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Abstract: We propose a dimension reduction method based on aggregation of

localized estimators. The dual process of localization and aggregation helps to

mitigate the bias due to the symmetry in the predictor distribution and achieves

exhaustive estimation of the dimension reduction space. This approach does not

involve numerical optimization or the inversion of large matrices, resulting in a

fast and stable algorithm suited for processing data sets with large volume and

high dimension. We demonstrate the efficacy of our method via simulation and

real data applications.

Key words and phrases: Central Subspace; k-Nearest Neighbor; Sliced Inverse

Regression.

1. Introduction

Suppose that Y is a univariate response and X is a p-dimensional vector

of continuous predictors. In its full generality, the goal of regression is to

infer about the conditional distribution of Y given X. However, because
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Aggregate Dimension Reduction

of the curse of dimensionality (Bellman, 1961), regression with large p can

be difficult in practice. The basic idea of sufficient dimension reduction

(SDR; Li (1991); Cook (1998)) is to replace the predictor vector by its

projection on to a low-dimensional subspace without losing information on

the conditional distribution of Y | X, and without assuming any specific

model for Y | X.

In mathematical terms, a sufficient dimension reduction space is a sub-

space S of Rp such that Y and X are independent conditioning on PSX,

where PS is the projection on to S. The intersection of all such S if it-

self satisfies the above independent condition is called the central subspace,

and is denoted by SY |X. As shown in Cook (1998) and Yin et al. (2008),

under very mild conditions, the central subspace exists and is the smallest

and unique dimension reduction space. The dimension of SY |X is called the

structural dimension, and is denoted by dY |X.

A main class of estimators of the central subspace is based on inverse

conditional moments, such as E(X | Y ) and Var(X | Y ). This includes

sliced inverse regression (SIR; Li, 1991), sliced average variance estimation

(SAVE; Cook and Weisberg (1991)), hybrids of the two (Ye and Weiss,

2003), parametric inverse regression (Bura and Cook, 2001a), sliced av-

erage third moment (Yin and Cook, 2003), contour regression (Li et al.,
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2005), minimum discrepancy approach (Cook and Ni, 2005) and directional

regression (Li and Wang, 2007), among others.

Sliced inverse regression is the first general dimension reduction method

and has generated intense interests since its introduction. Many extensions

and refinements ensued. Hsing and Carroll (1992), Zhu and Ng (1995) and

Zhu and Fang (1996) studied the asymptotic properties of the SIR estimator

and its variations. Schott (1994), Velilla (1998) and Bura and Cook (2001b)

introduced asymptotic inference procedures to determine the dimension of

the subspace estimated by SIR. Following Cook and Weisberg (1991), Cook

and Yin (2001) developed a permutation testing procedure to determine

this dimension. Chen and Li (1998) studied the relation between SIR and

maximal correlation. Hsing (1999) used nearest-neighbor method to develop

a variation of SIR that is applicable to multivariate responses. Naik and

Tsai (2000) compared the performance of SIR with partial least squares in

the context of a single-index model. Cook and Critchley (2000) showed that

dimension reduction methods in general and SIR in particular can be useful

for identifying outliers and regression mixtures. Bura and Cook (2001a),

Fung et al. (2002), Bura (2003) and Wang and Yin (2011) further expanded

the scope of SIR by replacing inverse conditional mean E(X | Y ) with

parametric regression or basis expansion. Li et al. (2004) proposed a cluster-
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based estimation to mitigate the effect of nonlinearity on the predictors

with the focus on single index models. Zhu et al. (2006) studied asymptotic

behavior for SIR when the number of covariates increases with sample size.

Recently, Wu et al. (2010) developed an extension by replacing the global

average with the local average for each data point so as to alleviate the issue

of degenerate solutions. SIR has found wide applications in diverse fields

such as computer vision (Ling et al., 2003, 2005), and biological sciences

(Chiaromonte and Martinelli, 2002; Bura and Pfeiffer, 2003; Li and Li,

2004).

In this paper we develop an aggregate dimension reduction procedure.

The theoretical basis of this method is that the central subspace SY |X can

always be decomposed into finitely many local dimension reduction spaces,

and that we can aggregate the local spaces to recover SY |X. The dual

process of localization and aggregation brings two benefits. First, since

any differential function is approximately linear locally, we no longer need

to impose a strong linearity assumption on the conditional mean of the

predictors, as required by SIR. Second, it leads to exhaustive estimation of

the central subspace SY |X.

