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Abstract: Entanglement entropy, or von Neumann entropy, quantifies the amount of un-

certainty of a quantum state. For quantum fields in curved space, entanglement entropy of

the quantum field theory degrees of freedom is well-defined for a fixed background geom-

etry. In this paper, we propose a generalization of the quantum field theory entanglement

entropy by including dynamical gravity. The generalized quantity named effective entropy,

and its Renyi entropy generalizations, are defined by analytic continuation of a replica

calculation. The replicated theory is defined as a gravitational path integral with multiple

copies of the original boundary conditions, with a co-dimension-2 brane at the bound-

ary of region we are studying. We discuss different approaches to define the region in a

gauge invariant way, and show that the effective entropy satisfies the quantum extremal

surface formula. When the quantum fields carry a significant amount of entanglement, the

quantum extremal surface can have a topology transition, after which an entanglement is-

land region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of

holographic entropy (with quantum corrections) to general geometries without asymptotic

AdS boundary, and provides a more solid framework for addressing problems such as the

Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula

to two example systems, a closed two-dimensional universe and a four-dimensional max-

imally extended Schwarzchild black hole. We discuss the analog of the effective entropy

in random tensor network models, which provides more concrete understanding of quan-

tum information properties in general dynamical geometries. We show that, in absence of a

large boundary like in AdS space case, it is essential to introduce ancilla that couples to the

original system, in order for correctly characterizing quantum states and correlation func-

tions in the random tensor network. Using the superdensity operator formalism, we study

the system with ancilla and show how quantum information in the entanglement island can

be reconstructed in a state-dependent and observer-dependent map. We study the closed

universe (without spatial boundary) case and discuss how it is related to open universe.
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1 Introduction

Holographic duality [1] points out a deep connection between quantum gravity theory and

quantum field theory. A gravity theory in d + 1-dimensional anti-de Sitter (AdS) space

is the holographic dual of a d-dimensional quantum field theory living on the asymptotic

boundary of the hyperbolic space. If we believe that these two theories have a one-to-

one correspondence (which can be used as a definition of the bulk gravity theory), the

gravity theory can be considered as a reorganization of the quantum field theory degrees

of freedom. The Ryu-Takayanagi (RT) formula [2] and its generalizations [3–5] provide

important clues about how the bulk degrees of freedom corresponds to the boundary ones.

With quantum corrections [6–8], the Hubeny-Rangamani-Takayanagi (HRT) formula tells

us that the von Neumann entropy of a boundary region A is given by the dominant saddle

point of SA = Sbulk(Σ) + |γ|
4GN

, with |γ| a surface that is homologous to the boundary

region, and Σ is a Cauchy surface bounded by γ and A. The bulk long-wavelength degrees

of freedom in a given geometry are mapped to a subspace of boundary Hilbert space, where
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Figure 1. Illustration of the QES formula in eq. (1.1) for two different situations. The curved black

lines represent a Cauchy surface. (a) Σ = A when the formula reduced to the ordinary quantum field

theory entropy. (b) Σ = A∪ I when a new quantum extremal surface γ = ∂I appears, contributing

an area law entropy |γ|
4GN

. The quantum field theory entropy becomes Sqft
AI instead of Sqft

A , which

can reduce the entropy when there is entanglement between I and A, as is indicated by the red

dashed lines.

each bulk operator can be reconstructed at the boundary. Operators in the causal diamond

of bulk region Σ, known as the entanglement wedge of A, can be reconstructed in region A of

the boundary. The emergent locality in the bulk is related to quantum error correction [9].

The quantum HRT formula seems to generate physically meaningful results even when the

bulk field theory contribution is not subleading to the area law term. In particular, in a

series of recent work [10–12] (see also [13–18]), the quantum HRT formula has been used

to obtain the entropy change of an evaporating black hole, i.e. the Page curve.

Although a lot of efforts have been made to generalize the holographic duality beyond

asymptotic AdS geometries, a lot of fundamental questions remain unclear, such as what

the Hilbert space of the theory is. In this work, we propose a framework for computing

the quantum field theory (QFT) entanglement entropy of a spatial region in the bulk. In

a curved space quantum field theory without dynamical gravity, the quantum field theory

entanglement entropy of a given spatial region A is well-defined, although it is UV diver-

gent. We would like to find a generalization of this quantity in systems with dynamical

gravity. The intuition is that such entanglement entropy should be well-defined, because

in our real world there is dynamical gravity, yet an experimentalist can identify a spatial

region in her lab, and measure its entanglement entropy in the particular given state that is

prepared. Although one cannot directly specify the region in term of coordinates, since it

is not diffeomorphism invariant, one can set the initial state of the universe such that there

is a planet that is identified as earth, and then define the region by its relative position to

earth. This is schematically how we think about defining a spatial region in the gauge in-

variant way. Even though we cannot guarantee that such approach can work with arbitrary

quantum gravitational systems, it can at least apply to states with semiclassical geometry.

One example of such computation is to compute the entropy of early Hawking radi-

ation of a Schwarzchild black hole in asymptotically flat space. By choosing the spatial
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region A to be the exterior of a sphere around the black hole, the entropy as a function of

the radius of the sphere is expected to follow the Page curve. It is natural to expect that a

nontrivial quantum extremal surface is responsible for the Page curve, similar to the case

in asymptotic AdS spaces, except that the entropy that is computed here is for a region in

the spacetime with dynamical gravity, rather than in a bath system with fixed background.

In the limit that the region is far away from the black hole and the gravity is semiclassical,

this difference does not matter much [19–22] (see also refs. [23–25]). The main goal of

this paper is to set up a framework where the generalization of QFT entropy from fixed

background to dynamical background is well-defined, and the quantum extremal surface

formula of such entropy can be justified in a way similar to the proof of quantum HRT

formula in the asymptotic AdS case [6, 8]. Our result is based on a replica calculation of

Renyi entropy. In quantum field theory, the n-th Renyi entropy of region A is computed

by a replica geometry with a branching surface at the boundary of the region A. On the

contrary, when gravity is dynamical, the branching surface has a conical singularity and

thus violates Einstein’s equation. The actual geometry with the same boundary condition

(if there is a boundary) should be smooth, without the conical singularity. As we will

discuss in more details in section 2, we consider a replicated geometry with an extra brane

at the boundary of region A. The brane introduces a conical singularity with the angle

2nπ, which stabilizes the geometry that computes the quantum field theory entropy in the

fixed background case. If this is the dominant saddle point, in the weakly coupled limit

the gravitational calculation will result in an entropy that is the same as the quantum

field theory entropy. However, in general there are other saddle point geometries with

other topology, which are the replica wormholes, very similar to the case of AdS evapo-

rating black hole [26, 27]. If we assume the dominant saddle point does not break replica

symmetry Zn, in the limit n→ 1 we obtain the quantum extremal surface formula:

SgA = Extγ=∂I

[
|γ|

4GN
+ Sqft(Σ = I ∪A)

]
(1.1)

Sqft(Σ = I ∪A) is the entropy of a spatial region I union the original region A in the quan-

tum field theory with fixed background curved space, and γ is the boundary of I. Ext refers

to taking extremal value of this quantity. If there are multiple saddle points, the one with

the smallest entropy should be chosen. It is interesting to note that the area law term only

contains the extra quantum extremal surface γ, and excludes the boundary of A. This is

consistent with the fact that in the trivial case γ = ∅, Σ = A, our result reduces to the quan-

tum field theory entropy, without the area law term. Physically, the entropy we define is

that carried by quantum field theory degrees of freedom with length scale above certain UV

cutoff scale, in a dynamical spacetime. Therefore we name this quantity effective entropy.

We apply the quantum extremal surface formula (1.1) to two examples systems in sec-

tion 3. The first example is a one-dimensional region in a two-dimensional closed universe,

with a matter conformal field theory coupled with two-dimensional Jackiew-Teitelboim

gravity [28, 29]. This example illustrates how the current proposal can apply to close uni-

verse. The second example is the case of asymptotically flat space evaporating black hole,

where A is a region that includes all Hawking radiation until time t. The entanglement is-
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land when t reaches the Page time, similar to the AdS black hole case [26, 27]. In section 3.2

we study a particular state in the maximally extended four-dimensional Schwarzchild black

hole geometry. It is similar to the eternal geometry studied in two-dimensional models,

both in AdS and flat geometries [19–22, 30]. However, we choose a different state such that

the space far from black hole is in the vacuum, rather than in thermal equilibrium with

the black hole. This avoids the problem of having a finite energy density at an infinite flat

space region.

To obtain further intuition of the effective entropy, and gain further understanding of

quantum information properties in general geometries, in section 4 we study the random

tensor network (RTN) model proposed in ref. [31]. RTN models are defined on generic

graphs, which are viewed as a discrete analog of the spatial geometry. The previous results

on RTN models have been mainly about graphs with a large boundary, which is the ana-

log of asymptotic AdS geometries. In the current work we study more general geometries

where bulk degrees of freedom may not be able to be encoded in the boundary. We discuss

the structure of correlation functions and show that it is helpful to define quantum state in

an “observer-dependent” Hilbert space using the formalism of superdensity operators [32].

A similar formula to eq. 1.1 for Renyi entropy appears in this model. The tensor network

model helps us understand how quantum information in the entanglement island is recon-

structed, which is a generalization of the entanglement wedge reconstruction in AdS/CFT.

Using ancilla introduced in the superdensity operator formalism, we can also explicitly

study the quantum information recovery process. Compared with the AdS/CFT case,

the main feature is that observers (i.e. ancilla systems coupled with the original system)

play an essential role in determining the quantum information structure in the system.

The quantum information recovery from the entanglement island is state-dependent and

observer-dependent. We also discuss special properties of a closed universe and how it

is related to the open universe case. Finally, we conclude our paper and provide further

discussion and outlook in section 5.

2 Effective entropy in gravitational system

2.1 Overview of entropy in quantum field theory

We consider a quantum field theory with a fixed background metric gµν . Denoting the

field as φ, a quantum state |Ψ〉 can be defined as a path integral of a manifold up to some

Cauchy slice S:

〈φb|Ψ〉 =

∫
φ|S=φb

Dφ e−SQFT (φ,gµν) (2.1)

|Ψ〉 defined this way is not necessary normalized and its normalization can be calculated

from the path integral over the whole (time reflected symmetric) manifold M:

ZM ≡ 〈Ψ|Ψ〉 =

∫
M
Dφ e−SQFT (φ,gµν) (2.2)

There is implicitly a UV cutoff ε. The form of the cutoff is not important, as long as it is

finite so that the entropy is finite. The density matrix of a spatial region A on the Cauchy
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Figure 2. Illustration of the replica calculation of Renyi entropy in fixed background (eq. (2.5))

for n = 2. The replica geometry has conical singularity at the branch surfaces.

slice S is obtained by tracing out the fields in the complement of A and is given by the

path integral on M with a slit A± open:

〈φ+|ρ|φ−〉 =
1

ZM

∫
φ|A+

=φ+,φ|A−=φ−

Dφ e−SQFT (φ,gµν) (2.3)

In the limit where A shrinks to zero, the denominator is equal to the numerator and the

whole expression equals to one. The n-th Renyi entropy of the density matrix ρA can be

computed by

e−(n−1)S
(n)
A ≡ TrρnA =

1

ZnM
〈Ψ|⊗nXAn |Ψ〉⊗n (2.4)

with XAn a cyclic permutation operator that acts in region A and permutes the n replica

cyclically. Denoting the n copies of fields as φ(a), a = 1, 2, . . . , n, we have XAnφ
(a)X†An =

φ(a+1) with φ(n+1) ≡ φ(1).

In the path integral language, this is computed by a replica geometry, obtained by tak-

ing an n-fold branched cover spaceMn(A) of the original geometryM, with the boundary

of A (which has co-dimension 2 in spacetime) being the branching surface. The metric of

Mn(A), which we denote as g̃n, has the same curvature locally as the original geometry,

except for the conical singularity at ∂A with a conical angle of 2nπ. (See figure 2.) The

Renyi entropy is determined as

e−(n−1)S
(n)
A =

ZMn(A)

ZnM
; ZMn(A) ≡

∫
Mn(A)

Dφ e−SQFT [g̃µν ,φ] (2.5)

with ZMn(A) the quantum field theory path integral over the branched cover space. Here

we do not need to explicitly write the replica index of φ(i) any more, since we can view it

as one single field living on the branched cover manifold.
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2.2 Generalization to systems with dynamical gravity

When we include dynamical gravity in the system, we need to generalize the quantity (2.5)

by allowing the geometry to fluctuate. As a preparation, we first rewrite eq. (2.5) using

another replica trick:

e−(n−1)S
(n)
A = ZMn(A)ZmM

∣∣∣
m→−n

≡ ZMn,m(A)

∣∣∣
m→−n

(2.6)

In the second equality, we view the product ZMn(A)ZmM as the partition function of the

QFT on a manifold

Mn,m(A) =Mn(A)⊗M⊗m (2.7)

which is n+m copies of the original manifold M, with a branch covering over the first n

of them at the boundary of A. When considering geometry fluctuation, this replica trick

avoids the complication of treating numerator and denominator in eq. (2.5) separately.

