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1 Introduction

In general relativity, traversable wormholes are known to be forbidden by the average null

energy condition (ANEC) [2, 3]. In a recent work, Gao, Jafferis and Wall [4] proposed

that a traversable wormhole can be induced by turning on a coupling between the two

boundaries of the (anti-de Sitter) eternal black hole geometry. The coupling is nonlocal

from the bulk point of view, which makes it possible to violate the ANEC. From the

boundary point of view (in the sense of holographic duality), the eternal black hole geometry

corresponds to the thermal field double state [5, 6], which describes two entangled systems,

each has a thermal reduced density matrix. The traversable wormhole describes the fact

that scrambled quantum information in one system can be restored from the other system

by making use of the coupling and the pre-existing entanglement between them. This is

similar to quantum teleportation [7–16] and is also related to the Hayden-Preskill protocol

of recovering information from the black hole [17].

In the case of two-dimensional gravity, the dual theory of traversable wormhole has

been studied in the Sachdev-Ye-Kitaev (SYK) model [18–25]. The SYK model describes

N -Majorana fermions with random q/2-body coupling, and the low energy physics in the

large-N limit agrees with Jackiw-Teitelboim gravity [26, 27] coupled with matter fields.

By considering a thermal field double state of the SYK model, and turning on an instant

coupling between the two sides, the traversable wormhole physics can be realized [11, 12]. In

these models, the traversable wormhole remains open for a finite time, which depends on the

strength and time of the coupling term. In contrast, ref. [1] proposed an “eternal traversable

wormhole”, by considering two SYK models with a bilinear coupling, and studying the

ground state of the coupled model. By studying the low temperature limit and the large-

q limit of the SYK model, ref. [1] shows that the ground state of the coupled model is
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approximately the same as the thermal field double state of the (uncoupled) SYK model.

Having an eternal traversable wormhole means that a particle from one boundary can

reach the other boundary and will oscillate back and forth between the two boundaries.

The corresponding bulk geometry is a global AdS2 geometry, with two boundaries that are

invariant under the global AdS2 time translation. At finite temperature, the coupled SYK

model has a first order phase transition. The low temperature phase is the traversable

worm hole, while the high temperature phase can be interpreted as two geometrically

disconnected black holes (but with coupled matter fields). A generalization of eternal

traversable wormhole in four dimensions was discussed in ref. [28].

In this paper, we study the coupled SYK model beyond the low temperature limit.

Although the low energy effective theory approach can predict the first order phase transi-

tion [1], it cannot describe the behavior of matter fields at finite temperature. We expect

that particles cannot travel freely at finite temperature, since they scatter with each other.

Therefore even in the low temperature phase, the eternal oscillation between two bound-

aries is probably an approximation to the actual dynamics. Using the Schwinger-Keldysh

formalism1 [30], we derive the self-consistent equation for the spectral function matrix of

the coupled SYK model. By numerically solving the self-consistent equation, we study

the coupling and temperature dependence of the single-particle spectral, focusing on the

excitation energy and lifetime. We find that SYK models with small q and large q have

quite different finite temperature behavior. For small q, the low-temperature phase is well-

captured by weakly interacting dilute fermion gas with a temperature-dependent life time,

while the high temperature phase has a spectral function without quasiparticle peaks. In

the low temperature phase, the excitation energy is consistent with the prediction from

low energy effective theory results in ref. [1]. For large q, the spectral function show quasi-

particle peaks in both high-temperature and low-temperature phases. This is consistent

with the large-q solution which suggests that the two-point function in these two phases

are qualitatively the same. However, the quasi-particle energy and life time change discon-

tinuously across the phase transition.

The remainder of this paper is organized as follows. In section 2, we give a brief review

of the SYK model and coupled SYK model. In section 3, we use the Keldysh approach

to derive the self-consistent equation for spectral function and analyze the lifetime by

perturbation. Then we discuss the numerical results for q = 4 and q = 20 separately in

section 4 and 5. Finally, further discussions are presented in section 6.

