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The methodologies of sufficient dimension reduction have un-
dergone extensive developments in the past three decades. However,
there has been a lack of systematic and rigorous development of post
dimension reduction inference, which has seriously hindered its ap-
plications. The current common practice is to treat the estimated
sufficient predictors as the true predictors and use them as the start-
ing point of the downstream statistical inference. However, this naive
inference approach would grossly overestimate the confidence level of
an interval, or the power of a test, leading to the distorted results.
In this paper, we develop a general and comprehensive framework
of post dimension reduction inference, which can accommodate any
dimension reduction method and model building method, as long
as their corresponding influence functions are available. Within this
general framework, we derive the influence functions and present the
explicit post reduction formulas for the combinations of numerous
dimension reduction and model building methods. We then develop
post reduction inference methods for both confidence interval and
hypothesis testing. We investigate the finite-sample performance of
our procedures by simulations and a real data analysis.

1 Introduction

Sufficient dimension reduction (SDR) embodies a family of methods that,
in a regression setup, seek reduction of dimensionality without loss of re-
gression information. It has proven to be a powerful tool to extract useful
information from high dimensional data, and has found wide applications in
high dimensional data analysis and regression graphics (Cook [4], Li [17] and
Li [18]). For a response variable Y and the p-dimensional predictor vector
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X, SDR seeks the q-dimensional sufficient predictor ηTX, such that

Y X|ηTX,(1.1)

where denotes statistical independence, and η is a p×q matrix, with q ≤ p.
It is straightforward to see that η always exists, as it can trivially take the
form of the identify matrix. But it is not unique, as one can rotate or amend
η so that (1.1) still holds. As such, SDR turns to the subspace spanned by
the columns of η. It is called a dimension reduction subspace, and under
very minor conditions (Yin, Li and Cook [40]), the intersection of all such
subspaces is itself a dimension reduction subspace. Such an intersection, by
definition, is a unique and parsimonious population parameter that captures
full regression information of Y given X. It is called the central subspace,
is denoted as SY |X , and is the main object of interest in the SDR inquiry.
Since the pioneering work of sliced inverse regression (Li [13]), the research
in SDR has been flourishing, and numerous SDR methods have been pro-
posed, including sliced average variance estimation (Cook and Weisberg [7]),
principal hessian directions (Li [14]), minimum average variance estimation
(Xia et al. [39]), and directional regression (Li and Wang [21]), among many
others. There have also been developments of SDR based variable selection
and screening (Bondell and Li [2], Zhu et al. [42]), semiparametric SDR (Ma
and Zhu [25, 26]), and nonlinear SDR (Li, Artemiou and Li [19], Li and Song
[20]). For a comprehensive review, see Li [17].

Despite the rapid advances of sufficient dimension reduction methodolo-
gies, however, there has been a lack of development on post dimension reduc-
tion inference. The outcome of SDR is a vector of sufficient predictors, but
this is not the end of a typical data analysis. In most applications, the end
product is an estimated statistical model, furnished with confidence intervals
and p-values for statistical significance. Currently, the common practice is to
feed the sufficient predictors obtained from SDR to the subsequent modeling
as if they were the true predictors. It then proceeds with the usual model es-
timation and inference procedures, which completely ignores the estimation
error incurred in the dimension reduction step, and thus tends to produce
overly optimistic confidence intervals and p-values. More specifically, suffi-
cient dimension reduction produces an estimate η̂ of the η in (1.1), which,
under mild regularity conditions, converges to η at the n−1/2 rate. A subse-
quent modeling step builds a parametric probability model, say fθ(η̂

TX,Y ),
which treats η̂TX as the new predictor, and from which an estimate θ̂ of θ
is derived. In this process, the error in η̂ contributes to the error in θ̂, and
the contribution is in the same order of magnitude, i.e. OP (n−1/2), as the
error in θ̂ when η is known. If we ignore the error propagated from η̂, as the
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current solutions do, then the confidence interval for θ will be significantly
narrower than the true confidence interval, and the p-value for testing θ will
be significantly smaller than the true p-value. Indeed, our data example in
Section 7 shows that in some cases an inference method ignoring the error in
η̂ leads to a statistically significant conclusion, whereas an inference method
that takes into account of the error in η̂ leads to a statistically insignificant
one. This lack of formal and rigorous post dimension reduction inference has
seriously hindered the applications of sufficient dimension reduction.

In this article, we fill this gap by developing a general and comprehensive
framework for post dimension reduction inference. The central issue for post
reduction inference is to track how the error induced by dimension reduc-
tion propagates into the subsequent model estimation. To do so, we face the
challenges that there are a large variety of dimension reduction methods,
and as many different methods of estimating a statistical model. A useful
post dimension reduction inference framework should be an open system
that is capable of adapting to different dimension reduction and model es-
timation methods. Our idea is to use the influence functions of statistical
functionals as a vehicle to achieve this generality. Many SDR methods can be
expressed as eigenvectors of matrix-valued statistical functionals. As such,
they can be expanded as asymptotic linear forms under mild regularity con-
ditions (Bickel et al. [1]). Likewise, many estimation methods can also be
expressed as vector-valued statistical functionals, which again can be ex-
panded as asymptotic linear forms. These two asymptotic linear forms are
uniquely determined by the influence functions of the statistical function-
als for dimension reduction and estimation, and together would uniquely
determine the post dimension reduction asymptotic distribution. Our post
reduction framework is designed in such a way that one can input the in-
fluence functions of any dimension reduction method and any estimation
method to produce the post reduction asymptotic distribution that takes
both processes into account.

Within this general framework, we derive explicitly the influence func-
tions for five popular SDR methods and three commonly used model esti-
mation methods. The SDR methods include sliced inverse regression (SIR,
Li [13]), sliced average variance estimation (SAVE, Cook and Weisberg [7]),
two forms of principal Hessian directions (y-PHD and r-PHD, Li [14], Cook
[5]), and directional regression (DR, Li and Wang [21]). The model estima-
tion methods include differentiable estimating equations, non-differentiable
estimating equations, and generalized method of moments (GMM). We note
that differentiable estimating equations include generalized linear model
(McCullagh and Nelder [28]) as a special case, whereas non-differentiable es-
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timating equations include median and quantile regression as special cases.
Moreover, generalized method of moments (Hansen [9], Hansen, Heaton and
Yaron [10]) have been widely used in econometrics. These 5×3 combinations
of SDR and estimation methods cover a wide range of statistical modeling
and applications. They also serve as an illustration on how to derive the
influence functions and how to plug them into our post dimension reduction
inference framework to obtain the desired post reduction asymptotic distri-
bution. As such, more SDR and estimation methods can be incorporated
into this framework.

Based on the derived post dimension reduction asymptotic distribution,
we proceed further to develop specific methods for conducting statistical in-
ference: constructing confidence intervals and test statistics, and computing
the asymptotic null and local alternative distributions of the test statistics.
It is our hope that the materials developed in this paper can serve as a first
step towards incorporating sufficient dimension reduction and post reduction
inference into a systematic and comprehensive statistical method.

The rest of the paper is organized as follows. We develop the general post
dimension reduction framework and the post reduction asymptotic distri-
bution under a given pair of influence functions, one from a SDR method
and the other from an estimation method, in Section 2. We next derive the
explicit influence functions for three estimation methods in Sections 3, and
the influence functions for five SDR methods in Section 4. We then develop
the post dimension reduction statistical inference, confidence interval and
hypothesis testing, in Section 5. We conduct simulations and compare with
the naive inference method in Section 8, and illustrate our method with a
real data analysis in Section 7. We conclude the paper with a discussion
in Section 8. We report some additional simulation results in the online
Supplementary.

2 General framework post reduction inference

We begin with introduction of two statistical functionals: one for suffi-
cient dimension reduction, which we call the reduction functional, and one
for model estimation, which we call the estimation functional. We then de-
fine the composite functional and derive its influence function, from which
we obtain the post dimension reduction asymptotic distribution. Finally,
we explicitly compare the asymptotic covariance of the estimated parame-
ter with and without taking into account the error induced by dimension
reduction.
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2.1 Reduction, estimation and composite functionals

Let (X,Y ) be random vectors in Rp × R that take values in the measur-
able space (ΩXY ,FXY ). Let P be the class of all probability distributions of
(X,Y ). Let S be a metric space, which in our context is taken as a space
of matrices. A statistical functional is a mapping R from P to S. Let F0 be
the true distribution of (X,Y ), let (x, y) be a fixed point in ΩXY , and let
δxy be the Dirac measure at (x, y). The influence function of the functional
R is defined as

R?(x, y) =
∂

∂ε
R [(1− ε)F0 + εδxy] |ε=0.

For more details about influence functions, see Bickel et al. [1]. Throughout
this paper, we assume that R? satisfies the following conditions.

Assumption 1.

(1) E[R?(X,Y )] = 0.
(2) R?(X,Y ) has finite variance; if R?(X,Y ) is a random vector or a ran-

dom matrix, then its entries have finite variances.

