kx(X, X)?], if we assume E[kx(X, X)] or E[«xx(X, X)*] to be
finite (the Gaussian RBF satisfies both conditions), then the following theorems are immediately obtained by the central
limit theorem in a separable Hilbert space (see [13]).

Theorem 1 (CLT in a Hilbert Space). If Uy, ..., U, are independent and identically distributed random elements in a separable
Hilbert space 7’ with mean 0 and E||U,|%,, < oo, then

n
)
\/HZUai)F,

a=1
where F is a Gaussian random elements in .7’ with mean zero and covariance operator equal to E(U; ® Uy).

In the following, for two Hilbert spaces, say 9t;, 9y, 28 5(91;, M) denote the collection of all Hilbert space-Schmidt
operators from 9t; to 9Mi,. Note that A8 ,(My, M,) is a Hilbert space, and let us denote its inner product by (-, -)gs
For two operators A, B € Z8,("My, M,), we define their tensor product exactly as we define the tensor product
between two elements in any Hilbert space; that is, A ® B is the linear operator from 28 ,(9;, My) to LB (M1, M)
such that, for any C € ZB,(My, M), (A ® B)C = A(B, C)ys. We next apply Theorem 1 to U = kx(-,X) — ux and

= [kx(+, X) — ux] ® [kx(-, X) — ux] — Xx to obtain the following result.

Theorem 2. If E[kx(X, X)] < oo, then

Vilfix — px) -2 N0, Sxc).
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In addition, if E[xx(X, X)]? < 0o, then Exx — Zyx is a Hilbert-Schmidt operator in 28 ,(9, M), and

Vi Ex — ) > N(O, ),
where

I = E{[(rkx(-, X) — px) ® (ex (-, X) — px) — Zxx] & [(kex (-, X) — px) @ (ex(-, X) — px) — Zxx 1}

Next, we consider the case p > 1. The following lemma can be proved by straightforward calculation.

Lemma 3. Let ¢(-,X) = Y b, ki(-, X), fix = En@(-, X), and pux = E¢(-, X). Then (-, X) is a random element in 9 and

S = E[(@(-, X) = j1x) ® (¢(~. X) — ux)l,  Exx = Eal(@(-, X) — fix) ® (¢(-, X) — fax)].
where Xy and Zxx are defined in Sections 2 and 3 respectively.

The next theorem is a generalization of Theorem 2 when p > 1.
Theorem 3. If E[ki(X!, X))]> < oo forie {1,...,p}, then

Viliix — px) -2 N(O, Sx). i(Exe — Sa) 2> N0, T),
where I' = E[( Z5(X) — Z) ® (Zo(X) — Ex)] and Zo(X) = {¢(-. X) — E((- X))} & {¢(-. X) — E(d(-, X)),

Proof of Theorem 3. By Theorem 1, it suffices to show that

Ell[¢(-, X) — E(¢(-, X)) @ [8(-, X) — E(¢(-, X)) — D llfs < 00, (11)

where || - ||gs is the norm induced by the Hilbert-Schmidt inner product. Since E||Y — E(Y)||?> = E||Y||? — |EY||? < E||Y|?
for any random element Y, the left hand side of (11) is bounded by

Elllp(-, X) = E(¢(-, X)) @ [$(-, X) — E(p(-, X)Il7is = EI{(-» X) — E@(-, X}z < EI@(-, X gy
P
=Y El(X, X)P* < oo,
i=1
as desired. O

4.2. Asymptotic distribution of the nonlinear additive functional principal components

We now develop the asymptotic normality of the eigenvalues and eigenfunctions of Syx. Let (A, P1), .., (Mg, ¢g) be
the first d-pairs of eigenvalue and eigenfunctions of Xy with A; > --- > A4. Let (-, -)g be the inner product in the tensor
product space, 9t ® M, and (-, -)g2 be the inner product in the tensor product space, (9t ® M) ® (M @ ). See [16].