We outline the main ideas and benefits of localized dimension reduc-

tions in Section 2. These ideas will be rigorously formulated and developed
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at the population level in Section 3. In sections 4 and 5 we provide the

estimation procedures of localized SIR using k-nearest neighborhood, and

discuss various issues involved in the estimation. Simulation studies and

two real data examples are presented in sections 6 and 7. Some conclusion

remarks are made in Section 8. All proofs are relegated to the Appendix,

published as online supplementary materials.

2. Principle of finite aggregation

Aggregate dimension reduction consists of performing ordinary sufficient

dimension reduction over a number of local regions in the predictor sample

space, and then aggregating the results to recover the global dimension

reduction subspace. We first expound the two benefits of this dual process

in concrete terms. Let B = (β1, . . . ,βd) be a p× d matrix whose columns

form an orthonormal basis of the central subspace. SIR and many other

dimension reduction methods require the following linearity condition on

X:

E(X | BTX) is a linear function of BTX. (2.1)

Under this assumption, the random vector E(X | Y ) − E(X) is con-

tained almost surely in ΣXSY |X, where ΣX denotes the covariance matrix

of X (Li, 1991). Since B is unknown, this condition is often assumed to
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hold for all p × d matrices, which is equivalent to requiring X to have an

elliptically contoured distribution (Eaton, 1986), an assumption that seems

too strong for many applications. However, if we restrict X to a relatively

small region, then, as long as the function m(u) = E(X | BTX = u) is dif-

ferentiable, E(X | BTX) can be reasonably well approximated by a linear

function of BTX.

The second benefit is to overcome a well known drawback of SIR. That

is, if the distribution of X given Y is symmetric about E(X) along certain

directions of X, then the random vector E(X | Y ) − E(X) vanishes along

those directions, and consequently cannot provide any information about

those directions. For example, consider the model

Y = 3(βTX)2 + 0.2ε,

where β = (1, 1, 0, . . . , 0)′, ε ∼ N(0, 1), ε X, and X ∼ N(0, I10). Al-

though the linearity condition (2.1) is satisfied, the random vector E(X |

Y )−E(X) is degenerate at 0, which does not tell us anything about ΣXSY |X

though it does belong to ΣXSY |X. The situation is illustrated by Figure

1, where E(X | Y ) − E(X) in the longer rectangle vanishes. However, if

we restrict X to a local region, as indicated by the shorter rectangle, then

E(X | Y )− E(X) does not vanish.

To construct local dimension reduction spaces, assume (X, Y ) has a
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Figure 1: A symmetric model that cannot be estimated by the global SIR

joint density f(x, y). Let p(x), g(y), and h(y | x) denote the marginal

density of X, the marginal density of Y , and the conditional density of Y

given X = x, respectively. Let ΩX and ΩY be the support of X and Y ;

that is, ΩX = {x : p(x) > 0}, ΩY = {y : g(y) > 0}. For convenience,

assume that the support of f is the cartesian product ΩX × ΩY . Though

this assumption is not crucial for our subsequent analysis, it does help to

simplify the discussion. In summary we assume

ΩX,Y = {(x, y) : f(x, y) > 0} = {(x, y) : p(x) > 0, g(y) > 0} = ΩX × ΩY .

(2.2)

Let G be any open set in ΩX. Let (XG, YG) be defined as (X, Y ) re-
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stricted on the set G; that is, for any Borel set A ⊆ ΩX × ΩY one has

P [(XG, YG) ∈ A] =P [(X, Y ) ∈ A ∩ (G× ΩY )]/P [(X, Y ) ∈ G× ΩY ]

=P [(X, Y ) ∈ A ∩ (G× ΩY )]/P (X ∈ G). (2.3)

This defining relation uniquely determines the densities and conditional

densities of the localized random pair (XG, YG), as given by the following

proposition.

Proposition 1. Suppose that (XG, YG) is defined by (2.3). Then

1. the joint density of (XG, YG) is fG(x, y) = f(x, y)/P (X ∈ G), (x, y) ∈

G× ΩY ;

2. the marginal density of XG is pG(x) = p(x)/P (X ∈ G), x ∈ G;

3. the conditional density of YG | XG is hG(y | x) = h(y | x), (x, y) ∈

G× ΩY ;

4. the marginal density of YG is

gG(y) =
1

P (X ∈ G)

∫
G

f(x, y)dx, y ∈ ΩY .

