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Abstract

We introduce a statistical graphical model for multivariate functional data,

which are common in medical applications such as EEG and fMRI. Recently

published functional graphical models rely on the multivariate Gaussian pro-

cess assumption, but we relax it by introducing the Functional Copula Gaus-

sian Graphical Model (FCGGM). This model removes the marginal Gaussian

assumption but retains the simplicity of the Gaussian dependence structure,

which is particularly attractive for large data. We develop four estimators

for the FCGGM and establish the consistency and the convergence rates of

one of them. We compare our FCGGM with the existing functional Gaussian

graphical model by simulations, and apply our method to an EEG data set to

construct brain networks.

Keywords: Conditional independence; Covariance operator; EEG data; Karhunen-

Loeve expansion; Non-Gaussian random functions; Precision operator; Rank

transformation.
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1 Introduction

Functional graphical models were recently developed by Zhu et al. (2016), Qiao et al.

(2019a), and Li and Solea (2018) to construct networks with function-valued obser-

vations. This type of data arises frequently in medical applications such as EEG and

fMRI. See, for example, Lazar et al. (2002), Cheng and Herskovits (2007), and Li,

Kim, and Altman (2010). The functional graphical model is a continuation of the

recent research on graphical models for scalar-valued observations (Meinshausen and

Bühlmann, 2006; Yuan and Lin, 2007), which can be traced back to Darroch et al.

(1980) and Lauritzen et al. (1984). Other important early references include Wer-

muth and Lauritzen (1983, 1990), Dawid and Lauritzen (1993), Whittaker (1990),

and Lauritzen (1996).

The functional Gaussian graphical model (FGGM) of Qiao et al. (2019a) is de-

veloped under the multivariate Gaussian process assumption; it applied group lasso

to the coefficients of the Karhunen Loeve expansions (Bosq, 2000). Also under the

Gaussian assumption, Zhu et al. (2016) introduced a Bayesian approach by imposing

an invert Wishart prior distribution on the covariance matrix of the vector-valued

functional data and integrating out the covariance operator. Li and Solea (2018)

introduced a nonparametric functional graphical model based on the additive condi-

tional independence introduced by Li et al. (2014). Furthermore, a dynamic functional

graphical model was developed recently by Qiao et al. (2019b) under the Gaussian

assumption.

In this paper we extend the functional Gaussian graphical model to the functional

copula Gaussian graphical model. To explain the ideas of our extension, we first give

an overview the recent developments of the copula Gaussian graphical model in the

classical setting. A special character of the multivariate Gaussian distribution is that

conditional independence is completely specified by the second moments, so that the
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estimation of the edge set can be reduced to sparse estimation of the precision matrix.

However, the Gaussian assumption is very restrictive: skewness and kurtosis are but

two of many ways that it can be violated. To relax the Gaussian assumption while

retaining its simple conditional independence structure, Liu, Lafferty, and Wasserman

(2009), Liu et al. (2012), and Xue and Zou (2012) proposed several versions of copula

Gaussian graphical model. The copula model assumes that the random variables

can be marginally transformed to multivariate Gaussian, and leads to substantial

gain in accuracy under marginal violation of the Gaussian assumption. Inspired by

the above developments we propose a copula Gaussian model for a vector of random

functions, leading to the Functional Copula Gaussian Graphical Model (FCGGM). In

doing so we encounter two challenges. One is that a random function has no marginal

variables to apply the copula transformations to, and we solve this by applying them

to the coefficients of the Karhunen-Loeve expansions. The other is that the copula

transformations are not applied to observed data, but instead to estimated quantities,

which means the standard asymptotic tools for the copula model cannot be applied,

and special techniques need to be developed.

The significance of a copula Gaussian model for functional data goes far beyond

the current setting: we expect it to have wide applications in functional data analysis,

such as variable selection, variable screening, and functional time series analysis.

Furthermore, since many dimension reduction methods require the predictors to have

an elliptical distribution, the proposed copula model opens up wide possibilities for

developing simple and efficient functional dimension reduction methods. See Li and

Song (2017) for a recent development in functional sufficient dimension reduction.

In Sections 2 and 3, we introduce the copula Gaussian random function and the

FCGGM. In Sections 4 and 5, we develop estimation methods and establish their

consistency and convergence rates. In Sections 6 and 7, we compare FCGGM with

FGGM by simulations and apply the former to an EEG data. Some concluding re-
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marks are made in Section 8. All the proofs are given in the Supplementary Material.

2 Copula Gaussian random functions

In this section we give a rigorous definition of the copula Gaussian random element,

and lay out some basic concepts and notations that will be used in the rest of the

paper.

The extension of the copula model to functional data is not as straightforward as

it might seem, not least because, unlike in the multivariate case, here we do not have

natural “marginals” on which to impose the copula assumption. At first glance it

might seem plausible to impose the copula Gaussian assumption on the observations

X(t) themselves. However, it is theoretically cumbersome to do so because t varies

over an uncountable set. Another possibility is to impose the copula assumption on

the linear coefficients of a pre-assigned orthonormal basis, such as the Fourier series.

But this seems arbitrary because there are infinitely many orthonormal bases. Our

idea is to impose the copula assumption on the coefficients in the Karhunen-Loeve

expansion, which is independent of the choices of basis at the population level.

For two generic Hilbert spaces, say S and T , let B (S ,T ) denote the class of all

bounded linear operators from S to T . For A ∈ B (S ,T ), let ker(A) denote the

kernel of A, that is, {φ ∈ S : A(φ) = 0}, let ran(A) denote the range of A; that is,

{Aφ : φ ∈ S }, and let ran(A) denote closure of ran(A). For s ∈ S and t ∈ T , their

tensor product t⊗s is the operator from S to T that maps an h ∈ S to 〈s, h〉S t ∈ T .

Let N be the set of positive integers {1, 2, . . .}.

Let (Ω,F , P ) be a probability space. A random element U in S is a mapping

from Ω to S measurable with respect to the Borel σ-field generated by the open sets

in S ; a random element A ∈ B (S ,T ) is a mapping from Ω to B (S ,T ) measurable

with respect to the Borel σ-field generated by the open sets in B (S ,T ). We make
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the following assumption.

Assumption 1. E‖U‖2S <∞.

This assumption implies E‖U‖S < ∞, under which the linear functional S →

R, s 7→ E〈s, U〉S is bounded and its Riesz representation is defined as the mean of

U , written as µU = E(U). Under Assumption 1, the linear operator

E[(U − E(U))⊗ (U − E(U))]

is also a well defined trace-class operator, and is called the covariance operator of U ,

written as ΣUU = var(U). See, for example, Bosq (2000). In the rest of the paper we

take S = L2(T ). Thus, U is a mapping from Ω to L2(T ) measurable with respect to

the Borel σ-field in L2(T ). This amounts to assuming, for each ω ∈ Ω, the sample

path U(ω) is a square-integrable function with respect to the Lebesgue measure on

T . More rigorously, U should be defined as a random element in the quotient space

L2(T )/ ∼, where ∼ is the equivalence relation defined by almost sure equality with

respect to the Lebesgue measure on T . This would avoid the problem that a member

of L2(T ) cannot be uniquely identified by the L2(T )-norm. See, for example, Li and

Babu (2019, page 226) for a detailed discussion on this point. With some extra

conditions that can identify an equivalence class in L2(T )/ ∼ with a single function

(e.g. continuous sample path), we can make explicit connections between the mean

element µU and the covariance operator ΣUU with pointwise means and covariances of

the stochastic process {U(t) : t ∈ T}: µU(t) is, in fact, E[U(t)], and ΣUU is the linear

operator

ΣUU(f) =

∫
T

f(s)σUU(s, t)dt,

where σUU(s, t) = cov[U(s), U(t)].
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We now give a formal definition of a Gaussian random element in S .

