Statistica Sinica Preprint

Title | On aggregate dime

Manuscript ID | SS-2016-0188

URL | http://www.stat.sinica.edu.tw/statistica/

DOI | 10.5705/55.202016.0188

Complete List of Authors | Qin Wang
Xiangrong Yin

\ Bing Li and

Zhihyi T@A>

Correspom‘ng Author \@in

E-mail

Notice: Accepted version sgbje sh caiting.




Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

Statistica Sinica

On Aggregate Dimension Reduction

Qin Wang, Xiangrong Yin, Bing Li and Zhihui Tang \

Virginia Commonwealth University, University o

Penn State University and P

Abstract: We propose a dimension reduction method based on aggregation

fast and stable\l%,‘orithm suite

high dimension. W/e demonstrate t nethod via simulation and

real data applicafons.

1\l Subspace; k-Nearest Neighbor; Sliced Inverse

s a univariate response and X is a p-dimensional vector
of continuous predictors. In its full generality, the goal of regression is to

infer about the conditional distribution of Y given X. However, because
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of the curse of dimensionality (Bellman, 1961), regression with large p can

be difficult in practice. The basic idea of sufficient dimension reduction

(SDR; Li (1991); Cook (1998)) is to replace the predictor VG(\‘I‘ by its
projection on to a low-dimensional subspace without losi\information

the conditional distribution of Y | X, and with

model for YV | X.

self satisfies the above independent condition is e central subspace,
and is denoted b3\5y|x. As sN@wngd )8) and Yin et al. (2008),
under very mild conditions, t vace exists and is the smallest

and unique dimensioNgae The dimension of Sy|x is called the

(SAVE; Cook and Weisberg (1991)), hybrids of the two (Ye and Weiss,
2003), parametric inverse regression (Bura and Cook, 2001a), sliced av-

erage third moment (Yin and Cook, 2003), contour regression (Li et al.,
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2005), minimum discrepancy approach (Cook and Ni, 2005) and directional

regression (Li and Wang, 2007), among others.

Sliced inverse regression is the first general dimension reductid§ method

\{any extensiof

and has generated intense interests since its introduction.

and Yin (2001) developed a permutatign testi rocedure to determine

this dimension. C\en and Li (N8 relation between SIR and
maximal correlation. Hsing (1 st-neighbor method to develop

a variation of SIR t fo multivariate responses. Naik and

cfollance of SIR with partial least squares in

the context ¥nodel. Cook and Critchley (2000) showed that
nethods in general and SIR in particular can be useful
for identifyi 's and regression mixtures. Bura and Cook (2001a),
Fung et al. (2002), Bura (2003) and Wang and Yin (2011) further expanded
the scope of SIR by replacing inverse conditional mean E(X | Y') with

parametric regression or basis expansion. Li et al. (2004) proposed a cluster-
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based estimation to mitigate the effect of nonlinearity on the predictors

with the focus on single index models. Zhu et al. (2006) studied asymptotic

behavior for SIR when the number of covariates increases with safuple size.

Acing the glo

Recently, Wu et al. (2010) developed an extension by re

The theoretical b\is of this
always be decomposed into fing
spaces to recover Syix. The dual
ation brings two benefits. First, since
»proximately linear locally, we no longer need
linearity assumption on the conditional mean of the
d by SIR. Second, it leads to exhaustive estimation of
the central subspace Sy x.

We outline the main ideas and benefits of localized dimension reduc-

tions in Section 2. These ideas will be rigorously formulated and developed
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at the population level in Section 3. In sections 4 and 5 we provide the

estimation procedures of localized SIR using k-nearest neighborhood, and

discuss various issues involved in the estimation. Simulation stflies and
two real data examples are presented in sections 6 and 7. Qome conclusim
remarks are made in Section 8. All proofs are r poed to the

published as online supplementary materials.