The proof is simple and thus omitted. An important point of this

proposition is that the conditional densities of YG | XG and Y | X coincide

over the cylinder G × ΩY . The central subspace of YG versus XG, SYG|XG
,
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is called the local central subspace for the neighborhood G. Intuitively, any

direction in a local central subspace SYG|XG
must also belong to the global

central subspace SY |X, since any local relation between YG and XG must

be a part of the global relation between Y and X. In the meantime any

relation existing between Y and X globally must be reflected in some local

area G. In fact, more is true — we only need a finite number of local central

subspaces to recover the global central subspace.

Theorem 1. Suppose ΩX is an open set in Rp. Then there exist a finite

number of open sets, say G1, . . . , Gm in ΩX, such that SY |X = span{SYGi
|XGi

: i =

1, . . . ,m}.

This theorem, to be called the Finite Aggregation Principle, plays a

fundamental role for our method. It guarantees that we can patch together

a finite number of local central subspaces to recover the global central sub-

space. The proof of Theorem 1 is given in the Appendix.

3. Bias-reducing effect of localization

Let ‖G‖ denote the “diameter” of an open set G in ΩX, in the sense that

‖G‖ = sup{‖x− x′‖ : x ∈ G,x′ ∈ G}.
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Let µG = E(XG) and ḣ(y | x) = ∂h(y | x)/∂x. Consider the matrices

HG = E[ḣ(YG | µG)ḣT (YG | µG)] and H∗G = E[ḣ(YG | XG)ḣT (YG | XG)].

From a result of Zhu and Zeng (2006), it can be deduced that

span(HG) ⊆ span(H∗G) = SYG|XG
.

Let βG and BG be matrices of full column rank such that span(βG) =

span(HG) and span(BG) = span(H∗G). We show that (i) if ‖G‖ is small,

then, approximately, βG and BG share the same column space; (ii) the

shared column space is approximately the local central subspace; (iii) the

latter can be approximated by the localized SIR; (iv) in an important special

case, this space has dimension no more than 1. Let ΣG denote the variance

matrix of XG ∫
G

(x− µG)(x− µG)TpG(x)dx.

Note that this matrix is of the order O(‖G‖2) as ‖G‖ → 0. Let Ḡ denote

the closure of G and PβG
be the projection on to span(βG). That is,

PβG
= βG(βT

GβG)−1βT
G.

Theorem 2. Suppose that, for a fixed y ∈ ΩY , g(y) > 0, h(y | x) is twice

differentiable with respect to x on Ḡ, and the second derivatives are bounded
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on Ḡ. Then, as ‖G‖ → 0, and almost everywhere on ΩY ,

∣∣Σ−1G [E(XG | y)− E(XG)]−PβG
Σ−1G [E(XG | y)− E(XG)]

∣∣
F = O(‖G‖),

(3.1)

where |A|F denotes the Frobenius norm of a matrix A.

The proof of Theorem 2 is in the Appendix.

Note that the relation (3.1) tells us that, except for an error of magni-

tude O(‖G‖2), the local SIR vector, ‖G‖Σ−1G [E(XG | y)−E(XG)], belongs

to the central subspace. In other words the bias due to the nonlinearity

of E(XG | βT
GXG) is two orders of magnitude smaller than the bias of the

global inverse mean Σ−1[E(X | y) − E(X)]. In fact, if we assume slightly

stronger regularity conditions, this bias can be further reduced by two or-

ders of magnitude.

Theorem 3. Suppose, in addition to conditions in Theorem 2, h(y | x) has

bounded third derivative with respect to x, p(x) has bounded first derivative

on Ḡ, and that G is an open ball in ΩX. Then, as ‖G‖ → 0,

∣∣Σ−1G [E(XG | y)− E(XG)]−PβG
Σ−1G [E(XG | y)− E(XG)]

∣∣
F = O(‖G‖3),

(3.2)

where |A|F denotes the Frobenius norm of a matrix A.

The proof of Theorem 3 is in the Appendix.
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The intuition behind this further reduction of bias is that the leading

term of an integral of a centered cubic function over a spherical region is

0. From this theorem we see that the bias of local SIR is four orders of

magnitude smaller than the bias of the corresponding global estimate. This

bias is surprisingly small, especially if we compare it with the population

bias of the kernel estimator of a density. Let K be a symmetric kernel

density, and φ be a density to be estimated with ρ being the bandwidth.

Then it is known that∫
1

ρp
K

(
x− a

ρ

)
φ(x) dx = φ(a) +O(ρ2).