Definition 1. A random element U of S is Gaussian if, for any t ∈ S ,

E[exp(ι〈t, U〉S)] = exp[ι〈t, µU〉S − (1/2)〈t,ΣUUt〉S], (2.1)

where ι =
√
−1.

Equivalently, a random element in S is Gaussian if and only if, for each f ∈ S ,

〈f, U〉S is a Gaussian random variable. Since ΣUU is a trace-class operator, U − µU

can be expressed as the Karhunen-Loeve expansion (Bosq, 2000, Theorem 1.5):

U − µU =
∑

r∈Nλ
1/2
r ξr φr. (2.2)

where λ1 ≥ λ2 . . . and φ1, φ2, . . . are the eigenvalues and eigenfunctions of ΣUU , and

ξ1, ξ2, . . . are are i.i.d. N(0, 1) variables.

We first consider univariate random functions; that is, consider the special case

where S is a Hilbert space of functions defined on an interval T ⊆ R and taking

values in R. We call such a space a Hilbert space of R-valued functions.

Definition 2. Let U be a random element in a Hilbert space S of R-valued functions,

and suppose it has Karhunen-Loeve expansion (2.2). We say that U follows a cop-

ula Gaussian distribution if there exists a sequence of monotone increasing functions

c1, c2, . . . defined on R with E[cr(ξr)] = 0, var[cr(ξr)] = 1 such that

V =
∑

r∈Nλ
1/2
r cr(ξr)φr

is a Gaussian element in S with the right-hand side as its Karhunen-Loeve expansion.

Note that, since N(0, 1) is symmetric, cr(ξr) ∼ N(0, 1) if and only if −cr(ξr) ∼

N(0, 1). So the assumption “monotone increasing function” can be replaced by
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“monotone function”. We restrict ourselves to monotone increasing function — which

does not lose generality — to avoid complication in the theoretical development. The

next proposition gives a sufficient condition for a random element in S to have a

copula Gaussian distribution.

Proposition 1. If U has Karhunen-Loeve expansion (2.2) where ξ1, ξ2, . . . are contin-

uous and independent random variables, then U has a copula Gaussian distribution.

To see what is involved in the univariate functional copula assumption in Definition

2, recall that, in the classical setting, any continuous random variable U can be

transformed to Gaussian by the transformation Φ−1◦FU , where FU is the cumulative

distribution function of U . In the functional setting, in addition to requiring the scores

ξr to be continuous, we also require them to be independent. Since by definition ξr are

already uncorrelated, the real extra assumption in the univariate functional copula

model is to strengthen the uncorrelation of ξr to independence of ξr.

The assumption in Proposition 1 that ξr are independent is not unduely strong

— it defines a much larger class of random elements in S than the class of Gaussian

random elements. Indeed, if U is a Gaussian random element in S having a Karhunen-

Loeve expansion
∑∞

r=1
λ1/2
r ξrφr, then any series of the form

∑∞
r=1

λ1/2
r fr(ξr)φr, where

fr are injections such that E[fr(ξr)] = 0 and var[fr(ξr)] = 1, is the Karhunen-Loeve

expansion of some non-Gaussian random element in S . Thus, the functional copula

model does significantly expand the applicability of the Gaussian model.

Another piece of intuition in this construction is that we are not interested in the

dependence structure in U itself: by imposing copula transformation on the 〈φr, U〉S

we in effect leave the dependence structure of U intact.

Let

ρr = Fr(ξr), ηr = Φ−1(ρr).
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We refer to ρr as the ranked scores and ηr as the normal scores of the random element

U . The next corollary gives a specific form of the Gaussian copula functions.

Corollary 1. If U is an R-valued copula Gaussian random function for some sequence

C = {cr : r ∈ N} of monotone increasing functions, then cr = Φ−1◦Fr, where Fr is the

c.d.f. of ξr.

We denote the sequence {Φ−1◦Fr : r ∈ N} by CU , and denote the transformed

random element
∑

r∈N λ
1/2
r Φ−1◦Fr(ξr) by CU(U).

We now turn to vector-valued random functions. For each i = 1, . . . , p, let H i be

a separable Hilbert space of R-valued functions on T with inner product 〈·, ·〉Hi . Let

⊕p
i=1H i be the direct sum of H 1, . . . ,H p. That is, ⊕p

i=1H i is the Cartesian product

H 1 × · · · ×H p with its inner product defined by

〈f, g〉⊕H =
∑

p

i=1
〈fi, gi〉Hi

where f and g are members of ⊕p
i=1H i and fi and gi are the ith components of f

and g, respectively. Let X = (X1, . . . , Xp) be a random element in ⊕p
i=1H i. For each

(i, j) ∈ V × V, define the covariance operator between X j and X i as

ΣXjXi = cov(X j, X i) = E[(X i − µXi)⊗ (X j − µXj)].

This operator has a one-to-one correspondence with the kernel function σXi,Xj(s, t) =

cov[X i(s), X j(t)]. Note that, ΣXjXi ∈ B (H i,H j). We say that X is a Gaussian

random element of ⊕p
i=1H i if, for each (t1, . . . , tp) ∈ ⊕p

i=1H i,

E
[
exp

(
ι
∑

i∈V〈ti, X i〉Hi
)]

= exp
[
ι
∑

i∈V〈ti, µXi〉Hi −
∑

i,j∈V〈ti,ΣXiXj tj〉Hi/2
]
.
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Define ΣXX to be the following operator

⊕p

i=1H i → ⊕p

i=1H i, (t1, . . . , tp) 7→ (
∑

i∈VΣX1Xiti, . . . ,
∑

i∈VΣXpXiti).

Intuitively, ΣXX can be interpreted as the p× p matrix whose (i, j)th entry is ΣXiXj ;

that is,

ΣXX =


ΣX1X1 · · · ΣX1Xp

...
. . .

...

ΣXpX1 · · · ΣXpXp

 .

In general, suppose, for each (i, j) ∈ V × V, Aij is an operator in B (H j,H i). We

define the matrix of operators A = {Aij}pi,j=1 as the mapping

A : ⊕p

i=1H i → ⊕p

i=1H i, (t1, . . . , tp) 7→ (
∑

p

`=1
A1`t`, · · · ,

∑
p

`=1
Ap`t`).

The class of all such operators are denoted by×i,j∈V B (H i,H j). Notice that

×i,j∈V B (H i,H j)=B (⊕p

i=1H i,⊕p

i=1H i).

Using this convention of matrix of operators we can write a Gaussian random element

X equivalently as

E[exp(ι〈t,X〉⊕Hi
)] = exp[ι〈t, µX〉⊕Hi

− 〈t,ΣXXt〉⊕Hi
/2],

which has the same form as (2.1). We now define the copula Gaussian random element

in ⊕p
i=1H i.

Definition 3. Suppose X = (X1, · · · , Xp) is a random element in ⊕p
i=1H i, where
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each X i is a copula Gaussian random element in H i. We say that X is a copula

Gaussian random element in ⊕p
i=1H i iff the Rp-valued random function

(CX1(X1), . . . , CXp(X
p))

is a Gaussian random element in ⊕p
i=1H i.