Theorem 4. If E[kx(X,X)?] < oo and the first d eigenvalues of Xy are distinct, then for eachj € {1, ...,d},

~

VG = 3) 2> N, (T ¢ ® ¢ ® & ® b)),

and
Vléd — ) 2> N, ),
where ¢; = sign({¢;, z%j)gm), and

G=D_Y =20y = 2) T, i ® 6 ® de ® By)g2(ic ® br).
k#j C#]

Proof of Theorem 4. Let X be a random element in 24 ,(91, M) having the limiting distribution N(0, I") in Theorem 3.
Then, by Theorem 9.1.3 of [13],

G

I 9
and
~ 9 _
Vil — ¢) = > (4 — M) P Zr gy,
ki
where P is the orthogonal projection operator onto kth eigenspace which is the space spanned by the kth eigenfunction

Px.

10
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Since Xr ~ N(O, I'), (Xr¢j, ¢j)m = (ZF, ¢j @ ¢j)g is a normal random variable with mean zero and variance

var[(Zr, ¢; ® ¢)ol = E[(ZF. ¢ ® ¢)5] = E[(ZF ® ZF. (¢ ® ¢j) ® (¢ ® ))) 2]
= (E[2ZF ® XF], (¢ ® ¢) ® (¢ ® ¢))) 2
=(I',¢; ® ¢ ® ¢ ® Pj)x2,
where the third equality follows from the definition of expectation in a generic Hilbert space. This completes the proof of

the asymptotic normality of eigenvalues. Similarly, )", #(kj — k) 'Pe Zr ¢ is a Gaussian element in 9 with mean 0 and
variance operator

Var|:Z()\j - )\l<)1Pk2F¢j:| =E |:{Z()\j - )»k)lpszfﬁj} ® [Z()»j - M)1P42F¢j]:|

k#j k#j 5]

=% 5= M) 70 — A1) El(h © i Tr ) @ (b0 @ i Tyl
k#j C#]

=YD 0y = 1)y — 1) El(Dildi, Tedy)) ® (delpe, Try))]
ke CA]

=D 04 = M) 0 — 1) 'EL i Zrdy) (e Tei)li ® e
k#j L#£]

=3 05— )70 — 2)EN(ZF ® Tk, i ® by ® b ® )i ® .
k#j L#j

This completes the proof. O
4.3. Incompletely observed functional data

Our asymptotic development so far is for the ideal case where the random functions X,(t), a € {1,...,n}, are
observed for all t € T. In practice, they are observed on a set of regularly or irregularly placed time points, say
Si={tl :je{l,...,ki}}, and we must first estimate X! based on their observed values at S!, and the error incurred by
this estimation should be taken into account in a careful asymptotic analysis. For notational simplicity, in this section we
assume p = 1, and write ki, Si, tc’;j, X} as kq, Sa, ta;, Xo. Wang et al. [30] reviewed a variety of methods for estimating X,
under different measurement schedules, such as the dense schedule, under which X, can be estimated at the /n rate, and
the sparse schedule, under which X, can be estimated at a slower-than-./n rate. They also discussed different convergence
rates of the functional estimates under these various scenarios. In this subsection we assume that X, has been estimated
by some method at a general rate 0 < §,, — 0, and investigate how this error propagates into our final results.

Henceforth, for two positive sequences ¢, and d,,, we write ¢, < d, if ¢c,/d, — 0, write ¢, > d, if d, < c,, and write
Cn < dy if there exist numbers 0 < C; < C; < oo such that C; < ¢,/d, < C,.

A reasonable asymptotic regime is to assume k, to be a function of n that goes to infinity, that is, k, = my(a), with
lim,,_, oo my(a) = oo. For simplicity, we assume my(a) to be the same for all a, and denote this common number by m,,.
There are three asymptotic scenarios m, < n, m, =< n, and m, > n, all of which are possible in practice: the first is
appropriate for the situations where the number of observations on each X, is much larger than the number of subjects;
the last for the opposite situations; the second for the situations where the two numbers are similarly. Depending on the
estimators used and the relation between m, and n, the convergence rate §, may also have three scenarios:

5n<\/ﬁa 5n>\/ﬁ, OFSnX\/ﬁ,

which will determine the net asymptotic behavior of the NAFPCA.
Suppose, then, for each a € {1,...,n}, an estimate X, of X, converges to X, at a rate ,. In principle, this can be
formulated as || X, — Xyl sz = Op(6n), but to simplify the theory, we make the slightly stronger assumption

E(IIXa — Xall s#2) = O(80).