Here, ρ corresponds roughly to ‖G‖ in our problem. If we use asymmetric

K, then the error is O(ρ). The similar bias applies also to the kernel regres-

sion setting. This comparison indicates that localized dimension reduction

has a smaller bias than kernel density estimation or kernel regression. In

other words, even in a fully nonparametric setting where no elliptical dis-

tribution assumption is imposed on X, it is still beneficial to first perform

dimension reduction before nonparametric regression.

Now let us consider the special case where

h(y | x) = h1[y, φ(x)], (3.3)

with some function φ from Rp to R. For example, the location model
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Y = φ(X) + ε and the scale model Y = φ(X)ε belong to this category.

Then

ḣ(y | µG) =
∂h1[y, φ(µG)]

∂φ
φ̇(µG).

Note that

HG = E

{
∂h1[YG, φ(µG)]

∂φ

}2

φ̇(µG)φ̇T (µG).

This is a matrix of rank 1 unless φ̇(µG) = 0. We summarize this result as

the following proposition.

Proposition 2. Suppose h(y | x) is of the form (3.3) where h1 is differen-

tiable with respect to φ and φ is differentiable with respect to x. Moreover,

suppose ∂h1(YG, φ)/∂φ is square integrable. Then span(βG) has dimension

at most 1. That is, ignoring an error of magnitude O(‖G‖2), the local

central subspace SYG|XG
has dimension at most 1.

This proposition suggests that if we are interested in finding the central

subspace, then we only need to estimate one direction for each local region.

That is, it is sufficient to discretize YG into binary variables for each G,

which is important because there are fewer observations in a local region.
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4. Estimation

In this section we introduce an estimation procedure for aggregate dimen-

sion reduction (ADR), using k-nearest neighbor (kNN) as the localizing

mechanism and partial inverse regression as the local dimension reduction

estimator. Properties of nearest neighbor estimators have been extensively

studied in nonparametric regression and pattern recognition. See, for ex-

ample, Hastie et al. (2001).

One of the main problems we need to solve in designing an estimation

procedure is how to handle the inversion of Σ̂G, the sample estimate of

local covariance matrix of predictor X. This is especially important in the

context of localized dimension reduction, because the relevant sample size

is the number of observations within each neighborhood, much smaller than

the total sample size n for a global dimension reduction estimator such as

SIR. We solve this problem by a partial inverse regression scheme developed

in Li et al. (2007) and Cook et al. (2007).

We first describe the estimation procedure at the population level. By

Proposition 2, under condition (3.3), each local central subspace contains

at most 1 direction if we ignore an error of size ‖G‖2. This motivates us

to employ a two-slice scheme for inverse regression. Divide the support of

YG (which under assumption (2.2) is the same as ΩY ) into two intervals,
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JG1 and JG2 and let ∆G be a Bernoulli random variable that takes value

1 if Y ∈ JG1 and 2 if Y ∈ JG2. By the discussion in Section 3, we have,

approximately,

span{Var[E(XG | ∆G)]} ⊆ ΣGSYG|XG
. (4.4)

Let πG = P (∆G = 1), and ζGu = E(XG | ∆G = u) − E(XG) for u = 1, 2.

Noticing the relation πGζG1+(1−πG)ζG2 = 0, we can rewrite the conditional

variance in (4.4) as

Var[E(XG | ∆G)] = πGζG1ζ
T
G1 + (1− πG)ζG2ζ

T
G2 =

πG

1− πG

ζG1ζ
T
G1.

This is a matrix of rank at most 1.

An obvious way to recover the local central subspace SYG|XG
is to use

Σ−1

G ζG. But since k may be close or even smaller than p, a direct sample

estimate of the full inverse of ΣG is either unstable or nonexistent. To avoid

this difficulty, let

RG = (ζG,ΣGζG, . . . ,Σ
q−1
G ζG), ηG = RG

(
RG

TΣGRG

)−1
RG

TζG,

where 1 ≤ q < p. Note that ηG is simply the projection of Σ−1

G ζ on

to the column space of RG. Cook et al. (2007) show that the subspace

span(RG) is strictly increasing when q increases, and argue that it often

grows large enough to contain the central subspace (in our context SYG|XG
)
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for reasonably small q. It is easy to see that when this occurs ηG becomes

a member of SYG|XG
. We use ηG in place of Σ−1

G ζG as the local dimension

reduction estimate.

To combine directions from each neighborhood, let t : [0,∞) → [0,∞)

be a nondecreasing function, and

ωG =
πG

1− πG

ζT
G1ζG1.

Define the matrix

V =
∑

t(ωG)ηGη
T
G,

where the summation is a collection of neighborhoods and t is a weighting

function whose meaning and choice are described in the next section.