These assumptions are mild and hold for all the SDR and estimation meth-
ods considered in this paper. For a set of sufficient conditions for these
assumptions, see Bickel et al (1993), page 19. When there is no ambiguity,
we abbreviate R?(X,Y ) by R?. In the following, an asterisk on a symbol al-
ways indicates the influence function of a statistical functional represented
by that symbol. For example, for the statistical functionals Φ(F, η) and Λ(F )
discussed below, Φ? and Λ? represent their respective influence functions.

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. samples of (X,Y ). Let Fn be the empiri-
cal distribution based on this sample. It is well known that, if R is Hadamard
differentiable, then R(Fn) has the following expansion,

R(Fn) = R(F0) + En(R?) + op(n
− 1

2 ),(2.1)

where En(R?) denotes the sample average n−1
∑n

i=1R
?(Xi, Yi). Consequently,

by the central limit theorem,

√
n[R(Fn)−R(F0)]

D−→ N(0, var(R?)).(2.2)

Thus, the influence function R? uniquely determines the asymptotic distri-
bution of R(Fn). Conventionally, R(Fn) represents a statistic, and R(F0) the
parameter it estimates. For more information about statistical functionals
and influence functions, see, e.g., Fernholz [8], Bickel et al. [1], and Li [17].
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We first define the reduction functional. Most SDR methods can be writ-
ten in the form of a generalized eigen-decomposition problem. That is, there
is a statistical functional Λ : P → Rp×p satisfying that

Σ(F0)
−1span[Λ(F0)] ⊆ SY |X ,(2.3)

where Σ(F0) denotes the covariance matrix of X. The relation (2.3) implies
that the central subspace SY |X can be recovered by solving the generalized
eigenvalue problem

Λ(F0)v = λΣ(F0)v.(2.4)

Let η = (η1, . . . , ηr) denote its first r eigenvectors, where r is the rank of
Λ(F0) and r ≤ q. For many SDR methods, the equality in (2.3) holds, and
correspondingly, r = q. In this case, we say the SDR method is exhaustive.
See Li, Zha and Chiaromonte [22] and Li and Wang [21] for sufficient condi-
tions for exhaustiveness. For simplicity, we assume the SDR method is ex-
haustive in this article; i.e., SY |X can be fully recovered by span(η01, . . . , η0r).
We also note that, the generalized eigenvalue problem in (2.4) can be solved
by transforming it into a standard eigenvalue problem. That is, if {β0i}ri=1 are
the first r eigenvectors of Σ(F0)

−1/2Λ(F0)Σ(F0)
−1/2, then η0i = Σ(F0)

− 1
2β0i,

i = 1, . . . , r, are the first r eigenvectors of the generalized eigenvalue prob-
lem (2.4). Given i.i.d. samples of (X,Y ), the corresponding sample version
of (2.4) is Λ(Fn)v = λΣ(Fn)v, where Σ(Fn) is the sample covariance matrix
of X. We define {η̂i}ri=1 and {β̂i}ri=1 accordingly.

We call the functional Λ(F ) the reduction functional, and assume it is
Hadamard differentiable with the influence function Λ?. Correspondingly,
we use η(F ) to denote the Rp×q-valued statistical functional of the first r
eigenvectors of Λ(F ).

We next define the estimation functional. We start with a set of fixed
eigenvectors (η1, . . . , ηq) that form an orthonormal set in Rp. Suppose we
replace the original p-dimensional predictor vector X with the q-dimensional
sufficient predictor ηTX, then fit some parametric regression model with
the model parameter θ. Assume, for a fixed η, the estimate of θ takes the
following general form of a statistical functional

Φ : P × Rp×q → Θ ⊆ Rs,

where Θ is the parameter space for the parametric regression model. We call
the functional Φ the estimation functional, and assume that, for each fixed
η, the mapping F 7→ Φ(F, η) is Hadamard differentiable with the influence
function Φ?. Since we treat η as fixed, this functional corresponds to the
naive estimator as if η is known.
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Now we replace the fixed η with the estimate η̂ = η(Fn) from a given
SDR method, which leads to an estimate of θ, T (Fn) = Φ[Fn, η(Fn)], and
the functional

T : P → Θ, F 7→ Φ[F, η(F )].

We call it the composite functional, as it is a composition of the reduction
functional Λ(F ), which is implicitly contained in η(F ), and the estimation
functional Φ(F, η). The functional T accounts for the variations in both
dimension reduction and estimation, and its influence function determines
the post dimension reduction asymptotic distribution. It corresponds to the
inference procedure that does not pretend η is known.

2.2 Influence function and asymptotic distribution

Next we derive the influence function of T (F ) given the influence func-
tions Λ? and Φ?. We derive the influence functions Λ? and Φ? for a variety
of dimension reduction and estimation methods in Sections 3 and 4, re-
spectively. In the following, we use ⊗ to denote the Kronecker product. We
denote Σ(Fn),Σ(F0),Σ(F ) by Σ̂,Σ0,Σ, and denote Λ(Fn),Λ(F0),Λ(F ) by
Λ̂,Λ0,Λ, respectively. We first need the following lemma, whose proof can
be found in Li [17].

Lemma 1. Suppose all moments involved are finite. Then

(1) vec(Σ?) = X⊗X−E(X⊗X)−[X−E(X)]⊗E(X)−E{X⊗[X−E(X)]};
(2) vec[(Σ−

1
2 )?] = −(Σ1/2

0 ⊗ Σ0 + Σ0 ⊗ Σ1/2
0 )−1vec(Σ?);

(3) (Σ−1)? = −Σ−1Σ?Σ−1

Theorem 1. Suppose the following conditions are satisfied.

(C1) The statistical functionals F 7→ Λ(F ) and F 7→ Φ(F, η) are Hadamard
differentiable with influence functions Λ?(X,Y ) and Φ?(X,Y, η). Both
Λ? and Φ?satisfy Assumption 1.

(C2) The function η 7→ Φ(F0, η) is differentiable.
(C3) All the nonzero eigenvalues of Σ−1/2

0 Λ0Σ
−1/2
0 are distinct.

Then the influence function of T (F ) is

T ?(X,Y ) = Φ?(X,Y, η0) +DC

(
vec[Σ?(X,Y )]
vec[Λ?(X,Y )]

)
,
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where D = ∂Φ(F0, η0)/∂vec(η)T and C = (A,B), in which

A = − [βT
0 ⊗ Ip + (Iq ⊗ Σ−1/2

0 )H(Σ−1/2
0 Λ0 ⊗ Ip + Ip ⊗ Λ0Σ

−1/2
0 )]

(Σ0 ⊗ Σ
1
2
0 + Σ

1
2
0 ⊗ Σ0)

−1,

B = (Iq ⊗ Σ−1/2
0 )H(Σ−1/2

0 ⊗ Σ−1/2
0 )

H = (HT
1 , . . . ,H

T
q )T,

Hi =βT
0i ⊗

[ p∑
j=1,j 6=i

(λ0i − λ0j)
−1(β0jβ

T
0j)

]
, i = 1, . . . , q.

Proof. Recall that the sample estimator of η0i is η̂i = Σ̂−1/2β̂i, where β̂i
is ith eigenvector of Σ̂−1/2Λ̂Σ̂−1/2, i = 1, . . . , q. Thus the influence function
of η̂i is

η?i = (Σ−1/2)?β0i + Σ−1/2
0 β?i .

Furthermore, by Zhu and Fang [41], the influence function of β̂i is

β?i =

p∑
j=1,j 6=i

β0jβ
T
0j(Σ

−1/2ΛΣ−1/2)?β0i

λ0i − λ0j

= Hivec[(Σ−1/2ΛΣ−1/2)?],(2.5)

where

Hi =βT
0i ⊗

[ p∑
j=1,j 6=i

(λ0i − λ0j)
−1(β0jβ

T
0j)

]
.

By Lemma 1 and some simple calculation,

vec[(Σ−1/2ΛΣ−1/2)?]

= −(Σ−1/2
0 Λ0 ⊗ Ip + Ip ⊗ Λ0Σ

−1/2
0 )(Σ1/2

0 ⊗ Σ0 + Σ0 ⊗ Σ1/2
0 )−1vec(Σ?)

+ (Σ−1/2
0 ⊗ Σ−1/2

0 )vec(Λ?).

Combination of (2.5) and the above equality yields

vec(β?)

= −H(Σ−1/2
0 Λ0 ⊗ Ip + Ip ⊗ Λ0Σ

−1/2
0 )(Σ1/2

0 ⊗ Σ0 + Σ0 ⊗ Σ1/2)−1vec(Σ?)

+H(Σ−1/2
0 ⊗ Σ−1/2

0 )vec(Λ?),

where H = (HT
1 , . . . ,H

T
q )T. Hence

vec(η?) = vec[(Σ−
1
2 )?β0 + Σ

− 1
2

0 β?]