The natural way to include dynamical gravity is to replace eq. (2.6) by a path integral

over geometries with the same boundary condition as Mn,m(A), weighted by a certain

gravitational action:

e−(n−1)S
(n)
A =

∫
n,m

Dg̃Dφe−Sgrav[g̃]−SQFT[g̃,φ]

∣∣∣∣
m→−n

(2.8)

To be consistent with the previous subsection, we denote the metric by g̃. The subscript

n,m refers to the fact that the boundary condition is given by n+m copies of the original

geometry. The action Sgrav[g̃] should include the information about A in some proper way,

as will be discussed below.

The key questions are: 1) what gravitational action Sgrav[g̃] should be used here; 2)

how to define region A in a gauge invariant way and include the information about A in

Sgrav[g̃]. The most natural choice for Sgrav[g̃] appears to be the Einstein-Hilbert action for

metric g̃. However, this choice leads to physically incorrect results. In particular, in the

limit that gravitational fluctuations are weak and the quantum field theory entropy is small,

we expect that the saddle point of path integral (2.8) should reproduce the QFT entropy

in eq. (2.6), which means that the saddle point should be the branch covering manifold

Mn,m(A). However, this manifold has conical singularity and cannot be a saddle point of

the Einstein-Hilbert action. In other words, if Sgrav[g̃] is the Einstein-Hilbert action, the

entropy we obtain will be quite different from the QFT value even in the limit of weak

gravity and low QFT entropy.

To find out a physically reasonable action, it is helpful to consider a system with two

quantum fields φ and η. The two fields are coupled, but have independent degrees of

freedom. The QFT Hilbert space of the system is a direct product of them: H = Hφ⊗Hη.

Therefore it is well-defined to consider S
(n)
Aφ , the Renyi entropy of φ field in region A, while

η field is traced out. Now if we assume η is very massive, we can integrate over η field,

which will lead to a correction to the gravitational action Sgrav[g̃]. Since η field is not acted

by the twist operator in the entropy computation, the action contributed by η will be an

Einstein-Hilbert term of the original manifold without branch covering:

δSgrav[g̃] ∝ SEH[g] (2.9)
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where g represents the metric of the original manifold without branch covering. As a

generalization of the quantum field theory entropy, the entropy we are defining for a low

energy field φ is a characterization of its correlation properties and should not be sensitive

to the difference between bare gravitational dynamics and induced action by integrating

over high energy fields. Therefore this reasoning suggests that a natural gravitational

action for the replica system is the action of the untwisted manifold g rather than that of

g̃. It should be noted that the additional quantum field η is only introduced as a tool to

clarify the argument. Even if there is only one field φ, integrating over the high energy

degrees of freedom of the φ field have the same effect.

In summary, we propose that the generalized notion of entropy, which we name as

effective entropy, of a region A is computed by eq. (2.8) with the gravitational action being

the Einstein-Hilbert action of the untwisted manifold, while the quantum field φ lives on

the twisted manifold. More explicitly, there are two equivalent ways to write down the

entropy formula. The first one is in term of the untwisted metric g:

e−(n−1)S
(n)
A =

∫
n,m

Dg

∫
Dφe−SEH(g)−SQFT (φ,g)XAn

∣∣∣∣
m→−n

(2.10)

where n,m in the integral represents the boundary condition that is n + m copies of the

original geometry, with the twist operator XAn inserted in the first n copies. Here SEH(g)

is the Einstein-Hilbert action SEH(g) = − 1
16πG

∫
R(g)

√
|g|ddx for the untwisted metric,1

and XAn is the twist operator on the first n copies that only acts on the quantum field φ,

without affecting the geometry.

Alternatively, one can use the twisted geometry with metric g̃, and rewrite the Einstein-

Hilbert action SEH(g) in term of g̃:

e−(n−1)S
(n)
A =

∫
n,m

Dg̃

∫
Dφe−SEH(g̃)− 1−n

4G
|∂A|−SQFT (φ,g̃)

∣∣∣∣
m→−n

(2.11)

where |∂A| is the area of ∂A, and we have used the relation

SEH(g) = SEH(g̃) +
1− n
4G

|∂A| . (2.12)

This expression makes the role of region A more manifest: computing the Renyi entropy

of region A corresponds to inserting a brane at the co-dimension-2 surface ∂A with a

particular brane tension. This brane sources a conical singularity with angle 2πn. As a

consequence, in the limit that the back-reaction induced by SQFT (φ, g) is negligible, the

action in eq. (2.11) has the branch covering manifold Mn,m(A) as a saddle point. The

effect of branch covering in causing the conical singularity is compensated by the brane

term in the action and does not violate Einstein’s equations.

Obviously, our prescription is only meaningful if A (or at least ∂A) is defined in a

gauge invariant way. We now discuss how this is done. In the spirit of Mach’s Principle, a

1This action may also be viewed as the action for the twisted manifold g̃ with a fixed conical angle of

2πn on ∂A (as a boundary condition), which is defined (e.g. in [33]) by excluding all localized contributions

from the conical defect itself as required to do so by a well-defined variational principle.
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Figure 3. The left panel is the original black hole geometry, with a bulk region defined either

by sending two light rays from the boundary (the orange lines) or by fixing the proper distance

from the boundary (the blue line). The right panel is the two replica wormhole geometry, which

has a temperature lower than the original black hole temperature. The dashed curve is the original

boundary and the solid curve is that in the two replica geometry. Using the same light rays will

thus define a bulk region that is larger than the region defined by fixing proper distance.

bulk region is defined with reference to a gauge-invariant object such as a distant star. In

geometries with asymptotic boundaries, it is convenient to use the boundary as a reference

to define a bulk region using diffeomorphism invariant quantities. There can be multiple

ways to choose such a region. For instance, one approach could be shooting light rays from

past and future from the boundary and define A as the region between the intersection of

the light rays and the boundary, or one can define such a region using the proper distance

away from the boundary. In general these different ways of defining a bulk region can

disagree with each other in replica geometries due to gravitational backreactions.

A simple example is the connected two-replica geometry of brane states in JT gravity

where the black hole temperature is lower than its original temperature in the disconnected

geometry (figure 3). The consequence is that if we choose the light rays that define a region

with fixed distance from the boundary in the disconnected geometry, the same light rays

will define a region with different distance from the boundary in the connected geometry

which means that the Renyi entropies can have strong dependence on the method used

to choose a bulk region. Fortunately in the limit of von Neumann entropy (n → 1), such

discrepancies vanish since they only contribute to higher orders in n− 1.

In a geometry without asymptotic boundary, it is more tricky to place a distant star

and we will not make such attempts. Instead, we adopt the philosophy advocated by

Hawking and Ellis, “we shall take the local physical laws that have been experimentally

determined, and shall see what these laws imply about the large scale structure of the

universe.” [34]. For a bulk observer living inside a closed universe, we can think of the

condition of no spatial boundary as her ignorance of the global structure of the universe.

Therefore, instead of fixing any data at the boundary, one’d better fix it to be nothing.

This is similar to the no-boundary proposal for the initial condition of the universe. For

such a bulk observer, the only data he/she can fix is the observed geometry on A. The

gravitational path integral with this boundary condition describes a density matrix for the

– 8 –
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observer [35–39]:

ρ =
A’

A (2.13)

We will talk more about such types of gravitational density matrix in section 3.1. Notice

that this description of closed universe is different from the closed universe in the fully

evaporated black hole. Such a difference is due to the different location of the observer.

Compared to the QFT calculation, a key difference introduced by dynamical gravity is

the possibility of different topology. Starting from the disconnected geometry in the QFT

calculation as a reference, other geometries can be considered replica wormholes connecting

different copies. A special situation that needs some further discussion is the closed universe

case where the boundary conditions are the euclidean preparation in the past. n+m copies

of such closed universes can have (n + m)! fully disconnected geometries by permutation

of the boundary conditions:

(2.14)

In a fully evaporated black hole case, one can think of the interior of the black hole as

such a closed universe and the euclidean boundary is the physical process used to create

the closed universe, namely the formation and evaporation of the black hole. In the an-

alytic continuation m → −n, such additional permutation ambiguity does not lead to a

contribution to the Renyi entropy.

If we restrict ourselves to only consider geometry with asymptotic boundaries or closed

universes with a bulk observer, then the gravitational path integral should not introduce

strong correlation between ZM and ZMn(A). This means we can interchange the integration

over metric and analytic continuation to reduce the gravitational path integral over the

numerator and denominator separately:

e−(n−1)S
(n)
A '

∫
nDge

−SEH(g)−SQFT (φ,g)−n−1
4G
|∂A|∫

nDge
−SEH(g)−SQFT (φ,g)

(2.15)
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For example, for n = 2 the purity can be pictorially illustrated as follows:

Trρ2 =

+

+ +  ...

+  ...

(2.16)

where the line segments with black dots at both ends indicate the region A which is the

branch cuts in the numerator.

We expect the denominator to be dominated by n copies of the original manifold,

which is the first term in (2.16). As we discussed earlier, the branch covering manifold

M̃n(A) (first term in the numerator of (2.16)) is a saddle point of the path integral in

the numerator, if back-reaction is negligible. However, it may or may not be the dominant

saddle point. If the quantum field theory entropy is comparable with gravitational entropy,

there could be non-perturbative effect caused by other saddles, such as the second term

in the numerator of figure 2.16 with additional wormholes. This situation is the same as

the “replica wormhole” discussed in asymptotically AdS geometries [26, 27], except that

A is now a bulk region. When such a nontrivial saddle is dominant, the effective entropy

is different from the QFT value, which is the situation for the Hawking radiation of an

evaporating black hole after Page time.

In general, the replica symmetry may or may not be broken. If it is broken, we have

to deal with the entire new geometry and there is no generic calculation to the partition

function ZA. If we assume that the dominant saddle Mn is still replica symmetric, even if

it contains extra replica wormhole, the computation can be simplified in a similar way as

the Renyi entropy calculation in AdS/CFT [4, 6, 40]. The key is to consider a Zn quotient

geometry M̄ = Mn/Zn, illustrated in figure 4. Due to Zn symmetry, the saddle point

action satisfies

− logZA ' S (Mn) = nS
(
M̄
)

(2.17)

The new geometry M̄ has no conical singularity at boundary of A (since it is removed

by the quotient), but if there is an additional replica wormhole, there will be extra Zn
fix points, which are the boundary of another region I (blue region in figure 4). Since

the geometry is smooth before the quotient, after quotient the boundary of I becomes

singular with a conical angle 2π
n and the action S(M̄) is evaluated without including the

contribution from the conical angle.

In the limit n → 1, the bulk geometry has order n − 1 back-reaction caused by the

brane and the change of gravitational action is equal to the area law contribution from the

conical singularity with angle 2π
n by equation of motion. (The derivation is the same as in

AdS/CFT [40].) Therefore

S
(
M̄
)
'
(

1− 1

n

)[
|∂I|
4GN

+ S
QFT(n)
A∪I

]
(2.18)
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Z2  quotient

Figure 4. The n-replica geometryMn with a possible replica wormhole (left), and the Zn quotient

geometryMn/Zn. The quotient geometry has no conical singularity at the boundary of A, but has a

conical singularity with angle 2π
n at the boundary of the extra branching surface (i.e. the “island”) I.

with S
QFT(n)
A∪I the n-th Renyi entropy of the quantum field theory in the original geometry

M. Taking the n→ 1 limit gives the quantum extremal surface formula of von Neumann

entropy (eq. (1.1)):

SA = extI

[
|∂I|
4GN

+ SQFT
A∪I

]
(2.19)

with extI representing taking extremal value of this quantity by varying I. If there are

multiple saddle points, the one with lowest entropy should be taken.

This discussion is completely in parallel with the AdS/CFT case, with A the analog

of a boundary region in AdS/CFT, and I the analog of a spatial slice of the entanglement

wedge of A. The main difference is that in the current case the region A has the same

dimension as I.

An important point we would like to comment about eq. (2.19) is the UV cutoff

dependence. It should be noted that the area law entropy only contains the area of extra

region I, and does not contain the boundary area of A, which is the consequence that

we have inserted a source brane at the boundary of A but no source for I. When we

change the cutoff of the QFT, say lowering the cutoff scale by integrating over some high

energy modes, the gravitational coupling GN should correspondingly be renormalized. If

this change of cutoff happens in region A, it will change the value of entropy SA, just like

what happens in a QFT. In contrast, the choice of UV cutoff in region I does not affect

S(A) since the sum of the two terms in eq. (2.19) remain invariant. This is similar to the

AdS/CFT case, where entropy of a boundary region should depend on the boundary UV

cutoff but not that of the bulk QFT.

We would like to discuss a bit more about the physical interpretation of the effective

entropy. When the geometry is fluctuating, S
(n)
A defined by the path integral in eq. (2.10)

or eq. (2.11) is generically not the Renyi entropy of a density operator. To understand its

physical meaning, we can use a relation between Renyi entropy and correlation functions.