We now summarize the sample-level algorithm for ADR. Let {(Xi, Yi), i =

1, . . . , n} be a sample from (X, Y ). The algorithm assumes the structural

dimension d is known, and the estimation of d will be discussed subse-

quently.

1. For each s = 1, . . . , n, let Gs be the set that includes the k nearest

Xj’s to Xs in terms of the Euclidean distance ‖Xj −Xs‖. Note that

Gs contains k + 1 elements since we do not count Xs as among these

k points.
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2. Divide the set {Yj : Xj ∈ Gs} into two intervals, Js1 and Js2, each

containing roughly the same number of Yj’s. Let nsu, u = 1, 2 be

cardinality of the set {j : Xj ∈ Gs, Yj ∈ Jsu}, and ns = ns1 + ns2. Let

X̄Gs1 =
1

ns1

∑
XjI(Xj ∈ Gs, Yj ∈ Js1), X̄Gs =

1

ns

∑
XjI(Xj ∈ Gs),

and

ζ̂Gs
= (X̄Gs1 − X̄Gs), ω̂Gs = (ns1/ns2)‖X̄Gs1 − X̄Gs‖2.

3. Compute

R̂Gs =
(
ζ̂s, Σ̂Gs ζ̂Gs

, . . . , Σ̂
q−1
Gs

ζ̂Gs

)
and η̂Gs

= R̂Gs(R̂T
Gs

Σ̂GsR̂Gs)
−1R̂T

Gs
ζ̂Gs

.

4. Use the first d eigenvectors of the matrix V̂ =
∑m

s=1 t(ω̂Gs)η̂Gs
η̂T

Gs
as

the estimate of a basis of the global central subspace SY |X.

It is well known that severely biased estimate can be introduced from

the above choice of k-nearest neighborhood in high dimensional input space

with finite samples. Since the Euclidean distance measure implies that the

input features are homogeneous or isotropic, an immediate remedy would be

to use a locally adaptive metric. Inspired by the work of Hastie and Tibshi-

rani (1996), here we propose a refined estimation where the neighborhoods

are elongated along less relevant directions and constricted along those in-

fluential ones. After obtaining a basis of the global central subspace SY |X
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(say B̂0) from the above mentioned algorithm, instead of a p-dimensional

ball as the k-nearest neighborhood, we will use a p-dimensional ellipsoid

with which to shrink the neighborhoods in directions orthogonal to B̂0 and

to elongate those parallel to this initial estimate. More specifically, the dis-

tance between Xj and Xs as in the step 1 of the above algorithm will be

replaced by

d2js = ‖B̂T
(0)(Xj −Xs)‖2 + κ(0)‖(Xj −Xs)‖2

= (Xj −Xs)
T [B̂(0)B̂

T
(0) + κ(0)Ip](Xj −Xs), (4.5)

where κ(0) is a small ‘softening’ parameter to control the shrinkage and

elongation along different directions. An iterative estimation can be imple-

mented until certain convergence criterion is met.

Our method differs from Hsing (1999) where k-nearest neighborhood

is applied to multivariate Y ’s to avoid slicing. It is also different from

the IMAVE procedure of Xia et al. (2002), in that the latter requires the

linearity condition.

5. Tuning parameters

In this section we discuss how to choose the various turning parameters in

the estimation algorithm described in Section 4, which include the estima-

tion of the structural dimension d, the choices of the weighting function t,
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the order q in partial inverse regression, as well as the softening parameter

κ in the adaptive nearest neighborhood selection. An appropriate justifica-

tion of these choices rely on the asymptotic properties of ADR, which are

beyond the scope of the present paper, and will be carried out in a separate

study. Inevitably, the following recommendations are heuristic in nature.

In our extensive numerical experiments, we performed sensitivity analyses

on the recommended choices of these tuning parameters and our results

showed reasonably stable estimation.

We recommend two choices for t. A natural choice is t(ωG) ≡ 1. From

the discussion in Section 3, ζ̂G are approximately aligned with the local

central subspace. Thus if a neighborhood is in a region in which there is no

significant change in Y , then ‖ζ̂G‖ tends to be small. By setting t equal to

1 we let the sliced means themselves to determine the relative importance

of each neighborhood. A second choice of t is

t(ω̂G) =


‖ζ̂G‖−2 ω̂G > c

0 ω̂G ≤ c.

