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Abstract

We introduce a statistical graphical model for multivariate functional data,
which are common in medical applications such as EEG and fMRI. Recently
published functional graphical models rely on the multivariate Gaussian pro-
cess assumption, but we relax it by introducing the Functional Copula Gaus-
sian Graphical Model (FCGGM). This model removes the marginal Gaussian
assumption but retains the simplicity of the Gaussian dependence structure,
which is particularly attractive for large data. We develop four estimators
for the FCGGM and establish the consistency and the convergence rates of
one of them. We compare our FCGGM with the existing functional Gaussian
graphical model by simulations, and apply our method to an EEG data set to

construct brain networks.
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1 Introduction

Functional graphical models were recently developed by Zhu et al. (2016), Qiao et al.
(2019a), and Li and Solea (2018) to construct networks with function-valued obser-
vations. This type of data arises frequently in medical applications such as EEG and
fMRI. See, for example, Lazar et al. (2002), Cheng and Herskovits (2007), and Li,
Kim, and Altman (2010). The functional graphical model is a continuation of the
recent research on graphical models for scalar-valued observations (Meinshausen and
Biihlmann, 2006; Yuan and Lin, 2007), which can be traced back to Darroch et al.
(1980) and Lauritzen et al. (1984). Other important early references include Wer-
muth and Lauritzen (1983, 1990), Dawid and Lauritzen (1993), Whittaker (1990),
and Lauritzen (1996).

The functional Gaussian graphical model (FGGM) of Qiao et al. (2019a) is de-
veloped under the multivariate Gaussian process assumption; it applied group lasso
to the coefficients of the Karhunen Loeve expansions (Bosq, 2000). Also under the
Gaussian assumption, Zhu et al. (2016) introduced a Bayesian approach by imposing
an invert Wishart prior distribution on the covariance matrix of the vector-valued
functional data and integrating out the covariance operator. Li and Solea (2018)
introduced a nonparametric functional graphical model based on the additive condi-
tional independence introduced by Li et al. (2014). Furthermore, a dynamic functional
graphical model was developed recently by Qiao et al. (2019b) under the Gaussian
assumption.

In this paper we extend the functional Gaussian graphical model to the functional
copula Gaussian graphical model. To explain the ideas of our extension, we first give
an overview the recent developments of the copula Gaussian graphical model in the
classical setting. A special character of the multivariate Gaussian distribution is that

conditional independence is completely specified by the second moments, so that the



estimation of the edge set can be reduced to sparse estimation of the precision matrix.
However, the Gaussian assumption is very restrictive: skewness and kurtosis are but
two of many ways that it can be violated. To relax the Gaussian assumption while
retaining its simple conditional independence structure, Liu, Lafferty, and Wasserman
(2009), Liu et al. (2012), and Xue and Zou (2012) proposed several versions of copula
Gaussian graphical model. The copula model assumes that the random variables
can be marginally transformed to multivariate Gaussian, and leads to substantial
gain in accuracy under marginal violation of the Gaussian assumption. Inspired by
the above developments we propose a copula Gaussian model for a vector of random
functions, leading to the Functional Copula Gaussian Graphical Model (FCGGM). In
doing so we encounter two challenges. One is that a random function has no marginal
variables to apply the copula transformations to, and we solve this by applying them
to the coefficients of the Karhunen-Loeve expansions. The other is that the copula
transformations are not applied to observed data, but instead to estimated quantities,
which means the standard asymptotic tools for the copula model cannot be applied,
and special techniques need to be developed.

The significance of a copula Gaussian model for functional data goes far beyond
the current setting: we expect it to have wide applications in functional data analysis,
such as variable selection, variable screening, and functional time series analysis.
Furthermore, since many dimension reduction methods require the predictors to have
an elliptical distribution, the proposed copula model opens up wide possibilities for
developing simple and efficient functional dimension reduction methods. See Li and
Song (2017) for a recent development in functional sufficient dimension reduction.

In Sections 2 and 3, we introduce the copula Gaussian random function and the
FCGGM. In Sections 4 and 5, we develop estimation methods and establish their
consistency and convergence rates. In Sections 6 and 7, we compare FCGGM with

FGGM by simulations and apply the former to an EEG data. Some concluding re-



marks are made in Section 8. All the proofs are given in the Supplementary Material.

2 Copula Gaussian random functions

In this section we give a rigorous definition of the copula Gaussian random element,
and lay out some basic concepts and notations that will be used in the rest of the
paper.

The extension of the copula model to functional data is not as straightforward as
it might seem, not least because, unlike in the multivariate case, here we do not have
natural “marginals” on which to impose the copula assumption. At first glance it
might seem plausible to impose the copula Gaussian assumption on the observations
X (t) themselves. However, it is theoretically cumbersome to do so because ¢ varies
over an uncountable set. Another possibility is to impose the copula assumption on
the linear coefficients of a pre-assigned orthonormal basis, such as the Fourier series.
But this seems arbitrary because there are infinitely many orthonormal bases. Our
idea is to impose the copula assumption on the coefficients in the Karhunen-Loeve
expansion, which is independent of the choices of basis at the population level.

For two generic Hilbert spaces, say . and 7, let 4(.7,.7) denote the class of all
bounded linear operators from .# to 7. For A € #(,7), let ker(A) denote the
kernel of A, that is, {¢ € 7 : A(¢p) = 0}, let ran(A) denote the range of A; that is,
{A¢ : ¢ € .}, and let Tani(A) denote closure of ran(A). For s € . and t € 7, their
tensor product ¢ ® s is the operator from .# to 7 that maps an h € . to (s, h), t € 7.
Let N be the set of positive integers {1,2,...}.

Let (2, F, P) be a probability space. A random element U in .# is a mapping
from €2 to .# measurable with respect to the Borel o-field generated by the open sets
in .7; a random element A € #(.,7) is a mapping from €2 to % (.7, 7) measurable

with respect to the Borel o-field generated by the open sets in 2 (.7, 7). We make



the following assumption.
Assumption 1. E|U|? < co.