2. Principle of finite aggregation

p1ing ordinary sufficient
dimension reduction over a number of 1 1 e predictor sample
space, and then \gregating wver the global dimension
reduction subspace. We first e o benefits of this dual process
in concrete terms. L ') be a p x d matrix whose columns

central subspace. SIR and many other

s require the following linearity condition on

| B'X) is a linear function of B”X. (2.1)

Under this assumption, the random vector F(X | Y) — E(X) is con-
tained almost surely in ¥xSy|x, where ¥x denotes the covariance matrix

of X (Li, 1991). Since B is unknown, this condition is often assumed to
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hold for all p x d matrices, which is equivalent to requiring X to have an

elliptically contoured distribution (Eaton, 1986), an assumption that seems

too strong for many applications. However, if we restrict X to A%latively

directions of X, then the ra\dom vector E(

those directions, and consequently cangat pro

71), el X, and X ~ N(O,Ilo). Al-

(2.1) is satisfied, the random vector E(X |

— E(X) in the longer rectangle vanishes. However, if
we restrict X to a local region, as indicated by the shorter rectangle, then
E(X|Y)— E(X) does not vanish.

To construct local dimension reduction spaces, assume (X,Y’) has a
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Figure 1: A symmetric mo‘l that cannot be sated by the global SIR

Prx,y) >0} ={(x,y) : p(x) > 0,¢9(y) > 0} = Qx x Qy.

(2.2)

Let G be any open set in Qx. Let (X, Ys) be defined as (X,Y) re-
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stricted on the set G; that is, for any Borel set A C Qx x {2y one has

P[(X¢, Ye) € Al =P[(X,Y) e AN(G x Qy)]/P[(X,Y) € G\x Qy]

—P[(X,Y) € AN (G x Q)]/P(X 4. (2.3)

This defining relation uniquely determines th
densities of the localized random pair (X, Yz),

proposition.

Proposition 1. Suppose that (Xg,Ys) is defined by (2.3).

1. the joint density of (XA”G) is fa(x,y) =

GXQy';

‘X e@), (x,9) €

2. the marginal density of x)/P(X € G), xeG,

3. the conditional Lo is he(y | x) =h(y | x), (x,9) €

X—eG/nydX y €y

The proof is simple and thus omitted. An important point of this
proposition is that the conditional densities of Y, | X and Y | X coincide

over the cylinder G x €y. The central subspace of Y, versus Xg, Sy, x;
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is called the local central subspace for the neighborhood G. Intuitively, any

direction in a local central subspace Sy, x, must also belong to the global

central subspace Syx, since any local relation between Y and\"{c must
be a part of the global relation between Y and X. In t\ meantime a
relation existing between Y and X globally must
area (G. In fact, more is true — we only need a fini

subspaces to recover the global central subspace.

Theorem 1. Suppose 2x is an open set in RP. Then there exist a finite

1,...,m}.

This theorem,\o be calle N regation Principle, plays a

is given in the Appendix.

sffect of localization

he “diameter” of an open set GG in {2x, in the sense that

|G| = sup{||x — X|| : x € G,x" € G}.



Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

Let p, = F(X,) and h(y | x) = Oh(y | x)/0x. Consider the matrices
H, = E[M(Yo | po)h" (Yo | pe)] and H = E[h(Y | Xc)hT()\l Xe))
From a result of Zhu and Zeng (2006), it can be deduced‘lat

span(Hg) C span(H}) =

span(Hg) and span(B.;) = span(H}). We show that (i)

matrix of X,

X — pg) pe(x)dx.

of the order O(||G||?) as ||G|| — 0. Let G denote

the closure of G g 8. be the projection on to span(3,). That is,

PBG = IBG (Bgﬁc)_lﬁg

Theorem 2. Suppose that, for a fived y € Qy, g(y) > 0, h(y | x) is twice

differentiable with respect to x on G, and the second derivatives are bounded
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on G. Then, as |G| — 0, and almost everywhere on Qy,