2 Review of the coupled SYK model

The SYK model [22, 31] describes N Majorana fermions χi with random q/2 body inter-

actions. (Complex fermion version of this model has also been studied.) The Hamiltonian

is written as:

HSYK[χi] = (i)q/2
∑

1≤j1≤j2···≤jq

Jj1j2···jqχj1χj2 · · ·χjq . (2.1)

1This formalism has also been used to study the quench dynamics of the coupled SYK model [29].
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We take the convention that {χi, χj} = δij . Jj1j2···jq with different ji labels are independent

random Gaussian variables (up to anti-symmetrization) with zero mean and the following

variants: 〈
J2
j1···jq

〉
=

2q−1J 2(q − 1)!

qN q−1
. (2.2)

For βJ → ∞, the system has emergent conformal symmetry. At low temperature, the

low energy effect theory of this model is described by Schwarzian dynamics [23], which

is consistent with a holographic dual theory of dilaton gravity. The AdS2 metric can be

chosen as

ds2 =
−dt2 + dσ2

sin2 σ
. (2.3)

with σ ∈ (0, π). The dilaton field solution breaks the SL(2,R) isometry of AdS2 to a boost

symmetry. The boundary is set by a constant dilaton value, which corresponds to the curves

cos t

sinσ
=

1

ε
(2.4)

The two boundaries have finite distance with each other, but remain space-like separated,

which represent two systems that are entangled but not coupled.

On comparison, we can consider the same AdS2 geometry with the boundary at

sinσ = ε (2.5)

which breaks the SL(2,R) symmetry to time translation along t direction. This is called

global AdS2 geometry, which is an “eternal traversible wormhole” because the two bound-

aries are causally connected.

It is not possible to realize such a traversible wormhole geometry without violating the

average null energy condition [2, 3]. As is Shown by the work of Gao-Jafferis-Wall [4], it

is possible to violate the ANEC and create a traversible wormhole with a finite lifetime by

introducing a coupling between the two boundaries. The corresponding physics in SYK

model has been discussed in refs. [11, 12].

Based on these developments, ref. [1] proposed that the eternal traversible wormhole

geometry is dual to the ground state of the following coupled SYK Hamiltonian:

H = HSYK

[
χLi
]

+ (−1)
q
2HSYK

[
χRi
]

+Hint, Hint = iµ
∑
i

χLi χ
R
i . (2.6)

Without losing generality, we take µ > 0. In the zero-temperature limit, for small

interaction strength µ � J , ref. [1] assumed that the low-energy physics is still governed

by two reparametrization modes tl(u) and tr(u) [1]. In real-time, the effective action is the

sum of the Schwarzian term and the coupling term:

S = N

∫
du

−αSJ
({

tan
tl(u)

2
, u

}
+

{
tan

tr(u)

2
, u

})
+ µ

c∆

(2J )2∆

[
t′l(u)t′r(u)

cos2 tl(u)−tr(u)
2

]∆
 .

(2.7)
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Here {f(u), u} is the Schwarzian derivation defined as {f(u), u} = f ′′′

f ′ −
3
2

(
f ′′

f ′

)2
. The

saddle point tl(u) = tr(u) = t′u gives the Green’s function of fermions:

〈
χLi (u)χLi (0)

〉
=
〈
χRi (u)χRi (0)

〉
= c∆e

−iπ∆

[
t′

2J sin t′(u−iε)
2

]2∆

, (2.8)

〈
χLi (u)χRi (0)

〉
= −

〈
χRi (u)χLi (0)

〉
= ic∆

[
t′

2J cos t
′u
2

]2∆

, (2.9)

with

c∆ =
1

2

(
(1− 2∆)

tanπ∆

π∆

)∆

,

(
t′

J

)2(1−∆)

=
µ∆

2JαS
2c∆

22∆
.

Since the real time Green’s function is oscillating, we expect the system to be gapped.

By expanding eq. (2.8) in Fourier series, we find the following discrete energy spectrum of

fermions:

E(m)
n = t′(∆ + n), (2.10)

which is the same as a bulk field in AdS2 space-time. The higher frequency modes have

smaller spectral weight. There are also gravitational sector of the spectrum, described by

the fluctuation of tl(u) and tr(u), which can be calculated to be:

E(g)
n = t′

√
2(1−∆))

(
n+

1

2

)
. (2.11)

Comparing eq. (2.10) and eq. (2.11) for ∆ = 1/q, we find that the gap of the system is

determined by the matter field Eg = t′∆.