This assumption implies E||U||, < oo, under which the linear functional . —
R, s — E(s,U), is bounded and its Riesz representation is defined as the mean of

U, written as p, = E(U). Under Assumption 1, the linear operator
E(U - EU)) o (U - EQU))

is also a well defined trace-class operator, and is called the covariance operator of U,
written as X, = var(U). See, for example, Bosq (2000). In the rest of the paper we
take . = L,(T). Thus, U is a mapping from 2 to L,(7") measurable with respect to
the Borel o-field in L,(T'). This amounts to assuming, for each w € €, the sample
path U(w) is a square-integrable function with respect to the Lebesgue measure on
T. More rigorously, U should be defined as a random element in the quotient space
L,(T)/ ~, where ~ is the equivalence relation defined by almost sure equality with
respect to the Lebesgue measure on T'. This would avoid the problem that a member
of L,(T) cannot be uniquely identified by the L,(7T")-norm. See, for example, Li and
Babu (2019, page 226) for a detailed discussion on this point. With some extra
conditions that can identify an equivalence class in L,(7T")/ ~ with a single function
(e.g. continuous sample path), we can make explicit connections between the mean
element y,; and the covariance operator ¥, with pointwise means and covariances of
the stochastic process {U(t) : t € T'}: py(t) is, in fact, E[U(t)], and X, is the linear

operator

Soolf) = [ Fe)ovals.

where o,,(s,t) = cov[U(s), U(t)].



We now give a formal definition of a Gaussian random element in .#.

Definition 1. A random element U of .7 is Gaussian if, for any t € .7,

Elexp(u(t, U) /)] = exple(t, pw)» — (1/2){t, Zuut) ], (2.1)

where v = v/—1.

Equivalently, a random element in .7 is Gaussian if and only if, for each f € .7,
(f,U), is a Gaussian random variable. Since ¥, is a trace-class operator, U — u

can be expressed as the Karhunen-Loeve expansion (Bosq, 2000, Theorem 1.5):

U=y =32,aN 6 0 (2.2)

where A, > \,... and ¢,, ¢,,... are the eigenvalues and eigenfunctions of >, and
&,&, ... are are i.i.d. N(0, 1) variables.

We first consider univariate random functions; that is, consider the special case
where .7 is a Hilbert space of functions defined on an interval 7' C R and taking

values in R. We call such a space a Hilbert space of R-valued functions.

Definition 2. Let U be a random element in a Hilbert space .7 of R-valued functions,
and suppose it has Karhunen-Loeve expansion (2.2). We say that U follows a cop-

ula Gaussian distribution if there exists a sequence of monotone increasing functions

C1,Cy,y ... defined on R with Elc,(§,.)] =0, var[c.(&,)] =1 such that

V=2 aA"(E) ¢

15 a Gaussian element in 7 with the right-hand side as its Karhunen-Loeve expansion.

Note that, since N(0,1) is symmetric, ¢,(§,) ~ N(0,1) if and only if —c, (&) ~

N(0,1). So the assumption “monotone increasing function” can be replaced by
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“monotone function”. We restrict ourselves to monotone increasing function — which
does not lose generality — to avoid complication in the theoretical development. The
next proposition gives a sufficient condition for a random element in .# to have a

copula Gaussian distribution.

Proposition 1. If U has Karhunen-Loeve expansion (2.2) where &,&,, . .. are contin-

uwous and independent random variables, then U has a copula Gaussian distribution.

To see what is involved in the univariate functional copula assumption in Definition
2, recall that, in the classical setting, any continuous random variable U can be
transformed to Gaussian by the transformation ®~'-F},, where F is the cumulative
distribution function of U. In the functional setting, in addition to requiring the scores
&, to be continuous, we also require them to be independent. Since by definition &, are
already uncorrelated, the real extra assumption in the univariate functional copula
model is to strengthen the uncorrelation of &, to independence of &,.

The assumption in Proposition 1 that &, are independent is not unduely strong
— it defines a much larger class of random elements in .# than the class of Gaussian
random elements. Indeed, if U is a Gaussian random element in .# having a Karhunen-
Loeve expansion » >~ A/?¢.¢,, then any series of the form ) > A/*f,.(£.)¢,, where
f. are injections such that E[f,(£,)] = 0 and var[f.({.)] = 1, is the Karhunen-Loeve
expansion of some non-Gaussian random element in .. Thus, the functional copula
model does significantly expand the applicability of the Gaussian model.

Another piece of intuition in this construction is that we are not interested in the
dependence structure in U itself: by imposing copula transformation on the (¢,,U) .,
we in effect leave the dependence structure of U intact.

Let

pr=F.(&), n. =2 (p)



We refer to p, as the ranked scores and 7, as the normal scores of the random element

U. The next corollary gives a specific form of the Gaussian copula functions.

Corollary 1. IfU is an R-valued copula Gaussian random function for some sequence

C = {c, : v € N} of monotone increasing functions, then ¢, = ®~'F,, where F, is the

c.d.f. of &,.

We denote the sequence {®~'-F, : r € N} by Cy, and denote the transformed
random element ) _ A2 ® 1 F (&) by Cy(U).

We now turn to vector-valued random functions. For each ¢ = 1,...,p, let 2Z, be
a separable Hilbert space of R-valued functions on 7" with inner product (-,-),.. Let
@r_,#,; be the direct sum of 7,,...,,. That is, ®”_,.#, is the Cartesian product

Ay X -+ X A, with its inner product defined by

(fsDor=221 [ 9:)n,

where f and g are members of ®?_ 7, and f, and g, are the ith components of f
and g, respectively. Let X = (X",..., X?) be a random element in &”_,#,. For each

(1,7) € V x V, define the covariance operator between X’ and X* as
Yyixe = cov(X?, X") = E[(XZ — fiyi) ® (X7 — ij)]'

This operator has a one-to-one correspondence with the kernel function o i ;i (s,t) =
cov[X'(s), X’(t)]. Note that, Xy iy € B(#,;, #;). We say that X is a Gaussian
random element of &*_ 7, if, for each (¢,,...,t,) € ®"_ 4,

E [exp ([’Ziev<ti7 X),f)} = exp [[, D ievltio tixi) o — 2 et ZXintj)%/Q] )



Define Y x to be the following operator

er_ A — B A, (L, t,) — (ZievExlxiti, R ZieVEXpXiti).

Intuitively, ¥y can be interpreted as the p X p matrix whose (7, j)th entry is X i i;

that is,

Exlxl Exlxp

Expxl e Expxp

In general, suppose, for each (i,7) € V x V, A,; is an operator in Z(#;, #,). We
define the matrix of operators A = {A;,}?._, as the mapping

A . 69?:1%7: _> 69:,?:1%’57 (tlj .« .. 7tp) |_> (Zz:lAthé7 AR 9 iilApét£>.

The class of all such operators are denoted by X, ., #(#;, ;). Notice that

X i,jev%(%m %j):gg<@f:1%i’ @lec%ﬂi)-

Using this convention of matrix of operators we can write a Gaussian random element

X equivalently as

E[exp@(t, X>®%”l)] = eXp[L@? /LX>®%¢ - <t7 2XXt>®%%/2]7

which has the same form as (2.1). We now define the copula Gaussian random element

in ®r_ .