For a system with finite Hilbert space dimension, and a Hilbert space that factorizes to

H = HA ⊗ HA, one can choose an orthonormal basis of operators Ta, a = 1, 2, . . . , D2
A in
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region A which satisfies

tr (TaTb) = δab,
∑
a

Tαβa T γδa = δαδδβγ (2.20)

with Tαβa the αβ matrix element of Ta in a certain basis. By decomposing the cyclic

permutation operator one can show (more details in appendix A)

e−S
(n)
A ≡

∑
a1,a2,...,an−1

〈Ta1〉〈Ta1Ta2〉 . . . 〈Tan−1Tan−2〉〈Tan−1〉 (2.21)

Here 〈Ta〉 = tr (ρATa) is evaluated in the original quantum state. Now we can change the

point of view and view this as the definition of the n-th Renyi entropy. For a quantum field

theory, the Hilbert space dimension is infinite, but one can imagine generalizing eq. (2.21)

and define Ta to be an orthonormal basis of operators which creates excitations below

certain cutoff scale. (Note that the definition only requires Ta to form an orthonormal basis.

They do not necessarily generate a closed algebra under multiplication.) The generalization

of the above correlation function to dynamical gravity case is

e−S
(n)
A = lim

m→−n

∫
n,m

Dge−SEH(g)
〈
T (1)
a1
T (2)
a1
T (2)
a2

. . . T (n−1)
an−1

T (n−1)
an−2

T (n)
an−1

〉
g

(2.22)

Here T
(s)
a labels the operator defined on s-th copy of a, and the expectation value is

computed in the QFT with the background metric of g. In summary, as long as there is

a gauge invariant definition of A in the n + m copied geometry and the QFT correlation

functions are well-defined, S
(n)
A can be defined using eq. (2.22).

3 Examples

3.1 Euclidean partition function as a density matrix

In this section, we will study a simple example of the gravitational no boundary density

matrix. Considering the partition function of a Euclidean AdS (EAdS) gravity theory cou-

pled to a QFT with Dirichlet boundary condition, a partition function can be viewed as a

wavefunction of the QFT on the boundary of EAdS which describes the Hartle-Hawking

state in a dS space under analytical continuation [41–43]. However, if the boundary ge-

ometry is itself reflection symmetric, one can alternatively view the partition function as

a density matrix on half of the boundary geometry. Such construction gives a general

class of density matrices. Such density matrix gives an example of the gravitational no

boundary density matrix where we only fix the geometry on a spatial slice and sum over

all possible geometries that are compatible with the boundary condition [35–39]. This is a

generalization of the Hartle-Hawking no boundary wavefunction.

Concretely, we can consider the partition function of JT gravity coupled to a 2d

CFT [11, 44–47].2 The boundary geometry is a Euclidean circle of length β, which can

2A closely related model will be discussed in [48] and we thank Juan Maldacena for discussion on this

model.
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CFT
SYK SYK

β/2

Microscopic Description

β/2

CFT

CFT + JT

Gravity Description

Figure 5. The microscopic (left panel) andgGravitational (right panel) description of the CFT

density matrix.

be split into two semicircles of length β
2 . With respect to the matter variables along the

two semicircles, the partition function is a hermitian function and therefore defines a (un-

normalized) density matrix of the 2d CFT on an interval of length β
2 .3 The path integral

representation of the (unnormalized) density matrix is the following:

ρ(ψ+, ψ−) =

∫
DψDφDgeS0χ(M)+

∫
M φ(R+2)+2

∫
∂M φbK−SCFT (ψ) (3.1)

where ψ is the CFT field variable. ψ+ is its boundary value in the region (0, β/2) (the green

semicircle in figure 5), and ψ− is that in the region (β/2, β) (the red semicircle in figure 5).

We also fix the boundary value of the dilaton to be φb. It is instructive to look at the

microscopic description of the density matrix using the duality between SYK system (χ)

and JT gravity. Suppose the CFT is the 2d free fermion theory, the boundary description

of ρ can be written as:

ρ(ψ+, ψ−) = TrP
(
e−β/2HSYK−

∫ β/2
0 duχ(u)ψ+(u)e

−β/2HSYK−
∫ β
β/2

duχ(u)ψ−(u)
)
. (3.2)

where P stands for the path-ordering product. This can be regarded as a short-range

entangled state of a 2d CFT with 2 SYK systems at the two ends of the semicircle prepared

by the space evolution. ρ(ψ+, ψ−) is the reduced density matrix of the 2d CFT after tracing

out the SYK fermions. In the bulk picture, this entanglement is described by the CFT living

in a dynamical gravity background. Clearly, from the microscopic description, the entropy

of the CFT is bounded by the maximum entropy of the two SYK system. In the bulk

picture, this becomes the Bekenstein bound with the maximum entropy of the SYK system

replaced by S0+2πφb. Such a bound is due to the emergence of nontrivial quantum extremal

surface and below we will give an explicit calculation of the quantum extremal surface. We

will first discuss the classical saddle of the density matrix and the correlation functions, then

discuss the von Neumann entropy with and without nontrivial quantum extremal surfaces.

3The reader should not confuse this density matrix with the TFD state of the dual CFT, which has a

lower dimension.
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ω z

10

Figure 6. Conformal transformation of the unit disk to the complex plane with a slit cut.

In the leading saddle approximation, the density matrix is a Euclidean path integral

on the disk with hyperbolic metric:

ds2 =
4dωdω̄

(1− ωω̄)2
(3.3)

Putting the boundary at |ω| = 1− ε, we can determine ε is equal to 2π
β . We can split the

boundary along the real axis and treat the semicircle in the upper half plane as bra and the

semicircle in the lower half plane as ket for the CFT respectively. After gluing the bra and

ket, the topology of the manifold is a sphere so this density matrix describes a bulk region in

a closed universe. The complement region is the other time reflection symmetric slice, which

is the diameter connecting the two ends of the semicircle. Due to the conformal invariance

of the state, the density matrix can be equivalently viewed as the density matrix on the

whole complex plane with a slit cut from z1 = (0, 0) to z2 = (1, 0), as is shown in figure 6.

The conformal transformation is given by:

ω =

√
z −
√
z − 1

√
z +
√
z − 1

, or z =
(1 + ω)2

4ω
, (3.4)

where the branch cut of the square root is taken to be from 0 to −∞. It can be easily

checked that the boundary of the disk ω = eiθ is mapped to the slit with the bra in the

lower half plane and the ket in the upper half plane:

z = cos2 θ

2
− iε

2
sin θ. (3.5)

After the conformal transformation, the metric becomes:

ds2 ≡ e2ρdzdz̄ =
4ω(z)ω̄(z)

|z||z − 1|(1− ω(z)ω̄(z))2
dzdz̄, (3.6)
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In particular, along the real line, the metric is

ds2 =
dz2

(1− z)zε2
=
β2dθ2

4π2
, z ∈ (0, 1); ds2 =

dz2

4(z − 1)2z2
, z ∈ (−∞, 0)∪(1,∞). (3.7)

This geometry has a conical angle π at the two ends of the slit, coming from the identifica-

tion of the original partition function.4 From the trace anomaly Tµµ = c
24πR, this indicates

local high energy excitations at the two edges and we will regularize the conical angle in a

small rage of size δ, using the metric one can relate δ with the CFT UV cutoff ε̃;

ds2 =
β2δ

4π2
= ε̃2 (3.8)

The CFT two-point function on the slit is uniquely determined by conformal symmetry

and for operators with conformal dimension ∆ it is equal to:

〈O(θ1)O(θ2)〉 =

(
4π2

β2

√
(1− z1)z1(1− z2)z2

(z1 − z2)2

)∆

=

(
2π

β

)2∆ sin∆ θ1 sin∆ θ2

(cos θ1 − cos θ2)2∆
. (3.9)

The correlator can be well approximated by the vaccum correlator ( 2π
β )2∆ 1

(θ1−θ2)2∆ for θ1,2

away from the two end points, which indicates that for most part of the region the density

matrix is well approximated by the vacuum state, i.e the Hartle-Hawking no boundary

state. Near the two ends, the correlator vanishes because of the sin θ factor in the numer-

ator. We can also consider the entropy of the density matrix, which is given by the two

point function of the twist operators at the two ends z1,2:

S1 =
c

3
log

β|z1 − z2|

2πε̃(1− z1)
1
4 z

1
4
1 (1− z2)

1
4 z

1
4
2

=
c

3
log

β

2πε̃δ
1
2

=
2c

3
log

β

2πε̃
. (3.10)

This is the entropy of the CFT density matrix on the fixed disk geometry. The exact

density matrix, on the other hand, is the one given by the gravitational path integral

over all geometries with the circular boundary condition. In general, there are two types

of corrections to the density matrix. One is perturbative correction coming from the

backreaction of the matter and the other is nonperturbative correction from the change

of topology. When the central charge of the matter is small we expect both corrections

are small so the exact density matrix should be well approximated by the fixed geometry

results. In the region of large central charge (c is the same order as the gravitational

entropy), however, both the perturbative and nonperturbative correction will be important.

For the perturbative corrections, the dilaton field will have large backreaction due to

the bulk stress tensor, which may cause the change of the shape of the slit. In order to glue

the slit one need to solve the conformal welding problem. Fortunately, this complication

4Since we are not integrating the dilaton field along the slit, the curvature on the slit does not need to

satisfy the constant curvature constraint. The readers confused about this point may think of an ordinary

quantum mechanical particle. If the position of the particle is fixed, then its momentum can jump. Notice

that this is slightly different from the situation when we determine the boundary location of A without

fixing the entire metric of it.
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does not occur when calculating the saddle point of Trρ. Using conformal anomaly, we can

explicitly write down the bulk stress tensor in the complex z coordinates:

Tzz =− c

12π
((∂ρ)2−∂2ρ) =

c

64π

1

(1−z)2z2
; Tzz̄ =Tz̄z =− c

12π
∂∂̄ρ=− c

48π
e2ρ; Tz̄z̄ = T̄zz.

(3.11)

The Einstein equations in JT gravity are the following:

∂∂̄φ− 1

2
e2ρφ =

1

2
Tzz̄ = − c

96π
e2ρ; (3.12)

−e2ρ∂(e−2ρ∂φ) =
1

2
Tzz; − e2ρ∂̄(e−2ρ∂̄φ) =

1

2
Tz̄z̄. (3.13)

If the stress tensor are zero, then we have the vaccum solution which can be easily deter-

mined from the solution in the original metric ω:

φvac = φh
1 + ωω̄

1− ωω̄
= φh

z + z̄ − 1√
(z − 1)z +

√
(z̄ − 1)z̄

, (3.14)

where φh is the minimum value of the dilaton field. With the stress tensor, we have

additional inhomogeneous solutions. For the Tzz and Tz̄z̄ component, the inhomogeneous

solution can be easily derived by integrating over the stress tensor:

φinh(z, z̄) = −1

2

∫ z

dz1e
2ρ

∫
dz2e

−2ρTz2z2 −
1

2

∫ z̄

dz̄1e
2ρ

∫
dz̄2e

−2ρTz̄2z̄2 (3.15)

=
c

32π

(z + z̄ − 2zz̄ + 2
√
z(z − 1)z̄(z̄ − 1))(tan−1(1− 2z)− tan−1(1− 2z̄))

z − z̄
.

Later we will use the property of φinh along the real axis which takes the form:

φinh(z) = − c

16π
θ(1− z)θ(z). (3.16)

It is straightforward to check that the φinh piece satisfies both the Tzz and Tz̄z̄ equations

and in addition it has property:

∂∂̄φinh −
1

2
e2ρφinh =

c

32π
e2ρ. (3.17)

This together with the Tzz̄ equation determines the backreacted solution of φ:

φ = φvac + φinh +
c

12π
. (3.18)

The shape of the slit is determined by the boundary condition φ = φb. Since the value

of the inhomogeneous solution is a finite constant along the slit, the shape of the slit is

undeformed. The boundary condition of the dilaton field determines φh in a standard way:

φh =
2πφb
β

. (3.19)

One can also use the following argument from Schwarzian theory to derive the same

conclusion. After integrating out the dilaton field, the gravitational action becomes the
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(I) (II)

I

Figure 7. The two replica geometries: (I) is the disconnected saddle, (II) is the connected saddle

which is the external traversable wormhole geometry by gluing alond the dashed line. The two red

(green) lines are glued together.

Schwarzian action along the slit, and we need to consider its backreaction from the CFT

partition function. The Schwarzian variables can be parametrized by the function θ(u)

where u is the proper length along the boundary. In order to glue the slit along the same

boundary location one might need to consider additional conformal map to align the u

variables in the bra segment and ket segment. This happens when considering the off diag-

onal elements of the density matrix. Fortunately, for the diagonal elements and Trρ, due to

the time reflection symmetry of the state, the saddle point of the two Schwarzian variables

along the bra and ket are required to be identical, which means that the matching con-

dition is trivial. Thus, the CFT partition function is independent of these time reflection

symmetric schwarzian variables, therefore the classical saddle is again given by the saddle

of the Schwarzian action, which is θ(u) = 2πu
β .