As we mentioned earlier the direct reason for us to impose the copula transfor-

mations on the Karhunen-Loeve coefficients is that we do not have natural marginals

to impose it on. Here, we would like to further argue that, even if the Hilbert space

is finite-dimensional, where X i does have “natural” coordinate, it is still reasonable

to assign copula transformations to the Karhunen-Loeve coefficients (or the principal

components). For example, suppose X i lies in a space spanned by the polynomials

1, t, t2, . . . , tk, then there seems no more reason to believe that all the non-Gaussian

feature happens along the coefficients of these polynomials than along the principal

components. In other words, imposing copula transformations on principal compo-

nents may well be a viable alternative even in the finite-dimensional setting.

3 Functional copula Gaussian graphical models

As in Qiao, Guo, and James (2019a), we use conditional independence to define

graphical models for random functions.

Definition 4. A random element in ⊕p
i=1H i is said to follow a functional graphical

model with respect to an undirected graph G = (V,E) iff

X i Xj|X−(i,j), ∀ (i, j) /∈ E.

Furthermore, if X is a copula Gaussian random element in ⊕p
i=1H i then we say X
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follows a functional copula Gaussian graphical model, and write this statement as

X ∼ FCGGM(G).

In the classical setting, the most attractive feature of the Gaussian graphical

model is its ability to encode conditional independence as the zero entries of the

precision matrix, so that estimating an undirected graph reduces to sparse estimation

of the precision matrix. More specifically, suppose Z = (Z1, . . . , Zp) is a multivariate

Gaussian random vector with covariance matrix Σ, and let Θ = Σ−1 be its precision

matrix. Then

Z i Zj|Z−(i,j) iff θij = 0, (3.1)

where θij is the (i, j)th element of Θ. The copula Gaussian graphical models of Liu,

Lafferty, and Wasserman (2009) and Xue and Zou (2012) inherit this property but

allows the marginal distributions of Z i to be non-Gaussian.

Our motivation for introducing the functional copula Gaussian model is to in-

herit the Gaussian-like conditional independence structure without having to assume

X to be a Gaussian random function. Specifically, the following scheme seems

plausible. Suppose X is a copula Gaussian random element in ⊕p
i=1H i and let

Z = (CX1(X1), . . . , CXp(X
p)). Then Z is a Gaussian random element in ⊕p

i=1H i.

Let ΘZZ = Σ−1
ZZ. Then

X i X j|X−(i,j) ⇔ Z i Zj|Z−(i,j) ⇔ ΘZiZj = 0,

where the first equivalence holds because there is a one-to-one correspondence between

X i and Z i, and the second holds because Z is a Gaussian random element. However,

there is additional complication here: since ΣXX is a trace-class operator, its inverse

is an unbounded operator, which makes it problematic to use Σ−1
XX directly as the
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object of estimation. To avoid this difficulty, we introduce the correlation operator

of a random element in ⊕p
i=1H i.

Let R i denote the subspace ran(ΣZiZi), R j the subspace ran(ΣZjZj), and PRi
and

PRj
the projections on to R i and R j, respectively. By Baker (1973), there is a unique

operator RZiZj ∈ B (H j,H i) such that ‖RZiZj‖ ≤ 1, RZiZj = PRi
RZiZjPRj

, and

Σ1/2

ZiZi
RZiZjΣ

1/2

ZjZj
= ΣZiZj , (3.2)

where Σ1/2

ZiZi
is the square-root of the operator ΣZiZi . That is,

Σ1/2

ZiZi
=
∑∞

r=1
(λir)

1/2(φir ⊗ φir),

where {(λir, φir) : r ∈ N} are the eigenvalues and eigenfunctions of ΣXiXi . The

operator RZiZj : H j → H i is called the correlation operator between Z i and Zj. Note

that, when i = j, the identity mapping IHi
in H i satisfies the above relation. Hence

RZiZi = IHi
, which is consistent with the classical definition of correlation. Using this

operator we define the correlation operator of a random element in ⊕p
i=1H i as follows.

Definition 5. Suppose Z = (Z1, . . . , Zp) is random element in ⊕p
i=1H i with E‖Z‖2 <

∞. Let RZiZj be the correlation operator between Z i and Zj. We call the operator

RZZ = {RZiZj}i,j∈V ∈×i,j∈V B (H i,H j) the additive correlation operator of Z.

It turns out that, unlike additive covariance operator ΣZZ, the additive correlation

operator RZZ has a bounded inverse under very reasonable assumptions.

Assumption 2. For i 6= j, RZiZj are compact; RZZ is invertible.

This assumption was also made in Bach (2008). The assumption is quite mild:

as argued in Li (2018), the compact assumption of RZiZj imposes a type of collective

smoothness between the functions in H j and functions in H j. Also note that RZZ
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is invertible if and only if ΣZZ invertible, which holds if and only if ker(ΣZZ) = {0}.

Since a function belongs to ker(ΣZZ) iff var(〈f,X〉H) = 0, the invertibility simply

means that X does not resides in a proper subspace of H . The next proposition

shows that under Assumption 2 RZZ has a bounded inverse.

Proposition 2. Under Assumption 2, RZZ ≥ cI for some c > 0, and consequently

R−1
ZZ is a bounded operator.

We call R−1
ZZ the additive precision operator of Z, and denote it by ΘZZ. Note that

both RZZ and ΘZZ are members of×i,j∈V B (H i,H j). We denote the (i, j)th entry of

ΘZZ by ΘZiZj .

Theorem 1. Suppose Z is an Rp-valued Gaussian random function in H , with ΘZZ

as its precision operator. Suppose, furthermore, that, for each i 6= j, the operators

Σ−1

ZiZi
ΣZiZ−(i,j) and Σ−1

ZjZj
ΣZjZ−(i,j) are bounded linear operators. Then

Z i Zj|Z−(i,j) iff ΘZiZj = 0.

Note that, even though Σ−1

ZiZi
is an unbounded operator, it is reasonable to assume

Σ−1

ZiZi
ΣZiZ−(i,j) to be a bounded operator, which can again be interpreted as a type of

“collective smoothness” between functions in H −(i,j) and H i. For further discussion

on this point, see Li (2018). Because there is a one-to-one relation between X i and

Z i, the above proposition leads immediately to the following corollary.

Corollary 2. Suppose X is an Rp-valued copula Gaussian random function. Let

Z = (CX1(X1), . . . , CXp(X
p)). Then

X i X j|X−(i,j) iff ΘZiZj = 0.

In our case the operator RZiZj takes a rather simple form, as given in the next

theorem.
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Theorem 2. Suppose X is a copula Gaussian random element in ⊕p
i=1H i and let Z

be the random element (CX1(X1), . . . , CXp(X
p)). Suppose, for each i, j = 1, . . . , p,

∑
r∈N

(λir)
1/2 <∞,

∑
(r,s)∈N×N

|corr(ηir, η
j

t )| <∞.

Then

RZiZj =
∑

r∈N

∑
t∈N corr(ηir, η

j
t )(φ

i
r ⊗ φjt) (3.3)

where ηir = Φ−1◦F i
r(ξ

i
r), ξir = 〈X i, φir〉Hi/(λir)1/2.