Definition 3. Suppose X = (X',---,X") is a random element in ©°_ ;, where



each X' is a copula Gaussian random element in #,. We say that X is a copula

Gaussian random element in @&°_, #; iff the R?-valued random function
(Cxr(XY), ..., Cxp(XP))

15 a Gaussian random element in @F_ ;.

As we mentioned earlier the direct reason for us to impose the copula transfor-
mations on the Karhunen-Loeve coefficients is that we do not have natural marginals
to impose it on. Here, we would like to further argue that, even if the Hilbert space
is finite-dimensional, where X* does have “natural” coordinate, it is still reasonable
to assign copula transformations to the Karhunen-Loeve coefficients (or the principal
components). For example, suppose X' lies in a space spanned by the polynomials
1,¢,¢%,...,t", then there seems no more reason to believe that all the non-Gaussian
feature happens along the coefficients of these polynomials than along the principal
components. In other words, imposing copula transformations on principal compo-

nents may well be a viable alternative even in the finite-dimensional setting.

3 Functional copula Gaussian graphical models

As in Qiao, Guo, and James (2019a), we use conditional independence to define

graphical models for random functions.

Definition 4. A random element in @&°_, 5, is said to follow a functional graphical

model with respect to an undirected graph G = (V,E) iff
XX X—@D V(i) ¢ E.
Furthermore, if X s a copula Gaussian random element in ®'_ 7, then we say X

10



follows a functional copula Gaussian graphical model, and write this statement as

X ~ FCGGM(G).

In the classical setting, the most attractive feature of the Gaussian graphical
model is its ability to encode conditional independence as the zero entries of the
precision matrix, so that estimating an undirected graph reduces to sparse estimation
of the precision matrix. More specifically, suppose Z = (Z*, ..., Z"?) is a multivariate
Gaussian random vector with covariance matrix >, and let © = X" be its precision

matrix. Then

Zi L2\ 276D i 6, =0, (3.1)

where 0,; is the (i, j)th element of ©. The copula Gaussian graphical models of Liu,
Lafferty, and Wasserman (2009) and Xue and Zou (2012) inherit this property but
allows the marginal distributions of Z* to be non-Gaussian.

Our motivation for introducing the functional copula Gaussian model is to in-
herit the Gaussian-like conditional independence structure without having to assume
X to be a Gaussian random function. Specifically, the following scheme seems
plausible. Suppose X is a copula Gaussian random element in @ 5, and let
Z = (Cx1(X"),...,Cxr(X?)). Then Z is a Gaussian random element in @7 7.
Let ©,, = ¥,,. Then

X@'ﬂX”X—(m) o= ZULZ”Z*(”‘) = @zizf — 0’

where the first equivalence holds because there is a one-to-one correspondence between
X*and Z*, and the second holds because Z is a Gaussian random element. However,
there is additional complication here: since Xy is a trace-class operator, its inverse

is an unbounded operator, which makes it problematic to use X% directly as the
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object of estimation. To avoid this difficulty, we introduce the correlation operator
of a random element in ®F_,77,.

Let %, denote the subspace Tan(X,i i), #, the subspace Tan(X,;,;), and P, and
P, the projections on to #; and % ;, respectively. By Baker (1973), there is a unique
operator R, € #(;, #;) such that |[R,i,i|| <1, Ry = Py Ry Psy, and

21/2 RZiZjEI/2

AYA VAN

— %, (3.2)

/2

where Elzi i 18 the square-root of the operator 3,i,:. That is,

S =2 (AR @ @),

where {(Ai,¢) : r € N} are the eigenvalues and eigenfunctions of Yy iyi.  The
operator R,i,; : s, — 4, is called the correlation operator between Z* and Z7. Note
that, when ¢ = j, the identity mapping I, in #, satisfies the above relation. Hence
R,i,i = I, which is consistent with the classical definition of correlation. Using this

operator we define the correlation operator of a random element in ®?_ .7, as follows.

Definition 5. Suppose Z = (Z*,. .., Z7) is random element in ®"_ s, with E||Z|*> <
oo. Let R,i,; be the correlation operator between Z* and Z’. We call the operator

R, ={R,iz}ijev € Xijev B (0, ;) the additive correlation operator of Z.

It turns out that, unlike additive covariance operator ,,, the additive correlation

operator R,, has a bounded inverse under very reasonable assumptions.
Assumption 2. Fori # j, R,i,i are compact; R,, is invertible.

This assumption was also made in Bach (2008). The assumption is quite mild:
as argued in Li (2018), the compact assumption of R,:,; imposes a type of collective

smoothness between the functions in J#; and functions in 2#,. Also note that R,,
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is invertible if and only if 3,, invertible, which holds if and only if ker(X,,) = {0}.
Since a function belongs to ker(X,,) iff var((f, X),) = 0, the invertibility simply
means that X does not resides in a proper subspace of #. The next proposition

shows that under Assumption 2 R,, has a bounded inverse.

Proposition 2. Under Assumption 2, R,, > cl for some ¢ > 0, and consequently

R, is a bounded operator.

We call R}, the additive precision operator of Z, and denote it by ©,,. Note that
both R,, and ©,, are members of X, ., % (s, #;). We denote the (i, j)th entry of
@ZZ by @Zizj .

Theorem 1. Suppose Z is an R?-valued Gaussian random function in 3, with © 4,
as its precision operator. Suppose, furthermore, that, for each i # j, the operators

YN ig-Ga and X; % ,—ai are bounded linear operators. Then

A ﬂZj|Z_(i’j) iff ©,i, =0.

Note that, even though X7} ; is an unbounded operator, it is reasonable to assume

E;}ZiZ 4is—) to be a bounded operator, which can again be interpreted as a type of
“collective smoothness” between functions in #_, ;, and s#,. For further discussion
on this point, see Li (2018). Because there is a one-to-one relation between X' and

7', the above proposition leads immediately to the following corollary.
Corollary 2. Suppose X is an RP-valued copula Gaussian random function. Let
Z=(Cx1(X"),...,Cxp(X?)). Then
XiﬂXj|X_(i’j) iff ©,i, =0.
In our case the operator R,:,; takes a rather simple form, as given in the next

theorem.
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Theorem 2. Suppose X is a copula Gaussian random element in ®&*_ ; and let Z

be the random element (Cx1(X"),...,Cxe(X?)). Suppose, for eachi,j=1,...,p,

D) <oo, 3 feor(m)| < oo

reN (r,s)ENXN

Then
RZiZj = ZTGNEteN COIT(ﬁi’ ng)((bi ® Qbi) (33)

where 1, = O FN(E]), & = (X', 07) /().