Upon increasing temperature of the coupled system, the coupling term between two

sides becomes less important (in the renormalization group sense), and the system would

ultimately goes back to two weakly coupled black holes. A first-order transition at Tc is

found to separate these two phases by either large q expansion or numerical calculation

for finite q, which is an analogy of Hawking-Page transition in higher dimension. In the

large-q expansion, a third phase which is unstable in canonical ensemble is also found.

3 Self-consistent equation for the spectral function

In this work we focus on the finite temperature behavior of the spectral function of the

coupled SYK model, mainly around the transition temperature Tc. To derive the self-

consistent equation for the spectral function, we directly consider the Keldysh Contour

in real-time [30] with a forward evolution contour and a backward evolution contour as

shown in figure 1. Consequently we have two copies of field χLi,± and χRi,±. The generating

function is defined as:

Z =

∫
dJP (J)

∫
DχL+DχR+DχL−DχR− exp

(
i

∫
dtL

)
, (3.1)

L =
∑
i

1

2
χai,η

(
(Ĝ0)−1

)ab
ηξ
χai,ξ −H[χLi,+, χ

R
i,+] +H[χLi,−, χ

R
i,−]. (3.2)
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Figure 1. A sketch for the Keldysh contour with a forward and backward evolution. There are

two copies of fields χL
i,± and χR

i,±.

Here η, ξ = ± and a, b = L or R. Ĝ0 is the bare Green’s function for J = µ = 0, defined as:

Ĝabηξ(t) = −i
〈
χai,η(t)χ

b
i,ξ(0)

〉
=

(
GT,ab(t) G<,ab(t)

G>,ab(t) GT̃ ,ab(t)

)
ηξ

. (3.3)

Due to unitarity, all information about two-point function is contained in G> and G<.

Moreover, for Majorana fermions, we have the relation G>(t) = (G<(t))∗. For sim-

plicity, we assume that q = 4n with n an integer. The expression for the self-energy

Σ̂ = (ĜJ=0)−1 − Ĝ−1 is simple in this basis:

Σ̂ab
ηξ(t) ≡

(
ΣT,ab
χ (t) −Σ<,ab

χ (t)

−Σ>,ab
χ (t) ΣT̃ ,ab

χ (t)

)
ηξ

= −J
2

q
ηξ
[
2Gabηξ(t)

]q−1
(3.4)

We are interested in the spectral function ρ̂(ω) of the system, which is now a ma-

trix in L/R space. It can be determined from the traditional retarded Green’s function

GabR (t) = −iθ(t)
〈
{χai (t), χbi(0)}

〉
by:

ρ̂(ω) = − 1

2πi
(GR − (GR)†) (3.5)

The relation between Ĝ in the ± basis and GR can be determined by standard Keldysh

rotation, which gives:

GabR (t) = θ(t)(G>,ab(t)−G<,ab(t)). (3.6)

Similarly, the self-energy

ΣR = (GR,J=0)−1 −G−1
R = (ω + iε)I + µσy −G−1

R (3.7)

is also given as:

Σab
R (t) = θ(t)(Σ>,ab(t)− Σ<,ab(t)) = −θ(t)J

2

q

[
(2G>,ab(t))q−1 − (2G<,ab(t))q−1

]
. (3.8)

In thermal equilibrium, all two point correlators are just functional of ρ̂(ω). We have:

G>,ab(ω) = −iρ̂ab(ω)nF (−ω). (3.9)
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We could then numerically solve eq. (3.5), eq. (3.7), eq. (3.8) and eq. (3.9) iteratively.

Before presenting the numerical results, let’s consider what should happen in the low-

temperature limit. At the zero-temperature limit eq. (2.8) and eq. (2.9), the spectral

function of the system should contain δ-function peaks with zero width, which corresponds

to well-defined quasiparticles with infinite lifetime. However, at finite temperature, there

should be scattering between quasi-particles and the life-time should become finite.

To estimate the quasiparticle lifetime, we focus on the mode near ω = Eg and

approximate

G
(0)
R (ω)−1 =

(
ω + iΓ −iEg
iEg ω + iΓ

)
, (3.10)

with Γ the inverse quasiparticle lifetime. Now we would like to compute Γ approximately

using the self-consistent equation.