= −(βT
0 ⊗ Ip)(Σ

1
2
0 ⊗ Σ0 + Σ0 ⊗ Σ

1
2
0 )−1vec(Σ?) + (Iq ⊗ Σ

− 1
2

0 )vec(β?)

= C

(
vec(Σ?)
vec(Λ?)

)
,
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where C is as defined in the theorem. By condition (C2) and the chain rule
for differentiation, we have

T ?(X,Y ) = Φ?(X,Y, η0) +D vec[η?(X,Y )],

which completes the proof. 2

Condition (C1) of Theorem 1 is mild as most Λ matrices in SDR are func-
tions of sample moments, which are Hadamard differentiable if the moments
of X and Y up to a certain order are finite. Condition (C2) is also mild and
is easy to verify. As we will see in Section 2.4, Condition (C3) is also satisfied
by numerous SDR methods and statistical models. Based on Theorem 1, we
next derive the asymptotic distribution of θ̂ = Φ(Fn, η̂).

Corollary 1. Suppose the conditions in Theorem 1 are satisfied. Then

√
n(θ̂ − θ0)

D−→ N(0,Γ),

where Γ = (Ip, DC)B(Ip, DC)T and

B =

 E(Φ?Φ
?T) E[Φ?vec(Σ?)T] E[Φ?vec(Λ?)T]

E[vec(Σ?)Φ
?T] E[vec(Σ?)vec(Σ?)T] E[vec(Σ?)vec(Λ?)T]

E[vec(Λ?)Φ
?T] E[vec(Λ?)vec(Σ?)T] E[vec(Λ?)vec(Λ?)T]

 .

Proof. By Theorem 1 and the relation (2.1) between the influence func-
tion and its asymptotic linear form, we have

θ̂ = θ0 +
(
Ip, DC

)
E

 Φ?(X,Y, η0)
vec[Σ?(X,Y )]
vec[Λ?(X,Y )]

+ op(n
−1/2).

Then applying (2.2) completes the proof. 2

At the sample level, Σ0, λ0i, β0 in the matrix C are estimated by Σ̂, λ̂i
and β̂. The matrix D is estimated by ∂Φ(Fn, η0)/∂vec(η)T. This is justified
by

∂Φ(Fn, η0)

∂vec(η)T
P−→ D,

which holds under mild regularity conditions.
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2.3 Asymptotic comparison of naive and objective inference

We compare the asymptotic covariance of the parameter estimate θ̂ =
T (Fn) = Φ(Fn, η(Fn)) that takes into account the estimation error induced
by dimension reduction, and the naive estimate θ̃(η0) = Φ(Fn, η0) that
does not. We denote their corresponding asymptotic covariance matrix by
Γ(η0, θ0) and Γ̃(η0, θ0), respectively. Given the data, Γ(η0, θ0) and Γ̃(η0, θ0)
are estimated by Γ(η̂, θ̂) and Γ̃(η̂, θ̂). Since η̂ and θ̂ are root-n consistent and
Γ and Γ̃ are differentiable, the differences, Γ(η̂, θ̂) − Γ(η0, θ0) and Γ̃(η̂, θ̂) −
Γ̃(η0, θ0), are both of the orderOP (n−1/2). Thus it suffices to compare Γ(η0, θ0)
with Γ̃(η0, θ0). The next theorem characterizes the amount of the asymptotic
variance increase after taking the dimension reduction error into account.

Theorem 2. Suppose the conditions in Theorem 1 are satisfied. More-
over, suppose when η0 is known, θ̃(η0) is an efficient estimator of θ0. Then

Γ(η0, θ0)− Γ̃(η0, θ0)

= DC

(
E[vec(Σ?)vec(Σ?)T] E[vec(Σ?)vec(Λ?)T]
E[vec(Λ?)vec(Σ?)T] E[vec(Λ?)vec(Λ?)T]

)
CTDT

Proof. The proof echoes the Hajek-LeCam convolution theorem of reg-
ular estimators (Bickel et al. [1]). Since, when η0 is given, both θ̂ and θ̃(η0)
are regular estimators of θ0, and θ̃(η0) is efficient, by the LeCam-Hajek con-
volution theorem,

√
n(θ̂(η0) − θ0) can be decomposed into the sum of two

asymptotically independent terms

√
n(θ̃(η0)− θ0) + [

√
n(θ̂ − θ0)−

√
n(θ̃(η0)− θ0)]

=
√
nE(Φ?) +

√
nE(T ? − Φ?) + oP (1),

which implies that E[Φ?(T ? − Φ?)T] = 0. Hence

var[T ?(X,Y )] = var[Φ?(X,Y, η0)] +D var{vec[η?(X,Y )]} DT.

Substituting the form of vec(η?) into this equation completes the proof. 2

2.4 Identifiability of reduction parameter

Here we briefly discuss the subtle issue of the identifiability for the reduc-
tion parameters. In the framework of SDR with the structural dimension
q > 1, the basis (γ1, . . . , γq) of SY |X is not identifiable. However, in practice,
we always use a specific SDR method, say SIR, to estimate SY |X . A specific
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SDR method, when applied to a specific statistical model, almost always
yields a fixed set of eigenvectors in SY |X up to a sign. Thus, if we agree to
take, for example, the first nonzero component of the relevant eigenvectors
to be positive, then we have a well identified set of reduction dimension
parameters. As an example, for Model III and Model IV in Section 8, the
structural dimension q = 2 and the first two eigenvalues of Σ−1/2

0 Λ0Σ
−1/2
0 for

DR are, respectively, 1.30, 1.25 and 1.54, 1.35. These distinct population-
level eigenvalues give rise to well identified reduction parameters β1 and β2.
A parametric statistical model can then be imposed upon the predictors
βT

1X and βT
2X without ambiguity.

3 Influence functions for estimation functionals

The asymptotic distribution of
√
n(θ̂ − θ0) relies on the reduction influ-

ence function Λ?(X,Y ), the estimation influence function Φ?(X,Y, η), and
the form of D = ∂Φ(F0, η0)/∂vec(η)T. In this section, we derive the ex-
plicit forms of the influence function Φ?(X,Y, η) and the derivative D for
three estimation methods: the differentiable estimating equations, the non-
differentiable estimating equations, and the generalized method of moments.
They cover a wide variety of regression methods, including generalized lin-
ear model, nonlinear mean regression, and nonlinear median and quantile
regression, among others.

3.1 Differentiable estimating equations

Many commonly used parametric models can be formulated as special
cases of a general class of estimator of θ, which is defined as the solution to
the estimating equations

E[g(θ,X, Y )] = 0,(3.1)

where Eθ[g(θ,X, Y )] = 0, varθ[g(θ,X, Y )] is a matrix with finite entries,
and the dimension of g is the same as the dimension of θ. One example
is generalized linear model, which can be expressed as the solution to the
estimating equations

E

{
∂µ(θTX)

∂θT
V −1(θTX)[Y − µ(θTX)]

}
= 0,

where µ(θTX) = E(Y |θTX), and V (θTX) = var(Y |θTX). See, for example,
McCullagh and Nelder [28] and Li [15]. Another example is the paramet-
ric nonlinear regression, where we minimize the objective function E[Y −
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h(θTX)]2, and h can take a polynomial form, h(u1, . . . , uk) =
∑

k

i=1
θiui +∑

k

i,j=1
θijuiuj. Correspondingly, the parameter θ can be expressed as the

solution to the estimating equations

E

{
2
∂h(θTX)

∂θ
[Y − h(θTX)]

}
= 0.

In our context of SDR based parametric modeling, the predictor vector
X is replaced by the sufficient predictor ηTX. The statistical functional
of the estimator θ in (3.1) is Φ(F, η), which is implicitly defined by the
equation

∫
g[Φ(F, η), ηTX,Y ]dF = 0. We next derive the explicit forms of the

corresponding influence function Φ? and the derivative D, and summarize
the results in the next proposition.

Proposition 1. For the estimating equations (3.1), we have

Φ?(X,Y, η) =−
{
E

[
∂g(θ0, η

TX,Y )

∂θT

]}−1

g(θ0, η
TX,Y ),

D =−
{
E

[
∂g(θ0, η

T
0X,Y )

∂θT

]}−1

E

[
∂g(θ0, η

T
0X,Y )

∂u
(Iq ⊗XT)

]
.

Proof. Let Fε = (1 − ε)F0 + εδXY . Then, for all ε ∈ [0, 1], we have∫
g[Φ(Fε, η), ηTX,Y ]dFε = 0. Differentiating (3.1) with respect to ε, and

evaluating the derivatives at ε = 0, we have

∂

∂ε

∫
g(Φ(Fε, η), ηTX,Y )dFε

∣∣∣∣
ε=0

=

[∫
∂g(θ0, η

TX,Y )

∂θT
dF0

]
Φ? +

∫
g(θ0, η

TX,Y )d(δXY − F0) = 0.