1/2

The assumption ) _ (A)"? < oo simply means that X7 ; is a trace-class oper-

ator, which is needed in the proof of this theorem. There is an alternative way of

representing R,i,;. According to Kendall (1948) and Kruskal (1958), if (U, V) is a

bivariate Gaussian random vector, then
corr(U, V') = 2sin %corr(FU(U), F,(V)) ] ,

where F}, and F), are the cumulative distribution functions of U and V. From this

relation we can easily derive the following alternative expression of R i ;.

Corollary 3. Under the conditions of Theorem 2 we have

Rzizj =2 EréNZtEN Sin[(ﬂ/G)corr(pi, pi)](gﬁ:ﬂ ® Qbi) (34)

where p, = FX((X", 1)/ (X)'?).
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4 Estimation

Theorem 2 and Corollary 3 suggest two different ways of estimating R,i,;: the first
is to estimate the correlations between the normal scores 7 and 7n/; the second is
to estimate the Kendall’s transformations of correlations between the ranked scores
p. and p!. Both of these approaches will be developed in this section, and we refer
to them as the normal score (NS) method and ranked score (RS) method. We also
employ two types of sparse penalties: thresholding and the group lasso. The devel-
opment of the first three subsections is at the operator level, which conveys the main
ideas of estimation without getting too much involved in the details of coordinate
mapping. The last subsection gives the outline of the algorithms using coordinate
mapping, with full details developed in the Supplementary Material. We begin with

the Karhunen-Loeve expansion at the sample level.

4.1 Empirical Karhunen-Loeve expansion

Let X,,..., X, be an independent sample from the random element X. For each
u=1,...,n, X, is the vector (X!, ..., X?), where, for each i = 1,...,p, X! is a
R-valued random function defined on the interval T'. We use F, to denote the sample
average operator. That is, for a sample of random elements, say W,,... , W,, E (W)
means 'y " W,.

We estimate the mean element pyi = E(X') by fiyi = E,(X"). For each i =

1,...,p, we construct the operator
Syivi = B [(XF = figi) @ (X' — figi)], (4.1)

which is well defined on . Let {(\',¢') : r € N} be the sequence of eigenvalue-

eigenfunction pairs of S ixi With 5&1 > 5\; > .... Then, foreachu =1,...,n, X! — i
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has the following empirical Karhunen-Loeve expansion:
X) = i = 30,00 (X0 00 = 22,00 (N) €01

where £ = (X, q@uﬂ/(j\)”? To filter out noise we truncate the sum at some m,,,

T

which goes to oo with n at a rate specified in Section 7. Thus we now have the

truncated empirical Karhunen Loeve expansion:
X = s = 300 (N) V2L, 60
The set of estimated &, ¢!,
(€ . ¢):u=1,....n,r=1,...,m, i€V}

will be the basis for all the estimation procedures to follow.

4.2 Normal-Score estimators

We first derive the sample-level approximation of the principal copula transformations
Cx = (Cy1,...,Cxp) where Cyi = {®7'F" : r € N}, F' being the c.d.f. of . As
in Liu, Lafferty, and Wasserman (2009), we use Windsorized empirical distribution

based on the sample éfr, e ,éfw. Let FT be the empirical distribution of fi’r, e ,fjwz
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The Winsorized empirical distribution F* is

O if Fi(y) <4,

Fily) = Fi(y) ito, < Fi(y)<1—04,

1—0, if Fi(y)>1-9,

where §, > 0 and lim,_ 6, = 0. Following Liu et al. (2009), we choose 9, to be

[4n'/*y/mlog(n)]~".

The empirical principal copula transformations are then given by

Let

0., = (ID‘loF:(éir), u=1,....,n,r=1,....m,, i=1,...,p
be the empirical normal scores. We estimate the correlation operator R,:,; by
Rzizj = thnzl corr, (ﬁ;: ﬁg)(qb; & Qbi) (42)

where corr, is the empirical correlation defined by replacing all the expectations in
corr with its empirical counterpart E,. We then form the operator R,, as the matrix
of operators whose (7, j)th entry is Rzi 4i. Using this operator we develop sparse
estimators of ©,, either by thresholding or group lasso, which are detailed below

separately.

Thresholding Let ézz = }A%TZZ be the Moore-Penrose inverse of the operator RZZ

(Hsing and Eubank, 2015, Definition 3.5.7). Let €, be a positive sequence that goes
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to 0 as n — oo, which will be specified in the asymptotic section. We estimate E by
E(e,) ={(i,7) e VXV : ||O,i] > €.} (4.3)
where || - || is the operator norm or the Hilbert Schmidt norm of an operator.

Group lasso Inspired by Qiao, Guo, and James (2019a), we define

L,: X, v B, ;) = R,

O — —logdet(©) + trace(OR,,) + A3 |0,

i#j HS-

Here, det(©) means the product of all the nonzero eigenvalues of © and ©,; denotes
for the sub-operator of © in # (#,, ;). The precision operator O ,, is then estimated
by maximizing L, (©) among all positive semidefinite operators in X, ., B (#;, #;).
This is essentially a group lasso procedure because the parameters in a suboperator
©,; are shrunk to 0 together.

Since, at the sample level, ®”_ 7, is a finite-dimensional space, the operator
OR,, can be represented by coordinate mapping as a matrix with respect to a basis
in @?_,»,. The trace of the operator OR,, is simply the trace of its matrix repre-
sentation. This trace is a well defined function of an operator because it does not
depend on the basis with respect to which the operator is represented. The function
—log det(©) + trace(OR,,) need not be regarded as the Gaussian likelihood with its
parameter ranging over the class of linear operators in X, o, 2 (%#;, #;); it is simply
a reasonable objective function to minimize, because, without the sparse penalty, it
is minimized at © = R;L. It can also be regarded as the natural generalization of the

objective function for the glasso to the operator level.
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4.3 Estimators based on ranked scores

Here, we replace (4.2) by an estimator R,i,; using Corollary 3:
Ry =237, sin|(n/6) corr, (51, ) (6 @ 90), (44)
where p! = are the empirical ranked scores
p. = j(é’jﬁ) u=1,....,n,r=1,....m,, i=1,...,p.

Note that we use the usual empirical likelihood F: rather than the Winsorized version.
The thresholding and the group lasso procedures based on the ranked scores are
exactly the same as those based on the normal scores, except that the estimator (4.2)
is replaced by the estimator (4.4).

Up to this point we have described our estimators at the population level, under
the assumption that the random functions X, ..., X, are observed in their entirety.
In the next section we describe how to implement them numerically using coordinate
representation in finite-dimensional Hilbert spaces. The normal score methods based
on truncation and group lasso will be abbreviated by NS-T and NS-L; the ranked
score methods based on truncation and group lasso will be abbreviated by RS-T and

RS-L.