(5.6)

This weighting function introduces a hard thresholding according to the

magnitude of ‖ζ̂‖; it throws away those neighborhoods with small sliced

means. Moreover, when a sliced mean is large enough, its magnitude is
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no longer included in the estimation. Based on our experience the second

choice seems to work better. We choose threshold c according to a percent-

age δ of sample size. That is, we choose δ × 100% of neighborhoods with

highest ω̂G. The choice δ = 0.5 works well in our simulation experiments.

To choose qGs , we use the threshold recommended by Li et al. (2007)

qGs =

p−1∑
j=1

I

(
rj(Gs)

rj+1(Gs)
> α0

)
,

where r1(Gs) ≥ · · · ≥ rp(Gs) are eigenvalues of matrix R̂GsR̂T
Gs

, and α0

is taken to be 1.5. Following Hastie and Tibshirani (1996), we choose

κ(0) = 1/3 in our numerical studies.

To estimate the structural dimension d, we adopt the bootstrap pro-

cedure proposed in Ye and Weiss (2003) and Zhu and Zeng (2006). Let

Ŝd∗ be an estimate of SY |X for a fixed d∗. We can get a set of bootstrap-

estimated {Ŝ(j)
d∗ , j = 1, . . . , nb} through bootstrapping, where nb is the

number of bootstrap samples. The distances between Ŝd∗ and its bootstrap

version {Ŝ(j)
d∗ , j = 1, . . . , nb} can be used to assess the variability of the

estimated subspace at d = d∗, which in turn can be used to infer the struc-

tural dimension d. Intuitively, Ŝd∗ ⊆ SY |X when d∗ ≤ d. But when d∗ > d,

Ŝd∗ = SY |X ⊕ S̃ where S̃ is a (d∗ − d)-dimensional subspace orthogonal

to SY |X. Since S̃ can be arbitrary, we expect to see larger variability of

Ŝd∗ with its bootstrap versions, compared to when d∗ ≤ d. Therefore, the
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structural dimension d can be estimated as the largest d∗ that produces a

stable estimator.

Finally, we choose the number of observations in each neighborhood to

be 2p ≤ k ≤ 4p. This choice is reasonable only when p is considerably

smaller than n.

6. Simulation studies

In this section, we evaluate the performance of aggregate dimension reduc-

tion by simulation. For comparison purposes, several existing methods were

also evaluated in the simulation studies, including sliced inverse regression

(SIR), sliced average variance estimation (SAVE), principal Hessian direc-

tions (PHD), minimum average variance estimation (MAVE), and sliced

regression (SR). The vector correlation coefficient q (Hotelling, 1936; Ye

and Weiss, 2003) was used to measure the estimation accuracy. Let B be

an orthonormal basis of the central subspace, and B̂ be an estimate of the

orthonormal basis. Then the vector correlation coefficient

q =

√
||B̂T (BBT )B̂|| =

√√√√ d∏
i=1

ρ2i ,

where 0 ≤ ρd ≤ · · · ≤ ρ1 ≤ 1 are the eigenvalues of matrix B̂T (BBT )B̂.

The larger the q is, the closer S(B̂) is to S(B). We chose the Gaussian
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kernel and its corresponding optimal bandwidth for MAVE and SR. A rule-

of-thumb choice k = 4p was used for our proposed aggregate approach,

including kNN sliced inverse regression (kNNSIR) and adaptive kNN sliced

inverse regression (a-kNNSIR where adaptive distance (4.5) will be used).

More refined ways to choose k, such as cross-validation, could be used at

greater computational expense. For each parameter setting, 200 simulation

replications were conducted.

The following 4 models were used in the numerical study.

Model 1: Y= exp{(βTX)2 + ε},

Model 2: Y= cos(2βT
1 X)− cos(βT

2 X) + 0.2ε,

Model 3: Y= sign(βT
1 X + ε1)log(|βT

2 X + 3 + ε2|),

Model 4: Y= (βT
1 X)(βT

2 X + 2) + (βT
3 X + 2)3 + 0.5ε.

All the above models have been studied extensively in sufficient di-

mension reduction literature. In all four models, X ∼ Np(0, Σ), inde-

pendent of standard Gaussian noises ε, ε1 and ε2. The covariance matrix

Σ = (σij) = (ρ|i−j|), where ρ = 0.5 in models 1-3 and ρ = 0 in model

4. In Model 1, β = (1, 0.5, 1, 0, . . . , 0)T . In Model 2, β1 = (1, 0, . . . , 0)T

and β2 = (0, 1, 0, . . . , 0)T . In model 3, β1 = (1, 1, 1, 1, 0, . . . , 0)
T
, β2 =

(0, . . . , 0, 1, 1, 1, 1)
T

and the function sign(·) takes value 1 or −1 depend-

ing on the sign of the argument. In Model 4, β1 = (1, 0, . . . , 0)T , β2 =
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(0, 1, 1, 0, . . . , 0)T and β3 = (0, 0, 0, 1, 1, 0, . . . , 0)T .