We have finished our discussion on perturbative corrections. Now we talk about the

non-perturbative corrections. For Trρ and correlators, the non-perturbative correction are

suppressed to order e−S0 , which can be ignored. Nevertheless as discussed in the context of

replica wormholes [26, 27], for the Renyi entropies Trρn, the non-perturbative saddles can

dominate. For example, the two-replica geometry, whose boundary condition is given by

two coupled euclidean circles, gives the same contribution as the thermal partition function

of two coupled SYK systems [46, 49], and as a result there are two bulk geometries (fig-

ure 7): one is a product of two euclidean AdS disks and the other is the eternal traversable

wormhole geometry.

The parameters of the coupled SYK system are c, S0 ∼ N , φb ∼ N
J , and the ther-

mal partition function has first order phase transition around βJ ∼ O(1). The eternal

traversable wormhole geometry dominates at larger β, when the free energy becomes order

one due to the existence of a gap. As a result, the second Renyi entropy approaches a

constant of order e−2S0 , which is consistent with our expectation that the Von Neumann

entropy should be bounded.
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Figure 8. The island region in the original saddle.

In the von Neumann limit this reflects the emergence of a nontrivial quantum extremal

surface in the original saddle (figure 8). The quantum extremal surface consists of pairs of

points on the manifold. Because of time reflection symmetry, the location of the quantum

extremal surface could only be along the real z axis. We consider the simplest case when the

QES is a single pair of points at locations z3 and z4. Without loss of generality, we assume

that z3 < 0 and z4 > 1. The effective entropy is given by the four-point function of the twist

operators. In general such function is dependent on the operator spectrum. However, for

theories with large central charge and small number of low-dimension operators, only the

Virasoro block of identity operator will dominate and the four-point function can be approx-

imated by a product of two two-point functions [50, 51]. Since we are looking for the saddle

that has the smallest effective entropy, the emergent twist operators from the QES should

be contracted with the two operators at the two ends of the slit. This gives the bulk entropy:

Sbulk(z3, z1 = 0, z2 = 1, z4) =
2c

3
log

β

2πε̃
+
c

3
log

√
−z3

1− z3
+
c

3
log

√
z4 − 1

z4
+ (UV) (3.20)

The CFT UV divergence at the quantum extremal surface can be absorbed into S0. The

first piece is the same as the original entropy S1 and the other pieces are negative. As z3,4

approaches the two ends, the bulk entropy becomes zero. Of course the locations of z3,4

are determined by the extremal condition of the effective entropy which is a sum of the

QFT entropy and the dilaton field:

S2 = min
ρ1,2

S1 −
c

3
(ρ1 + ρ2) + 2πφh(cosh ρ1 + cosh ρ2) + 2S0 +

c

3

=
2c

3
log

β

2πε̃
+ 2S0 +

c

3
− 2c

3
sinh−1 cβ

12π2φb
+ 2

√(
4π2φb
β

)2

+
c2

9

(3.21)

where ρ1 = − log
√
−z3
1−z3 ≥ 0 and ρ2 = − log

√
z4−1
z4
≥ 0. The saddle point is given by

ρ1,2 = sinh−1 c
6πφh

= sinh−1 cβ
12π2φb

. We should keep in mind that the above formula ig-

nores the boundary graviton contributions which requires: φb
β � 1. Compared with the
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Figure 9. A numerical plot for the entropy as a function of central charge c and proper length β:

S1 is the effective entropy without island and S2 is the effective entropy with island contribution.

The von Neumann entropy is the minimum of these two entropies.

entropy without island S1, we found the phase transition happens around:

β

4π2φb
∼ 3

c
sinh

(
3
S0

c
+ 3/2

)
. (3.22)

In the region of c ∼ S0, the phase transition is around β ∼ φb
c . When cβ

φb
� 1, the effective

entropy approaches a constant independent of β:

S2 ∼
2c

3
log

3πφb
cε̃

+ 2S0 + c. (3.23)

In figure 9, we show the numerical plot of the behavior of phase transition with respect to

c and β.

The emergence of the island region is an interesting phenomenon. Semiclassically, the

global state is the real z axis and our density matrix is given by tracing out everything

outside of the region between (0, 1). When the matter entropy of this region is big enough,

an island region appears in the spatial region that we traced out. This reduces the matter

entropy such that it can never exceed the boundary area of the original region, which is

consistent with the Bekenstein bound. Here we consider the density matrix at some bulk

region, and the existence of an island region is a direct consequence of the fact that we

are not fixing the geometry away from the region of interest. A very important question is

then how to determine whether a certain part of bulk geometry should be fixed during the

gravitational path integral. This is an observer-dependent question. The physics probed by

a bulk observer (or a group of bulk observers) corresponds to a fixed geometry in the region

probed, while the unobserved part of the universe can have a fluctuating geometry. Similar

observer dependence will be discussed in tensor network models in section 4. A more

quantitative and systematic answer to this question is unknown and requires future work.

3.2 Four dimensional Schwarzchild black hole in flat spacetime

In this section we discuss the bulk field effective entropy of a Schwarzchild black hole in four

dimensional asymptotic flat spacetime. The entanglement island in flat spacetime black

hole geometry has been discussed in recent works [19–22]. Our calculation is qualitatively

similar but for a different state, as will be discussed below.
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Figure 10. Illustration of the eternal black hole geometry and region A we are considering.

For simplicity we consider the maximally extended Schwarzchild black hole rather than

an evaporating one. In Kruskal-Szekeres coordinates, the metric is

ds2 = −
4r3
H

r
exp

(
− r

rH

)
dUdV + r2dΩ2 (3.24)

where r is the Schwarzchild radius and is related to the Kruskal coordinates as follows:

UV =

(
1− r

rH

)
er/rH . (3.25)

and rH is the radius of the horizon. The maximally extended geometry describes two

entangled black holes. If there are matter fields, the black hole will create particles from

vacuum fluctuation and emit Hawking radiations. We are interested in the entropy of the

Hawking radiation in the union of two exterior regions, defined by radius r ≥ rH at a

Schwarzchild time t (See figure 10). Note that we have taken the time direction in both

sides of the eternal black hole to move up, so that the time dependence is nontrivial. In

Kruskal coordinate, the boundary of the region in the right-hand-side wedge is defined by

U = Ret, V = −Re−t (3.26)

with R2 =

(
r

rH
− 1

)
er/rH

Similarly the boundary in the left-hand-side wedge is U = −Re−t, V = Ret.

We make several simplifications to the problem. Firstly, we decompose the matter

field into spherical modes of the transverse direction, only focusing on the massless modes

following Polchinski [52]. We ignore its interaction with other fields. Secondly, we assume

the matter field has a small energy-momentum tensor and neglect its back reaction to the

metric. (We will later check that this approximation is self-consistent.) Finally, we choose

a special state of the massless modes to simplify the entropy calculation.

The first simplification essentially reduces the setup to a CFT living on a two dimen-

sional geometry in the U, V direction. We choose a particular state of the CFT that is
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obtained by doing a Weyl transformation on the Minkowski vacuum state. Naively, one

may Weyl transform the state from ds2 = −dUdV to the Kruskal coordinate. However,

because the metric in Kruskal coordinate vanishes exponentially with r near infinity, such

transformation results in a large energy momentum near infinity, which is inconsistent

with our assumption of small back-reaction. Hence, we instead introduce the following

coordinate transformation:

U = sinhu, V = sinh v (3.27)

The metric in (u, v) becomes

ds2 = −g(u, v)dudv; g(u, v) =
4r3
H

r
exp

(
− r

rH

)
coshu cosh v (3.28)

The advantage of using u, v coordinates is that at large distance the metric becomes flat:

g(u, v)||u|�1,|v|�1 ' 4r2
H (3.29)

so that the Weyl transformation brings the flat spacetime vacuum state to some state with

nontrivial energy-momentum tensor restricted to the region defined by |u| < 1 or |v| < 1.5

For the region near horizon |u| � 1, |v| � 1, u ' U, v ' V and the coordinate returns

to Kruskal-Szekeres coordinate. Physically, roughly speaking the state we are studying (at

Schwarzchild time t = 0) is like a thermal-field double state for a finite region coupled with

a pair of semi-infinite bath at zero temperature. This is the key difference between our

result from that of ref. [21].

More generally, the interpolation scale can be tuned by defining U = a sinh u
a , V =

a sinh v
a . Since there is no scale invariance in U, V , physics at different a’s is not equivalent.

We have studied the case with general a and confirmed that the choice of a does not affect

the late time behavior that will be discussed below. Therefore for simplicity we will keep

a = 1 in the remainder of the discussion.

For this state, the actual stress tensor with the cutoff defined with respect to the

physical metric is determined by the conformal anomaly. In general when the metric is

transformed as g̃µν → gµν = e2ω g̃µν , the energy momentum tensor transforms as

T gµν = T g̃µν −
c

12π

[
∂µω∂νω −

1

2
g̃µν∇̃σω∇̃σω − ∇̃ν∇̃µω + g̃µν∇̃2ω

]
(3.30)

with ∇̃µ the covariant derivative in metric g̃µν , and c the central charge of the CFT. In

our case, g̃µν = ηµν is the flat space, and we consider the vacuum state with T g̃µν = 0.

Explicitly, in terms of g(u, v) we obtain

Tuu = − c

12π

√
g(u, v)∂2

u

1√
g(u, v)

, Tvv = − c

12π

√
g(u, v)∂2

v

1√
g(u, v)

, (3.31)

Tuv = − c

12π
∂u∂v log

√
g(u, v). (3.32)

The stress tensor vanishes for |u| � 1, |v| � 1 when the metric becomes flat. Physically

the state we consider has energy and momentum near the horizon at time t = 0. We have

verified this by numerics, as is shown in figure 11.

5It should be noted that this region with nontrivial energy-momentum still extends to null infinity.
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Figure 11. (a)-(c) Numerical results of the three components of energy momentum tensor. Tuu and

Tvv peaks around the horizon, and Tuv is slowly varying in most of the places. Divergence occurs

near singularity. (d) The outgoing energy current density across a constant r surface, given by

eq. (3.34). (Note that the scale is smaller than figure (a)-(c). We plotted this quantity everywhere,

although we will only use it in exterior regions.) In (a) (b) and (c), to increase visibility we have

replaced data bigger than 0.05 by 0.05, and that smaller than −0.05 by −0.05.

It should be noticed that the state is not boost invariant due to our choice of the u, v

coordinates, so that the matter field is not in thermal equilibrium with the black hole. In

principle one needs to solve the backreaction on the geometry due to the nontrivial stress

tensor using the Einstein equations. Such backreaction, for example, will describe the

energy loss of the black hole due to the Hawking radiation. We can estimate the amount

of energy loss in current state by looking at the energy flux across the constant radius r

surface. Using the boost killing vector:

(ξu, ξv) = (tanh u,− tanh v) , (3.33)

the energy flux across the constant r surface is:

IE =

∫ t

0
dt′ξµT τ

µ ετνξ
ν =

∫ t

0
dt′

2

g(u, v)

(
− tanh2 uTuu + tanh2 vTvv

)
. (3.34)

Here t is the Schwarzchild time defined in eq. (3.26). The change of the black hole mass,

or equivalently the change of the quasilocal stress tensor along the constant r slice is equal

to the total energy flux. As is shown in figure 11 (d) and figure 12 (a), the energy current

density peaks around the interpolation scale u ∼ 1 and vanishes in long time, leading to a

finite energy flux shown in figure 12 (b). Therefore the energy change is of order c and the

backreaction can be neglected in the limit c� r2
H
GN

.
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Figure 12. (a) Energy current density as a function of Schwarzchild time. (b) Total energy flux

at late time, which is an integration of the energy current density for t ∈ [0,+∞), as a function of

radius r.

Now let’s look at the entropy calculation. The entropy of a single interval in the state

we consider is obtained from a Weyl transformation of that in flat spacetime vacuum of

the CFT [53]:6

S(u1, v1;u2, v2) =
c

6
log(−u12v12) +

c

12
log (g(u1, v1)g(u2, v2)) (3.35)

with u12 = u1 − u2 and v12 = v1 − v2. If there is no entanglement island, the boundary of

A is given by (u1, v1) = (uA, vA) and (u2, v2) = (vA, uA), with

uA = sinh−1
(
Ret
)
, vA = − sinh−1

(
Re−t

)
(3.36)

and R is defined in eq. (3.26). In the late time limit

uA ' t+ log(2R), vA ' −Re−t (3.37)

The entropy grows linearly in time, with leading contribution from the Weyl factors:

Sno Island(t) ' c

6
(t+ log t+ const.) (3.38)

The Bekenstein-Hawking entropy of the black hole is given by the transverse area at

the horizon:

SBH =
πr2

H

G
. (3.39)

We expect that a transition occurs when the entropy of the Hawking radiation is close to

2SBH (with factor of 2 coming from the two-sided geometry), which provides an estimate

of the Page time tP ' 12SBH/c.