The assumption
∑

r∈N(λir)
1/2 < ∞ simply means that Σ1/2

XiXi
is a trace-class oper-

ator, which is needed in the proof of this theorem. There is an alternative way of

representing RZiZj . According to Kendall (1948) and Kruskal (1958), if (U, V ) is a

bivariate Gaussian random vector, then

corr(U, V ) = 2 sin
[ π

6
corr(FU(U), FV (V ))

]
,

where FU and FV are the cumulative distribution functions of U and V . From this

relation we can easily derive the following alternative expression of RZiZj .

Corollary 3. Under the conditions of Theorem 2 we have

RZiZj = 2
∑

r∈N

∑
t∈N sin[(π/6)corr(ρir, ρ

j
t)](φ

i
r ⊗ φjt) (3.4)

where ρir = F i
r(〈X i, φir〉Hi/(λir)1/2).

14



4 Estimation

Theorem 2 and Corollary 3 suggest two different ways of estimating RZiZj : the first

is to estimate the correlations between the normal scores ηir and ηjt ; the second is

to estimate the Kendall’s transformations of correlations between the ranked scores

ρir and ρjt . Both of these approaches will be developed in this section, and we refer

to them as the normal score (NS) method and ranked score (RS) method. We also

employ two types of sparse penalties: thresholding and the group lasso. The devel-

opment of the first three subsections is at the operator level, which conveys the main

ideas of estimation without getting too much involved in the details of coordinate

mapping. The last subsection gives the outline of the algorithms using coordinate

mapping, with full details developed in the Supplementary Material. We begin with

the Karhunen-Loeve expansion at the sample level.

4.1 Empirical Karhunen-Loeve expansion

Let X1, . . . , Xn be an independent sample from the random element X. For each

u = 1, . . . , n, Xu is the vector (X1
u, . . . , X

p
u), where, for each i = 1, . . . , p, X i

u is a

R-valued random function defined on the interval T . We use En to denote the sample

average operator. That is, for a sample of random elements, say W1, . . . ,Wn, En(W )

means n−1
∑

n

u=1
Wu.

We estimate the mean element µXi = E(X i) by µ̂Xi = En(X
i). For each i =

1, . . . , p, we construct the operator

Σ̂XiXi = En[(X
i − µ̂Xi)⊗ (X i − µ̂Xi)], (4.1)

which is well defined on H i. Let {(λ̂ir, φ̂ir) : r ∈ N} be the sequence of eigenvalue-

eigenfunction pairs of Σ̂XiXi with λ̂i1 ≥ λ̂i2 ≥ · · · . Then, for each u = 1, . . . , n, X i
u−µ̂Xi
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has the following empirical Karhunen-Loeve expansion:

X i

u − µ̂Xi =
∑

r∈N 〈X i
u, φ̂

i
r〉Hiφ̂ir ≡

∑
r∈N(λ̂ir)

1/2ξ̂iurφ̂
i
r,

where ξ̂iur = 〈X i
u, φ̂

i
u〉Hi/(λ̂ir)1/2. To filter out noise we truncate the sum at some mn,

which goes to ∞ with n at a rate specified in Section 7. Thus we now have the

truncated empirical Karhunen Loeve expansion:

X i

u − µ̂Xi ≈
∑

mn

r=1
(λ̂ir)

1/2ξ̂iurφ̂
i
r.

The set of estimated ξiur, φ
i
r,

{(ξ̂iur, φ̂ir) : u = 1, . . . , n, r = 1, . . . ,mn, i ∈ V},

will be the basis for all the estimation procedures to follow.

4.2 Normal-Score estimators

We first derive the sample-level approximation of the principal copula transformations

CX = (CX1 , . . . , CXp) where CXi = {Φ−1◦F i
r : r ∈ N}, F i

r being the c.d.f. of ξir. As

in Liu, Lafferty, and Wasserman (2009), we use Windsorized empirical distribution

based on the sample ξ̂i1r, . . . , ξ̂
i
nr. Let F̂ i

r be the empirical distribution of ξ̂i1r, . . . , ξ̂
i
nr:

F̂ i

r(y) = En[I(ξ̂ir ≤ y)].
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The Winsorized empirical distribution F̃ i
r is

F̃ i

r(y) =


δn if F̂ i

r(y) < δn

F̂ i
r(y) if δn ≤ F̂ i

r(y) ≤ 1− δn

1− δn if F̂ i
r(y) > 1− δn

where δn > 0 and limn→∞ δn = 0. Following Liu et al. (2009), we choose δn to be

[4n1/4
√
πlog(n)]−1.

The empirical principal copula transformations are then given by

ĈXi = {Φ−1◦F̃ i

r : r = 1, . . . ,mn}.

Let

η̂iur = Φ−1◦F̃ i

r(ξ̂
i

ur), u = 1, . . . , n, r = 1, . . . ,mn, i = 1, . . . , p

be the empirical normal scores. We estimate the correlation operator RZiZj by

R̂ZiZj =
∑

mn

r,t=1
corrn(η̂

i
r, η̂

j
t )(φ̂

i
r ⊗ φ̂jt) (4.2)

where corrn is the empirical correlation defined by replacing all the expectations in

corr with its empirical counterpart En. We then form the operator R̂ZZ as the matrix

of operators whose (i, j)th entry is R̂ZiZj . Using this operator we develop sparse

estimators of ΘZZ either by thresholding or group lasso, which are detailed below

separately.

Thresholding Let Θ̂ZZ = R̂†ZZ be the Moore-Penrose inverse of the operator R̂ZZ

(Hsing and Eubank, 2015, Definition 3.5.7). Let εn be a positive sequence that goes
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to 0 as n→∞, which will be specified in the asymptotic section. We estimate E by

Ê(εn) = {(i, j) ∈ V × V : ‖Θ̂ZiZj‖ > εn} (4.3)

where ‖ · ‖ is the operator norm or the Hilbert Schmidt norm of an operator.

Group lasso Inspired by Qiao, Guo, and James (2019a), we define

Ln :×i,j∈V B (H i,H j)→ R,

Θ 7→ −log det(Θ) + trace(ΘR̂ZZ) + λn
∑

i6=j‖Θij‖HS.

Here, det(Θ) means the product of all the nonzero eigenvalues of Θ and Θij denotes

for the sub-operator of Θ in B (H i,H j). The precision operator ΘZZ is then estimated

by maximizing Ln(Θ) among all positive semidefinite operators in×i,j∈V B (H i,H j).

This is essentially a group lasso procedure because the parameters in a suboperator

Θij are shrunk to 0 together.

Since, at the sample level, ⊗p
i=1H i is a finite-dimensional space, the operator

ΘR̂ZZ can be represented by coordinate mapping as a matrix with respect to a basis

in ⊕p
i=1H i. The trace of the operator ΘR̂ZZ is simply the trace of its matrix repre-

sentation. This trace is a well defined function of an operator because it does not

depend on the basis with respect to which the operator is represented. The function

−log det(Θ) + trace(ΘR̂ZZ) need not be regarded as the Gaussian likelihood with its

parameter ranging over the class of linear operators in×i,j∈V B (H i,H j); it is simply

a reasonable objective function to minimize, because, without the sparse penalty, it

is minimized at Θ = R̂−1
ZZ. It can also be regarded as the natural generalization of the

objective function for the glasso to the operator level.
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4.3 Estimators based on ranked scores

Here, we replace (4.2) by an estimator RZiZj using Corollary 3:

R̂ZiZj = 2
∑

mn

r,t=1
sin[(π/6) corrn(ρ̂

i
r, ρ̂

j
t)] (φ̂ir ⊗ φ̂jt), (4.4)

where ρ̂iur are the empirical ranked scores

ρ̂iur = F̂ i

r(ξ̂
i

ur) : u = 1, . . . , n, r = 1, . . . ,mn, i = 1, . . . , p.