Since X, ..., X, are i.i.d. random elements, it is also reasonable to assume that )21, ... ,)A(n are i.i.d. random elements. This
is true, for example, if we use the same method to construct each X,, and only use the observations on X, to construct
Xa.
The following identities regarding the Hilbert-Schmidt inner product of two tensor products will be used repeatedly:
if f1,...,fa € 9, then (i ® f2, 3 ® fa)us = (f1, f3)m (2, fa)on. Applying this to f; = fi and fy = f», we have

i ® f2llns = Ifallone 12 llone- (12)
Let

Sxx = Enllic(-, X) = Enic (-, X) ® [k (-, X) = Enic (-, X)I},  Znx = Enflie(-, X) = Entc (-, X)1 @ [ie (-, X) — Eqic(-, X)1}.
11
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The operator Sy is based on the estimated functional data, whose asymptotic behavior is our objective, whereas Sux is
an intermediate operator introduced only for the proof. The next theorem establishes the convergence rate of Xxx.

Theorem 5. Suppose

1. (boundedness) there is a constant 0 < C < oo such that «(x, x) < C for each x € F"
2. (Lipschitz) there is a constant 0 < C; < oo such that, for any x1, X, € F, |k (-, x1) — k(-, X2)llm < C1llX1 — X2l -
3. (curve estimate) X1, . .., X, are i.i.d. random elements in ¢ with E||X, — Xall sz = O(8,) for some 0 < 8, — 0.

Then
I Zxx — Zxxllns = Op(8y +n~"2).

It is easy to verify that the boundedness condition and the Lipschitz kernel condition are satisfied by the Gaussian radial
basis function. As will be discussed later in this section, these uniform conditions can be relaxed to moment conditions.

Proof of Theorem 5. By the triangular inequality,
1% = Zxcllns < 1 Exc = Exxllis + 1 D — Exxllns-
Using essentially the same argument as that for Lemma 5 of Fukumizu, Bach, and Gretton (2007), we can prove that
I Zxc — Zxx llus = Op(n~"/2).
So we only need to prove
18 — Exxllus = Op(8n). (13)
First note that
Sy = Ealic(-, X) @ i, X1 = Enlke (-, X1 @ Enlk (- X)), Soe = Eali (-, X) @ k-, X)] = Enlic (-, X)] @ Eqlic (-, X)].
Hence
Exx = Bioc = Eale (-, X) @ (-, X)] = Ealkc (-, X) ® e+, X)) + Enlic (-, X)] @ Enlic(-, X)] = Enlic(-, X)] ® Enlic(-, X)1.
The above can be written as the sum of the following six terms:
I = En{lk(, X) = k(- XN @ [, X) = k(XN T = Eadlk( X) = (- X @ (-, X)),
I = Eq{k( X) ® [i(-, X) = (- XN Lo = Enlk(, X) = k(- X)] ® Egli(-, X) = (-, X)), (14)
Is = Enli (-, X) = k(. X1 ® Enlic (-, X)]. I = En[k(-, X)] ® Enlic (-, X) — (-, X)].

It is easy to see that ||I>||ys = ||I3llus and ||Is|las = ||l ||us- So it suffices to derive the order of magnitudes of the norms of
I, I3, Iy, Ig.
For I3, we have, by the triangular inequality, identity (12), and conditions 1 and 2,

IEn{xc(-s X) ® [1(-s X) = (-, X)W s <Enllic(-, X) ® [ic(-, X) — (-, XD s = Enllic(-, X)lla e (-, X) = (-, X)llon
<VCGEq|IX = X |72
By Markov’s inequality, for any K > O,

P (80 NEWli( X) @ [, K) = K0, XDl > K) = P (8,7 VECEIX = X[l > K) = K18, 'V/CCEIX = Xl

By condition 3, 8;1E||)2 — X|| s < G, for some 0 < G, < oo. Hence the right-hand side above is bounded by K1/CCiGy,
which can be made arbitrarily small by choosing a sufficiently large K. Thus ||I5||gs = Op(3,).
For I;, we have, again by the triangular inequality and identity (12),

IEn{lic (-, X) = (-, X)] @ [k (-, X) = (-, X)Dllus < Enlllic(- X) = (-, X)] ® [+, X) — (-, XDl
= Enllic(-, X) — k-, X)lI2;-
Furthermore,
(-, X) = te(, X2 < (G, Xlom + ke C XDllow) Il (-, X) — ke (-, X)llan < 27/ CCr 11X — X,

where the second inequality follows from conditions 1 and 2. Apply Markov’s inequality in the same way as before to
obtain I; = 0p(6,).