Since Eg(θ0, η
T, Y ) = 0, the second term on the right-hand side is simply

g(θ0, η
TX,Y ), which leads to the desired form for Φ?(X,Y, η).

Next, we note that Φ(F0, η) satisfies E[g(Φ(F0, η), ηTX,Y )] = 0. Differen-
tiating this equation with respect to vec(η), we have[∫

∂

∂θT
g(θ0, η

TX,Y )dF0

]
∂Φ(F0, η)

∂vec(η)T
+

∫
∂

∂u
g(θ0, η

TX,Y )
∂(ηTX)

∂vec(η)T
dF0 = 0,

where ∂g/∂u denotes the partial derivative with respect to the second ar-
gument of g, which is ηTX. Since ηTX = vec(XTη) = vec(XTηIq) = (Iq ⊗
XT)vec(η), we have ∂(ηTX)/∂vec(η)T = Iq ⊗XT. Henceforth,

E

[
∂g(θ0, η

T
0X,Y )

∂θT

]
D + E

[
∂g(θ0, η

T
0X,Y )

∂u
(Iq ⊗XT)

]
= 0.
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Solving this equation yields the desired form for D. 2

3.2 Non-differentiable estimating equations

Another family of popular models can be formulated as solving a set of
non-differentiable estimating equations. Examples include nonlinear quan-
tile regression (He, Fu and Fung [11], Wang and Wang [36]) and support
vector regression (Smola and Scholkopt [34]). In this section, we use nonlin-
ear quantile regression as an illustration. The derivation of the estimation
functional for other models follow in a similar fashion.

For a number τ ∈ [0, 1], define the function ρ : R → R+ as ρτ(u) = τu
if u > 0, and −(1 − τ)u if u < 0. Let m(ηTX, θ) be a function such that,
for the true value (η0, θ0) of (η, θ), it is the τ -th conditional quantile, P [Y ≤
m(ηT

0X, θ0)|X] = τ . At the population level, nonlinear quantile regression
is defined as minimizing the objective function E {ρτ [Y −m(ηTX, θ)]} over
θ ∈ Rd, which amounts to solving the estimating equations

E

{
ρ̇τ [Y −m(ηTX, θ)]

∂m(ηTX, θ)

∂θ

}
= 0,(3.2)

where ρ̇τ(u) = τI(u > 0) − (1 − τ)I(u ≤ 0) = τ − I(u ≤ 0). Rigorously
speaking, ρ̇τ is not defined at u = 0. But since u = 0 has measure 0, we can
assign any value to ρ̇(0); in our case, we set ρ̇(0) equal to −(1− τ).

Next we write the first argument ηTX of m(ηTX, θ) as u, and use the fol-
lowing notations for partial derivatives, ṁu = ∂m/∂u, ṁθ = ∂m/∂θ, m̈uu =
∂2m/∂u∂uT, m̈uθ = ∂2m/∂u∂θT, and m̈θθ = ∂2m/∂θ∂θT. We derive the in-
fluence function Φ? and the derivative D in the next proposition.

Proposition 2. For the estimating equations (3.2), we have

Φ?(X,Y, η) = (E {fY |X [m(ηT
0X, θ0)|X]ṁθ(η

T
0X, θ0)ṁ

T
θ (η

T
0X, θ0)})−1

{τ − I[Y ≤ m(ηT
0X, θ0)]} ṁθ(η

T
0X, θ0),

D =− (E{ṁθ(η
T
0X, θ0)ṁ

T
θ (η

T
0X, θ0)fY |X [m(ηT

0 , θ0)|x]})−1

E {ṁθ(η
T
0X, θ0)ṁ

T
u(η

T
0X, θ0)(Iq ⊗XT)fY |X [m(ηT

0X, θ0)|x]} .

Proof. DenoteA(F, η0) =
∫
ρ̇τ{Y−m[ηT

0X,Φ(F, η0)]}ṁθ[η
T
0X,Φ(F, η0)]dF .

The influence function Φ?(X,Y, η0) can be obtained from the equation

∂

∂ε
A(Fε, η0)

∣∣∣∣
ε=0

= 0.
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In the following, we abbreviate ∂f(ε)/∂ε
∣∣
ε=0

by ∂f(ε)/∂ε. By the chain rule,
we decompose the above derivative into three terms:

∂

∂ε
A(Fε, η0) =

∂

∂ε
A1(Fε, η0) +

∂

∂ε
A2(Fε, η0) +

∂

∂ε
A3(Fε, η0), where(3.3)

A1(Fε, η0) =

∫
ρ̇τ{Y −m[ηT

0X,Φ(Fε, η0)]}ṁθ[η
T
0X,Φ(F0, η0)]dF0,

A2(Fε, η0) =

∫
ρ̇τ{Y −m[ηT

0X,Φ(F0, η0)]}ṁθ[η
T
0X,Φ(Fε, η0)]dF0,

A3(Fε, η0) =

∫
ρ̇τ{Y −m[ηT

0X,Φ(F0, η0)]}ṁθ[η
T
0X,Φ(F0, η0)]dFε.

The term ∂A1(Fε, η0)/∂ε can be written as

∂

∂ε
A1(Fε, η0)

=
∂

∂ε

∫
(τ − I{Y ≤ m[ηT

0X,Φ(Fε, η0)]}) ṁθ[η
T
0X,Φ(F0, η0)]dF0

= − ∂

∂ε

∫
I{Y ≤ m[ηT

0X,Φ(Fε, η0)]}ṁθ[η
T
0X,Φ(F0, η0)]dF0

= −
∫

ΩX

∂

∂ε

∫
m[ηT0X,Φ(Fε,η0)]

−∞
fY |X(y|x)dy ṁθ[η

T
0X,Φ(F0, η0)]fX(x)dx

= −

{∫
ΩX

fY |X [m(ηT
0X, θ0)|x]ṁθ(η

T
0X, θ0)ṁ

T
θ (η

T
0X, θ0)fX(x)dx

}
Φ?

= −E {fY |X [m(ηT
0X, θ0)|x]ṁθ(η

T
0X, θ0)ṁ

T
θ (η

T
0X, θ0)}Φ?,

(3.4)

where the first equality is by the definition of ρ̇τ(u), the second equality
is because τ

∫
ṁθ(η

T
0X,Φ(F0, η0))dF0 does not depend on ε, and the fourth

equality is because Φ(F0, η0) = θ0.
The term ∂A2(ε, η)/∂ε can be written as

∂

∂ε
A2(ε, η) =

∫
ρ̇τ [Y −m(ηT

0X, θ0)]m̈θθ(η
T
0X, θ0)dF0Φ

?

= E
[
E
{
ρ̇τ [Y −m(ηT

0X, θ0)]
∣∣X}m̈θθ(η

T
0X, θ0)

]
Φ?

= 0,

(3.5)

where the last equality is due to that, since m(ηT
0X, θ0) is the τ -th conditional

quantile,

E{ρ̇τ [Y −m(ηT
0X, θ0)]

∣∣X} = E{τ − I[Y ≤ m(ηT
0X, θ0)]

∣∣X} = 0.
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The term ∂A3(Fε, η)/∂ε can be written as

∂

∂ε
A3(ε, η)

= ρ̇τ [Y −m(ηT
0X, θ0)]ṁθ(η

T
0X, θ0)− E{ρ̇τ [Y −m(ηT

0X, θ0)]ṁθ(η
T
0X, θ0)}.

By the fact that A(F, η0) = 0, the second term above is 0, leading to

∂A3(Fε, η0)/∂ε = ρ̇τ [Y −m(ηT
0X, θ0)]ṁθ(η

T
0X, θ0).(3.6)

Substituting (3.4), (3.5), and (3.6) into (3.3), we obtain

− E {fY |X [m(ηT
0X, θ0)|X]ṁθ(η

T
0X, θ0)ṁ

T
θ (η

T
0X, θ0)}Φ?

+ ρ̇τ [Y −m(ηT
0X, θ0)]ṁθ(η

T
0X, θ0) = 0.

This yields the desired form for Φ?.
Next, we note that η 7→ Φ(F0, η) is defined by the equation∫

ρ̇τ{Y −m[ηTX,Φ(F0, η)]}ṁθ[η
TX,Φ(F0, η)]dF0 = 0.

Denote the left hand side by B(η), we have

∂

∂vec(η)T
B(η0) =

∂

∂vec(η)T
B1(η0) +

∂

∂vec(η)T
B2(η0),

where

B1(η) =

∫
ρ̇τ{Y −m[ηTX,Φ(F0, η)]}ṁ[ηT

0X,Φ(F0, η0)]dF0

B2(η) =

∫
ρ̇τ{Y −m[ηT

0X,Φ(F0, η0)]}ṁ[ηTX,Φ(F0, η)]dF0.

Since E[ρ̇τ(Y −m(ηT
0X, θ0))

∣∣X] = 0, we have

∂

∂vec(η)T
B2(η0) =

∫
ρ̇τ(Y −m(ηT

0X, θ0))
∂ṁ(ηT

0X,Φ(F0, η0))

∂vec(η)T
dF0 = 0.