Note that we use the usual empirical likelihood F̂ i
r rather than the Winsorized version.

The thresholding and the group lasso procedures based on the ranked scores are

exactly the same as those based on the normal scores, except that the estimator (4.2)

is replaced by the estimator (4.4).

Up to this point we have described our estimators at the population level, under

the assumption that the random functions X1, . . . , Xn are observed in their entirety.

In the next section we describe how to implement them numerically using coordinate

representation in finite-dimensional Hilbert spaces. The normal score methods based

on truncation and group lasso will be abbreviated by NS-T and NS-L; the ranked

score methods based on truncation and group lasso will be abbreviated by RS-T and

RS-L.

4.4 Algorithms

In the previous subsections we described the estimation procedures at the operator

level. To make them executable algorithms we need to represent operators as ma-

trices through coordinating mapping. To save space we leave the full details of the

development of the coordinate mapping in the Supplementary Material, while only

present the final results here.
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Algorithm for Karhunen-Loeve expansion

1. For i = 1, . . . , p, choose a family of functions H i = span{hi1, . . . , hikn} on T ;

compute the Gram matrix Ki and its centered version Gi;

2. Reset X i
u to its centered version X i

u − En(X
i) and compute the coordinates

[X i
u]Bi relative to the basis B i of H i;

3. Perform spectral decomposition on G1/2
i En([X

i][X i]T)G1/2
i to obtain the eigen

pairs {(λ̂ir, vir) : r = 1, . . . , kn}. Compute ξ̂iur = (λ̂ir)
−1/2[X i

u]
T
Bi
G1/2
i vir.

Algorithm for NS-T, RS-T, NS-L, RS-L

In the following, for NS-T, follow 1 → 2 → 3; for RS-T, follow 1′ → 2′ → 3′; for

NS-L, follow 1→ 2→ 3′′; for NS-R, follow 1′ → 2′ → 3′′′.

1. For NS-T and NS-L, compute η̂iur according to η̂iur = Φ−1◦F̃ i
r(ξ̂

i
ur);

1′. For RS-T and RS-L, compute ρ̂iur according to ρ̂iur = F̂ i
r(ξ̂

i
ur) (note that the

un-truncated empirical distribution is used);

2. For NS-T and NS-L, compute Ω(N) = {Ω(N)
ij }pi,j=1, where

Ω(N)

ij =
∑

mn

r,t=1
corrn(η̂

i
r, η̂

j
t )G

†1/2
i vir(v

j
t )

TG†1/2j .

2′. For RS-T and RS-L, compute Ω(R) = {Ω(R)
ij }pi,j=1, where

Ω(R)

ij = 2
mn∑
r,t=1

sin{(π/6)corrn(ρ̂
i

r, ρ̂
j

t)}G†1/2i vri (v
j

t )
TG†1/2j .

3. For NS-T, compute Λ(N) = (ΩN))†, and let Λ(N)
ij be the (i, j)th block of Λ(N).

Choose a threshold εn, and estimate the edge set by ‖G†1/2j Λ(N)
ji G

†1/2
i ‖F > εn.
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3′. For RS-T, perform step 3 with Ω(N),Ω(N)
ij , Λ(N) replaced by Ω(R),Ω(R)

ij , Λ(R).

3′′. For NS-L, use group lasso (Qiao et al., 2019a) to minimize the objective function

M (N)

n (A) = −log det(A) + trace{A(⊕i∈VG
1/2

i )Ω(N)(⊕i∈VG
1/2

i )}+ λn
∑

i 6=j‖Aij‖F

to obtain Â(N) = {Â(N)
ij }pi,j=1 and estimate the edge set by {(i, j) ∈ V × V : i 6=

j, Âij 6= 0}.

3′′′. For NS-R, follow step 3′′ with Ω(N), Â(N), Â(N)
ij , replaced by Ω(N), Â(N), Â(N)

ij .

5 Consistency and convergence rate

In this section we develop the consistency and convergence rate of one of the proposed

estimators. Due to space limit, we focus on the RS-T procedure with the operator

norm. There are several challenges for developing an asymptotic theory for our copula

functional model. First, a difference between our proposed functional copula model

and the conventional copula model is that our copula transformations are applied

to the estimated scores ξ̂iur rather than the true scores ξiur, whereas the conventional

copula models are applied directly to observed data. Accounting for this approxima-

tion is a major undertaking: since rank transformation is not continuous, standard

methods are not applicable, and new techniques must to be developed. The second

challenge is that in various places we need to find uniform bounds for eigenvalues and

eigenfunctions, and a variety of quantities derived from them.

If an and bn are positive sequences, we write an ≺ bn (or bn � an) if an/bn → 0 as

n→∞. We write an � bn if

0 < lim inf
n→∞

(bn/an) ≤ lim sup
n→∞

(bn/an) <∞.

21



If Un is a sequence of random variables that is bounded in probability; that is, for

any ε > 0, there is a K > 0 such that lim supn→∞ P (|Un| > K) < ε, then we write

Un = OP (1). If Un/an = OP (1), then we write Un = OP (an). If Un = OP (an) and

an ≺ bn, then we write Un
P

≺ bn or bn
P

� Un.

We first establish the consistency of R̂ZiZj . For any integer m, let

ωm = min{λir − λir+1 : r = 1, . . . ,m, i = 1, . . . , p},

and let cijrt = 2 sin[(π/6)corr(ρir, ρ
j
t)]. We impose the additional condition

∑∞
r,t=1
|cijrt| <

∞, which requires cijrt to decay sufficiently fast. Note that, if RZiZj is a Hilbert Schmidt

operator, then
∑∞

r,t=1
(cijrt)

2 <∞. So our condition is stronger than this, but is in the

same spirit. As we will further discuss below, requiring cijrt to decay fast suggests a

certain type of smoothness.

Theorem 3. Suppose, for i 6= j,

1.
∑∞

r,t=1
|cijrt| <∞,

2. E‖Xk‖4Hi <∞, for k = 1, . . . , p,

3. for some sequence {mn : n ∈ N} and some 0 < α < 1/2,

1 � ωmn � n2α/3−1/3, m2

n ≺ ω3/2

mn
n1/2−α.

Then ‖R̂ZiZj −RZiZj‖OP

P→ 0.

In the theorem, the condition ωmn � n2α/3−1/3 is to ensure that mn can be chosen

to go to ∞. Note that it also implies ωmn � n−1/2, which is used in the proof. The

condition
∑

r,t
|cijrt| <∞ is needed to ensure that the operator norm of the difference

between RZiZj and its truncated version goes to 0, which control the bias of the

estimator R̂ZiZj . Next, we develop the convergence rates of R̂ZiZj . To accomplish this
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we need to strengthen three conditions. The first is the rate at which cijrt decays as

r →∞ and t→∞. This rate of decay characterizes the degree of smoothness in the

relation between Z i and Zj: cijrt decaying fast means that most of their correlations

are concentrated on the low-frequency components of Z i and Zj. The second is the

rate of decay of λir, which characterizes the smoothness of X i itself. The third is

the tail probability of the random variable ‖X i‖Hi
, as reflected in the existence of its

higher-order moments or its moment generating function. In the following, let S(mn)

be the tail index set

{mn + 1,mn + 2, . . .} × {mn + 1,mn + 2, . . .}.