4.4 Algorithms

In the previous subsections we described the estimation procedures at the operator
level. To make them executable algorithms we need to represent operators as ma-
trices through coordinating mapping. To save space we leave the full details of the
development of the coordinate mapping in the Supplementary Material, while only

present the final results here.
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Algorithm for Karhunen-Loeve expansion

1. For i = 1,...,p, choose a family of functions #, = span{hi,... h; } on T}

compute the Gram matrix K, and its centered version G,;

2. Reset X' to its centered version X' — E,(X") and compute the coordinates

2
u

[X:],, relative to the basis £, of 2#;;

3. Perform spectral decomposition on G}*E, ([X?][X?|")G}’* to obtain the eigen
pairs {(Al,v1) 17 = 1,..., k,}. Compute &, = (A)~2[X.]}, Gi"*v!

Algorithm for NS-T, RS-T, NS-L, RS-L

In the following, for NS-T, follow 1 — 2 — 3; for RS-T, follow 1’ — 2" — 3'; for
NS-L, follow 1 — 2 — 3”; for NS-R, follow 1’ — 2" — 3.

1. For NS-T and NS-L, compute 7} according to 7} = @flon(éjw);

A

1’. For RS-T and RS-L, compute /' according to p° = F*(£ ) (note that the

un-truncated empirical distribution is used);

2. For NS-T and NS-L, compute Q™ = {Q"}* | where

(%) i,7=17

Q) = o corr, (i, ) G oy (v]) TG

2. For RS-T and RS-L, compute Q® = {QfV}? _  where

QO =23 sinf(x/6)corr, (4. )} G0 () G

r,t=1

3. For NS-T, compute A™ = (V) and let A’ be the (i,7)th block of A®.

Choose a threshold e,, and estimate the edge set by ||GI'*AS G| > e,.
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3'. For RS-T, perform step 3 with Q™ QY A®™ replaced by Q®, QY A®,

3”. For NS-L, use group lasso (Qiao et al., 2019a) to minimize the objective function
MV (A) = —log det(A) + trace{ A(B:ievG;*) Q™ (@:vG*) } + A2 1Al

to obtain A®™ = {Aﬁf)}f’jzl and estimate the edge set by {(i,j) € V. x V : i #
j7 Aij 7& 0}

3" For NS-R, follow step 3" with Q™ A™ A™ replaced by Q™ A™ AN

5 Consistency and convergence rate

In this section we develop the consistency and convergence rate of one of the proposed
estimators. Due to space limit, we focus on the RS-T procedure with the operator
norm. There are several challenges for developing an asymptotic theory for our copula
functional model. First, a difference between our proposed functional copula model
and the conventional copula model is that our copula transformations are applied
to the estimated scores éu rather than the true scores £ , whereas the conventional
copula models are applied directly to observed data. Accounting for this approxima-
tion is a major undertaking: since rank transformation is not continuous, standard
methods are not applicable, and new techniques must to be developed. The second
challenge is that in various places we need to find uniform bounds for eigenvalues and
eigenfunctions, and a variety of quantities derived from them.

If @, and b, are positive sequences, we write a, < b, (or b, > a,) if a, /b, — 0 as

n — oo. We write a, < b, if

0 < liminf(b,/a,) < limsup(b,/a,) < co.

n—00 n— oo
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If U, is a sequence of random variables that is bounded in probability; that is, for

any € > 0, there is a K > 0 such that limsup, ,  P(|U,| > K) < ¢, then we write

U, = 0p(1). If U,/a, = Op(1), then we write U, = Op(a,). If U, = Op(a,) and
a, < b,, then we write U, i b, orb, i U,.
We first establish the consistency of ﬁzi 4. For any integer m, let

W, =min{X =X r=1...,mi=1,...,p},

and let ¢} = 2sin[(7/6)corr(p;, p!)]. We impose the additional condition ) *,_ <

o
oo, which requires ¢ to decay sufficiently fast. Note that, if R, ,; is a Hilbert Schmidt
operator, then ™ _ (cf)® < co. So our condition is stronger than this, but is in the
same spirit. As we will further discuss below, requiring c¢” to decay fast suggests a

certain type of smoothness.
Theorem 3. Suppose, fori # j,

c

rt

1.y

< 00,
2. B X", < oo, fork=1,...,p,

3. for some sequence {m, :n € N} and some 0 < o < 1/2,

20/3-1/3 3/2, . 1/2—a
s .

mn,

1>w,, =n m2 < w

Then | R i, — Ryigillop — 0.

In the theorem, the condition w,, > n**/*7'/*is to ensure that m, can be chosen

1/2

to go to co. Note that it also implies w,,, > n~"/? which is used in the proof. The

condition ) |¢%| < oo is needed to ensure that the operator norm of the difference
between R,i,; and its truncated version goes to 0, which control the bias of the

estimator }?Z,; ,i. Next, we develop the convergence rates of Rzi 4i- To accomplish this
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we need to strengthen three conditions. The first is the rate at which ¢ decays as
r — oo and t — oo. This rate of decay characterizes the degree of smoothness in the
relation between Z* and Z’: ¢ decaying fast means that most of their correlations
are concentrated on the low-frequency components of Z* and Z7. The second is the
rate of decay of A\, which characterizes the smoothness of X' itself. The third is
the tail probability of the random variable || X[, as reflected in the existence of its
higher-order moments or its moment generating function. In the following, let S(m,,)

be the tail index set

{m, +1,m,+2,...} x {m,+1,m, +2,...}.

Theorem 4. Suppose, for i # j, there exist § > 0 and s > 4 such that

c

rt

1y=

< 00;
rt n

2. [Z(r,t)es(mn)(cij)2]l/2 = O(m‘ﬁ) as n — 0o;

3. E|X

s .
S < 00

4. for some sequence {m,, : n € N} and some 0 < a < 1/s,

3/2, 1/2—a
mn ‘

1w, =n** 0 m? <w

Then, | Ry, — Ryiyillor = Op(m2n="* + m2w, 2Pn=Ae 4om 7).

A condition somewhat similar to the above condition 2 is also employed in Li and
Song (2017) and Li and Solea (2018) in the context of nonlinear sufficient dimension
reduction and nonparametric graphical models for functional data. See also Li (2018)
for further discussions on this point.