The term ∂B1(η)/∂vec(η)T can be written as

∂

∂vec(η)T

∫
ΩX

∫
m[ηTX,Φ(F0,η)]

−∞
fY |X(y|x)dy ṁ[ηT

0X,Φ(F0, η0)]fX(x)dx

=

∫
ΩX

ṁθ(η
T
0X, θ0)fY |X [m(ηT

0X, θ0)|x][
ṁT
u(η

T
0X, θ0)

∂ηTX

∂vec(η)T
+ ṁθ(η

T
0X, θ0)D

]
fX(x)dx.
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Recall that ∂(ηTX)/∂vec(η)T = Iq ⊗XT. So the above term can be written
as

E
{
ṁθ(η

T
0X, θ0)fY |X(m(ηT

0X, θ0)|x)
[
ṁT
u(η

T
0X, θ0)(Iq ⊗XT) + ṁT

θ (η
T
0X, θ0)D

]}
.

Equating it to 0 and solving for D lead to the desired form for D. 2

3.3 Generalized method of moments

Generalized method of moments [9, GMM] is another popular paramet-
ric method in both econometrics and statistics. For instance, it is used to
construct optimal estimation and inference procedures based on generalized
estimating equations (Qu, Lindsay and Li [32]), or to combine efficient and
robust estimators (Park and Lindsay [31]). We next derive the influence
function Φ?(X,Y, η0) and D for this approach.

In GMM, we have more estimating equations than the number of param-
eters. That is, we estimate the p-dimensional parameter vector θ by k > p
estimating equations E[g(θ,X, Y )] = 0, where

g(θ, ηTX,Y ) = [g1(θ, η
TX,Y ), . . . , gk(θ, η

TX,Y )]T,

and again we assume Eθ,η[g(θ, ηTX,Y )] = 0 and varθ,η[g(θ, ηTX,Y )] < ∞.
For a given η, θ̃(η) = Φ(Fn, η) in the optimal version of GMM is defined as
the minimizer of the function

L(Fn, θ, η) = Eng(θ, ηTX,Y )T[Eng(θ, ηTX,Y )gT(θ, ηTX,Y )]−1Eng(θ, ηTX,Y ).

Thus, the functional Φ(F, η) is the minimizer of

L(F, θ, η) = V (F, θ, η)TW (F, θ, η)V (F, θ, η),

where V (F, θ, η) =
∫
g(θ, ηTX,Y )dF , and

W (F, θ, η) =

(∫
g(θ, ηTX,Y )gT(θ, ηTX,Y )dF

)−1

.

Proposition 3. For the generalized method of moments, we have

Φ?(X,Y, η) =−
{
E

(
∂gT

∂θ

)
[E(ggT)]−1E

(
∂g

∂θT

)}−1

E

(
∂gT

∂θ

)
[E(ggT)]−1g,

D =−
{
E

(
∂gT

∂θ

)
[E(ggT)]−1E

(
∂g

∂θT

)}−1

E

(
∂gT

∂θ

)
[E(ggT)−1]

E

(
∂g

∂uT

)
(Iq ⊗XT),

where g = g(θ0, η
T
0X,Y ).
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Proof. Let H(F, θ, η0) = ∂L(F, θ, η0)/∂θ. Then Φ(F, η0) satisfies

H(F,Φ(F, η0), η0) = 0.

Hence the influence function Φ?(X,Y, η0) can be solved from the equation

∂

∂ε
H(Fε,Φ(Fε, η0), η0) = 0,

which, by the chain rule, yields

Φ? = −
[
∂

∂θT
H(F0, θ0, η0)

]−1 ∂

∂ε
H [F0,Φ(Fε, η0), η0]

∣∣∣∣
ε=0

.

We now express the above derivatives in terms of V (F, θ, η) and W (F, θ, η).
By definition,

∂L(F, θ, η0)

∂θ
=
∂V T(F, θ, η0)

∂θ
W (F, θ, η0)V (F, θ, η0)

+ V T(F, θ, η0)
∂W (F, θ, η0)

∂θ
V (F, θ, η0)

+ V T(F, θ, η0)W (F, θ, η0)
∂V (F, θ, η0)

∂θ
,(3.7)

Differentiating (3.7) with respect to θ, and evaluating the derivative at θ0,
we obtain

∂H

∂θT
=

∂2V

∂θ∂θT
WV +

∂V T

∂θ

∂W

∂θT
V +

∂V T

∂θ
W
∂V

∂θT

+
∂V T

∂θT
∂W

∂θ
V + V T ∂

2W

∂θ∂θT
V + V T∂W

∂θ

∂V

∂θT

+
∂V T

∂θT
W
∂V

∂θ
+ V T∂W

∂θT
∂V

∂θ
+ V TW

∂2V

∂θ∂θT
.

(3.8)

Since, by construction, V (F0, θ0, η0) =
∫
g(θ0, η

T
0X,Y )dF0 = 0, all the terms

in (3.8) that involve V vanish, resulting in

∂H

∂θT
= 2

∂V T

∂θT
W
∂V

∂θT
.(3.9)

Similarly, we have

∂H

∂ε
=
∂V T

∂θ
W
∂V

∂ε
+
∂V T

∂ε
W
∂V

∂θ
= 2

∂V T

∂ε
W
∂V

∂θ
.
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Due to the fact that

∂V T

∂θ
=

∂

∂θ

∫
g(θ0, η

T
0X,Y )dF0 = E

[
∂

∂θ
gT(θ0, η

T
0X,Y )

]
,

we obtain the desired form for Φ?(X,Y, η0).
Next, we note that H[F0,Φ(F0, η), η] = 0 for all η. Hence,

∂

∂θT
H(F0, θ0, η)

∂Φ(F0, η)

∂vec(η)T
+
∂H(F0, θ0, η)

∂vec(η)T
= 0.

Solving this equation, we have

D = −
(
∂H

∂θT

)−1 ∂H

∂vec(η)T
.(3.10)

The computation of ∂H/∂vec(η)T is similar to that of ∂H/∂θT: there are q
terms in total, and all the terms that involve V vanish, resulting in

∂H(F0, θ0, η0)

∂vec(η)T
=
∂V T

∂θ
W

∂V

∂vec(η)T
+

∂V T

∂vec(η)T
W
∂V

∂θ

= 2
∂V T

∂θ
W

∂V

∂vec(η)T
.

(3.11)

Furthermore,

∂V

vec(η)T
=E

[
∂

∂uT
g(θ0, η

T
0X,Y )

]
∂vec(ηTX)

∂vec(η)T

=E

[
∂

∂uT
g(θ0, η

T
0X,Y )

]
(Iq ⊗XT).

(3.12)

Substituting (3.9), (3.11), (3.12) into (3.10), we obtain the desired form of
D. 2

4 Influence functions for reduction functionals

In this section, we derive the influence function Λ?(X,Y ) for some popular
SDR methods, including SIR, SAVE, DR, and two forms of PHD. Although
some forms of asymptotic expansions exist in the SDR literature (Li [13,
14], Li and Wang [21], Shao, Cook and Weisberg [33], Li [17]), they have
all been developed for sequential tests, and none was in the form suitable
for post reduction inference. Also, the development here can be extended to



POST DIMENSION REDUCTION INFERENCE 19

other regression-based SDR methods, e.g., the minimal discrepancy method
(Cook and Ni [6]), in a similar fashion.

Many SDR methods begin with slicing the range of the response to a
fixed number of non-overlapping intervals; let {Jk : k = 1, . . . ,H} be a set
of intervals that partition ΩY . Let Dk = I(Y ∈ Jk), pk = E(Dk), µk =
E(X|Y ∈ Jk), and Σk = var(X|Y ∈ Jk). Let µ = E(X), ν = E(Y ). The
specific form of Λ for the above SDR methods are as follows.

(1) For SIR (Li [13]), ΛSIR(F ) =
∑

H

k=1
pk(µk − µ)(µk − µ)T.

(2) For SAVE (Cook and Weisberg [7]),

ΛSAVE(F ) =
H∑
k=1

pk(Σ− Σk)Σ
−1(Σ− Σk)

T.

(3) For DR (Li and Wang [21]), ΛDR(F ) = 2ΛDR,1(F )+2ΛDR,2(F )+2ΛDR, 3(F ),
where

ΛDR,1(F )

= E{E[(X − µ)(X − µ)T − Σ|Ỹ ]Σ−1E[(X − µ)(X − µ)T − Σ|Ỹ ]},
ΛDR,2(F )

= E[E(X − µ|Ỹ )E((X − µ)T|Ỹ )]Σ−1E[E(X − µ|Ỹ )E((X − µ)T|Ỹ )],

ΛDR,3(F )

= E[E((X − µ)T|Ỹ )Σ−1E(X − µ|Ỹ )]E[E(X − µ|Ỹ )E((X − µ)T|Ỹ )],

with Ỹ being the discretized Y according to the partition (J1, . . . , Jh);
that is, Ỹ =

∑
h

k=1
kI(Y ∈ Jk).