Theorem 4. Suppose, for i 6= j, there exist β > 0 and s > 4 such that

1.
∑∞

r,t=1
|cijrt| <∞;

2. [
∑

(r,t)∈S(mn)
(cijrt)

2]1/2 = O(m−βn ) as n→∞;

3. E‖X i‖sHi <∞;

4. for some sequence {mn : n ∈ N} and some 0 < α < 1/s,

1 � ωmn � n2α/3−1/3, m2

n ≺ ω3/2

mn
n1/2−α.

Then, ‖R̂ZiZj −RZiZj‖OP = OP (m2
nn
−1/2 +m2

nω
−3/2
mn

n−1/2+α +m−βn ).

A condition somewhat similar to the above condition 2 is also employed in Li and

Song (2017) and Li and Solea (2018) in the context of nonlinear sufficient dimension

reduction and nonparametric graphical models for functional data. See also Li (2018)

for further discussions on this point.

Some discussion of the roles played by different constants in the convergence rate

is in order. As can be seen from the proofs of Theorems 3∼5 in the Supplementary
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Material, the estimation error ‖R̂ZiZj −RZiZ
j‖OP is bounded from above by

‖R̂ZiZj −R(mn)

ZiZ
j‖OP + ‖R(mn)

ZiZ
j −RZiZj‖OP,

where R(mn)

ZiZj
is the first mn terms in the expansion of RZiZj . Roughly, the second

term above represents the bias of the estimate; the first term the variance. The

positive constant α controls the tail of the random variable ‖X i‖Hi
: the smaller α is,

the thinner the tail. A thinner tail helps to reduce the variance term. The integer

mn is the length of the truncated Karhunen-Loeve expansion of X i, and a larger mn

reduces the bias term. The number ωmn is the overall eigenvalue gap of the first mn+1

eigenvalues of ΣZiZi . A larger eigenvalue gap also helps to reduce the variance term.

With these tendencies in mind, the condition m2
n ≺ ω3/2

mn
n1/2−α in Theorem 4 means

(a) if the tail of ‖X i‖Hi
is thin, then the variance term is small, and we can afford to

choose a larger mn to reduce the bias and (b) similarly, if the eigenvalue gap is large,

then the variance term is small, and we can choose a larger mn.

If we ignore the term m−βn , then the convergence rate is faster when mn is smaller.

This is the “parametric part” of the rate. However, as mn becomes small, m−βn

increases. This is the nonparametric part of the rate. If the smoothness index β

is large, then m−βn is small even if mn increases slowly with n. As will be seen in

Example 1, the rate of m2
nω
−3/2
mn

is determined by how fast λir decays as r →∞. The

faster it decays, the slower rate (to ∞) of m2
nω
−3/2
mn

can be tolerated. Thus, if cijrs and

λir are allowed to decay arbitrarily fast, the rate in Theorem 4 can get arbitrarily close

to n−1/2+1/s.

We can further improve the convergence rate by strengthening the moment as-

sumption on ‖X i‖Hi
to existence of its moment generating function. In that case, the

convergence rate can get arbitrarily close to n−1/2log(n).

Theorem 5. Suppose
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1. as n→∞, [
∑

(r,t)∈S(mn)
(cijrt)

2]1/2 = O(m−βn );

2. for each i = 1, . . . , p, the moment generating function of ‖X i‖Hi
is finite in a

neighborhood of 0;

3. for some sequence {mn : n ∈ N}, and some α > 1,

1 � ωmn � n−1/2, m2

n ≺ ω−3/2

mn
n−1/2(log(n))α.

Then, ‖R̂ZiZj −RZiZj‖OP = OP (m2
nn
−1/2 +m2

nω
−3/2
mn

(log(n))α +m−βn ).

As mentioned earlier, the rate in Theorem 5 can be made arbitrarily close to

n−1/2log(n) if cijrt and λir decay sufficiently fast. To provide intuition regarding how

m2
nω
−3/2
mn

is related to the decaying rate of λir, we give an example below using λir ∝ r−a,

a > 0 as a prototype.

Example 1. Because ΣXiXi is a trace-class operator, we have a > 1. Then, for

any integer m, ωm = λm − λm+1 = m−a − (m + 1)−a. By elementary calculations, we

can show that this is of the order O(m−a−1). So if we want to choose mn so that

ωn = n−1/2+b for some b > 0, then we need m−(a+1)
n = n−1/2+b, which is satisfied if

mn = n
1/2−b
a+1 . Hence

m2

nω
−3/2

mn
= n

1−2b
a+1 n(−1/2+b)(−3/2) = n

1−2b
a+1 +3

4−
3b
2 .

Because b < 1/2, we have 1−2b
a+1

+ 3
4
− 3b

2
> 0. So m2

nω
−3/2
mn
→∞. But if a is large and b

is chosen to be small, the increasing rate can be arbitrarily slow, so that the rate in

Theorem 5 can be arbitrarily close to n−1/2log(n) except the term m−βn , which itself

can be arbitrarily small if β is large. 2

Finally, we establish the consistency and convergence rates of Θ̂ZZ, as well as the

consistency of the graph estimator Ê(εn) defined in (4.3). Because p is a constant,
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‖R̂ZZ−RZZ‖OP is also consistent under the conditions of Theorem 3, and has the same

convergence rates in Theorems 4 and 5, under the respective conditions. To derive

the consistency and convergence rate of Θ̂ZZ we need the following lemma from Li and

Solea (2018), which can be verified by straightforward calculation. The next theorem

shows that ‖Θ̂ZZ−ΘZZ‖OP and ‖R̂ZZ−RZZ‖OP have the same convergence rate under

mild conditions.

Theorem 6. If ‖R̂ZZ − RZZ‖OP

P→ 0 and RZZ ≥ cI for some c > 0, then, for any

positive sequence an → 0,

‖R̂ZZ −RZZ‖OP = OP (an) ⇒ ‖Θ̂ZZ −ΘZZ‖OP = OP (an).

We say that an estimator Ê of the true edge set E is consistent if the probability of

the event Ê = E tends to 1 as n→∞. The next corollary establishes the consistency

of Ê(εn) as defined in (4.3), as well as the rate of the threshold εn.

Corollary 4. Let γn denote the convergence rates in Theorems 4. If 1 � εn � γn,

then, under the conditions in Theorem 4, P (Ê(εn) = E) → 1. The same can be said

if Theorem 4 is replaced by Theorem 5.

6 Simulation Studies

In this section we compare numerically the performances of our FCGGM estimators,

including NS-T, RS-T, NS-L, RS-L, with two versions of the FGGM estimator, one

based on the group Lasso (FGGM-L) as proposed by Qiao, Guo, and James (2019a),

the other based on thresholding the Frobenius norm of the (i, j)th block of the esti-

mated precision matrix of the functional principal components (FGGM-T, this version

was not contained in Qiao, Guo, and James (2019a)) . We consider two scenarios: one

in which the random elements on the vertices are copula Gaussian random functions,
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and one in which they are Gaussian random functions.