Some discussion of the roles played by different constants in the convergence rate

is in order. As can be seen from the proofs of Theorems 3~5 in the Supplementary
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Material, the estimation error ||R,:, — R, 4illor is bounded from above by

Hpbzizj - R(mn)HOP + “R(mn) — Ryiy ”OP’

z; 729 z;zJ

(mn)
A2

where R is the first m,, terms in the expansion of R,:,;. Roughly, the second
term above represents the bias of the estimate; the first term the variance. The
positive constant a controls the tail of the random variable || X’||,.: the smaller « is,
the thinner the tail. A thinner tail helps to reduce the variance term. The integer
m,, is the length of the truncated Karhunen-Loeve expansion of X*, and a larger m,,
reduces the bias term. The number w,,, is the overall eigenvalue gap of the first m, +1
eigenvalues of 3 ,i,i. A larger eigenvalue gap also helps to reduce the variance term.
With these tendencies in mind, the condition m? < w?*n'/*~* in Theorem 4 means
(a) if the tail of | X(|,, is thin, then the variance term is small, and we can afford to
choose a larger m,, to reduce the bias and (b) similarly, if the eigenvalue gap is large,
then the variance term is small, and we can choose a larger m,,.

If we ignore the term m_”, then the convergence rate is faster when m,, is smaller.
This is the “parametric part” of the rate. However, as m, becomes small, m "
increases. This is the nonparametric part of the rate. If the smoothness index /3
is large, then m_? is small even if m, increases slowly with n. As will be seen in
Example 1, the rate of m2w, *? is determined by how fast \! decays as r — oo. The
faster it decays, the slower rate (to oo) of m2w,*? can be tolerated. Thus, if ¢ and
Al are allowed to decay arbitrarily fast, the rate in Theorem 4 can get arbitrarily close
to n=t/2rs,

We can further improve the convergence rate by strengthening the moment as-

sumption on || X’||,, to existence of its moment generating function. In that case, the

convergence rate can get arbitrarily close to n='/?log(n).

Theorem 5. Suppose
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Loasn = 00, 32 sy (€2)]* = O(m,”);

2. for each i =1,...,p,
netghborhood of 0;

3. for some sequence {m, :n € N}, and some a > 1,

1>w,, =n"2  m2<w *n*(log(n))".

Then, ||R iy — Ryiyillor = Op(mZn="2 + m2w S22 (log(n))™ +m,”?).

As mentioned earlier, the rate in Theorem 5 can be made arbitrarily close to
n~'?log(n) if ¢ and X’ decay sufficiently fast. To provide intuition regarding how
m2w, */* is related to the decaying rate of \!, we give an example below using A! oc =,

a > 0 as a prototype.

Example 1. Because X,y is a trace-class operator, we have a > 1. Then, for
any integer m, w,, = A\,, — A,y = m~* — (m + 1)7*. By elementary calculations, we
can show that this is of the order O(m™"'). So if we want to choose m, so that

w, = n~'/** for some b > 0, then we need m_ ) = n~'/?** which is satisfied if

1—-2b

3/2 (-1/240)(=3/2) _ L5+ §-%

n

m2w-%? = neFp
n m.

Because b < 1/2, we have 128 4.3

=+ % > 0. So miw,** — co. But if a is large and b

is chosen to be small, the increasing rate can be arbitrarily slow, so that the rate in
Theorem 5 can be arbitrarily close to n~'/?log(n) except the term m_”, which itself

can be arbitrarily small if § is large. O

Finally, we establish the consistency and convergence rates of 0., as well as the

consistency of the graph estimator E (€,) defined in (4.3). Because p is a constant,
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H.ﬁizz — R,z||op 18 also consistent under the conditions of Theorem 3, and has the same
convergence rates in Theorems 4 and 5, under the respective conditions. To derive
the consistency and convergence rate of ©,,, we need the following lemma from Li and
Solea (2018), which can be verified by straightforward calculation. The next theorem
shows that H@ZZ —0O,]lop and ||RZZ — R,,||or have the same convergence rate under

mild conditions.

Theorem 6. If ||RZZ — R,z|lop 5 0 and Ry, > ¢l for some ¢ > 0, then, for any

positive sequence a, — 0,
||ﬁizz - RZZHOP = OP(an) = ||ézz - @ZZHOP = Op(an)-

We say that an estimator E of the true edge set E is consistent if the probability of
the event E = E tends to 1 as n — oo. The next corollary establishes the consistency

of E(e,) as defined in (4.3), as well as the rate of the threshold .

Corollary 4. Let v, denote the convergence rates in Theorems 4. If 1 = €, = 7,,
then, under the conditions in Theorem 4, P(E(e,) = E) — 1. The same can be said

if Theorem / is replaced by Theorem 5.

6 Simulation Studies

In this section we compare numerically the performances of our FCGGM estimators,
including NS-T, RS-T, NS-L, RS-L, with two versions of the FGGM estimator, one
based on the group Lasso (FGGM-L) as proposed by Qiao, Guo, and James (2019a),
the other based on thresholding the Frobenius norm of the (7, j)th block of the esti-
mated precision matrix of the functional principal components (FGGM-T, this version
was not contained in Qiao, Guo, and James (2019a)) . We consider two scenarios: one

in which the random elements on the vertices are copula Gaussian random functions,
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and one in which they are Gaussian random functions.
To simulate copula Gaussian random functions, we first draw n independent Gaus-

sian random functions using five Fourier basis functions, as in Qiao, Guo, and James

(2019a):

Xi(t)y=> "8 v(t), u=1...,n,i=1,...p, (6.1)

u

where m = 5, and {v,, r =1,2,3,4,5} are the first 5 functions in the Fourier basis

1, V2sin(27t), V2cos(2nt), V2sin(4nt), V2 cos(4mt),

and, for each u, (¢!,,...,& ... &, ..., & )7 is multivariate Gaussian with mean 0

and block precision matrix A € R*™**™. We consider choices of A:

(a) Aj,j = [ma Aj,jJrl = O4[m,
(6.2)
(b) AJ',J' = ]m; A17j = OQIm

Then we transform &' to ¢,,(£! ) where, for simplicity, we choose ¢,; = ¢, to be the

same across ¢ = 1,...,p, which are taken to be the following functions
€I
a(z) =2°) cy(x) = €%, cs(x) = e a(r)=142)°, c(x) =z (6.3)

Each function X' () is sampled at 10 equally spaced time points t,,...,t,,, where
t, =0 and t,, = 1. In the simulations, the network size and the sample size are taken
to be (p,n) = (10, 100), (10,200). The simulation sample size is ng, = 100.