12
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Similarly, for Is, we have, by the triangular inequality, identity (12), and conditions 1, 2,

Enlic (-, X0 ® Enlie (- X) = k(- X)lls < — ZZHK 2) ® [i(, Xp) = (-, Xp)] s

a=1 b=1

_1 n n
= = D>l Xllow e, X) = k(- Xy < VCCy ZZanb Xsll s

n2
a=1 b=1 a=1 b=1
Consequently,

E(IIEalk (-, X)1 ® Enlic(-, X) — (-, X)lls) < VCCEIX — X | -

Apply Markov’s inequality again to obtain ||Is||ys = Op(8y).
For I4, we have

IEnlkc(-, X) = (-, X)1 @ Enlk(-, X) — (-, X)]||Hs<n*ZZZn[K< Xa) = (- Xa)I @ [, Xp) = s, Xp)]ls

a=1 b=1

<Y Y Ik Xa) = el XadllmlaeC, Xp) = (e Xo)lan < 172 ) (e, Xollaw 4 llieC-, Xa)llom) e, Xp) = k(- Xo )l

a=1 b=1 a=1 b=1

n n
<Y N 2VCGIX — Xl

a=1 b=1

Therefore,
E(IIEnlic(-, X) = (-, X)] @ Enlic(-, X) — (-, X)Illns) < 2/CCE(IX — X[ 7).
Applying Markov’s inequality as before, we have ||I4|lys = Op(8,). O

Conditions 1 and 2 of Theorem 5 are uniform in nature, but they can be relaxed in terms of moments. Let«@ > 1, 8 > 1
be a conjugate pair; that is, «~! + 8~! = 1. By Holder’s inequality,

E(lle(, X)lla lie(, X) = & (-, XDllow) < LECli (-, XOIGT TECl (-, X) = s, X) 15 01%.

Using this inequality we can derive the same asymptotic rate, as shown in the next theorem. The proof is similar, and
therefore omitted.

Theorem 6. The conclusion of Theorem 5 still holds if the first two conditions therein are replaced by the following conditions:
for some conjugate pair («, 8) € (1, 00) x (1, 00),

1. E(l(-. X)[I$) < 00 and E(lx(-, X)[1%) < 00 ) )
2. there is a constant 0 < C; < oo such that E(||« (-, X) — «(-, X)||§n) < CIE|IX — Xl »)P.

The two theorems immediately imply that, if 8, < n~'/2, then the asymptotic distributions developed in Sections 4.1
and 4.2 are still valid. If, depending on the method used and the (n, my) asymptotic regime, 8, > n ~1/2 and 8, (Exx — )
converges in distribution to some random element F, then dn 1(Exx Yxx) would converge to the same random element.
Finally, under some mild conditions, the eigenfunctions of Exx have the same convergence rate Op(8, +n~1/2), and their
asymptotic distributions remain the same as derived in Sections 4.1 and 4.2 if 8, < n~!/2, or can be derived from the
limiting random element F if §,, > n~1/2,

5. Simulation studies

In this section, we investigate the performance of our method under different scenarios for dimension reduction of
functional data. In particular, we applied our NAFPCA and the multivariate functional PCA in [10] to one-dimensional and
two-dimensional functional data to compare their performances and to demonstrate how the nonlinearity is captured by
our method. In the one-dimensional functional data, each random function is observed at a set of equally-spaced time
points; in the two-dimensional functional data, each random function is observed at a set of randomly spaced time points.
The simulation studies consist of visualization via NAFPCA and comparisons of classification performance with the linear
functional PCA.

5.1. Behavior of NAFPCA

We first consider two models (Model I-1 and Model I-2) with regularly observed univariate functional data. Model I-1
consists of two clusters of random functions with highly nonlinear features. First, we generate a random sample Yy, ..., Yy,

13
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Model I-1 NAFPC FPC

oy

PC2
KNI
<

025 050 075 100 08 03 00 E
time PC1 PC1

Fig. 1. (Model I-1) Left: observed curves; Middle: first two PCs from NAFPCA; Right: first two PCs from the FPCA. Black colored curves and points are
Xy's with Y, = 0 and the red ones are those with Y, = 1. The nonlinear features of the Model I-1 is well captured by the NAFPCA. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

where n = 200, from the Bernoulli distribution with p = 0.5. Then we generate random functions X1, ..., X;, from the
following model:

Xa()|Ya =0~ Z1408(614) cos(rwt) + Z1q Sin(014) sin(t) + €q(t),

Model I-1 : . .
{Xa(t)lYa =1 ~ Zy,c08(024)cos(mwt) + Zog Sin(Baq) sin(t) + €4(t),

where Z1, ~ N(1, 0.22), 014 ~ U(0, 27), Zyq ~ N(4, 0.5%), 02 ~ U(0, 27), and €4(t;) ~ N(0, 0.12), and Z14, 014, Z2q, 6245 €a(t;)
are independently sampled. Of course, the labels Y, are not used in the analysis.

Each curve X; is sampled at 20 equally-spaced time points in [0, 1]. The simulated functions are shown in the left
panel of Fig. 1, where the black curves are X,’s with Y, = 0 and the red ones are those with Y, = 1. We apply our method
and the linear FPCA to the data set. The middle and right panels in Fig. 1 show the scatter plots of the first two nonlinear
principal components and the first two linear principal components, respectively. It is clear that the nonlinear feature in
X is well captured by our method.

A more direct representation of the results is to color each curve X, according to its PC score. In the upper-left panel of
Fig. 2, we present the curves X, with their intensity of red colors scaled by the first PC scores of the NAFPCA. Thus,
if the first PC score of X, is high, then the color of X, is close to red; if the score is low, then the color is close to
black. The upper-right panel is the same representation for the second PC score by the NAFPCA. The lower panels are
the corresponding representations for the FPCA. Comparing with FPCA, our method, NAFPCA, characterizes the shapes of
the curves in different clusters more clearly than FPCA: the combination of the upper panels more closely resembles the
left plot in Fig. 1 than does the combination of the lower panels of Fig. 2.

For a more comprehensive and compact visualization, in Fig. 3 we represent the first three PC scores by the RGB color
scaling. In particular, we represent the first PC score by Red color scaling, the second by Green color, and the third by
Blue color. The NAFPCA is in the left panel, and the FPCA is in the right panel. The left panel shows that the first NAFPC
represents the curves with large amplitude, the second NAFPC represents the curves with small amplitude and upward
trend, and the third NAFPC represents the curves with small amplitude and a downward trend. The right panel shows
that linear index is insufficient to represent the complexity in the functional data.

Model I-2 also consists of two clusters of random functions, but this time they are both linear random elements in .77
Such a model favors the linear FPCA; our goal is to see how much efficiency is lost by the NAFPCA under this circumstance.
Similar to Model I-1, we first generate a random sample Y4, ..., Y, with n = 200 from the Bernoulli distribution with
p = 0.5. We then generate Xy, ..., X, by

Xa(O)Ya =0~ Z1a(b1(t) + ba(t)) + Zaaba(t) + €q(t),
Xa(O)Ya =1 ~ (Z1a + Z2a)(bs(t) + bs(t)) + €a(t),

where by(t), ..., bg(t) are the 6 B-spline basis functions defined on [0, 1], Z4, Zy, are i.i.d. N(0, 22), €4(t;) follows N(O, 0.1%)
and is independent of Z;, and Z,,. Fig. 4 shows that the linear FPCA perfectly captures the linear features of the two
clusters. Meanwhile, the NAFPCA is also able to separate the two different clusters even though not as clearly as the
linear FPCA.

Next, we investigate the effects of the tuning parameters y used in the kernel for the RKHS 9, which determines
the complexity of the space. Figs. 5 and 6 show the shape of the first two NAFPC’s for a wider range of p, where p is
proportional to y as defined by (10): Fig. 5 for Model I-1 and Fig. 6 for Model I-2. We can see that with the small y
(p = 1), they are very close to their linear FPC counterparts (the right panels of Figs. 1 and 4) and our tuning procedure
performs adequately.