According to eq. (3.5), this Green’s function corresponds to the spectral function

ρ̂(0)(ω) =
1

2

(
δΓ(ω − Eg) + δΓ(ω + Eg) iδΓ(ω − Eg)− iδΓ(ω + Eg)

−iδΓ(ω − Eg) + iδΓ(ω + Eg) δΓ(ω − Eg) + δΓ(ω + Eg)

)
(3.11)

with δΓ(x) = − 1
π Im 1

ω+iΓ = 1
π

Γ
ω2+Γ2 .

In the limit Γ� Eg, Egβ � 1, the self-energy in eq. (3.8) is approximately

Σab
R (t) ∝ J 2 (nF (Eg))

( q
2
−1) (nF (−Eg))

q
2 exp(−iEgt− (q − 1)Γt)

∼ J 2 exp
(
−βEg

(q
2
− 1
)
− iEgt− (q − 1)Γt

)
, (3.12)

Σab
R (ω) ∼ J 2

ω − Eg + i(q − 1)Γ
exp

(
−βEg

(q
2
− 1
))

. (3.13)

The imaginary part of this self-energy at ω = Eg should be Γ, which means

Γ ∼ ImΣab
R (ω) ∝ J 2 exp

(
−βEg

(q
2
− 1
))

/Γ.

Γ ∼ J exp

(
−βEg

(q/2− 1)

2

)
. (3.14)

Here we have neglected some overall q-dependent factors in the inverse life time, and

focused on its temperature dependence. This result can also be derived using a semi-

classical Boltzmann equation [32]. Physically, the inverse lifetime is determined by density

of other quasiparticles around and their interaction J .

In the next two sections, we will analyze the numerical solution for small q and large

q, respectively, and compare it with the estimation here.

4 Spectral functions for small q

We first present the result for small q. To be concrete, we choose q = 4 as an example.

We first fix µ/J = 0.1. According to [1], there would be a first order transition near

βJ ≈ 35. In figure 2, we show the spectral function and Green’s functions for βJ = 40

with wormhole geometry (a1) and βJ = 30 with two black holes geometry (b1).
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Figure 2. The spectral function and the Green’s function for q = 4 and µ = 0.1J . (a1-a3).

The spectral function ρLL(ω), the real-time Green’s function Re G>,LL(t) and the imaginary-time

Green’s function Gab(τ) for βJ = 40. The system is in the wormhole phase. (b1-b3). The numerical

results of the same quantities for βJ = 30. The system is in the two back holes phase.

In the first case βJ = 40, the spectral function is a superposition of narrow peaks

with small but finite width, suggesting the existence of well-defined quasi-particles with

finite life-time. As a result, the real time Green’s function G>,LL(t) (as shown in (figure 2

a2)) oscillates rapidly for short time but eventually decays in the long-time limit. This is

different from the zero-temperature conformal approximation (2.8) without any damping.

We could also study the imaginary-time Green’s function defined as:

Ĝab(τ) =
〈
Tτχ

a
i (τ)χbi(0)

〉
=

(
GLL(τ) GLR(τ)

GRL(τ) GRR(τ)

)
, (4.1)

which is related to the spectral function by:

Ĝ(iωn) = −
∫
dω

ρ̂(ω)

iωn − ω
. (4.2)

Here ωn = (2n+1)π
β is the Matsubara frequency for fermions. The result for GLL(τ) and

−iGLR(τ) is shown in figure 2 (a3), which shows rapid exponential decay, consistent with

the presence of an energy gap. We have also checked that our result matches a direct

imaginary-time numerics to high accuracy.

For βJ = 30 in the high-temperature phase, the numerical results are very different.

The spectral function shown in figure 2 (b1) shows a continuous spectrum similar to that

of a single SYK model, except a small splitting near ω ∼ 0, due to the relevant coupling

µ. As a result, we find G>,LL(t) decays rapidly while Gab(τ) decays much slower than the

previous case.
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Figure 3. Numerical results for q = 4 and µ/J = 0.1. (a). The temperature dependence of the

position ω(i) of the first three peaks. (b). The temperature dependence of the decay rate Γ for the

lowest mode. The red line represents an exponential fit.