After the Page time, we expect that the entropy calculation is dominated by a nontrivial

quantum extremal surface, so that the entropy is reduced to a value close to the black hole

entropy. Due to the reflection symmetry of the geometry, the quantum extremal surfaces

6More precisely the first term should be log
(
−u12v12

ε2

)
with a UV cutoff ε. We have neglected ε since its

effect can be approximately absorbed in a redefinition of ∝ 1
GN

in the region we are interested in.
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should locate at (uI , vI) and (vI , uI). The QFT entropy is then a two-interval entropy

which depends on more details of the CFT. However, in the limit we are considering, the

two intervals are far away from each other, so that we can approximate the twist operator

four-point function by a product of two-point functions. This leads to the effective entropy

formula

SIsland = ExtuI ,vI

[
c

3
log(−uIAvIA) +

c

6
log g(uA, vA)g(uI , vI) +

2πr2(uI , vI)

GN

]
(3.40)

with uIA = uI − uA and similarly for vIA.

Since the effective entropy is expected to be close to twice the black hole entropy, the

location of uI , vI should be close to the horizon, which requires sinh uI sinh vI � 1. In

addition, we expect SIsland to saturate to a finite value at late time, which requires uI −uA
to approach a constant value. This in turn requires uI ∝ t and vI ∝ e−t. We will take

these assumptions and verify that they are self-consistent. In this region we obtain

r(uI , vI)

rH
' 1− e−1UIVI = 1− e−1vI sinhuI

g(uI , vI) '
4

e
r2
H coshuI (3.41)

so that the entropy becomes:

S(uI , vI) ∼
c

3

[
log(−uIAvIA) +

1

2
log coshuI +

t

2

]
+ 2SBH

−
4πr2

H

eG
vI sinhuI + {constant order c} (3.42)

Variation with respect to uI , vI gives us a pair of equations:

c

3

1

uI − uA
+
c

6
tanhuI −

4πr2
H

eG
vI coshuI = 0;

c

3

1

vI − vA
−

4πr2
H

eG
sinhuI = 0 (3.43)

In the limit of t & 1
G and G� 1, the solution is:

vI ' e−t ' −vA

uI ∼ t+ log
ceG

12πr2
H

' uA −
(

log
12πr2

H

cG
− 1 + log(2R)

)
(3.44)

This corresponds to r(uI , vI) ' rH

(
1− cG

24πr2
H

)
. Thus, the quantum extremal surface is

close to the horizon, at the interior side. (As an interesting contrast, the island for an

eternal geometry is outside the horizon [21, 30].) The effective entropy is approximately

SIsland ' 2SBH , which justifies the estimation of Page time tP ' 12SBH/c. The uI
coordinate is of order the scrambling time earlier than the boundary location of A, which

is consistent with the Hayden-Preskill decoding criterion, that a small diary thrown into

the black hole after the Page time, should be reconstructable from the Hawking radiations

after waiting for scrambling time. From the geometric perspective, the diary is now in the

entanglement wedge of the Hawking radiations [10, 11, 54].
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4 Random tensor network models

To gain more physical intuition, here we generalize the random tensor network (RTN)

models, proposed as toy models for holographic duality in ref. [31], to generic universes.

Our main goal is to understand how similar quantum extremal surface formula appears

in (Renyi entropy calculation of) RTN models, and gain a more explicit understanding of

quantum information recovery. Moreover, we would like to understand the structure of

quantum states in general geometry beyond AdS. We first review the original RTN model

and then discuss its generalization in the current context.

4.1 Random tensor network model for holographic duality

In its most general form, a random tensor network model is defined by the following

elements:

1. A quantum state ρP in a Hilbert space with a tensor factorization HP = ⊗x∈B∪GHx.

ρP is called the parent state. The set of vertices x is divided into two subsets: bulk

G (for “gravitational”) and boundary B.

2. A random pure state on each vertex |Vx〉 ∈ Hx (x ∈ G). |Vx〉 = Ux |0x〉 with Ux a

Haar random unitary in Hx and |0x〉 ∈ Hx an arbitrary reference state.

3. RTN defines an ensemble of physical states in the Hilbert space HB by taking a

projection on HG:

ρB = trG (ρP ⊗x∈G |Vx〉 〈Vx|) (4.1)

(not yet normalized). Physically, one can think this as the state obtained by measur-

ing all qubits at x ∈ G in a random basis and post-selecting on a particular output

state ⊗x∈G |Vx〉.

This definition is illustrated in figure 13 (a). Usually, we take ρP as a simple state, such

as EPR pairs or the ground state of a free field theory. The role of random projection is

to generate a state ρB which has much richer entanglement structure.

The RTN models are useful because even if ρB for a particular realization of |Vx〉
is quite complicated, the computation can be greatly simplified by taking the ensemble

average. For any operator Ô defined in k copies of the boundary Hilbert space H⊗kB , one

can consider the expectation value in the product state ρ⊗kB :

〈Ô〉 =
tr
(
ρ⊗kB Ô

)
tr(ρB)k

=
trB∪G

(
ρ⊗kP

[
Ô ⊗

(
⊗x |Vx〉 〈Vx|⊗k

)])
tr(ρB)k

(4.2)

In the cases we are interested in, the correlation between denominator and numerator is not

important, so that we can approximate the ensemble average 〈Ô〉 by the separate average:

〈Ô〉 '
trB∪G

(
ρ⊗kP

[
Ô ⊗

(
⊗x|Vx〉 〈Vx|⊗k

)])
tr(ρB)k

(4.3)
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(b)

= ⍴
b

B

Figure 13. Illustration of (a) a most general random tensor network state defined in eq. (4.1); (b)

an “ordinary” random tensor network state in which ρP has the tensor factorization structure (4.7).

(A more rigorous discussion about the normalization can be found in ref. [31].) The average

over Haar random ensemble is known:

|Vx〉 〈Vx|⊗k =
1

Ckx

∑
g∈Sk

gx (4.4)

Here, gx is an element that permutes different copies of Hilbert spaces. Ckx is a normal-

ization constant that can be determined by requiring Tr |Vx〉 〈Vx|⊗k = 1. Since 1
k!

∑
g∈Sk gx

simply symmetrizes any state it acts on, Ckxk! is then equal to the dimension of permutation

symmetric states in the k copied Hilbert space. Therefore

〈Ô〉 ' C−1
∑
{gx∈Sk}

trB∪G

(
ρ⊗kP

[
Ô ⊗ (⊗xgx)

])
(4.5)

with C =
∏
xCkx. It is helpful to define trB∪G

(
ρ⊗kP

[
Ô ⊗ (⊗xgx)

])
≡ e−A[gx], which maps

〈Ô〉 to the partition function of a discrete spin model with the action A [gx].

Eq. (4.5) relates the expectation value of Ô in k copies of boundary state ρ⊗kB to a

sum over similar quantities in the (simpler) state ρ⊗kP , for operators of the form Ô⊗⊗xgx.

In particular, if we choose Ô itself to be a permutation acting on some subsystem of the

boundary, then each term on the right-side of eq. (4.5) is a local unitary invariant. A simple

example is the second Renyi entropy, which is computed by taking k = 2 and Ô = XA,

which swaps the two copies of qubits in a subsystem A ⊆ B. For k = 2 there are only two

permutation elements, so that eq. (4.5) reduces to

e−S
(2)
A = X̂A ' C−1

∑
Σ⊆G

trB∪G

(
ρ⊗2
P XAXΣ

)
= C−1

∑
Σ⊆G

e−S
(2)
ΣA(ρP ) (4.6)

In other words, the purity e−S
(2)
A for a subsystem A is related to a weighted sum of that of

the parent states for different regions (ΣA).
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We usually consider a simple case when the parent state ρP is a direct product of EPR

pairs and a quantum field theory state ρb, when the former has much higher Hilbert space

dimension:

ρP = ⊗xy|xy〉〈xy| ⊗ ρb (4.7)

Here xy denotes a link in the network that connects vertices x and y, and |xy〉 is a entangled

state defined on this link. This is illustrated in figure 13 (b). If there are k links connecting

to the same vertex x, there is a separate qudit for each of them, and the Hilbert space at x

is their direct product: Hx = ⊗yHxy. Due to the direct product structure in eq. (4.7), the

Renyi entropy of ρP is a sum of that of the link states and the remaining bulk QFT state ρb.

If for simplicity we take all |xy〉 to be maximally entangled EPR pairs with entanglement

entropy logD, the purity becomes the following Ising model partition function:

e−S
(2)
A = C−1

∑
sx=±1

exp

−∑
xy

1− sxsy
2

logD − S(2)
sx=−1(ρb)


= C−1

∑
Σ⊆G

exp
[
− logD |∂(ΣA)| − S(2)

Σ (ρb)
]

(4.8)

Here sx = ±1 denotes the identity and swap operators, the two elements of permutation

group S2 = Z2. Σ is the spin down region, i.e. the region that is applied by a swap operator

permuting the two copies. Only the EPR pairs crossing the boundary of region ΣA has

a nontrivial contribution to the entropy, which leads to the area law term logD |∂(ΣA)|.
The second Renyi entropy logD of the link state becomes the coupling constant of the

ferromagnetic Ising model. If different links have different second Renyi entropies, the

coefficient logD should be replaced by S
(2)
xy which is the second Renyi entropy of state

|xy〉. In the Ising model language, the region A translates to a boundary condition, with a

fixed Ising spin on each boundary vertex, which is −1 in A and +1 everywhere else. This

Ising model picture is illustrated in figure 14.

In the limit of large D, the sum is dominated by a single term with minimal number of

links connecting ΣA with the complement, leading to the analog of the quantum extremal

surface formula (in this case a minimal surface since there is only variation in spatial

direction):

S
(2)
A ' min

Σ⊆G

(
logD |∂(ΣA)|+ S

(2)
ΣA(ρb)

)
(4.9)

The minimal region Σ becomes the (spatial slice of) entanglement wedge, and ∂(ΣA) =

γ is the quantum extremal surface. The analog of geometry is the graph geometry, defined

by the links xy. More generally, if we allow different states |xy〉 with different second Renyi

entropy, the geometry will be given by a weighted graph with each link weighted by S
(2)
xy .

One interesting feature of RTN model is that the geometry is not restricted to negative

curvature. The setup is well-defined in arbitrary graph geometry. For the purpose of our

current discussion, we want to study the entropy of a bulk region in the bulk quantum

field theory state ρb. In the limit of large bond dimension D for the EPR pairs, the tensor

network defines an isometry from the bulk QFT degrees of freedom to the boundary. This

can be proved by leaving the bulk indices open, and define a state of bB after the random
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⍴
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Figure 14. Illustration of the Ising spin configuration for the purity calculation. The boundary

condition of the Ising model is defined as spin down (sx = −1) for sites in A and up (+1) elsewhere.

The link states |xy〉 contribute a ferromagnetic coupling, and the bulk QFT state ρb contributes

an extra term to the action, given by the second Renyi entropy of the spin down region Σ. When

a single Ising configuration dominates, the boundary of the spin down domain is the quantum

extremal surface (4.9).

projection (figure 15). The isometry condition is equivalent to the condition that the

mutual information I(b : B) = 2 logDb, where Db is the Hilbert space dimension of Hb.

This isometry guarantees that the bulk QFT degrees of freedom are encoded faithfully in

the boundary Hilbert space HB.

With this isometry condition, correlation functions of bulk operators are preserved.

For example, figure 15 (d) illustrates a two-point function in the bulk, which is defined by

inserting operators φ1, φ2 into the bulk:

〈φ1φ2〉RTN ≡
tr (φ1φ2ρP |V 〉 〈V |)

tr (ρP |V 〉 〈V |)
(4.10)

with ρP = ρb⊗
∏
〈xy〉 |xy〉 〈xy|. This is equivalent to mapping the operators to the boundary

Hilbert space by the isometry, and compute the correlation function there. The isometry

condition guarantees that the correlator is the same as that in the QFT:

〈φ1φ2〉RTN = tr (ρbφ1φ2) = 〈φ1φ2〉QFT (4.11)

For a bulk region A, the quantity tr (ρnA) can be expressed as a sum over correlation

functions in this region. For example, tr
(
ρ2
A

)
=
∑

a tr (ρAOa)
2 with the sum runs over an

orthonormal basis of Hermitian operators in A. We discuss the more general n-th Renyi

entropy case in appendix A. Therefore eq. (4.11) implies that the entropy of a bulk region

is also equal to that in the QFT state, due to the isometry condition.
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B
(a)

b

B

(b) b

B(c)

=
B

ɸ 1 ɸ 2

ɸ 1 ɸ 2=

(d)

Ѱb〉

Figure 15. (a) A tensor network with bulk state ρb = |ψb〉 〈ψb|. The red lines are bulk quantum

field theory degrees of freedom, and the black lines are EPR pair (geometry) degrees of freedom. (b)

By leaving the b legs open, we can view the tensor network as a map from b to B, or equivalently,

an entangled state of b and B. (c) The isometry condition is equivalent to the statement that in the

state of b and B, tracing over B leads to a maximally mixed state of b. (d) The isometry condition

implies that the bulk correlation functions are equal to those in QFT.