S5 EX | y) — E(Xo)] = Pp B [E(Xa | y) — \OIIGII

\

where |A| - denotes the Frobenius norm of a matrj

The proof of Theorem 2 is in the Appendix.
Note that the relation (3.1) tells us that, except for an er

tude O(||G||?), the local SIR vector, |G||Z;'[E(X¢ | y) —

ders of magnitude.

rem 3. Su . /i to conditions in Theorem 2, h(y | x) has
bounded thu respect to x, p(x) has bounded first derivative

pen ball in Qx. Then, as |G| — 0,

(X)) = P B E(Xe | y) — E(X0)]| - = O(IGI%),
(3.2)

where |A| - denotes the Frobenius norm of a matriz A.

The proof of Theorem 3 is in the Appendix.
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The intuition behind this further reduction of bias is that the leading

term of an integral of a centered cubic function over a spherical region is

0. From this theorem we see that the bias of local SIR is fou&»rders of
magnitude smaller than the bias of the corresponding glob\ estimate. TI§
bias is surprisingly small, especially if we comp
bias of the kernel estimator of a density. Let
density, and ¢ be a density to be estimated with p being the bandw

Then it is known that

[x(¥

Here, p corresponds roughly t

K, then the error is’O(p). The g D1 Les also to the kernel regres-

10nparametric setting where no elliptical dis-
inposed on X, it is still beneficial to first perform
before nonparametric regression.

nsider the special case where

h(y | x) = huly, ¢(x)], (3.3)

with some function ¢ from RP to R. For example, the location model
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Y = ¢(X) + € and the scale model Y = ¢(X)e belong to this category.

Then

iy | ) = %ﬁ“‘@”wc). \

Note that

Hy = {ahl [Yg’f“” ) }2 Olh)

This is a matrix of rank 1 unless ¢(p,) = 0. We summar

\

Proposition 2. Suppose h(y | x) is of g where hy is differen-

the following proposition.

tiable with respec‘) ¢ and ¢ Z , th respect to x. Moreover,
suppose Ohy(Yg, @) /0 is squa ) o Q' hen span(B,) has dimension
at most 1. That is, or of magnitude O(||G||?), the local

ston at most 1.

rests that if we are interested in finding the central
subspace, then y need to estimate one direction for each local region.
That ¥ent to discretize Yy into binary variables for each G,

which is important because there are fewer observations in a local region.
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4. Estimation

In this section we introduce an estimation procedure for aggreggte dimen-
sion reduction (ADR), using k-nearest neighbor (kNN) as the localizing
mechanism and partial inverse regression as the 1 1sion reductio
estimator. Properties of nearest neighbor estimat
studied in nonparametric regression and pattern re
ample, Hastie et al. (2001).

One of the main problems we need to solve in designing an estimation

procedure is how to handleghe inversion of ymple estimate of

local covariance matrix of predi . WS i ially important in the

context of localize§ dimension r . se the relevant sample size

at most 1 direction if we ignore an error of size ||G||*>. This motivates us
to employ a two-slice scheme for inverse regression. Divide the support of

Y. (which under assumption (2.2) is the same as Qy) into two intervals,
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Jo, and Jg, and let A, be a Bernoulli random variable that takes value
1ifY € Js and 2 if Y € J.,. By the discussion in Section 3, we have,

approximately,

span{Var[E(X. | As)]} € Xg

Let 1z = P(Ag = 1), and ¢, = E(X¢ | Ag =

variance in (4.4) as

Var[E(Xg | Ag)] = WG\ngl + (1 = 7e)

This is a matrix of rank at mqt 1.