(4) For y-based PHD (Li [14]), Λy-PHD(F ) = ΣYXXΣ−1ΣYXX , where

ΣYXX = E((Y − ν)(X − µ)(X − µ)T).

(5) For r-based PHD (Li [14], Cook [5]), Λr-PHD(F ) = ΣRXXΣ−1ΣRXX , where

ΣRXX = E{[(Y − ν)− βT(X − µ)](X − µ)(X − µ)T},

and β is the regression coefficient vector Σ−1ΣXY , with ΣXY = cov(X,Y ).

The next proposition gives the explicit forms of vec(Λ?) for these SDR
methods. The derivations are tedious but straightforward; the details are
omitted here. We first write down some simple influence functions:

p?k =Dk − pk, µ? = X − µ, and, ν? = Y − E(Y )

µ?k = − p−2
k p

?
kE(XDk) + p−1

k [XDk − E(XDk)]

Σ?
k = − p−2

k p
?
kE(XXTDk)− p−1

k [XXTDk − E(XXTDk)]− µ?kµT
k − µk(µ?k)T.
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The influence function of β is

β? = (Σ−1)?ΣXY + (Σ−1)Σ?
XY ,

where Σ?
XY = XY − E(XY )− (X − µ)ν − µ(Y − ν).

Proposition 4. The influence functions for the above five reduction
functionals are given by the following formulas.

(1) For SIR,

vec(Λ?
SIR) =

H∑
k=1

(µk − µ)⊗ (µk − µ)p?k

+ [pk(µk − µ)⊗ Ip + Ip ⊗ pk(µk − µ)](µ?k − µ?).

(2) For SAVE,

vec(Λ?
SAVE) =

H∑
k=1

[(Σ− Σk)⊗ (Σ− Σk)]vec(Σ−1)p?k

+ pk[(Σ− Σk)⊗ (Σ− Σk)]vec[(Σ−1)?]

+ pk[(Σ− Σk)Σ
−1 ⊗ Ip + Ip ⊗ (Σ− Σk)Σ

−1]vec(Σ? − Σ?
k),

where Σ? and (Σ−1)? are as given in Lemma 1.
(3) For DR,

vec(Λ?
DR) = 2vec(Λ?

DR,1) + 2vec(Λ?
DR,2) + 2vec(Λ?

DR,3),

where

vec(Λ?
DR,1) =

H∑
k=1

(Ak ⊗Ak)vec(Σ−1)p?k + pk(Ak ⊗Ak)vec[(Σ−1)?]

+ pk(AkΣ
−1 ⊗ Ip + Ip ⊗AkΣ

−1)vec(A?
k),

vec(Λ?
DR,2) = (BΣ−1 ⊗ Ip + Ip ⊗BΣ−1)vec(B?) + (B ⊗B)vec((Σ−1)?),

vec(Λ?
DR,3) = C?vec(B) + Cvec(B?),

in which Ak = E[(X − µ)(X − µ)T −Σ | Y ∈ Jk], B =
∑

H

k=1
pk(µk − µ),
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and C =
∑

H

k=1
pk(µk − µ)TΣ−1(µk − µ), with the influence functions

A?
k = − p−2

k p
?
kE(XXTDk) + p−1

k [XXTDk − E(XXTDk)]

− µ?kµT − µkµ∗T + µ?µT + µµ∗T − Σ?,

B? =
H∑
k=1

p?k(µk − µ)(µk − µ)T + pk(µ
?
k − µ?)(µk − µ)T

+ pk(µk − µ)(µ?k − µ?)T,

C? =

H∑
k=1

p?k(µk − µ)TΣ−1(µk − µ) + pk(µ
?
k − µ?)TΣ−1(µk − µ)

+ pk(µk − µ)TΣ−1∗(µk − µ) + pk(µk − µ)TΣ−1(µ?k − µ?).

(4) For y-based PHD,

vec(Λ?
y−PHD) = (ΣYXXΣ−1 ⊗ Ip + IP ⊗ ΣYXXΣ−1)vec(Σ?

Y XX)

+ (ΣYXX ⊗ ΣYXX)vec(Σ−1∗),

where

ΣYXX =E[(Y − ν)(X − µ)(X − µ)T]

Σ?
Y XX =Y XXT − E(Y XXT)− ν?E(XXT)− ν[XXT − E(XXT)]

− µ?E(Y XT)− µ[Y XT − E(Y XT)]− [Y X − E(Y X)]µT

− E(Y X)µ∗T + ν?µµT + νµ?µT + νµµ∗T.

(5) For r-based PHD,

vec(Λ?
r−PHD) = (ΣRXXΣ−1 ⊗ Ip + Ip ⊗ ΣRXXΣ−1)vec(Σ?

RXX)

+ (ΣRXX ⊗ ΣRXX)vec(Σ−1∗),

where the matrix ΣRXX is defined as ΣYXX −R, and

R =E(XXTβXT)− E(XXT)βµT

− µβTE(XXT)− E(XµTβXT) + 2E(XµTβµT).

The influence function of ΣRXX is

vec(Σ?
RXX) = vec(Σ?

Y XX)− vec(R?),

vec(R?) =R?
1 −R?

2 −R?
3 −R?

4 +R?
5,
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where

R?
1 = {X ⊗ (XXT)− E[X ⊗ (XXT)]}β + E(X ⊗XXT)β?

R?
2 = {Ip ⊗ [XXT − E(XXT)]} (µ⊗ β) + [Ip ⊗ E(XXT)]µ? ⊗ β

+ [Ip ⊗ E(XXT)]µ⊗ β?

R?
3 = {[XXT − E(XXT)]⊗ Ip} (β ⊗ µ) + {[E(XXT)]⊗ Ip} (β? ⊗ µ)

+ {[E(XXT)]⊗ Ip} (β ⊗ µ?)
R?

4 = [X ⊗X − E(X ⊗X)]µTβ + E(X ⊗X)µ∗Tβ + E(X ⊗X)µTβ?

R?
5 = 2[(µβT ⊗ Ip)vec(µ?µT) + (µβT ⊗ Ip)vec(µµ∗T)

+ (Ip ⊗ µµT)vec(β?µT) + (Ip ⊗ µµT)vec(βµ∗T)].

The five influence functions in Proposition 4 can be easily estimated by
replacing, whenever applicable, the expectation E(·) with the sample average
En(·). We can then substitute into the formulas for B and Γ in Corollary 1
to obtain the estimated asymptotic distribution of

√
n(θ̂ − θ0).

5 Post dimension reduction inference

In this section, we develop the formal statistical inference procedures for
θ based on the asymptotic distribution of θ̂ = Φ(Fn, η̂) derived in Sections 2
through 4. First, we consider the confidence interval for an arbitrary linear
combination of θ. Let c ∈ Rs be a vector and let zα be the (1 − α)-th

percentile of the standard normal distribution. Because
√
n(θ̂−θ) D→ N(0,Γ),

the interval (cTθ̂ − zα/2
√
cTΓc, cTθ̂ + zα/2

√
cTΓc) covers the true parameter

θ0 with probability tending to 1 − α. Therefore, by Slutsky’s theorem, the
asymptotic (1− α)-level confidence interval for θ is(

cTθ̂ − zα
2

√
cTΓ̂c, cTθ̂ + zα

2

√
cTΓ̂c

)
,

where Γ̂ = Γ(η̂, θ̂) is an estimate of Γ as defined in Corollary 1.
Next, we consider testing the null hypothesis

H0 : h(θ) = h(θ0),

where h : Rs → Rk is a differentiable function. We use the function h to
accommodate the situation where only part of the parameter θ, e.g., the
first component of θ, is of interest. For power assessment, we consider the
local alternative hypothesis

H1,n(λ) : h(θ) = h

(
θ0 +

λ√
n

)
,
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where λ is a fixed vector in Rs. Let H(θ) = ∂hT(θ)/∂θ ∈ Rs×k be the gradient
matrix of h at θ, θn = θ0 + λ/

√
n, Ĥ = H(θ̂), and H = H(θ0). We propose

the following Wald-type test statistic

T =
√
n
[
h(θ̂)− h(θ0)

] (
ĤTΓ̂Ĥ

)−1√
n
[
h(θ̂)− h(θ0)

]
.

The next theorem gives the asymptotic distributions of T under the null
and the local alternative distribution. In the following, convergence in dis-

tribution under the null hypothesis is written as
D→
θ0

, while convergence in

distribution under the local alternative hypothesis is written as
D→
θn

.