Model I-2 : {

14
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1st NAFPC 2nd NAFPC

X(t)
X(t)

025 050 075 1.00 025 050 075 1.00
time time

1st FPC 2nd FPC

X
X(t)

025 050 075 1.00 025 0.50 075 1.00
time time

Fig. 2. (Model I-1) Observed curves colored with their intensity of red colors scaled by principal component scores. As the PC score is high, the
color of the curve is close to red; if the score is low, then the color is close to black. The upper panels are for NAFPCA and the lower panels are for
linear FPCA. The left panels are colored with the first PC scores and the right panels are colored with the second PC scores. NAFPCA characterizes
the shape of the curves in different clusters more clearly than FPCA. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

We next consider a model (Model II) with bivariate functional data, also forming two clusters. We generate Yy, ..., Y,
with n = 200 as before and then generate X, = (Xal, Xj), a=1,...,n, according to

(X2(t), X2(t))|Ya = 0 ~ (Z14 cOS(27t), Z1q SiN(27 L)),

Model II :
ode {(x;(t),xg(t))wa = 1 ~ (223, COS(27Tt), Zog sin(4 1)),

where Z;, ~ N(1, 0.4%), Z,, ~ N(0.7,0.2%), and they are independent. Again, the functional data X, are observed on 20
time points in [0, 1], but this time, the time points are different for different curves. For each curve, we randomly choose
20 time points from 200-equally spaced time points in [0, 1]. The left panel of Fig. 7 shows the observed points of the
image of the realized functions with the black color representing the Y, = 0 group and the red color representing the
Y, = 1 group. The middle panel shows the first two principal components by NAFPCA, and the right panel shows the first
two principal components by the linear FPCA. The plots show that NAFPCA provides nearly perfect separation of the two
clusters; whereas the linear FPCA hardly separates the two clusters at all.
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First 3 NAFPC First 3 FPC

025 0.50 075 100 025 0.50 075 1.00
time time

Fig. 3. (Model I-1) The first three PC scores, as represented by the RGB scales by NAFPCA (left panel) and FPCA (right panel). The left panel shows
that the first NAFPC represents the curves with large amplitude, the second NAFPC represents the curves with small amplitude and upward trend,
and the third NAFPC represents the curves with small amplitude and a downward trend. The right panel shows that linear index is insufficient to
represent the complexity in the functional data. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 4. (Model I-2) Left: observed curves; Middle: first two PCs from the NAFPCA; Right: first two PCs from the FPCA. When the model is linear,
the FPCA perfectly captures each cluster. Meanwhile, the NAFPCA also separate the two clusters well.

5.2. Simulation in classification problems

We next consider classification problems, where we use NAFPCA and FPCA as the preprocessing dimension reduction
step, followed by a classification step with classifiers such as the linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), and the support vector machines (SVM). In each classification model, we use three different sample sizes,
200, 400, 800, and three different numbers of observed time points, 20, 50, 100. We divide each sample into a training set
and a test set of equal sample sizes. We first apply NAFPCA and FPCA to the training set to extract principal components,
and then apply the three classifiers to the principal components to develop the classification rules. Finally, we apply
the classification rules to the test set and record the percentages of correct classifications. The numbers of principal
components are determined by five-fold cross-validation applied to the training set. To ensure the reliability of the results,
we generate 100 samples for each model, and present the means and standard deviations of the percentages.

The first model we applied is Model I-2 in Section 5.1.1. Since the model consists of linearly related random elements,
our method has a disadvantage. Nevertheless, the performances of classification are comparable. As shown in Table 1,
NAFPCA works very well with all the classifiers and FPCA works well with QDA but does not work well with the other
classifiers. In both cases, QDA is the best classifier and FPCA has a slightly better result. In all combinations of scenarios,
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Fig. 5. (Model I-1) Effects of tuning parameter y used in the kernel for the RKHS 9. The plots show first two PCs from NAFPCA with different p,
where p is proportional to y. Top: p = 1,6, 7, bottom: p =9, 65.3, 200, where 65.3 is the tuned value from the selection procedure.

Table 1

Percentages of correct classifications for Model I-2 where X;’s are linear random elements. Entries are
the means and standard deviations (in parentheses) of the percentages calculated from 100 samples. In
both cases, QDA performs the best. In all combinations of scenarios, the results for NAFPCA and FPCA

are similar. The results get better as the sample size increases.