Since the high temperature phase is more-or-less similar to two decoupled SYK models,

we now focus on the low-temperature phase. For fixed µ/J = 0.1, we study the temperature

dependence of the energy of the first three peaks ω(i), i = 1, 2, 3. As shown in figure 3 (a),

we find that they are almost independent of temperature, even when the system is close to

the transition point.

To study the life-time of quasi-particles, we define the width Γ(i) of i-th peak by

ρLL(ω(i)−Γ(i)) = ρLL(ω(i))/2. We focus on the lowest peak with ω(1) ≡ Eg. (According to

our estimation (3.14), the higher peaks will have an exponentially smaller width, which is

more difficult to study numerically.) In figure 3 (b), we show the numerical results for Γ(1).

Using first seven points, we fit the expression: Γ(1) = a0 exp(−c0/x) where x = 1/βJ . We

find c0 = ω(1) × 0.535, close to the analytical prediction. We also check this result holds

for µ = 0.05J . In gravity perspective, this suggests that in the low-temperature phase the

system may be identified as weakly interacting bulk fields in global AdS2 background.

Now we fix the temperature and study the µ/J dependence of the energy levels ω(i).

The convergency for iteration is bad deep in the wormhole phase, because the spectral

function becomes exponentially narrow. As a result, we only focus on the parameter

regions near the phase transition. Fortunately, as we shown in figure 3 (a), there is almost

no temperature dependence for ω(i). We could then put numerical results with different

βJ together.

In figure 4 (a), we plot the positions of first three peaks ω(i) as a function of µ/J . We

take βJ = 80 for µ/J < 0.05, while βJ = 60 for other points. To compare with the

analytical result eq. (2.10), we fit ω(i) = aix
ci , with x = µ/J by using the low-temperature

data. We find the position of the first mode corresponds to c1 ∼ 0.675, which is close to the

analytical result t′ ∝ µ2/3. However, the other two modes have c2 ∼ 0.545 and c3 ∼ 0.520,

which clearly deviate from the low temperature effective theory prediction. In figure 4 (b),

we plot the energy ratios for these first three peaks as a function of µ/J . In the limit of

µ/J → 0, the analytical result eq. (2.10) predict ω(1) : ω(2) : ω(3) = 1 : 5 : 9. Our numerical

results are consistent with this prediction, while the second peak approaches 5ω(1) much

– 8 –
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Figure 4. Numerical results for q = 4: (a). Positions of the first three peaks ω(i) as a function

of µ/J . The line is a power-law fit. We take βJ = 80 for µ/J < 0.05, while βJ = 60 for other

points. (b). energy ratio for the first three peaks as a function of µ/J . The three dots at µ/J = 0

are the theoretical values 1, 5, 9.

quicker than higher modes. On the contrary, the energy ratios approaches 1 : 3 : 5 in the

large µ/J limit where the interaction is a perturbation, which are exactly the energy ratios

for free fermion states with 1, 3, 5 particles.

5 Spectral functions at large q

In the large q limit, ref. [1] shows that the first order phase transition occurs in a temper-

ature range βJ ∝ q log q. In this region, the large q solution leads to an exactly periodic

Green’s function in real time, such that the lifetime of the quasiparticles stays infinite. In

this section, we numerically study the spectral function for q = 20, and compare it with

the q = 4 case.

According to eq. (2.8) and eq. (2.10), in the zero-temperature and µ/J → 0 limit, the

second peak locates at ω(2) = (q+ 1)ω(1), and its weight is suppressed by 1/q. As a result,

here we could just focus on the lowest mode.

As shown in figure 5 (a), the low temperature phase is similar to the q = 4 case, with

an oscillating Green’s function in real time and an exponentially decaying Green’s function

in imaginary time. We take µ = 0.5J /q and βJ = 120. The width of the peak is below

the numerical resolution limit set by cutoff ε in eq. (3.7).

The high temperature phase is very different from the q = 4 case. The numerical result

for βJ = 80 is shown in figure 5 (b). After the first order transition, we only find a jump

for ω(1) and Γ(1). There is no qualitative difference from the low-energy phase. We also

check that in the high temperature case the width of the peak is larger than the numerical

resolution limit ε.