Theorem 3. Suppose the conditions in Theorem 1 are satisfied and the
matrices Γ and H are nonsingular, then

T
D−→
θ0

χ2
k.(5.1)

Suppose, moreover, that θ̂ is a regular estimator, then

T
D−→
θn

χ2
k (λTHΓHTλ) .(5.2)

Proof. By Corollary 1 and the delta method, we have

√
n
[
h(θ̂)− h(θ0)

]
D−→
θ0

N(0, HT ΓH),

which implies (5.1).
Since θ̂ is a regular estimator and h is differentiable, the asymptotic distri-

bution of
√
n[h(θ̂)−h(θn)] under H1,n(λ) is the same as the asymptotic dis-

tribution of
√
n[h(θ̂)−h(θ0)] under H0. Next we decompose

√
n[h(θ̂)−h(θ0)]

as
√
n
[
h(θ̂)− h(θ0)

]
=
√
n
[
h(θ̂)− h(θn)

]
+
√
n [h(θn)− h(θ0)]

=
√
n
[
h(θ̂)− h(θn)

]
+HTλ+ o(n−1/2).

By Slutsky’s theorem,

√
n
[
h(θ̂)− h(θ0)

]
D−→
θn

N(HTλ,HTΓH),

which implies

√
n [HTΓH]

− 1
2

[
h(θ̂)− h(θ0)

]
D−→
θn

N
(

(HTΓH)−
1
2HTλ, Ik

)
.
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Together we have

√
n
[
h(θ̂)− h(θ0)

]
[HTΓH]

−1
[
h(θ̂)− h(θ0)

]
D−→
θn

χ2
k [λTH(HTΓH)−1HTλ] .

Applying Slutsky’s theorem again, we obtain (5.2). 2

We briefly comment that the requirement θ̂ is a regular estimator is rather
mild, and is satisfied by most estimators. See Bickel et al. [1] and Van der
Vaart [35].

6 Simulations

We next investigate the finite-sample performance of our post dimension
reduction inference method, and compare with the naive inference method
that pretends η̂TX were the true predictor. As discussed in Section 2.3,
the asymptotic covariances of the two methods are Γ(η0, θ0) and Γ̃(η0, θ0),
respectively. Given the data, Γ(η0, θ0) and Γ̃(η0, θ0) are estimated by Γ(η̂, θ̂)
and Γ̃(η̂, θ̂). We consider five dimension reduction methods, SIR, SAVE,
DR, y-PHD and r-PHD, and one estimation method, GMM. For GMM,
let m(ηTX, θ) denote the mean function, which is the same as the median
function in our simulations as a symmetric error distribution is employed,
and we set

g1(θ, η
TX,Y ) = Y −m(ηTX, θ), g2(θ, η

TX,Y ) = I(Y ≤ m(ηTX, θ))− 1/2.

That is, the GMM combines mean regression and median regression, which
strikes a balance between efficiency and robustness. We compare the per-
formance in terms of the coverage probability of confidence interval and the
local power in hypothesis testing.

6.1 Comparison of confidence interval

For confidence interval comparison, we consider two models. The first
model is

Model I : Y = θ1(η
TX) + θ2(η

TX)2 + σε,

where X ∼ N(0, I5), ε ∼ N(0, 1), X ε, θ1 = θ2 = 1, σ = 0.5, 1, the
predictor dimension p = 5, and the sample size n = 300, 400, 800, 1200. In
this example, SY |X = span(η) with η = (1, 0, 0, 0, 0)T. For the number of
slices for SIR, SAVE, and DR, the general rule of thumb is to choose a
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Table 1. Coverage probability of confidence interval for θ1 and θ2 in model I.

n Θ σ2 SIR SAVE DR y-PHD r-PHD

Γ Γ̃ Γ Γ̃ Γ Γ̃ Γ Γ̃ Γ Γ̃

300
θ1

0.5 0.96 0.82 0.96 0.81 0.96 0.83 0.95 0.81 0.96 0.82
1 0.95 0.79 0.95 0.78 0.94 0.81 0.96 0.80 0.93 0.79

θ2
0.5 0.93 0.80 0.94 0.80 0.94 0.79 0.96 0.81 0.96 0.81
1 0.94 0.78 0.93 0.80 0.94 0.80 0.94 0.79 0.96 0.79

400
θ1

0.5 0.95 0.85 0.96 0.85 0.95 0.85 0.96 0.84 0.95 0.85
1 0.96 0.81 0.94 0.83 0.93 0.82 0.93 0.81 0.93 0.83

θ2
0.5 0.95 0.83 0.94 0.85 0.94 0.84 0.96 0.84 0.96 0.84
1 0.95 0.82 0.94 0.81 0.94 0.81 0.94 0.82 0.94 0.81

800
θ1

0.5 0.96 0.88 0.96 0.89 0.94 0.89 0.96 0.88 0.95 0.88
1 0.96 0.88 0.95 0.87 0.93 0.87 0.95 0.86 0.93 0.86

θ2
0.5 0.96 0.87 0.94 0.88 0.96 0.87 0.95 0.86 0.95 0.87
1 0.93 0.86 0.96 0.85 0.94 0.86 0.93 0.85 0.94 0.85

1200
θ1

0.5 0.95 0.92 0.96 0.91 0.96 0.91 0.96 0.92 0.96 0.91
1 0.94 0.90 0.94 0.90 0.94 0.88 0.95 0.89 0.96 0.90

θ2
0.5 0.94 0.92 0.95 0.91 0.95 0.91 0.96 0.91 0.95 0.91
1 0.94 0.91 0.93 0.88 0.94 0.90 0.95 0.90 0.96 0.89

larger value for SIR, and a smaller value for SAVE and DR (Li [17]). In our
simulations, we have chosen H = 20 for SIR, H = 2 for SAVE, and H = 8 for
DR. After obtaining η̂ and θ̂(η̂), we calculate the 95% confidence intervals for
θ1 and θ2. We report the coverage probabilities of the two methods based on
200 data replications in Table 1. We see that the coverage probability from
the naive method is considerably smaller than the nominal value, whereas
the coverage probability from our proposed method is much closer. Table
1 also shows that the coverage probability for the naive method becomes
closer to the nominal value as the sample size increases, but it does not
converge to the nominal value.

The second model is

Model II : Y = θ1

ηTX

(ηTX + 2)2 + 0.1
+ σε,

where X ∼ N(0, I10), X ε, θ1 = 1, and η = (1, 0, . . . , 0)T. The rest of the
setup is the same as model I. We report the coverage probabilities in Table
2. Again, the coverage probability of our method is much closer to 95% than
the naive method.

Since the true model is known in the simulation experiments, we can also
estimate (η, θ) and make inference about them directly using the maximum
likelihood method without going through dimension reduction. It would be
informative to compare this “oracle” inference method with the naive and
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Table 2. Coverage probability of confidence interval for θ1 in model II.

n Θ σ2 SIR SAVE DR y-PHD r-PHD

Γ Γ̃ Γ Γ̃ Γ Γ̃ Γ Γ̃ Γ Γ̃

300 θ1
0.5 0.94 0.85 0.93 0.83 0.95 0.82 0.93 0.83 0.96 0.83
1 0.93 0.84 0.94 0.80 0.94 0.81 0.95 0.80 0.93 0.81

400 θ1
0.5 0.95 0.86 0.95 0.87 0.95 0.86 0.93 0.86 0.95 0.85
1 0.94 0.84 0.95 0.84 0.94 0.87 0.94 0.84 0.94 0.85

800 θ1
0.5 0.95 0.90 0.94 0.88 0.96 0.89 0.96 0.90 0.95 0.90
1 0.94 0.87 0.93 0.86 0.93 0.90 0.95 0.88 0.94 0.89

1200 θ1
0.5 0.96 0.91 0.95 0.91 0.94 0.92 0.94 0.91 0.96 0.92
1 0.95 0.92 0.94 0.90 0.95 0.90 0.95 0.89 0.95 0.90

objective inference methods. We have carried out this comparison using
Model I, with n = 400. We read off the standard errors for θ̂MLE

1 , θ̂MLE
2 from

the asymptotic variance matrix of (η̂MLE, θ̂MLE), which is the inverted Fisher
information evaluated at the MLE. We also compute the standard errors for
the (θ̂1, θ̂2) obtained by SIR+GMM as described above, using the naive and
objective inference methods. We repeat the process 200 times to compute
the average standard errors. The results are reported in Table 3.

In theory, we would expect the standard errors for θ̂MLE
1 and θ̂MLE

2 using
the oracle inference method to be smaller than their counterparts for θ̂1 and
θ̂2 using the objective method, because MLE is asymptotically efficient. But
this is not necessarily true in finite-sample, as indicated by our results. Also,
Table 3 shows that both the objective and oracle mean standard errors are
substantially larger than their counterparts by the naive method, which is
not surprising because the naive method claims more information than it
actually possesses.