Sample size # Time points NAFPCA FPCA
LDA QDA SVM LDA QDA SVM
20 0.926 0.977 0.93 0.569 0.988 0.904
(0.043) (0.019) (0.038) (0.101) (0.015) (0.039)
200 50 0.922 0.987 0.944 0.565 0.993 0914
(0.04) (0.013) (0.029) (0.097) (0.01) (0.038)
100 0.928 0.991 0.948 0.572 0.996 0.908
(0.033) (0.012) (0.028) (0.094) (0.007) (0.039)
20 0.942 0.982 0.958 0.569 0.99 0918
(0.023) (0.011) (0.023) (0.086) (0.008) (0.023)
400 50 0.946 0.99 0.965 0.572 0.997 0.933
(0.024) (0.009) (0.019) (0.079) (0.005) (0.021)
100 0.947 0.991 0.963 0.588 0.997 0.93
(0.023) (0.009) (0.018) (0.086) (0.005) (0.022)
20 0.956 0.981 0.964 0.563 0.992 0.939
(0.014) (0.008) (0.014) (0.075) (0.005) (0.015)
300 50 0.953 0.988 0.97 0.572 0.997 0.947
(0.017) (0.006) (0.012) (0.084) (0.004) (0.013)
100 0.953 0.992 0.968 0.558 0.998 0.947
(0.015) (0.005) (0.011) (0.074) (0.003) (0.015)

the results for NAFPCA and FPCA are similar. As expected, the percentages of correct classification increase as the sample
size and the number of observed time points increase.
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Fig. 6. (Model I-2) Effects of tuning parameter y used in the kernel for the RKHS 9. The plots show first two PCs from NAFPCA with different p,
where p is proportional to y. Top: p = 1, 4,5, bottom: p = 20.43, 200, where 20.43 is the tuned value from the selection procedure.
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Fig. 7. (Model II) Left: observed data without lines of bivariate functional data from two clusters; Middle: first two PCs of NAFPCA; Right: first two
PCs of FPCA. NAFPCA separates the two clusters near perfectly while the linear FPCA does not work well. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

To compare the two methods in more challenging setting, we next consider the following model:

Xa(O)Ya =1 ~{Z1a(b1(t) + ba(t)) + Zaabo(t) + €1a(t)H(Z3a + Zaa)(bs(t) + be(t)) + €24(t)},
Model II-1 : § X,(t)|Yq =2 ~ Zsqc0S(014) cOS(mt) + Zsq sin(B14) sin(t) + e34(t),
Xa(t)|Ya =3~ Zgq €OS(62q) COS(7wt) + Zga SIN(G2q) SIN(t) + €4q(L),
where Y, ~ Unif ({1, 2, 3}), Z1a, Z2a» Z3a> Zaa ~ N(0, 22), Zsq ~ N(1, 0.22), 014 ~ U(0, 21), Zss ~ N(4, 0.5%), 054 ~ U(0, 27),
€1a(tj), €2a(t;), €34(L;), €aaltj) ~ N(O, 0.12), and by(t), ..., bg(t) are the 6 B-spline basis functions defined on [0, 1]. All these
random variables are independent. The Model IlI-1 consists of both of linear and nonlinear relations.
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Table 2

Percentages of correct classifications for Model IlI-1 where X;'s are combined with linear and nonlinear
relations. Entries are the means and standard deviations (in parentheses) of the percentages calculated
from 100 samples. NAFPCA works well with all the classifiers, whereas FPCA works well for SVM, which
indicates that our method effectively captures the nonlinear characteristic beyond linear and quadratic

features.
Sample size # Time points NAFPCA FPCA
LDA QDA SVM LDA QDA SVM
20 0.879 0.885 0914 0.411 0.879 0.922
(0.036) (0.044) (0.033) (0.067) (0.04) (0.028)
200 50 0.878 0.899 0.916 0.412 0.881 0.926
(0.034) (0.037) (0.031) (0.086) (0.043) (0.026)
100 0.868 0.896 0.91 0.412 0.884 0.923
(0.037) (0.033) (0.037) (0.074) (0.044) (0.026)
20 0.893 0.913 0.922 0.405 0.899 0.929
(0.024)  (0.025)  (0.021)  (0.069)  (0.03) (0.021)
400 50 0.89 0.923 0.929 0.433 0913 0.938
(0.024) (0.02) (0.019) (0.073) (0.026) (0.018)
100 0.887 0.927 0.928 0.41 0.916 0.941
(0.024) (0.023) (0.021) (0.057) (0.025) (0.016)
20 0.899 0.927 0.934 0.396 0.917 0.937
(0.016) (0.015) (0.014) (0.063) (0.016) (0.013)
300 50 0.893 0.934 0.938 0.41 0.925 0.945
(0.016) (0.013) (0.014) (0.063) (0.018) (0.011)
100 0.89 0.936 0.938 0.409 0.928 0.946
(0.018)  (0.012)  (0.014)  (0.063)  (0.015)  (0.012)
Table 3

Percentages of correct classifications for Model I1I-2 where the labels are related with X in a non-additive
way. Entries are the means and standard deviations (in parentheses) of the percentages calculated from
100 samples. Overall, both NAFPCA and FPCA perform reasonably well. When combined with LDA, their
performances seem to be worse compared with the additive models.