3.'¢.. But since gay 1 smaller than p, a direct sample

estimate of the fullanve ; ®cher unstable or nonexistent. To avoid

HR Eté_1CG)7 Ne = Rq (R'GTEG:RG)i1 RGTCG’

Note that m, is simply the projection of 3_'¢ on
to the column space of R;. Cook et al. (2007) show that the subspace
span(Ry) is strictly increasing when ¢ increases, and argue that it often

grows large enough to contain the central subspace (in our context Sy, x,,)
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for reasonably small ¢. It is easy to see that when this occurs i, becomes

a member of Sy, x,. We use n, in place of X;'¢, as the local dimension

reduction estimate. \
To combine directions from each neighborhood, let t\O, o) — |0,

be a nondecreasing function, and

Define the matrix

,n} be a sa ) ¥ The algorithm assumes the structural

amension e estimation of d will be discussed subse-

,...,n, let G4 be the set that includes the k nearest
X,’s to X in terms of the Euclidean distance ||X; — X;||. Note that
G contains k + 1 elements since we do not count X, as among these

k points.
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2. Divide the set {Y; : X; € G,} into two intervals, J;, and Js,, each

containing roughly the same number of Y;’s. Let ng,, u = 1,2 be

cardinality of the set {j : X, € G;,Y; € Js,}, and ng = nSI\nSQ. Let

o o\
XGS1 = ey ZXJ-I(XJ S Gm}/j S Jsl)a XG _JXJI(XJ S
and

&GS = (Xcsl - Xcs)a Wa, = (”51/ns2)“XG51 - Xcs 2

3. Compute

> the Euclidean distance measure implies that the

input features are hogeneous or isotropic, an immediate remedy would be

to use PWtive metric. Inspired by the work of Hastie and Tibshi-
rani (1996), here we propose a refined estimation where the neighborhoods

are elongated along less relevant directions and constricted along those in-

fluential ones. After obtaining a basis of the global central subspace Sy|x
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(say B()) from the above mentioned algorithm, instead of a p-dimensional

ball as the k-nearest neighborhood, we will use a p-dimensional ellipsoid

with which to shrink the neighborhoods in directions orthogonal\\ ]:30 and

to elongate those parallel to this initial estimate. More sp&ifically, the d

tance between X; and X as in the step 1 of th

replaced by

Our method digers frign 9) where k-nearest neighborhood

o Wid slicing. It is also different from

ot al. (2002), in that the latter requires the

In this section we discuss how to choose the various turning parameters in
the estimation algorithm described in Section 4, which include the estima-

tion of the structural dimension d, the choices of the weighting function ¢,
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the order ¢ in partial inverse regression, as well as the softening parameter

k in the adaptive nearest neighborhood selection. An appropriate justifica-

tion of these choices rely on the asymptotic properties of ADR,\'hich are

beyond the scope of the present paper, and will be carried\lt in a separ

central subspace. ‘hus if a nei i ‘egion in which there is no
significant change in Y, then |
1 we let the sliced P 0 determine the relative importance

h nejghborh{g ice of ¢ is

(5.6)
0 we < c.
This weighting function introduces a hard thresholding according to the

magnitude of ||¢|); it throws away those neighborhoods with small sliced

means. Moreover, when a sliced mean is large enough, its magnitude is
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no longer included in the estimation. Based on our experience the second
choice seems to work better. We choose threshold ¢ according to a percent-
age 0 of sample size. That is, we choose § x 100% of neighborlk)ds with
highest ws. The choice § = 0.5 works well in our simulati\ experiment

To choose ¢q¢,, we use the threshold recomm

p—1
7i(Gs)
— I =28
o Z (Tj+1(Gs)>a0

j=1

where 7 (Gs) > -+ > r,(Gs) are eigenvalues of matrix

is taken to be 1.5. Following Hastie and Ti

k() = 1/3 in our numerical &1dies.
To estimate the structural dimelsi ot the bootstrap pro-