To approximate each of the X! based on its sampled points

(o, X)) ca=1,...,10},
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we use cubic spline functions with 3 interior nodes equally spaced within [0, 1]. That
is, we employ 4 piecewise polynomials that are connected smoothly so that they are
continuous and have continuous first two derivatives. With 16 parameters for the 4
cubic polynomials and 9 constraints for smoothness, we have 7 free parameters left
to describe these functions. Equivalently, each H, is spanned by k, = 7 linearly
independent functions {h,,...,h,}. Each X’ is then approximated as the linear

combination of these 7 functions:

where the linear coefficient vector [X?] € R" is determined by least squares. For
simplicity we choose H,,...,H, to be the space spanned by these 7 spline functions.
We retain the first 3 (m, = 3) functional principal components for both FCGGM and
FGGM.

In all the simulations, the truncation parameter m,, is chosen so that the first m,,
eigenvalues in the Karhunen-Loeve expansion explains 90% of the total variation in

the functional PCA.

6.1 Case 1: Non-Gaussian data

We first consider two models, Model I and Model II, where the functional Gaussian

assumption does not hold. Both of the models are generated by

where ¢, are as defined in (6.3). The precision matrix A for Model I is specified by
the first line in (6.2); that for Model II is specified by the second line in (6.2). Figure

1 presents the ROC curves of the Models I and II, averaged across the ng, = 100
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simulation runs.
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Figure 1. ROC curves for Models I-II (first, second columns), and for
n = 100 (first row), and n = 200 (second row).

In Table 1, we report the means and standard deviations (in parentheses) of
the associated area-under-curve values (AUC). As expected, our FCGGM estimators
perform much better than the FGGM estimators in this case. Also, it can be seen
in Figure 1 that the group-lasso based procedures NS-L, RS-L. and FGGM are more
efficient than thresholding.

In Table 2 we repeat the above calculation for p = 100, where the edge sets
of Model I and Model II remain the same pattern in high dimension. Since the
computation of AUC for FGGM-L, NS-L, and RS-L is quite time consuming for
larger p (the group Lasso has to be performed repeatedly for each sparse penalty
constant A\, ), we only calculated the results for FGGM-T, NS-T, and RSO-T. The

table indicates that the same pattern of comparison upholds in high dimension.
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Table 1. Means and standard errors (in parentheses) for AUC for models I-II.

Methods

n Models
NS-T RS-T FGGM-T NS-L RS-L FGGM-L

093 090  0.71 099 098  0.82
(0.05) (0.06) (0.08)  (0.01)  (0.02)  (0.06)

100
079 077 057 081 079  0.62
H (0.08) (0.09) (0.15)  (0.05) (0.05)  (0.1)
099 098 085 099 099  0.90
: (0.01) (0.01) (0.07) (0.002) (0.003) (0.04)
20 . 093 091 065 096 095  0.70

(0.04) (0.04) (0.09) (0.04) (0.03)  (0.08)

Table 2. Means and standard errors (in parentheses) for AUC for models I-II.

Methods
n Models
NS-T RS-T FGGM-T
I |0.96(0.01) 0.96(0.01) 0.85 (0.02)
100
II | 0.78(0.11) 0.79 (0.11)  0.43 (0.15)
I | 0.99(0.00) 0.99 (0.003) 0.92 (0.01)
200
I | 0.80 (0.13) 0.83 (0.13) 0.45 (0.15)

6.2 Case 2: Gaussian data

Next, we consider two models, Model III and Model IV, where the functional Gaus-
sian assumption holds, to see how much information might be lost by employing a
functional copula Gaussian model under the Gaussian assumption. Both models are

generated by (6.1), with Model III corresponding to the precision matrix specified by
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the first line of (6.2), and Model IV the second line. Figure 2 presents the averaged
ROC curves across the ng,, = 100 simulated samples. Table 3 reports the means and
standard deviations of AUC. Overall, although there is some loss of efficiency by the
functional copula estimators, the losses are quite modest. In Table 4 we repeat the
above calculation for p = 100. Again the same pattern of comparison upholds in high

dimension.

sensitivity
sensitivity

R NS-T  — Ns-L
rrrrrr RS-T  — RS-L i/ -
ol FGGM-T FGGM-L s ¥ FGGM-T FGGM-L
: : : : : : : :

sensitivity

1-specificity

1-specificity

— NS-L
— RS-L

sensitivity

FGGM-T
T

04 06
1-specificity

FGGM-L
T T

FGGM-T FGGM-L
T T T

o
1-specificity

Figure 2. ROC curves for Models IIT and IV (first, second columns),
and for n = 100 (first row), and n = 200 (second row).

In the above simulation studies of Case 1 and Case 2, the results are inevitably
affected by the choice of the number of knots in the splines. To examine the sensitivity
of this choice, we conducted further simulations with number of knots equal to 5, 6, 8.
Overall, the performances of the estimators (as measured by the areas under the
ROC curves) are relatively stable, although NS-T and RS-T seem to perform better
for larger number of knots. Due to the limited space, we present corresponding ROC

curves in Section 15 in the Supplementary Material.
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Table 3. Means and standard errors of AUC for Models III, IV.

Methods
n Models
NS-T RS-T FGCGM-T  NS-L RS-L  FGGM-L
0.93 0.90 0.99 0.99 0.98 1
: (0.05) (0.05) (0.02) (0.01) (0.01) (0.01)
100 0.81 0.82 0.84 0.80 0.79 0.82
" (0.1) (0.1)  (0.07) (0.05) (0.05) (0.05)
0.99 0.99 1 1 0.99 1
: (0.006) (0.01) (0.00) (0.00) (0.00) (0.00)
20 0.93 0.92 0.96 097  0.96 0.97
i (0.05) (0.05) (0.04) (0.03) (0.03) (0.02)

Table 4. Means and standard errors for AUC for models ITI-IV.

Methods
n Models
NS-T RS-T FGGM-T
IIT | 0.84 (0.03) 0.84 (0.03) 0.99 (0.00)
100
IV | 0.62(0.12) 0.62 (0.12) 0.87 (0.02)
III | 0.87 (0.02) 0.86 (0.02) 0.99 (0.00)
200
IV | 0.64 (0.10) 0.64 (0.10) 0.92 (0.02)

It is interesting to observe from Tables 2 and 4 that, even at p = 100, the AUC
values are still relatively high. On the surface, at a total dimension of pm, = 300, the
thresholding method shouldn’t perform this well. But our experiences often indicate
that the observations on functional data actually help rather than hamper estimation.
It seems as if the observations on functional data shouldn’t be simply counted as
increase of dimension. This is an important theoretical question for functional data

analysis that deserved further careful investigation.
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7 Application to EEG data

In this section we apply FCGGM (versions NS-L and RS-L) and the group lasso-
based FGGM to the EEG data set used in Li, Kim, and Altman (2010) and Qiao,
Guo, and James (2019a). We also applied the functional additive precision operator
(FAPO) method introduced recently by Li and Solea (2018) this data set. The EEG
study involved two groups of subjects: an alcoholic group of 77 subjects and a control
group of 45 subjects. Each subject was exposed to a stimulus while brain activities
were recorded from the 64 electrodes placed on the subject’s scalp, over a one-second
period in which 256 time points were sampled. See Zhang et al. (1995) and Ingber
(1997) for more backgrounds of this data. Our goal is to construct brain networks
of the 64 nodes for the two groups, based on the functional data collected from the
electrodes on each subject.