6.2 Comparison of local power

For power comparison, we again consider two models. The first model is

Model III : Y = θ1(η
T
1X)2 + θ2 exp(ηT

2X) + σε,

where X ∼ N(0, I10), ε ∼ N(0, 1), X ε, θ1 = θ2 = 1, σ = 0.5, p = 10,
and n = 300, 500, 800, 1200 with 50 replications. In this example, SY |X =

Table 3. Standard errors for θ1 and θ2 in model I and comparison to the oracle method.

parameter naive objective oracle

θ1 0.03 0.06 0.09

θ2 0.02 0.04 0.03
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Fig 1. Local power of hypothesis testing in model III with sample size n = 500. The five
panels, left to right, top to bottom, correspond to the results from five SDR methods, SIR,
SAVE, DR, y-PHD, and r-PHD. The red curve denotes the naive inference method, and
the blue curve denotes our proposed inference method.

span(η1, η2) with η1 = (1, 0, . . . , 0)T and η2 = (0, 1, 0, . . . , 0)T. We consider
the pair of hypotheses

H0 : θ1 = 0 vs H1 : θ1 6= 0

which amounts to taking h(θ1, θ2) = θ1 in Section 5. The asymptotic power
is computed as in (5.2). Figure 1 reports this asymptotic power as a function
of the local parameter λ when the sample size is 500, with one panel corre-
sponding to one of the five SDR methods. Figures A.1, A.2, A.3 in the online
Supplementary present the results for n = 300, 800, 1200, respectively. It is
seen that the powers of the naive method, as shown by the red curves, are
higher than those by our proposed method, as shown by the blue curves.
This reflects that the naive method yields an overly optimistic power, as it
does not take into account the estimation error induced by the dimension
reduction step. Furthermore, by comparing Figures 1, A.1, A.2, and A.3, we
observe that the difference between the local powers of the naive and the
objective methods tends to be smaller as the sample size increases, which
echoes the pattern in the comparison of confidence intervals.
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Fig 2. Local power of hypothesis testing in model IV with sample size n = 500. The five
panels, left to right, top to bottom, correspond to the results from five SDR methods, SIR,
SAVE, DR, y-PHD, and r-PHD. The red curve denotes the naive inference method, and
the blue curve denotes our proposed inference method.

Our second model for the local power comparison is

Model IV : Y = θ1

ηT
1X

(ηT
2X + 1)2 + 0.5

+ σε,

where θ1 = 1, and the rest of the setup is the same as model III. Figure 2
reports the results for n = 500. The same pattern is observed as in model III.
Figures A.4, A.5, and A.6 in the online Supplementary present the results
for n = 300, 800, and 1200, respectively.

7 Application

We use the BigMac dataset to illustrate our post dimension reduction in-
ference. The data concerns the relation between the minimum labor to buy a
McDonald BigMac and fries, which serves as the response variable, and p = 9
economic predictors: minimum labor to buy one kilogram bread, lowest cost
of 10k public transit, electrical engineer annual salary, tax rate paid by engi-
neer, annual cost of 19 services, primary teacher salary, tax rate paid by pri-
mary teacher, average days of vacation per year, and average hours of work
per year. The data is at http://www.stat.umn.edu/arc/software.html.
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Fig 3. Response versus the first SIR predictor in BigMac data.

Before the dimension reduction analysis, we applied the box-cox transfor-
mation to each individual predictor.

The sequential tests based on SIR yielded the p-values, 0.02, 0.20, 0.77,
for the hypotheses q = 0 versus q > 0, q = 1 versus q > 1, and q = 2
versus q > 2, respectively, suggesting that the dimension of the central
subspace is one and a single linear combination is sufficient to fully capture
the relationship between the response and the nine predictors. Figure 3
shows the scatterplot of the response versus the estimated sufficient predictor
based on SIR.

The scatter plot shows a clear nonlinear trend and a possible heteroscedas-
tic pattern. As such we consider the following model,

Y = θ0 + θ1η
TX + θ2(η

TX)2 + (θ3 + θ4η
TX)ε,

where ε ∼ N(0, 1). Based on this model, we aim to address two questions:
First, is the nonlinear trend in Figure 3 significant? Second, is the het-
eroscedasticity in Figure 3 significant? These lead to the following two pairs
of hypotheses,

H (1)
0 : θ2 = 0 vs H (1)

1 : θ2 6= 0,

H (2)
0 : θ4 = 0 vs H (2)

1 : θ4 6= 0.

To test these hypotheses we applied the naive method and the post di-
mension reduction method to the five SDR methods combined with the
differential estimation equations. We use each method to construct con-
fidence intervals for θ2 and θ4. The estimating equations are 5-dimensional
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Fig 4. Confidence intervals for θ2 (upper panel) and θ4 (lower panel) in the BigMac
data analysis.

g(θ, ηTX,Y ) obtained by differentiating with respect to θ the objective func-
tion [

Y − θ0 − θ1(η
TX)− θ2(η

TX)2

θ3 + θ4(ηTX)

]2

.

Figure 4 shows the confidence intervals for θ2 (the upper panel) and θ4 (the
bottom panel) obtained by different methods. In each plot, the left bar cor-
responds to the naive inference method, and the right one our proposed
inference method. It is seen that, for θ2, the confidence intervals produced
by both inference methods do not cover 0, a clear evidence for the nonlin-
earity. For θ4, all confidence intervals do not cover 0, a strong evidence for
the heteroscedasticity. Moreover, the confidence intervals produced by the
naive method are consistently narrower than those by our objective inference
method.

To compare the local powers of the naive method and the post dimension
reduction method, we applied them to the five SDR methods combined with
the GMM estimation method. The GMM is based on two 5-dimensional
estimating equations, with the first one, g1(θ, η

TX,Y ), being obtained by
differentiating the objective function [Y − θ0 − θ1(η

TX) − θ2(η
TX)2]2 with

respect to θ, and the second one, g2(θ, η
TX,Y ), being the the function

[Y − θ0 − θ2(η
TX)− θ2(η

TX)2]2 − (θ3 + θ4η
TX)2,
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Fig 5. Local power for θ2 in the BigMac data analysis. The five panels, left to right,
top to bottom, correspond to the results from five SDR methods, SIR, SAVE, DR,
y-PHD, and r-PHD. The red curve denotes the naive inference method, and the
blue curve denotes our proposed inference method.

which is derived from the second moment assumption. Figure 5 shows the
local powers of the five SDR methods based on the GMM. To save space,
we only report the results for θ2; the results for θ4 exhibit a similar pat-
tern. Again, the naive method yields an overly optimistic power compared
with the objective method, which agrees with what we have observed in the
simulations.

While the above analysis shows substantial differences in the confidence
intervals by the naive and the objective inference methods, none of them is
large enough to make the parameter statistically significant by one method
and insignificant by the other. This turns out to be the case for the intercept
parameter θ1 when DR is used for dimension reduction. Figure 6 shows the
confidence interval for θ1 by the five SDR methods and the two inference
methods. For DR, the naive inference method produces a confidence interval
that does not contain 0, whereas the objective inference method produces a
confidence interval that does. Thus θ1 is statistically significant by the naive
method but insignificant by the objective method.
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Fig 6. Confidence interval for θ1 in the BigMac data analysis.

8 Conclusions

Despite the extensive development of sufficient dimension reduction in the
past three decades, the critical step of post dimension reduction inference
has never been taken – at least not in a systematic and rigorous manner.
SDR is not complete without a proper post reduction inference procedure
that takes the estimation error induced in the dimension reduction step
into the subsequent model estimation step. We fill this gap by developing a
general post dimension reduction inference framework that is adaptive to a
multitude of dimension reduction and model estimation methods. We derive
the inference procedures for confidence interval and hypothesis testing based
on a combination of commonly used SDR and model building methods.

The framework laid out in this paper also opens the door for develop-
ing objective inference procedures for a much broader class of dimension
reduction problems than considered here. Potential extensions include un-
supervised dimension reduction methods such as principal components anal-
ysis and independent components analysis (Hyvärinen, Karhunen and Oja
[12]), sparse sufficient dimension reduction methods (Li [16], Bondell and Li
[2], Chen, Zou and Cook [3], Wang and Yin [37]), and nonparametric suffi-
cient dimension reduction methods (Xia et al. [39], Xia [38]). A particularly
promising direction of extension is to the semiparametrically efficient SDR
methods developed in Ma and Zhu [25, 26, 27] and Luo, Li and Yin [24].
For these methods, the influence function can be readily developed from the
efficient score, and it is plausible that semiparametric efficiency for sufficient
dimension reduction can be inherited, to some degree at least, by the post
dimension reduction inference procedure.

Beyond the asymptotic normality-based procedures considered in this pa-
per, it is also useful to develop nonparametric inference procedures for post
dimension reduction inference. For example, it is possible to employ the
empirical likelihood approach (Owen [29, 30]) to conduct post dimension
inference. In this direction, Li, Zhu and Zhu [23] proposed an empirical
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likelihood inference procedure for the single-index model, and the ideas and
techniques there might be adaptable to the current setting. The full potential
and scope of the general framework of post dimension reduction inference
will be explored in future research.
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