To simulate copula Gaussian random functions, we first draw n independent Gaus-

sian random functions using five Fourier basis functions, as in Qiao, Guo, and James

(2019a):

X i

u(t) =
∑

m

r=1
ξiurvr(t), u = 1, . . . , n, i = 1, . . . p, (6.1)

where m = 5, and {vr, r = 1, 2, 3, 4, 5} are the first 5 functions in the Fourier basis

1,
√

2 sin(2πt),
√

2 cos(2πt),
√

2 sin(4πt),
√

2 cos(4πt),

and, for each u, (ξ1
u1, . . . , ξ

1
um, . . . , ξ

p
u1, . . . , ξ

p
um)T is multivariate Gaussian with mean 0

and block precision matrix Λ ∈ Rpm×pm. We consider choices of Λ:

(a) Λj,j = Im, Λj,j+1 = 0.4Im;

(b) Λj,j = Im, Λ1,j = 0.2Im.
(6.2)

Then we transform ξiur to cri(ξ
i
ur) where, for simplicity, we choose cri = cr to be the

same across i = 1, . . . , p, which are taken to be the following functions

c1(x) = x3, c2(x) = ex, c3(x) =
ex

1 + ex
, c4(x) = (1 + x)5, c5(x) = x. (6.3)

Each function X i
u(t) is sampled at 10 equally spaced time points t1, . . . , t10, where

t1 = 0 and t10 = 1. In the simulations, the network size and the sample size are taken

to be (p, n) = (10, 100), (10, 200). The simulation sample size is nsim = 100.

To approximate each of the X i
u based on its sampled points

{(ta, X i

u(ta)) : a = 1, . . . , 10},
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we use cubic spline functions with 3 interior nodes equally spaced within [0, 1]. That

is, we employ 4 piecewise polynomials that are connected smoothly so that they are

continuous and have continuous first two derivatives. With 16 parameters for the 4

cubic polynomials and 9 constraints for smoothness, we have 7 free parameters left

to describe these functions. Equivalently, each Hi is spanned by kn = 7 linearly

independent functions {h1, . . . , h7}. Each X j
u is then approximated as the linear

combination of these 7 functions:

X j

u =
∑

kn

k=1
[X j

u]kh
j
k, j = 1, . . . , p,

where the linear coefficient vector [X j
u] ∈ R7 is determined by least squares. For

simplicity we choose H1, . . . ,Hp to be the space spanned by these 7 spline functions.

We retain the first 3 (mn = 3) functional principal components for both FCGGM and

FGGM.

In all the simulations, the truncation parameter mn is chosen so that the first mn

eigenvalues in the Karhunen-Loeve expansion explains 90% of the total variation in

the functional PCA.

6.1 Case 1: Non-Gaussian data

We first consider two models, Model I and Model II, where the functional Gaussian

assumption does not hold. Both of the models are generated by

X i

u(t) =
∑

m

r=1
cr(ξ

i
ur)vr(t), u = 1, . . . , n, i = 1, . . . , p,

where cr are as defined in (6.3). The precision matrix Λ for Model I is specified by

the first line in (6.2); that for Model II is specified by the second line in (6.2). Figure

1 presents the ROC curves of the Models I and II, averaged across the nsim = 100
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simulation runs.
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Figure 1. ROC curves for Models I-II (first, second columns), and for

n = 100 (first row), and n = 200 (second row).

In Table 1, we report the means and standard deviations (in parentheses) of

the associated area-under-curve values (AUC). As expected, our FCGGM estimators

perform much better than the FGGM estimators in this case. Also, it can be seen

in Figure 1 that the group-lasso based procedures NS-L, RS-L and FGGM are more

efficient than thresholding.

In Table 2 we repeat the above calculation for p = 100, where the edge sets

of Model I and Model II remain the same pattern in high dimension. Since the

computation of AUC for FGGM-L, NS-L, and RS-L is quite time consuming for

larger p (the group Lasso has to be performed repeatedly for each sparse penalty

constant λn), we only calculated the results for FGGM-T, NS-T, and RS0-T. The

table indicates that the same pattern of comparison upholds in high dimension.
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Table 1. Means and standard errors (in parentheses) for AUC for models I-II.

n Models

Methods

NS-T RS-T FGGM-T NS-L RS-L FGGM-L

100

I
0.93 0.90 0.71 0.99 0.98 0.82

(0.05) (0.06) (0.08) (0.01) (0.02) (0.06)

II
0.79 0.77 0.57 0.81 0.79 0.62

(0.08) (0.09) (0.15) (0.05) (0.05) (0.1)

200

I
0.99 0.98 0.85 0.99 0.99 0.90

(0.01) (0.01) (0.07) (0.002) (0.003) (0.04)

II
0.93 0.91 0.65 0.96 0.95 0.70

(0.04) (0.04) (0.09) (0.04) (0.03) (0.08)

Table 2. Means and standard errors (in parentheses) for AUC for models I-II.

n Models

Methods

NS-T RS-T FGGM-T

100
I 0.96 ( 0.01) 0.96 (0.01) 0.85 (0.02)

II 0.78 (0.11) 0.79 (0.11) 0.43 (0.15)

200
I 0.99 (0.00) 0.99 (0.003) 0.92 (0.01)

II 0.80 (0.13) 0.83 (0.13) 0.45 (0.15)

6.2 Case 2: Gaussian data

Next, we consider two models, Model III and Model IV, where the functional Gaus-

sian assumption holds, to see how much information might be lost by employing a

functional copula Gaussian model under the Gaussian assumption. Both models are

generated by (6.1), with Model III corresponding to the precision matrix specified by
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the first line of (6.2), and Model IV the second line. Figure 2 presents the averaged

ROC curves across the nsim = 100 simulated samples. Table 3 reports the means and

standard deviations of AUC. Overall, although there is some loss of efficiency by the

functional copula estimators, the losses are quite modest. In Table 4 we repeat the

above calculation for p = 100. Again the same pattern of comparison upholds in high

dimension.
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Figure 2. ROC curves for Models III and IV (first, second columns),

and for n = 100 (first row), and n = 200 (second row).

In the above simulation studies of Case 1 and Case 2, the results are inevitably

affected by the choice of the number of knots in the splines. To examine the sensitivity

of this choice, we conducted further simulations with number of knots equal to 5, 6, 8.

Overall, the performances of the estimators (as measured by the areas under the

ROC curves) are relatively stable, although NS-T and RS-T seem to perform better

for larger number of knots. Due to the limited space, we present corresponding ROC

curves in Section 15 in the Supplementary Material.
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Table 3. Means and standard errors of AUC for Models III, IV.

n Models
Methods

NS-T RS-T FGGM-T NS-L RS-L FGGM-L

100

I
0.93 0.90 0.99 0.99 0.98 1

(0.05) (0.05) (0.02) (0.01) (0.01) (0.01)

II
0.81 0.82 0.84 0.80 0.79 0.82

(0.1) (0.1) (0.07) (0.05) (0.05) (0.05)

200

I
0.99 0.99 1 1 0.99 1

(0.006) (0.01) (0.00) (0.00) (0.00) (0.00)

II
0.93 0.92 0.96 0.97 0.96 0.97

(0.05) (0.05) (0.04) (0.03) (0.03) (0.02)

Table 4. Means and standard errors for AUC for models III-IV.

n Models

Methods

NS-T RS-T FGGM-T

100
III 0.84 (0.03) 0.84 (0.03) 0.99 (0.00)

IV 0.62 (0.12) 0.62 (0.12) 0.87 (0.02)

200
III 0.87 (0.02) 0.86 (0.02) 0.99 (0.00)

IV 0.64 (0.10) 0.64 (0.10) 0.92 (0.02)

It is interesting to observe from Tables 2 and 4 that, even at p = 100, the AUC

values are still relatively high. On the surface, at a total dimension of pmn = 300, the

thresholding method shouldn’t perform this well. But our experiences often indicate

that the observations on functional data actually help rather than hamper estimation.