SIR SAVE kNNSIR a−kNNSIR rMAVE SR

0

0.2

0.4

0.6

0.8

1

n=200, p=10

SIR SAVE kNNSIR a−kNNSIR rMAVE SR

0

0.2

0.4

0.6

0.8

1

n=400, p=10

Figure 2: Comparison of estimation accuracy with Model 1
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Figure 3: Comparison of estimation accuracy with Model 2

Figures 2 – 5 show the comparisons of the performance among the afore-
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mentioned methods. We can have the following observations from these

graphical summaries. First, the proposed aggregate SDR, adaptive kNN-

SIR, significantly improves the performance of the original inverse regression

methods and is broadly comparable with the forward regression approaches

(MAVE and SR). Secondly, through localization, adaptive kNN-SIR can

overcome the drawback of missing symmetric patterns in the original SIR

such as in models 1 and 2. Thirdly, when SY |X is completely contained

in the mean regression function E(Y | X), MAVE stands out as the best

method without surprise while our proposed a-kNNSIR is the close second

as in models 2 and 4. But when SY |X spans beyond the mean function as

in models 1 and 3, a-kNNSIR clearly outperforms MAVE. Finally, larger

sample sizes are needed to provide a good estimation with the increase of

the dimension d. Zhu et al. (2006) studied model 4 (d = 3) and showed

that n needs to be increased to 3, 200 in order for the estimation accuracy

of SIR to be acceptable when p ≤ 20. In our numerical study, the proposed

a-kNNSIR and MAVE are the only two methods with good performance

for moderate sample sizes. It is well known that the computation burden

increases significantly with the increase of n and p for forward regression

methods (MAVE and SR), while our proposed aggregate inverse regression

approach is more computationally efficient since no numerical optimization
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was involved. This was also confirmed in our simulation studies.
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Figure 4: Comparison of estimation accuracy with Model 3

SIR SAVE kNNSIR a−kNNSIR rMAVE SR

0

0.2

0.4

0.6

0.8

1

n=400, p=10

SIR SAVE kNNSIR a−kNNSIR rMAVE SR

0

0.2

0.4

0.6

0.8

1

n=600, p=20

Figure 5: Comparison of estimation accuracy with Model 4

Next, we estimated the structural dimension d using the adopted boot-
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strap procedure. In all the numerical studies, we used 1 − q as the dis-

tance measure to assess the variability between Ŝd∗ and its bootstrap ver-

sions. For each of d∗ = 1, 2, . . . , p − 1, 500 bootstrap samples were drawn

and the median of the distances between Ŝd∗ and its bootstrap versions

{Ŝ(j)
d∗ , j = 1, . . . , 500} were calculated. Figure 6 shows the dimension vari-

ability plots (Zhu and Zeng, 2006) for models 1-4. As expected, large vari-

ability showed up when d∗ > d. Out of 100 samples with n = 400 and

p = 10, the accuracy of correctly estimated d is 99%, 94%, 99% and 84%

for models 1-4, respectively.
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Figure 6: Bootstrap estimation of dimension (n = 400 and p = 10)
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7. Real data analyses

7.1 Ozone Data

In this section, we investigate the performance of the proposed aggregate

SIR when it is applied to real data set concerning the relation between the

ozone levels and various environmental variables Breiman and Friedman

(1985). The data contain 330 observations, with each observation consisting

of 9 variables: ozone concentration, height, inversion height, temperature,

inversion temperature, humidity, pressure, visibility, and wind speed, where

ozone concentration is treated as the response, and the other 8 variables

are treated as predictors. For ease of interpretation, all predictors were

standardized separately. This data set has been analyzed by several authors.

See, for example, Li (1992) and Cook and Li (2004).

SIR identifies one significant direction. After a closer investigation of

the residual from the quadratic fit, Li (1992) argued a second significant

component is necessary and PHD can recover this direction. Cook and Li

(2004) also identified the first direction using IHT method (Inverse Hessian

Transformation), but argued the estimate of dimension d which is different

from different testing methods, leaving some uncertainty.

In our application, the dimension variability plot, shown in Figure 7-
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7.2 College admission data
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Figure 7: Analysis on Ozone data: (a) dimension variability plot, (b-c) scatter-

plots of response vs. the two estimated directions.