Sample size # Time points NAFPCA FPCA
LDA QDA SVM LDA QDA SVM
20 0.521 0.797 0.783 0.506 0.798 0.796
(0.058) (0.048) (0.056) (0.05) (0.048) (0.045)
200 50 0.515 0.81 0.789 0.497 0.799 0.794

(0.063)  (0.047)  (0.052)  (0.057)  (0.051)  (0.056)
0.521 0.802 0.785 0.502 0.794 0.789

100 (0062)  (0.049)  (0.044)  (0.06)  (0.048)  (0.058)
20 0514 0.844 0.825 0.504 0.833 0.823
(0048)  (0032)  (0032) (0038)  (0.036)  (0.035)
400 5 0515 0835 0817 0508 0831 0818
(005)  (0037) (0032)  (0.045)  (0.036)  (0.032)
100 0514 0839 082 051 0834 0827
(0.048)  (0031)  (0.034)  (0.048)  (0.032)  (0.033)
" 0511 0868 0846 0505 0859  0.852
(0.034)  (0.039) (0.03)  (0.039)  (0.022)  (0.025)
500 5 0515 0875 0853 0506 085  0.853
(0037)  (0028)  (0.024)  (0.038)  (0.024)  (0.022)
100 0.516 0.872 0.851 0.511 0.859 0.85

(0.04) (0.031)  (0.029)  (0.037)  (0.024)  (0.025)

Table 2 shows that NAFPCA works well with all the classifiers, whereas FPCA works well for SVM, which indicates that
our method effectively captures the nonlinear characteristic beyond linear and quadratic features.

Lastly, we consider the situations where the class labels are related with the functional predictors in a non-additive
way. To see how the methods work in this case, instead of generating an inversed model, we generate the model in a
forward way as follows:

XUO) ~ Yo Ziambm(t) + Zaa(£3/2 + 1),
Model I11-2 : { X2(t) ~ 30 _, Zsambm(t) + Zaa(24/E + (1 — £)?),
Yo oo~ (X(6X3(t) 4 €q(t), b3(t) + ba())1,,
where Zigm, Zaam ~ N(0, 22), Zaq, Zag ~ N(0O, 1), €4(t;) ~ N(0, 0.12), and by(t), ..., be(t) are the 6 B-spline basis functions
defined on [0, 1]. All the random variables are independent. We then define Y as the indicator function that takes the

value 1 if Y, is higher than the median of Y;, ..., Y,. We apply the dimension reduction methods to X = (X', X?) and
classification methods to the reduced predictors and Y*.
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Table 3 summarizes the percentages of correct classifications. The results show that both NAFCA and FPCA still perform
reasonably well, and their overall performances are similar. Furthermore, when combined with LDA, their performances
seem to be worse compared with the additive models.

6. Conclusion

In this paper, we introduce a nonlinear and additive functional principal component analysis for multivariate functional
data, which is capable of capturing nonlinear variations in functional data. We developed the population-level as well
as asymptotic properties of this method. We showed by simulations and real-data analysis that our method effectively
captures nonlinear feature that is missed by the linear functional PCA method, and achieves better classification when
combined with a majority of the classifiers we used.

Along with NAFPCA we also proposed a two-step tuning method to determine a tuning parameter in the kernel and the
number of significant principal components, and established the consistency of the estimation of the number of principal
components. In addition, we proposed a novel way to represent functional principal components using the intensity of
three prime colors, which make functional PCA directly interpretable from the spaghetti plots. Finally, this work has also
raised several new problems. For example, it is plausible that the order determination method we developed for NAFPCA
here can be extended nonlinear sufficient dimension reduction, and our analysis of the handwritten digit data raises the
importance of normalization. We hope to tackle these problems in a future research.
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