It seems as if the observations on functional data shouldn’t be simply counted as

increase of dimension. This is an important theoretical question for functional data

analysis that deserved further careful investigation.
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7 Application to EEG data

In this section we apply FCGGM (versions NS-L and RS-L) and the group lasso-

based FGGM to the EEG data set used in Li, Kim, and Altman (2010) and Qiao,

Guo, and James (2019a). We also applied the functional additive precision operator

(FAPO) method introduced recently by Li and Solea (2018) this data set. The EEG

study involved two groups of subjects: an alcoholic group of 77 subjects and a control

group of 45 subjects. Each subject was exposed to a stimulus while brain activities

were recorded from the 64 electrodes placed on the subject’s scalp, over a one-second

period in which 256 time points were sampled. See Zhang et al. (1995) and Ingber

(1997) for more backgrounds of this data. Our goal is to construct brain networks

of the 64 nodes for the two groups, based on the functional data collected from the

electrodes on each subject.

We choose mn = 6 for all three methods. To construct H i, we use spline functions

with 20 equally-spaced interior nodes, which means the dimension of H i is kn =

(20+1)×4−20×3 = 24. Thus the dimension of Ω is (64×24)×(64×24) = 1536×1536.

We take the penalizing constant λn for both NS-L and RS-L to be such that 3% of the(
64
2

)
pairs of vertices are retained as edges. Similarly, the penalty constant in group

Lasso for FGGM is tuned so that roughly 3% of the pairs of nodes are edges.

The choice of 3% of the
(
64
2

)
edges is to avoid the network looking too crowded,

while showing the most outstanding connections. A more systematic method for

determining the number of edges, for example via a significance test, needs to be

developed. This is, however, beyond the scope of the current paper and will be left

for future research.
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Figure 3. Brain networks for the alcoholic and non-alcoholic

groups constructed by FGGM-L (upper-left), FAPO (upper-

right), NS-L (lower-left), and RS-L (lower-right). The green

lines indicate the edges shared by the alcoholic and non-

alcoholic networks; the red lines indicate the edges in the

alcoholic network but not in the non-alcoholic network; the

blue lines indicate the edges in the non-alcoholic network but

not in the alcoholic network.

Figure 3 shows the networks constructed by the four methods, where the green

lines indicate the edges shared by the alcoholic and non-alcoholic networks, the red

lines indicate the edges that are in the alcoholic network but not in the non-alcoholic

network, and the blue lines indicate the edges that are in the non-alcoholic network

but not in the alcoholic network. We see that the networks produced by FGGM, NS-

L, and RS-L are quite similar. Moreover, the networks in the frontal lobe produced

by all four methods are also similar to a degree.
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We also investigated the degree to which the Gaussian assumption, as required by

the FGGM, is violated in this data, which might be one of the contributing factors of

the difference between FGGM and the copula-based NS-L and RS-L. Figure 4 shows

the histograms of the first coefficients in the Karhunen-Loeve expansions for the ran-

dom functions from three channels: channel Fp1 for the alcoholic group, channel Fz

for the alcoholic group, and channel Fz for the non-alcoholic group. These histograms

display strong skewness, violating the Gaussian assumption.
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Figure 4. Histograms for the first coefficients in the

Karhunen-Loeve expansions for channel Fp1 for the alcoholic

group (left), channel Fz for the alcoholic group (middle), and

channel Fz for the non-alcoholic group (right).

8 Discussion

In this paper we put forward the idea of the functional copula Gaussian model, and

use it to develop a flexible non-Gaussian functional graphical model. The crux of

this idea is to apply copula transformations to the coefficients in the Karhunen-Loeve

expansion of a random function, which, at the sample level, amounts to first taking

the ranks of these coefficients and then transform them by the Gaussian quantile

function. The advantage of the functional copula approach is that it retains dynam-

ics within a random function but makes the conditional dependence among random
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functions in the same observation unit behave like Gaussian conditional dependence.

This not only simplifies the computation but also avoids any high-dimensional ker-

nels that can hamper estimation accuracy. We have established the consistency and

convergence rates of this approach, and in the process introduced novel techniques

for the asymptotic analysis for the functional copula models.

The functional copula model leads to many theoretical and computational prob-

lems that cannot all be tackled within the scope of the current paper. We now outline

six directions of research that need further development. First, the asymptotic de-

velopments here are focussed on the case where the dimension p is fixed when the

sample size n tends to infinity. It is plausible that some or all of these results can be

extended to the case where p tends to infinity with n, perhaps along the lines of Liu

et al. (2012) and Xue and Zou (2012). Second, the asymptotic developments in this

paper are based on the assumption that the random function X i is observed in its

entirety, ignoring the fact that in practice they can only be observed on a finite set

of time points. Third, we have yet to develop the asymptotic distribution of the pro-

posed functional copula estimators. Fourth, in the multivariate and high-dimensional

setting, Gu et al. (2015) further developed statistical inference procedures for the

copula Gaussian graphical model, including a test procedure for the presence of a

single edge, and a confidence subgraph. We expect that the techniques employed

there can be adopted the current functional graphical model for statistical inference.

Fifth, in this paper we have chosen the truncation constant mn and the dimension

kn empirically, for example, in the simulation we set kn = 7 and then select mn = 3

such that more than 90% of the total variation can be explained. A more systematic

tuning constant selection procedure needs to be developed, for example, by cross-

validation. Finally, as a referee pointed out, the current paper is based on truncated

Karhunen-Loeve expansions of each marginal random function X i, but it would be

more efficient to perform a multivariate Karhunen-Loeve expansion (Chiou et al.,
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2014) on (X1, . . . , Xp) and then apply the copula transformations to this multivari-

ate sequence.

It is true that even the Gaussian copula model is still a restrictive assumption,

which is not satisfied by many stochastic functions. Nevertheless, the class of copula

Gaussian random functions is a much larger than the class of Gaussian random func-

tions. Essentially, by using the functional copula model we have enlarged the family

of applicable models from

{
∞∑
r=1

λ1/2

r ξrφr :
∞∑
r=1

λr <∞, ξr’s are i.i.d. N(0, 1)

}

to {
∞∑
r=1

λ1/2

r hr(ξr)φr :
∞∑
r=1

λr <∞, ξr’s are i.i.d. N(0, 1),

hr’s are increasing functions with Ehr(ξr) = 0, var[hr(ξr)] = 1

}
.

While it can be argued — validly — that this family is still not large enough, the

same criticism also applies to the classical copula Gaussian graphical models, which

have been quite successful in various applications in spite of its limitation.

Finally, although we have focussed on functional graphical models, the idea of

functional copula model can have far wider implications. Functional data have be-

come increasingly common in modern data analysis, and many estimation and testing

procedures have been developed, as can be found in Ramsay and Silverman (2005),

Yao, Müller, and Wang (2005), Ferraty and Vieu (2006), Horváth and Kokoszka

(2012), and Hsing and Eubank (2015), among many others. It is our hope that the

functional copula model as well as the related asymptotic theory presented in this

paper can open an avenue for further developing many of the above methods.
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