cedure proposed iMYe and Wel shu and Zeng (2006). Let

Sd* be an estimateWf Sy| fo . We can get a set of bootstrap-

tYhugh bootstrapping, where n,; is the
Q[ Le distances between Sy and its bootstrap
,np} can be used to assess the variability of the
estimated subspa ., d = d*, which in turn can be used to infer the struc-
tural intuitively, Sd* C Sy|x when d* < d. But when d* > d,
Sd* = Syjx @ S where S is a (d* — d)-dimensional subspace orthogonal

to Syx. Since S can be arbitrary, we expect to see larger variability of

S+ with its bootstrap versions, compared to when d* < d. Therefore, the
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structural dimension d can be estimated as the largest d* that produces a

stable estimator.
Finally, we choose the number of observations in each neighl\‘hood to
\is considera

be 2p < k < 4p. This choice is reasonable only when

smaller than n.

6. Simulation studies

(SIR), sliced aver\e variance ), principal Hessian direc-

tions (PHD), minimum ayera ‘imation (MAVE), and sliced
regression (SR). Th m coefficient ¢ (Hotelling, 1936; Ye
sure the estimation accuracy. Let B be

central subspace, and B be an estimate of the

‘hen the vector correlation coefficient

d

| | 2
pi7

=1

where 0 < pg < -+- < p; < 1 are the eigenvalues of matrix BT(BBT)B.

¢ = \/|[BT(BBT)B|| =

The larger the ¢ is, the closer S(B) is to S(B). We chose the Gaussian
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kernel and its corresponding optimal bandwidth for MAVE and SR. A rule-

of-thumb choice k& = 4p was used for our proposed aggregate approach,

including kNN sliced inverse regression (kNNSIR) and adaptive &‘N sliced
inverse regression (a-kNNSIR where adaptive distance 4\\ will be used§
More refined ways to choose k, such as cross-val
greater computational expense. For each paramet
replications were conducted.

The following 4 models were used in the numerical stu

Model 1: Y= exp{(8LX)? + ¢},

Model 2: Y= cos(2ﬁlT§) — cos(f1 X) +
Model 3: Y& sign(S7

\

Model 4: Y= (87 X)(57

All the above studied extensively in sufficient di-
all four models, X ~ N,(0, ¥), inde-
n noises €, €; and e5. The covariance matrix
where p = 0.5 in models 1-3 and p = 0 in model
(1,0.5,1,0,...,0)T. In Model 2, 3, = (1,0,...,0)T
,0)T. In model 3, By = (1,1,1,1,0,...,0)", B, =

0,...,0,1,1,1, 1)T and the function sign(-) takes value 1 or —1 depend-

ing on the sign of the argument. In Model 4, 81 = (1,0,...,0)T, By =
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(0,1,1,0,...,0)7 and B3 = (0,0,0,1,1,0,...,0)7.
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Figure 3: Comparison of estimation accuracy with Model 2

Figures 2 — 5 show the comparisons of the performance among the afore-
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mentioned methods. We can have the following observations from these

graphical summaries. First, the proposed aggregate SDR, adaptive kNN-

SIR, significantly improves the performance of the original inverse Ygression
methods and is broadly comparable with the forward regr\‘\ion approachWg

praptive KNNyIR

(MAVE and SR). Secondly, through localizatio

overcome the drawback of missing symmetric pat

as in models 2 and 4. But when Syx mean function as
in models 1 and \a—kNNSIR Ao N ns MAVE. Finally, larger
sample sizes are needed to pr YV stimation with the increase of

are the only two methods with good performance
sizes. It is well known that the computation burden
increases significantly with the increase of n and p for forward regression
methods (MAVE and SR), while our proposed aggregate inverse regression

approach is more computationally efficient since no numerical optimization
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was involved. This was also confirmed in our simulation studies.
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Next, we estimated the structural dimension d using the adopted boot-
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strap procedure. In all the numerical studies, we used 1 — ¢ as the dis-

tance measure to assess the variability between S and its bootstrap ver-

sions. For each of d* = 1,2,...,p — 1, 500 bootstrap samples vke drawn

and the median of the distances between Sy and its b\tstrap versioge

{S(Z), j=1,...,500} were calculated. Figure 6 Ps the dimeng

ability plots (Zhu and Zeng, 2006) for models 1-4.
ability showed up when d* > d. Out of 100 samples with n = 40

p = 10, the accuracy of correctly estimated d is 99%, 94

for models 1-4, respectively.\

Model 1 d=1 Model 2 d=2

Model 4 d=3

A

06 /

04 /

0.2 B /z{

Figure 6: Bootstrap estimation of dimension (n = 400 and p = 10)
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7. Real data analyses