4.2 General geometries and super-density operator

For a generic spatial geometry, which may have a small boundary or even no boundary,

the isometry condition may fail, but the tensor network state (4.1) is still well-defined. We

will apply this definition to general geometry and discuss the physical consequences and

interpretations. Without the isometry condition, we need to rethink about bulk correlation

functions and their interpretation. Due to the projection to random tensor states |V 〉 =

⊗x |Vx〉, the general bulk-boundary correlation function looks like

Cabα = trB (Oα 〈V |φaρPφb |V 〉) (4.12)

with φa, φb operators acting in the bulk, and Oα acting on the boundary. Compared to the

discussion in previous subsection, the main difference is that due to the projection on |V 〉,
in general we cannot move φb to the left of φa if there is no isometry condition.7

Let us consider a bulk region A and restrict operators φa, φb to arbitrary QFT operators

in A. In ordinary QFT, expectation values of the form 〈φa〉 are all determined by the

reduced density matrix ρA. Here the situation is different, because we need to keep a

pair of operators φa, φb. The generalization of density operator is the linear map from

operators φa, φb, Oα to C given by eq. (4.12). More explicitly, we can take φa to be an

orthonormal basis of the QFT operators of A, and introduce an auxiliary set of states

7More precisely, even if we have the isometry condition, when Oα is a nontrivial operator on the boundary,

in general we still cannot move φb to the left. In that case we didn’t discuss this problem since we can simply

push all operators to the boundary and discuss correlation functions there. In general geometry without

isometry condition, there is no such “anchor Hilbert space” and we have to do the discussion directly with

bulk operators.
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(a) (b)

⍴ b
O𝜶

ɸ a

ɸ b

Cab𝜶  = σAB  = ⍴ b

B

A1

A2

Figure 16. (a) Illustration of the bulk boundary correlator Cabα in eq. (4.12). (b) The super-

density operator that determines all bulk-boundary correlators involving region A and boundary

B. Since we need to keep both φa, φb on two side of ρb, the dimension of σAB is D2
ADB instead of

DADB when the Hilbert space dimension of A,B region are DA, DB respectively.

|a〉 , a = 1, 2, . . . , D2
A. Then we define the “super-density operator” [32]

σAB =
∑
a,b

〈V |φaρPφb |V 〉 ⊗ |a〉 〈b| (4.13)

In the graphic representation of tensor networks, the super-density operator corresponds

to opening up the bulk links in A, in addition to the boundary indices B, as is illustrated

in figure 16. As has been discussed in ref. [32], the superdensity operator is positive

definite and satisfies all properties of the ordinary density operator. Physically, σAB can

be prepared by introducing an ancilla system that couples to the degrees of freedom in A

before the projections on state |V 〉 is imposed. As is illustrated in figure 16 (b), the ancilla

system has a Hilbert space dimension of D2
A, and was initialized in a maximally entangled

state between two qudits each with dimension DA. Then one of the qudit subsystem is

coupled with A by a swap gate. As a consequence, the state of A is swapped to the ancilla

and therefore survives from the projection by 〈V |. The subsystem A1 of the ancilla contains

information about the QFT state of A, while the other subsystem A2 is maximally entangled

with the qudit that enters the random tensor network as bulk inputs. The entanglement

structure of σAB determines the quantum information flow in this model.

To gain some physical understanding of the superdensity operator, let us first discuss

what happens in the situation discussed in the previous subsection, when there is an isom-

etry from bulk to boundary. In that case, it is easy to see that the mutual information

between A2 and B is maximum:

S(A2) = logDA, S(B) = SQFT(A) + logDA (4.14)

S(A2B) = SQFT(A) (4.15)

I2(A2 : B) = 2 logDA (4.16)

which follows from the isometry condition in figure 15. If we are interested in whether A can

be reconstructed locally in a boundary region B1 ⊂ B, we can also compute I2(A2 : B1),

which is required to be maximal in order for A to be in the entanglement wedge of B1.
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We can also compute I2(A1 : B) using the Ising model method. With the isometry

condition, the Ising spin directions are all determined by the boundary condition at B. We

obtain

S(A1) = SQFT(A), S(B) = SQFT(A) + logDA (4.17)

S(A1B) = SQFT(ρb) + logDA (4.18)

I2(A1 : B) = I2QFT(A : A) (4.19)

This equation shows that A1 is only entangled with B through the entanglement that is

already in the QFT state ρb. Although in the ordinary RTN with a large boundary and

isometry condition, we do not usually need to discuss the superdensity operator formalism,

it is still helpful since it allows us to discuss the encoding map (from A2 to B) and a

particular bulk QFT state (saved in A1) in a well-defined quantum state, rather than

switching between two different tensor networks representing “the holographic code” and

“the holographic state”.

In the next two subsections, we will use the superdensity operator formalism to study

generic RTN without isometry condition. We will show how an entanglement island could

appear, which is the analog of the replica wormhole geometry in gravity calculation. We will

analyze its physical interpretation in term of quantum information recovery and quantum

error correction.

4.3 Entanglement island

In this subsection we discuss different situations that may occur in the Renyi entropy

calculation of the superdensity operator. For concreteness, we focus on the three-tensor

model, which has been illustrated earlier in figure 16. All discussions can be generalized

to more generic geometry straightforwardly. As is illustrated in figure 17, we denote the

three sites by I, C,A, and the corresponding bulk dimensions are DI , DC , DA. The links

connecting different tensors have dimension DL1 , DL2 and DB. For later convenience, we

assume each link consists some integer number of qubit EPR pairs, such that DI = 2|I|

and similarly for other links. We denote the number of EPR pairs by |I|, |A|, etc.

The Renyi entropy of this state can be computed by spin model partition function,

with three spins at the three tensors I, C,A. We are interested in considering the following

situation:

|I| > |L1| (4.20)

|I|+ |C| < |L2| (4.21)

|A| < |L2| (4.22)

Physically, these inequalities indicate that the volume law entropy of each region is smaller

than the area law entropy of its boundary, except the I region.

We first look at the second Renyi entropy of A1. We can run over the different spin con-

figurations and check their Ising action. In the following list, the three spin configurations
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I C A
B

⍴ b

DI Dc DA

DL1 DL2

DB

A2

A1

Figure 17. Illustration of the three-tensor model. The labels on each link DA, DI , etc labels the

dimension of each link, which are of the value 2n with n = |I|, |A|, etc, i.e. the number of qubit

EPR pairs. In general the bulk state can be a mixed state, but we draw the pure state case for

simplicity. In the super density operator, B and A1, A2 are external legs of the network.

are for the sites ICA correspondingly. + and − represent identity and swap, respectively.

sIsCsA =



+ + +, SQFT (A)

−+ +, SQFT (IA) + |L1| log 2

+−+, SQFT (CA) + (|L2|+ |L1|) log 2

−−+, SQFT (ICA) + |L2| log 2

+ +−, SQFT (A) + (|L2|+ |B|+ |A|) log 2

−+−, SQFT (AI) + (|L1|+ |L2|+ |B|+ |A|) log 2

+−−, SQFT (AC) + (|L1|+ |B|+ |A|) log 2

−−−, SQFT (ICA) + (|B|+ |A|) log 2

(4.23)

In the region we are considering, the only two possible lowest action configurations are +++

and − + +. Using the inequality (4.20)–(4.22) we can show that all other configurations

are never preferred. Thus in the large bond dimension limit

SA1 = min {SQFT (A), SQFT (IA) + |L1| log 2} (4.24)

If SQFT (IA) + |L1| log 2 < SQFT (A), the − + + configuration is dominant. The same

analysis applies to higher Renyi entropy. The transition (switch of the dominant term in

entropy contribution) for different Renyi entropies generically occur at different value of

parameters in the system. Assuming that all Renyi entropies and also the von Neumann

entropy are dominated by the SQFT(IA) + |L1| log 2 term, we recover the QES formula

with I the entanglement island of A.

The analysis here also applies to more general tensor network geometries. In general,

we should minimize the entropy configuration over all regions Σ that do not intersect A:

SA1 = min
I∩A=∅

(SQFT (IA) + |∂I| log 2) (4.25)

This is the analog of eq. (2.19) in the gravitational calculation. It should be noted that the

Ising spin is always + in A region due to the pinning field coming from tracing over A2.
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This is similar to fixing the spatial geometry of A in the gravity theory case. Note that

the appearance of the island requires a necessary condition

SQFT (I) ≥ |SQFT (A)− SQFT (IA)| > |∂Σ| log 2 (4.26)

which means the QFT entropy of I needs to exceed the area law “entropy bound” |∂Σ| log 2.

There is another extreme limit: the “entanglement island” could include the entire

complement of A, which corresponds to the −−+ configuration in the three-tensor model.

In order for this configuration to be dominant, it is required that

SQFT (A) > SQFT (ICA) + |L2| log 2 ≥ |L2| log 2 (4.27)

In our model this will not occur due to inequality (4.22). In general, this will only occur if

the QFT entropy of A exceeds the area law bound |∂(AB)| log 2. (Note that what appears

is the boundary of AB rather than A, which means the boundary between A and the

boundary is excluded.)

As we discussed at the beginning of this section, an RTN is defined by a parent state,

which we take to be a product state of EPR pairs on links and remaining QFT state

(eq. (4.7)). The separation of “geometry” — link EPR pairs — and matter is the analog of

choosing the UV cutoff of CFT. In the three-tensor model, we can move an EPR pair at the

AC link from “geometry” to matter, which means the entanglement in QFT between A and

C will increase by log 2, while L2 will reduce by 1. When we introduce ancilla, this separa-

tion between geometry and matter gets a nontrivial physical consequence. If this EPR pair

is considered as part of QFT, the ancilla will couple to it, such that the Hilbert space dimen-

sion of A1, A2 will increase, while the area law bound for A given by |L2| log 2 will decrease.

This is similar to the effect of changing the UV cutoff of QFT in the gravity calculation.

It should be noted that the discussion above does not require boundary B to be large.

When |B| is sufficiently large, A can be reconstructed in B, which corresponds to the

fact I (A2 : B) = 2|A| log 2 in the superdensity operator. If |B| < |A| this clearly will fail.

The superdensity operator formalism makes the bulk region entropy quantities well-defined

even when the isometry from boundary to bulk fails. In section 4.5 we will provide further

discussion about the case of closed (or almost closed) universe.

4.4 Interpretation: recovery of quantum information

The next question is the physical interpretation of the entanglement island. From the

discussion of AdS space black hole coupled with bath [10, 11], it is natural to ask whether

degrees of freedom in island I can be reconstructed in region A (which corresponds to

the early radiation in the black hole case). In the superdensity operator formalism, one

attempt to show this reconstruction is to introduce ancilla in I in the same way as A, as is

illustrated in figure 18 (a). However, one can verify that in the region we are considering,
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the mutual information

S(I1I2) = |L1| log 2 + SQFT(I), (−+ +)

S(A1A2) = SQFT(A) + |A| log 2, (+ + +)

S(I1I2A1A2) = |L1| log 2 + SQFT(IA) + |A| log 2, (−+ +)

I(I1I2 : A1A2) = IQFT(AI) (4.28)

Thus the mutual information is determined by the QFT state, and is not necessarily maxi-

mal. The mutual information is actually contributed by I1, A1 and there is no contribution

from I2 and A2. This seems contradictory with the fact that I is the entanglement island

of A. Physically, this apparent contradiction is caused by an external field imposed by the

ancilla of I: now with the I link broken into I1 and I2, there is a boundary condition at

I1 which is + in the computation of S(A). In the Ising model dynamics, the entanglement

island is the region of which the spin is controlled by the boundary condition in A. Thus

by introducing the ancilla in I, we have exclude this region from the possible location of

the entanglement island. In other words, entanglement island will only appear in region

that is not accessible to an (arbitrarily powerful) observer.

One may worry that this means there is no physical way to observe the entanglement

island. In fact, the information recovery from the entanglement island can be shown in a

different ancilla setup, as is illustrated in figure 18 (b). Instead of introducing a “complete

probe” in I region, we introduce a small ancilla that only couples to a small region P in the

island. In the tensor network it corresponds to opening up the legs in P and leaving the

remaining part of I (denoted as R) uncoupled. This is the analog of the Hayden-Preskill

setup [55] in the case of evaporating black hole. In this situation, the entropy calculation is

different. If |R| � |P |, the spin configuration that determines S(A1) will still be −++ when

there is an island. In this case we can study the mutual information between P2 and A1:

S(P2) = |P | log 2, (+ + +)

S(P2A1) = |L1| log 2 + SQFT(AR), (−+ +)

S(A1) = |P | log 2 + SQFT(AR) + |L1| log 2, (−+ +)

I(A1 : P2) = 2|P | log 2 (4.29)

It should be noticed that S(A1) also depends on the choice of P region, because introducing

ancilla and tracing over them is different from having no ancilla.8 The mutual information

is maximal and equals to 2S(P2). In the spin model language, this is a consequence that

for small |P |, the spin at I site is always controlled by the boundary condition at A1. Due

to this maximal mutual information, any operator applied to P site can be mapped to A

by an isometry (which is defined by the channel that is dual to the state ρA1P2):

M : HP ⊗HP −→ HA ⊗HA (4.30)

8In the super-desity operator formalism, removing ancilla corresponds to a post-selection on an EPR

pair state of the ancilla.
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The reconstruction map is defined using Petz map. Technically, the reconstruction is sim-

ilar to the holographic tensor network case studied in ref. [56], but in the current situation

we need to consider a bulk-to-bulk reconstruction using superdensity operators. The detail

of the map M is discussed in appendix B. In term of the general bulk-boundary correla-

tion function (4.12), the isometry condition means for any operators φP , ηP ∈ HP ⊗ HP ,

φA, ηA ∈ HA ⊗HA and Oα ∈ HB ⊗HB, the general correlation function

CPAB = trB (Oα 〈V |φAφPρP ηP ηA |V 〉) (4.31)

the operators φP , ηP can be mapped to M(φP ), M(ηP ) ∈ HA ⊗ HA acting on A region,

such that

CPAB = trB (Oα 〈V |φAM(φP )ρPM(ηP )ηA |V 〉) (4.32)

In other words, all correlation functions involving operators in A,P and the boundary B

can be mapped to those only involving operators in A.