The evolution of ω(1) for both phases and Γ(1) for the high temperature phase is shown

in figure 6. Close to the transition point, we find the gap of the low temperature phase drops

a little. After the transition, the gap is almost a constant. Since the peak is almost zero-

width, the low-energy phase is described by nearly non-interacting bulk fermions in global

– 9 –
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Figure 5. The spectral function and the Green’s function for q = 20 and µ = 0.5J /q. (a1-a3).

The spectral function ρLL(ω), the real-time Green’s function Re G>,LL(t) and the imaginary-time

Green’s function Gab(τ) for βJ = 120. The system is in the wormhole phase. (b1-b3). The

numerical results of the same quantities for βJ = 80. The system is in the two back holes phase.

Figure 6. Numerical results for µ = 0.5J /q with q = 20: (a). The temperature dependence of the

energy of the first mode, (b). Γ(1) as a function of βJ , the red line is an exponential fit. (c). The

behavior of ΣLL
R (ω) for βJ = 80.

AdS2 background. In the high temperature phase, the quasi-particle has finite life-time,

which is shown in figure 6 (b). However, an exponential fit gives Γ(1) ∼ exp(−1.84ω/βJ ),

different from the analytical approximation (3.14). This suggests the interaction is strong

and the approximation with only the on-shell processes is not applicable. In other words,

the excitation number is not conserved for relevant scattering processes. This can also be

seen from directly study the self-energy as shown in (c), where the peak with ω ∼ 3Eg
that correspond to an off-shell process is not well-separated from the on-shell peak around

ω ∼ Eg.

– 10 –
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6 Conclusion

In this work, we study the finite temperature spectral function of the coupled SYK model

numerically by solving the Schwinger-Dyson equation on the Keldysh contour.

For small q = 4, in the low-temperature wormhole phase, we find the system can be

described by a weakly interacting Fermion in global AdS2. The spectrum of the fermion

consists of sharp quasi-particle peaks with finite lifetime, which is very different from the

high temperature phase without quasi-particles. The energy of these modes is almost

independent of temperature and their ratio approaches the AdS2 prediction in the small µ

limit. The inverse life time of quasi-particles is consistent with contributions from on-shell

scattering processes without the change of particle number, which vanishes exponentially

in the low-temperature limit.

For the large q = 20, we find that the high temperature phase behaves similar to the

low temperature phase, with finite life-time quasi-particles. Across the phase transition,

the energy levels experience a jump. In the high temperature phase, the fermions are

strongly interacting and the off-shell scattering becomes significant.
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A Numerical details

In this appendix, we describe our numerical method to solve eq. (3.5), eq. (3.7), eq. (3.8)

and eq. (3.9) iteratively.

In numerics, we set β = 2π and the coupling strength βJ is tuned by changing J .

We take finite cutoff in both the time and frequency domain. As an example, for q = 4

we take the time domain cutoff Λt = 240 and the frequency domain cutoff Λω = 35. A

moderate change of the cutoff would not affect the numerical result. We then discretize the

function in both the time and frequency domain. To increase the accuracy, we consider an

inhomogeneous discretization using the Gaussian quadrature rule with an order of 2000.

After the discretization, all functions become vectors, where the Fourier transformation

can be performed by multiplying a matrix.

In the program, we firstly guess the spectral function by using the solution with J = 0

and finite ε. We then begin the iteration by compute (3.9) using the input spectral function

ρin. Performing the Fourier transformation, we get the Green’s function in the time domain

and thus (3.8). An inverse Fourier transformation then leads to (3.7) and the new retarded

Green’s function, whose imaginary part gives new spectral function ρout. The input spectral
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function for the next round is then a combination 0.9ρin + 0.1ρout. The iteration proceeds

until the difference between ρout and ρin reaches the desired accuracy. Additional tricks are

used to stabilize the numerics: for each ρout, we average over the nearest three points to

reduce the effect of a finite cutoff. We also impose the symmetry that ρLL(ω) and ρLL(ω)

are symmetric functions, while ρRL(ω) and ρLR(ω) are anti-symmetric.

After solving the spectral function, we could compare the imaginary-time Green’s

function calculated by using the spectral function (4.2) to that from direct imaginary time

numerics [1]. We see a nearly perfect match between two results, which validates our

numerical methods.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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