7.1 Ozone Data \

In this section, we investigate the performance of the p(\osed aggregate
SIR when it is applied to real data set concernin ion between

ozone levels and various environmental variable
(1985). The data contain 330 observations, with each observation

of 9 variables: ozone concentration, height, inversion heig

are treated as predictors. FO

standardized sepagnely. This dg ‘nalyzed by several authors.

from different testing methods, leaving some uncertainty.

In our application, the dimension variability plot, shown in Figure 7-
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7.2 College admission data

(a) (b) (c)
0.8 . . ; . .
0.6 ({/ \ sof -
x \ :
| \ §
| \ 3
8 | \ g .
é 0.4 ‘w‘ o g 200 e
a | ®
| s
| o]
|
0.2 | 4 10F
|
2 4 6 -2

plots of response vs. the two ‘timated direction

(a), suggested d = 2. Figure 7-(b)(c)gwhowe
our method. Intdestingly, oulNgag 4O SR successfully recovers
the two significant compqunen

and PHD, without fitting a

detailed model as in 1y uncertainty on estimating d as in

n data

d in the 1995 Data Analysis Exposition sponsored by
the American Statistical Association. It is also included in the textbook “An
introduction to statistical learning with applications in R” (James et al.,

2013), and the associated R package ISLR. We are interested in predicting
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7.2 College admission data

Table 1: The predictors and the estimated directions of the college admis-

\

N

sion data

Predictor

x7 number of full time undergraduates
o number of part time undergraduates
T3 out-of-state tuition

x4 room and board costs

x5 estimated bookWosts 04 —0.03

g estimated personal spendi —0.12 —0.30
Ty perc& of faculty 0.03 —0.03
xg studeng/faculyy r 0.13 0.46

h@nate 0.04 0.07

nditure per student 0.12 —0.26

0.04 —0.60

time undergraduate student body less than 10,000. The predictors used in
our analysis are listed in Table 1. Again for the ease of interpretation, all

predictors were standardized separately.
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7.2 College admission data

/\/Q\ 9
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Figure 8: Analysis on College admission data: (a) dimensio

(b-c) scatterplots of response ‘ the two estima

The dimension variability plot in

arginal plots for the first three directions. In the end,

ae first two directions since no good interpretation can

be found for the third direction. We also applied SIR to this data set. The
asymptotic test also suggested d = 3. The first direction is dominated by

x1, the number of full time undergraduates, but the second and the third
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directions are not that clear. From the estimated directions Bl and (3, in

Table 1 by our method, we can interpret the first direction as the ’size’

factor since it is dominated by x1, the number of full time under&aduates.

8 (c) shows more students qud apply the in ions with high academic

quality, meaning high graduation rate, Rich in q0mmal expenditure and

to replace the original SIR. Instead, we developed an alternative approach
so that the simplicity of SIR can be extended further.

There are still several open questions that need further study, such as
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the asymptotic properties of the proposed estimators and the extension to

big data setting. For the study of asymptotic properties, the most related

one in the global sense is the paper by Hsing and Carroll (19\’) where

\)t—n consiste

the estimator from two-slice approach was shown to be

we decide to leaV‘c for a sepal feree brings our attention
to extension to big data setti

volume n is huge, t j \ moderate and n > p, we propose to

of dimensionality. Such an investigation is currently under way by our team,

and our preliminary results are very promising.
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