The operators M(φP ),M(ηP ) from reconstruction of P operators should always ap-

pear closer to ρP than other operators acting on A. This ordering has an important

consequence. Generically, a unitary operator in P , denoted uP , is mapped to a unitary

operatorM(uP ) that acts on A. If we are allowed to apply an arbitrary measurement on A,

we could see the change of measurement output induced by M(uP ). In other words, if we

have control to the ancilla coupled to small probe region P ⊂ I, we can induce a physical

response in A, although it is probably a complicated response that cannot be probed in

simple operators (which we will discuss later in this section by considering operators acting

on part of A). In contrast, we can consider the reverse situation by applying a unitary uA
in A and ask whether it could induce a nontrivial change of measurement result in ancilla

system P1, P2. (In general, such an approach can be used to analyze causal structure of

tensor networks and more general systems, which was proposed in ref. [57].) A subtlety

is that not all unitaries in A remains unitary after the random projections. In the super-

density operator defined in figure 18 (b), if I(A2 : B) = 2 log 2|A| is maximal, then the

reduced density operator of A2 is maximally mixed, and thus inserting an arbitrary unitary

operator uA does not change the value of the network:

trB

(
〈V |uAρPu†A |V 〉

)
= trB (〈V | ρP |V 〉) (4.33)

More generally, this unitary may only apply to certain unitaries, such as those applied to

a subsystem of A2, if this subsystem has a maximally mixed density operator. Now if in

addition to this unitary, we insert a measurement in P , the measurement result will be

independent from uA. For example we can consider a projective measurement given by

operator φP :

trB

(
〈V |uAφPρPφPu†A |V 〉

)
= trB (〈V |φPρPφP |V 〉) (4.34)

This is because P2 has maximal mutual information with A1 and therefore has zero mutual

information with the remainder of the system. Thus this discussion tells us that, in the

sense of causal influence [57], the island degrees of freedom lives in the “causal past” of

A, such that it is possible to influence A by an unitary operation in the island (if it only
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(a) (b)
I C A
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L1 L2
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Figure 18. The super-density operator with (a) two ancilla coupled to I and A respectively; (b)

two ancilla coupled to A and a part of I, denoted as P ; (c) two ancilla coupled to a part of A,

denoted as D, and a part of I, denoted as P .

applies to a small part P ), but no influence occurs from A to P . This property is similar to

the causal structure of the black hole final state projection model [58], analyzed in ref. [57].

It is also interesting to comment that the map M preserves order of operators:

M(φP )M(ηP ) =M(φP ηP ) (4.35)

This is different from the “mirror operators” [59] defined for an entangled state which

involves a transpose operation. As will be discussed in more details in appendix B, the

operator ordering is because the maximal entanglement occurs between P2 and A1. If we

have an isometry from P1 to A1 (which is true if P is maximally entangled with A in the

QFT state), that will define “mirror operator” map that involves a transpose, such that

M(φP )M(ηP ) = M(ηPφP ). More discussion about this will be presented in the closed

universe case in section 4.5.

If we gradually increase the size of the probed region P , some phase transition will

occur in the Renyi entropy calculation. At a critical value

(|P |+ |L1|) log 2 + SQFT(AR) = SQFT(A) (4.36)

the dominant configuration for S(A1) will become + + +. At a different (bigger) critical

value

|P | log 2 = |L1| log 2 + SQFT(R) (4.37)

the dominant configuration for S(P2) becomes −+ +. If the size of P exceeds both critical

values, instead of eq. (4.29) we have

I(A1 : P2) = IQFT(A : R) (4.38)

which gradually decreases to zero as P2 approaches the entire I. The mutual information

stops being maximal at critical value (4.36).

The calculation above can be directly generalized to generic tensor network geometries.

As long as the prob P is small enough, which means the Ising spin configuration in all

entropy calculations are unchanged by introducing the ancilla at P , the mutual information
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I(P2 : A1) is maximal when P is in the entanglement island of A. I(P2 : A1) = 0 for a

small prob outside the entanglement island.

The same analysis can also be used to discuss the situation when our access to A is also

incomplete. For example, we may be able to only measure few-point functions in A. In the

three-tensor model, this is modeled by introducing the ancilla only for part of the degrees

of freedom in A, as is illustrated in figure 18 (c). We denote the subsystem with probe

as D and its complement as E, such that DE = A. In the limit that the probe P in the

island is small, the transition of mutual information as a function of size of D occurs when

SQFT(D1R) + log 2(|P |+ |L1|) = SQFT(D1) (4.39)

In the limit |P | � |I|, we can write SQFT(D1I) + |L1| log 2 = SQFT(D1), or

SQFT(I|D1) + |L1| log 2 = 0 (4.40)

This condition tells us that a small probe in the island appears independent from subsys-

tem D ⊂ A, until D is large enough to recover the message. If the entanglement between I

and A are simple EPR pairs, the condition is simply that D needs to include |L1| number

of qubits that are maximally entangled with I.

In more general geometry, the situation will be more complicated since there is the

possibility of flipping spin in only part of A, but the general picture remains valid: small

probes at different location of the tensor network appear independent from each other,

while a small region may become reconstructable from a large region A. The location of

such small regions outside A defines its entanglement island.

4.5 Further discussion on closed universe

As we have discussed earlier, the definition of bulk region entropy does not require a large

boundary. In this subsection we discuss further the extreme situation of a (spatially) closed

universe, which corresponds to DB = 1. In this case, the projection |V 〉 〈V | is rank 1. If

we do not introduce ancilla, the tensor network only defines a non-negative real number

〈V | ρP |V 〉 rather than a quantum state. We can insert operators and define correlation

function

Cab =
〈V |φaρPφb |V 〉
〈V | ρP |V 〉

(4.41)

In the same way as the case with boundary, we can define the super-density operator σA
for any region A, which is a density operator of two ancillas A1, A2. In this way we have

defined a well-defined quantum state for the region we are observing. When we observe

different regions, we obtain different states in different Hilbert spaces, but they are all

compatible to each other, in the sense that for two intersecting regions A, C, one can

obtain σA∩C from σA or σC — not by partial trace but by reconnecting the legs outside

A ∩ C — and the answer should agree with each other.

It is clear that in the closed universe, degrees of freedom in the bulk are not independent

with each other. However, to make the description meaningful, it is essential that degrees

of freedom in a low energy long-wavelength region behave like an ordinary quantum field
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Figure 19. (a) A small probe D in a closed universe without boundary. The super-density operator

σD consists of ancilla system D1, D2. (b) A pure state of D1, D2,Ω defined by purification of ρb.

(c) A pure state closed universe with small probes P,Q and a large probe in region A.

theory. To see how this works in the tensor network model, we can discuss two different

situation.

The first situation is when the bulk state ρb before projection is a mixed state, and we

consider a small probe D which does not induce an entanglement island. For concreteness

we can consider the three-tensor model as is illustrated in figure 19 (a). It is important

to remember the fact that the bulk state ρb can be a mixed state. (This is also true in

the previous discussion in this section, but we did not emphasize that since it was not

essential.) We assume the probe is small enough, such that any Ising domain wall is not

preferred since the area law entropy cost is too large. Then the only possible configurations

left are + + + and −−−. The entropy becomes

S(D1) = SQFT(D), (+ + +) (4.42)

S(D2) = min
{
SQFT(D), |D| log 2

}
(4.43)

S(D1D2) = min {SQFT(ρb), SQFT(D) + |D| log 2} (4.44)

Here SQFT(ρb) is the entropy of the entire state. If we have a large enough entorpy such

that

SQFT(ρb) > SQFT(D) + |D| log 2 (4.45)

that implies

SQFT(D) + SQFT(D) ≥ SQFT(ρb) > SQFT(D) + |D| log 2

SQFT(D) > |D| log 2 (4.46)

which leads to S(D2) = |D| log 2, S(D1D2) = SQFT(D) + |D| log 2. In this limit there

is no mutual information, and D2 has maximal entropy. If we introduce an auxiliary Ω

which purifies ρb, as is shown in figure 19 (b), we define a pure state of D1D2Ω, and

under condition (4.45) we have shown that D2 is maximally entangled with Ω. This is an

important condition since it shows that when we create a “baby universe” with some degrees

of freedom that are entangled with a reference Ω, and then probe the “baby universe” with
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a small probe, the information obtained by the probe can be reconstructed from Ω. In this

limit, the probe will not see any violation of unitarity due to the effect of the projection

|V 〉, since the condition

S(D1) = SQFT(D), S(D2) = |D| log 2 (4.47)

applies to all Renyi entropies, which requires

σD1D2 = ρQFT(D)⊗ 2−|D|ID (4.48)

This equation guarantees that any operator insertion in region D satisfies

Cab =
〈V |φaρPφb |V 〉
〈V | ρP |V 〉

= trD (φaρDφb) = 〈φbφa〉QFT (4.49)

On the contrary, if the amount of information one wants to retrieve is too large and

eq. (4.45) is violated, SD2 = SQFT(D) < |D| log 2 in this region, and thus D2 is not

maximally mixed any more. Consequently, evidence of unitarity violation will start to be

observed, since operator φb on the right side of ρP cannot be pushed to the left any more.

For example, we can consider φa, φb as projectors to orthogonal measurement outputs

labeled by a, then the different measurement outputs fail to decohere, which means Cab is

not diagonal in a, b indices.

The other region is when ρb is pure, but in addition to the small probe we have a

stronger probe to a larger region. This is exactly the entanglement island probe situation

we discussed earlier in figure 18 (b), with DB = 1. Here we would like to consider a more

general situation, when the small probe is not necessarily in the entanglement island of A.

In figure 19 (c), we show two probes P and Q, one in the island of A and the other outside

it. When the probes are small, if we compute S(P1P2Q1Q2), it is dominated by + + +

configuration, and leads to

S(P1P2Q2Q2) = (|P |+ |Q|) log 2 + SQFT(P ) + SQFT(Q) (4.50)

The (|P |+ |Q|) log 2 terms guarantee that correlation functions in P,Q agree with the QFT

expectation without the projection, just like the earlier discussion in eq. (4.49). We see

that this is independent from whether the probe is in the entanglement island.

If we also insert an operator in the large probe A, we can see the difference between

P and Q. Generalizing the discussion in subsection (4.4) we can obtain

I(P2 : A1) = 2|P | log 2, I(Q2 : A2) = 2|Q| log 2 (4.51)

which is determined by the fact that the I site spin is controlled by A1 boundary condition,

while C site (everywhere outside the island) is controlled by A2. This difference means that

unitarity in P can be violated by inserting operators in A1, but is independent from operator

insertion in A2. For Q the situation is opposite. In term of operator reconstruction, this

difference means operators in P and operators in Q can both be reconstructed to region
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Figure 20. The reconstruction of operators in small probe regions P,Q to a region A, when P is

part of the entanglement island I of A and Q is outside I. Notice the different location of operator

insertions on the right side of the equality.

A, but the reconstruction map reverses the operator order for Q. For general correlator

involving operators in P,Q,A, the reconstruction map satisfies

CPQA = 〈V |φAφPφQρP ηQηP ηA |V 〉
= 〈V |M(φQ)φAM(φP )ρPM(ηP )ηAM(ηQ) |V 〉 (4.52)

Notice the ordering of the operators is such that the reconstruction of P operators are

inserted next to ρP while that of Q operators are next to |V 〉. Also the mapping satisfies

M(φP ηP ) =M(φP )M(ηP ) (4.53)

M(φQηQ) =M(ηQ)M(φQ) (4.54)

The different order comes from an extra transpose operation when we map operators in Q

to A. This is illustrated in figure 20

Interestingly, this discussion indicates that if A is the only large probe in the universe,

then sufficiently small probe operators in the entire complement of A — rather than just

the entanglement island — can be reconstructed in A. If there are multiple probes inserted

in the universe which are not in the small limit, or if ρb is not pure, this is not true any

more, because the region controlled by A2 boundary condition and that controlled by A1

boundary condition are not complement to each other. This sounds counter-intuitive, but

one should keep in mind that the operator reconstruction map depends on the pair of states

|ψb〉 , |V 〉 of the entire universe.