(a), suggested d̂ = 2. Figure 7-(b)(c) showed the pattern identified by

our method. Interestingly, our proposed a-kNNSIR successfully recovers

the two significant components in both SIR and PHD, without fitting a

detailed model as in Li (1992) and any uncertainty on estimating d as in

Cook and Li (2004).

7.2 College admission data

This data set was used in the 1995 Data Analysis Exposition sponsored by

the American Statistical Association. It is also included in the textbook “An

introduction to statistical learning with applications in R” (James et al.,

2013), and the associated R package ISLR. We are interested in predicting
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7.2 College admission data

Table 1: The predictors and the estimated directions of the college admis-

sion data

Predictor β̂1 β̂2

x1 number of full time undergraduates 0.91 0.06

x2 number of part time undergraduates 0.00 −0.38

x3 out-of-state tuition 0.34 −0.25

x4 room and board costs 0.06 −0.21

x5 estimated book costs −0.04 −0.03

x6 estimated personal spending −0.12 −0.30

x7 percent of faculty with terminal degree 0.03 −0.03

x8 student/faculty ratio 0.13 0.46

x9 percent of alumni who donate 0.04 0.07

x10 instructional expenditure per student 0.12 −0.26

x11 graduation rate 0.04 −0.60

the number of applications received (y) by 557 private institutions with full

time undergraduate student body less than 10,000. The predictors used in

our analysis are listed in Table 1. Again for the ease of interpretation, all

predictors were standardized separately.
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7.2 College admission data
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Figure 8: Analysis on College admission data: (a) dimension variability plot,

(b-c) scatterplots of response vs. the two estimated directions.

The dimension variability plot in Figure 8 (a) suggests at most 3 di-

mensions. It also indicates that the prediction ability for the second and

third directions may not be very strong as their variability is much larger

than the first one. Situations like this can often happen in practice as real

data may have big noise and weak signal, which makes the determination

of the structural dimension less obvious. Nevertheless, we further look at

the coefficients and marginal plots for the first three directions. In the end,

we decide to choose the first two directions since no good interpretation can

be found for the third direction. We also applied SIR to this data set. The

asymptotic test also suggested d = 3. The first direction is dominated by

x1, the number of full time undergraduates, but the second and the third
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directions are not that clear. From the estimated directions β̂1 and β̂2 in

Table 1 by our method, we can interpret the first direction as the ’size’

factor since it is dominated by x1, the number of full time undergraduates.

The second direction can be seen as an ’academic quality’ factor, which

includes x8 (student/faculty ratio), x10 (instructional expenditure per stu-

dent) and x11 (the graduation rate). In Figure 8 (b), we can see in general

the number of applications increases with the size of the institution’s stu-

dent body, with this increasing trend tapering off towards the end. Figure

8 (c) shows more students would apply the institutions with high academic

quality, meaning high graduation rate, high instructional expenditure and

small student/faculty ratio.

8. Discussion

In this article, we proposed an aggregate approach to estimate the central

subspace and illustrated this idea through adaptive kNN sliced inverse re-

gression. We believe that a class of new local dimension reduction approach

can be developed under this localization framework. Our new method is not

to replace the original SIR. Instead, we developed an alternative approach

so that the simplicity of SIR can be extended further.

There are still several open questions that need further study, such as
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the asymptotic properties of the proposed estimators and the extension to

big data setting. For the study of asymptotic properties, the most related

one in the global sense is the paper by Hsing and Carroll (1992) where

the estimator from two-slice approach was shown to be root-n consistent.

However, due to the use of local approximation, our local inverse conditional

covariance matrix does not have the closed form as equation (1.2) in Hsing

and Carroll (1992). Since the k-nearest-neighbor estimation can be treated

as a special kernel method, our proposed localization-aggregation approach

is similar, in spirit, to the kernel based Outer Product of Gradients (OPG)

estimation (Xia et al., 2002). Considering the challenges and difficulties,

we decide to leave it for a separate study. One referee brings our attention

to extension to big data setting, with large n and/or large p. When the

volume n is huge, the dimension p is moderate and n > p, we propose to

implement the localization-aggregation approach together with ‘leveraging

based subsampling’ (Ma et al., 2015). The case, where n < p, or even

n << p, is clearly more challenging. We adopt the sequential dimension

reduction paradigm proposed by Yin and Hilafu (2015) to sidestep the curse

of dimensionality. Such an investigation is currently under way by our team,

and our preliminary results are very promising.
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