We choose m,, = 6 for all three methods. To construct 2#;, we use spline functions
with 20 equally-spaced interior nodes, which means the dimension of 7, is k, =
(2041) x4—20x 3 = 24. Thus the dimension of 2 is (64 x24) x (64 x24) = 1536 x 1536.
We take the penalizing constant A, for both NS-L and RS-L to be such that 3% of the

(64

2) pairs of vertices are retained as edges. Similarly, the penalty constant in group

Lasso for FGGM is tuned so that roughly 3% of the pairs of nodes are edges.

The choice of 3% of the (624) edges is to avoid the network looking too crowded,
while showing the most outstanding connections. A more systematic method for
determining the number of edges, for example via a significance test, needs to be

developed. This is, however, beyond the scope of the current paper and will be left

for future research.
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Figure 3. Brain networks for the alcoholic and non-alcoholic
groups constructed by FGGM-L (upper-left), FAPO (upper-
right), NS-L (lower-left), and RS-L (lower-right). The green
lines indicate the edges shared by the alcoholic and non-
alcoholic networks; the red lines indicate the edges in the
alcoholic network but not in the non-alcoholic network; the
blue lines indicate the edges in the non-alcoholic network but
not in the alcoholic network.

Figure 3 shows the networks constructed by the four methods, where the green
lines indicate the edges shared by the alcoholic and non-alcoholic networks, the red
lines indicate the edges that are in the alcoholic network but not in the non-alcoholic
network, and the blue lines indicate the edges that are in the non-alcoholic network
but not in the alcoholic network. We see that the networks produced by FGGM, NS-
L, and RS-L are quite similar. Moreover, the networks in the frontal lobe produced

by all four methods are also similar to a degree.
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We also investigated the degree to which the Gaussian assumption, as required by
the FGGM, is violated in this data, which might be one of the contributing factors of
the difference between FGGM and the copula-based NS-L and RS-L. Figure 4 shows
the histograms of the first coefficients in the Karhunen-Loeve expansions for the ran-
dom functions from three channels: channel Fpl for the alcoholic group, channel Fz
for the alcoholic group, and channel Fz for the non-alcoholic group. These histograms

display strong skewness, violating the Gaussian assumption.

Frequency
0 5 10 15 20 25 30

r T T T T T T 1
-1 0 1 2 3 4 -1 0 1 2 3 4 -1 0 1 2 3 4 5 6

Figure 4. Histograms for the first coefficients in the
Karhunen-Loeve expansions for channel Fpl for the alcoholic
group (left), channel Fz for the alcoholic group (middle), and

channel Fz for the non-alcoholic group (right).

8 Discussion

In this paper we put forward the idea of the functional copula Gaussian model, and
use it to develop a flexible non-Gaussian functional graphical model. The crux of
this idea is to apply copula transformations to the coefficients in the Karhunen-Loeve
expansion of a random function, which, at the sample level, amounts to first taking
the ranks of these coefficients and then transform them by the Gaussian quantile
function. The advantage of the functional copula approach is that it retains dynam-

ics within a random function but makes the conditional dependence among random
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functions in the same observation unit behave like Gaussian conditional dependence.
This not only simplifies the computation but also avoids any high-dimensional ker-
nels that can hamper estimation accuracy. We have established the consistency and
convergence rates of this approach, and in the process introduced novel techniques
for the asymptotic analysis for the functional copula models.

The functional copula model leads to many theoretical and computational prob-
lems that cannot all be tackled within the scope of the current paper. We now outline
six directions of research that need further development. First, the asymptotic de-
velopments here are focussed on the case where the dimension p is fixed when the
sample size n tends to infinity. It is plausible that some or all of these results can be
extended to the case where p tends to infinity with n, perhaps along the lines of Liu
et al. (2012) and Xue and Zou (2012). Second, the asymptotic developments in this
paper are based on the assumption that the random function X’ is observed in its
entirety, ignoring the fact that in practice they can only be observed on a finite set
of time points. Third, we have yet to develop the asymptotic distribution of the pro-
posed functional copula estimators. Fourth, in the multivariate and high-dimensional
setting, Gu et al. (2015) further developed statistical inference procedures for the
copula Gaussian graphical model, including a test procedure for the presence of a
single edge, and a confidence subgraph. We expect that the techniques employed
there can be adopted the current functional graphical model for statistical inference.
Fifth, in this paper we have chosen the truncation constant m, and the dimension
k, empirically, for example, in the simulation we set k, = 7 and then select m, = 3
such that more than 90% of the total variation can be explained. A more systematic
tuning constant selection procedure needs to be developed, for example, by cross-
validation. Finally, as a referee pointed out, the current paper is based on truncated
Karhunen-Loeve expansions of each marginal random function X*, but it would be

more efficient to perform a multivariate Karhunen-Loeve expansion (Chiou et al.,
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2014) on (X',..., X?) and then apply the copula transformations to this multivari-
ate sequence.

It is true that even the Gaussian copula model is still a restrictive assumption,
which is not satisfied by many stochastic functions. Nevertheless, the class of copula
Gaussian random functions is a much larger than the class of Gaussian random func-
tions. Essentially, by using the functional copula model we have enlarged the family

of applicable models from

{Z N2E¢, 0 Y A <00, &’s are Lid. N(0, 1)}

r=1 r=1

to

{Z AN2h,(6)6, 1 Y A, <00, &'s are iid. N(0,1),

r=1 r=1

h,’s are increasing functions with Eh,. () = 0, var[h,(§,)] = } .

While it can be argued — validly — that this family is still not large enough, the
same criticism also applies to the classical copula Gaussian graphical models, which
have been quite successful in various applications in spite of its limitation.

Finally, although we have focussed on functional graphical models, the idea of
functional copula model can have far wider implications. Functional data have be-
come increasingly common in modern data analysis, and many estimation and testing
procedures have been developed, as can be found in Ramsay and Silverman (2005),
Yao, Miiller, and Wang (2005), Ferraty and Vieu (2006), Horvath and Kokoszka
(2012), and Hsing and Eubank (2015), among many others. It is our hope that the
functional copula model as well as the related asymptotic theory presented in this

paper can open an avenue for further developing many of the above methods.
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