4.6 Relation between closed universe and open universe

It is also interesting to point out how the closed universe situation is related to the asymp-

totic AdS case with a large boundary. We consider a closed universe with a large region

A, and consider the situation when the dimension of A exceeds the area law bound. In
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Figure 21. Illustration of a closed universe with a region A satisfying |A| > |L2| and no entangle-

ment island. By cutting the network at L2 = ∂A, the super-density operator of probe Q and region

A can be decomposed to that of Q,A1, L2 conjugated by an isometry KA, defined by the tensor(s)

in the blue dashed region. The right panel illustrates the open universe obtained by removing KA

part of the tensor network and tracing over A1 to obtain ρA = trA(ρb).

the three-tensor model, this means |A| > |L2|. We also assume A has no entanglement

island. In this case, following the discussion in the previous subsection, operators acting

on a small probe can be reconstructed to A2. Further more, in the area law phase we can

cut the tensor network at the boundary of A (which is |L2| in the three-tensor model) and

denote the super-density operator of A and the small probe Q as

σQA1A2 = KAσL2A2K
†
A (4.55)

This is illustrated in figure 21. Here KA is a linear map from L2 to A defined by cutting

the tensor network open at L2. In the three-tensor model, this is given by a single tensor.

When |A| > |L2|, this map is an isometry from the boundary L2 to the bulk A. More

generally, we can take the tensor network state for A region, which is an entangled state

of A bulk indices and ∂A boundary indices. The second Renyi entropy of A is given by

S(A) = min
Σ⊆A

(|∂Σ|+ |A\Σ|) log 2 (4.56)

If this minimization is given by Σ = A, the entropy is area law S(A) = |∂A| log 2, which

means KA is an isometry from ∂A to A. In this case, the operator reconstruction from

a small probe region Q to A2 can be considered as the composition of two reconstruction

maps, from Q to L2 and then to A2. The first map from Q to L2 can be viewed as the

ordinary bulk-to-boundary isometry in the holography case. The physical interpretation

of this connection between open and closed universe in gravity theory is unknown, but
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we will make some speculation. This transition from closed universe to open universe is

analogous to a black hole formation process. When energy in A region is small enough,

we have a closed universe, and the small probe Q ⊂ A can be reconstructed in A, as we

discussed in the previous subsection. As we increase the matter energy in A, a black hole

is eventually formed, and the physical degrees of freedom in A are now defined on the

horizon. A reconstruction map from Q to the horizon ∂A can be defined. It is interesting

to explore the analog of this phenomenon in gravity theory.

5 Conclusion and further discussion

In conclusion, we have proposed a general framework for defining effective entropy in

systems with dynamical gravity. Physically, the effective entropy of a region describes the

entanglement entropy of the matter field in the region below certain UV cutoff. We have

discussed how the quantum extremal surface formula and entanglement island appears as

a consequence of path integral over replica geometries.

We applied our results to two example systems. One system is a 2d gravity path

integral that defines a density matrix of a system on a 1d spatial interval in a closed

universe. The other system is a Schwarzchild black hole with an external region including

early Hawking radiation. In the first example, the density matrix is nonperturbatively

defined using the no boundary proposal [35–39, 60]. The closed universe is obtained by

gluing the boundary of a Euclidean Anti-de Sitter space so that the original AdS boundary

becomes a bulk spatial slice. We treat the Euclidean partition function as defining a

density matrix of the matter field which becomes effectively a Hartle-Hawking state. In

the presence of large number (order N) matter fields, the Von Neumann entropy has a phase

transition with respect to the size of the spatial interval so that satisfies the Bekenstein

bound. And after phase transition, a disjointed spacetime region inside the closed universe

becomes the entanglement wedge of the matter field on the original interval. In the second

example, we carried an approximate calculation of the entropy of the Hawking radiation in

a Schwarzchild black hole in a specific state. The region is defined as the exterior of a sphere

with fixed radius. We confirmed the late time Page transition due to a nontrivial quantum

extremal surface whose location is slightly inside the horizon for our particular state.

To obtain a more explicit understanding to the quantum information properties of

such systems, we studied random tensor network models. By introducing ancilla and

using the framework of superdensity operators, we see how quantum extremal surface and

entanglement island appears in Renyi entropy calculation of a bulk region in the tensor

network. We show that operators acting on a small region in the entanglement island of

region A can be reconstructed in A, but the reconstruction is a state-dependent mapping

which relies on the knowledge that the remainder of the island is not probed. We discuss

the case of closed universe, and show how quantum information in a local probe can still

make sense if the bulk matter field is in a mixed state with large entropy, or if an ancilla

is introduced to a bigger region than the probe. Interestingly, when the closed universe

matter field is in a pure state, there is a complementary recovery, which means operators

in entire complement of A can be reconstructed on A, but the reconstruction map for
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operators in A’s entanglement island is different from those elsewhere. We also discuss

how the closed universe case and the open universe case can be related.

There are obviously many open questions for future research. The definition of effective

entropy relies on gauge invariant ways to determine the location of the region. We proposed

a few different ways to do that. It is not clear whether there is a unique way that is non-

perturbatively defined and does not require to make a choice among different ways of

defining the region. As we discussed in section 2, our effective entropy is cutoff dependent.

We view this as not a problem but a feature, since the tensor factorization of matter

field Hilbert space is only well-defined when we focus on certain states with semi-classical

gravity description. In the extreme case of closed universe with pure state matter, the

tensor network picture suggests that the entanglement entropy of a region can be viewed

as the entanglement between matter and geometry. It is interesting to seek for a more

nonperturbative framework for describing such entanglement.

Another lesson we learn from tensor network models is that the quantum state defini-

tion depends on the choice of observers, which is the key difference from ordinary quantum

many-body systems. In ordinary holographic duality, bulk degrees of freedom (in the code

subspace) can be mapped to the boundary with an isometry, such that there is a single

quantum many-body system with a given Hilbert space which provides the “anchor point”

for the bulk theory. In general geometries, there is no built-in isometry structure, such that

correlation functions have to be described by superdensity operators. The superdensity op-

erator formalism automatically require a more fluid structure of Hilbert space definition.

Instead of a single quantum many-body system, we have a family of different quantum

many-body systems, depending on which regions we introduce ancilla at, which satisfy

certain consistency conditions with each other in overlapping regions. The quantum infor-

mation reconstruction is also more observer-dependent than the AdS/CFT case. Whether

a few qubits of quantum information can be reconstructed from a bigger region depends

on the observer’s access to that region. The entanglement island of a bulk region can be

destroyed if the observer try to access the island and the original region simultaneously.

There are a lot of new phenomena that we are observing in the tensor network models.

Understanding their counterpart in the gravity theory seems to require a new mathematical

framework beyond (unitary) many-body quantum mechanics.
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A Renyi entropy and correlation functions

To provide further physical understanding of the effective entropy, in this appendix we

present some operator identity that relates Renyi entropy with correlation functions in the

original (single copy) system.

For a region A with Hilbert space HA in a quantum system, we consider an orthonormal

basis of Hermitian operators Ta, a = 1, 2, . . . , D2
A. Ta satisfies

tr (TaTb) = δab,
∑
a

Tαβa T γδa = δαδδβγ (A.1)

The second equation can be rewritten as∑
a

Ta ⊗ Ta = XA (A.2)

with XA the swap operator acting on two copies of A. Therefore we can relate the second

Renyi entropy to correlators:

tr
(
ρ2
A

)
= tr (ρ⊗ ρXA) =

∑
a

tr (ρTa)
2 (A.3)

This discussion can be generalized to higher Renyi entropies, since the cyclic permu-

tation can be decomposed into pair swap operators:

XnA = XA,n−1,n . . . XA23XA12 (A.4)

as is illustrated in figure 22. This decomposition thus enables us to obtain the relation

e−S
(n)
A ≡

∑
a1,a2,...,an−1

〈Ta1〉〈Ta2Ta1〉 . . . 〈Tan−1Tan−2〉〈Tan−1〉 (A.5)

This relation tells us that in gravitational systems, if correlation functions on the right-

hand-side of eq. (A.5) are well-defined for an orthonormal basis of low energy QFT opera-

tors, the effective Renyi entropy S
(n)
A is well-defined. (Note that Ta only needs to form an

orthonormal basis, and does not need to generate a closed algebra.)

B Operator reconstruction map

For completeness, in this appendix we present the details of the operator reconstruction

map.9 Consider a quantum state consists of three parts (tensor factors of Hilbert space)

P,A,E. We assume the Hilbert space dimension satisfies DP < DA and the mutual

information between P and A is maximal: I(P : A) = 2 logDP . Without losing generality,

we take the quantum state to be a pure state |ψPAE〉, since we can always purify it by

enlarging E if that is not the case.

9For recent discussion on the operator reconstruction map in the context of black hole system, see [26,

56, 61–65].
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=
a1

a2

a3

Figure 22. Illustration of the decomposition of cyclic permutation operator XnA into a sum of

correlation functions.

For a pure state, we have the identity

I(P : A) + I(P : E) = I(P : AE) = 2S(P ) (B.1)

Therefore when I(P : A) is maximum I(P : A) = 2S(P ) = 2 logDP , we have I(P : E) = 0.

Consequently, tracing over A leads to a direct product state:

ρPE =

P

P E

E

A

A

=
1
Dp

P ⍴
E (B.2)

Using this fact, we can use the reduced density matrix ρPA and define the following re-

construction map M0 : HP ⊗ HP → HA ⊗ HA. Denote the spectral decomposition of the

reduced density matrix ρPA as

ρPA =
∑
n

λn |n〉 〈n| (B.3)

The map is defined by

M0 (φP ) = DP trP
∑

n, λn>0

(φP |n〉 〈n|)

≡ DP trPE
(
φPρ

−1
E |ψPAE〉 〈ψPAE |

)
= DP × P

ɸ

E

A

A

⍴
E
-1

p

(B.4)

Using eq. (B.2) one can prove that the map satisfies

M0(φP ) |ψPAE〉 = φP |ψPAE〉 (B.5)
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and

M0(φP )M0(ηP ) =M0(ηPφP ) (B.6)

More explicitly, this is proven pictorially in the following:

DP

P

ɸ

E

A

A

⍴
E
-1

p

=

ɸp

E A

(B.7)

M0(φP )M0(ηP ) = D2
P

P

ɸ

E

A

⍴
E
-1

p

P

η

E

A

⍴
E
-1

p

= DP P

ɸ

E

A

A

⍴
E
-1

p

ηp

(B.8)

Now we apply this recovery map to the superdensity operator in figure 18 (b). The

reduced density matrix of ρA1P2 in the superdensity operator is

ρA1P2 = ⍴
bP1

I C A

P2
B

A1

A2

(B.9)

When P is a small probe inside entanglement island I, as we discussed in the draft, the mu-

tual information I(P2 : A1) = 2 logDP is maximal. Therefore we can define the reconstruc-

tion map following the general prescription above. The remainder of the system P1, A2, B

and the purification of bulk QFT state ρb (if it is a mixed state) together plays the role of E.

However, one difference is that there is an extra transpose in mapping operators in ancilla
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P2 to operators acting in the original P system, as is illustrated in the following picture:

⍴
bP1

I C A

P2
B

A1

A2ɸp

=
⍴

bP1

I C A

P2
B

A1

A2
ɸ

p
T

(B.10)

Consequently, we can define the reconstruction map

M(φP ) =M0

(
φTP
)

(B.11)

This changes the convolution rule (B.6) to

M(φP )M(ηP ) =M(φP ηP ) (B.12)

It may seem that the two definitions M and M0 are just different conventions, but

there is an important difference. If one is given the state ρP2A1 , like in our discussion of

M0, then it determines a mapM0 with the convolution rule (B.6). Of course one can still

define M(φP ) =M0(φTP ), but the transpose map φP → φTP is basis dependent:

φTP =
∑
n,m

〈m|φP |n〉 |n〉 〈m| (B.13)

so one has to make an arbitrary choice. In the superdensity operator discussion, the

difference is that such a transpose map is provided by the ancilla coupled to P . The initial

state of the ancilla is a maximally entangled state which can be written as

|P1P2〉 = D
−1/2
P

∑
n

|n〉P1
|n〉P2

(B.14)

which defines the transpose map

φTP =
∑
n,m

〈m|P1
φP |n〉P1

|n〉P2
〈m|P2

(B.15)

Acting operator φTP on the ancilla P2 is equivalent to acting φP on P1, which is the input

state of the random projection at I. Therefore in the case we are considering, M(φP ) is

uniquely determined, which is independent from the choice of maximally entangled ancilla

states at I and A.
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The super-density operator is introduced as a tool, and we should apply it to the

original system without ancilla. Applying eq. (B.5) we obtain

I C A
B

M(ɸ )p

=

I C A
B

ɸ p

(B.16)

Thus by reconnecting the lines we obtain the statement in the original tensor network

correlation functions in eq. (4.32), or equivalently

I C A
B

ɸ p ɸ A

I C A
B

ηp

ηA

=

I C A
B

ɸ A

I C A
B

ηA

M(ɸ )p

M(η )p
(B.17)

The reconstructed operators M(φP ),M(ηP ) are always inserted closer to ρb than all ad-

ditional operators φA, ηA that act on A.
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