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ABSTRACT: Sachdev-Ye-Kitaev (SYK) model, which describes N randomly interacting
Majorana fermions in 041 dimension, is found to be an solvable UV-complete toy model
for holographic duality in nearly AdS, dilaton gravity. Ref. [1] proposed a modified model
by coupling two identical SYK models, which at low-energy limit is dual to a global AdSs
geometry. This geometry is an “eternal wormhole” because the two boundaries are causally
connected. Increasing the temperature drives a Hawking-Page like transition from the
eternal wormhole geometry to two disconnected black holes with coupled matter field. To
gain more understanding of the coupled SYK model, in this work, we study the finite
temperature spectral function of this system by numerical solving the Schwinger-Dyson
equation in real-time. We find in the low-temperature phase the system is well described
by weakly interacting fermions with renormalized single-particle gap, while in the high
temperature phase the system is strongly interacting and the single-particle peaks merge.
We also study the ¢ dependence of the spectral function.
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1 Introduction

In general relativity, traversable wormholes are known to be forbidden by the average null
energy condition (ANEC) [2, 3]. In a recent work, Gao, Jafferis and Wall [4] proposed
that a traversable wormhole can be induced by turning on a coupling between the two
boundaries of the (anti-de Sitter) eternal black hole geometry. The coupling is nonlocal
from the bulk point of view, which makes it possible to violate the ANEC. From the
boundary point of view (in the sense of holographic duality), the eternal black hole geometry
corresponds to the thermal field double state [5, 6], which describes two entangled systems,
each has a thermal reduced density matrix. The traversable wormhole describes the fact
that scrambled quantum information in one system can be restored from the other system
by making use of the coupling and the pre-existing entanglement between them. This is
similar to quantum teleportation [7—16] and is also related to the Hayden-Preskill protocol
of recovering information from the black hole [17].

In the case of two-dimensional gravity, the dual theory of traversable wormhole has
been studied in the Sachdev-Ye-Kitaev (SYK) model [18-25]. The SYK model describes
N-Majorana fermions with random ¢/2-body coupling, and the low energy physics in the
large-N limit agrees with Jackiw-Teitelboim gravity [26, 27] coupled with matter fields.
By considering a thermal field double state of the SYK model, and turning on an instant
coupling between the two sides, the traversable wormhole physics can be realized [11, 12]. In
these models, the traversable wormhole remains open for a finite time, which depends on the
strength and time of the coupling term. In contrast, ref. [1] proposed an “eternal traversable
wormhole”, by considering two SYK models with a bilinear coupling, and studying the
ground state of the coupled model. By studying the low temperature limit and the large-
g limit of the SYK model, ref. [1] shows that the ground state of the coupled model is



approximately the same as the thermal field double state of the (uncoupled) SYK model.
Having an eternal traversable wormhole means that a particle from one boundary can
reach the other boundary and will oscillate back and forth between the two boundaries.
The corresponding bulk geometry is a global AdSs geometry, with two boundaries that are
invariant under the global AdS, time translation. At finite temperature, the coupled SYK
model has a first order phase transition. The low temperature phase is the traversable
worm hole, while the high temperature phase can be interpreted as two geometrically
disconnected black holes (but with coupled matter fields). A generalization of eternal
traversable wormhole in four dimensions was discussed in ref. [28].

In this paper, we study the coupled SYK model beyond the low temperature limit.
Although the low energy effective theory approach can predict the first order phase transi-
tion [1], it cannot describe the behavior of matter fields at finite temperature. We expect
that particles cannot travel freely at finite temperature, since they scatter with each other.
Therefore even in the low temperature phase, the eternal oscillation between two bound-
aries is probably an approximation to the actual dynamics. Using the Schwinger-Keldysh
formalism! [30], we derive the self-consistent equation for the spectral function matrix of
the coupled SYK model. By numerically solving the self-consistent equation, we study
the coupling and temperature dependence of the single-particle spectral, focusing on the
excitation energy and lifetime. We find that SYK models with small ¢ and large g have
quite different finite temperature behavior. For small ¢, the low-temperature phase is well-
captured by weakly interacting dilute fermion gas with a temperature-dependent life time,
while the high temperature phase has a spectral function without quasiparticle peaks. In
the low temperature phase, the excitation energy is consistent with the prediction from
low energy effective theory results in ref. [1]. For large g, the spectral function show quasi-
particle peaks in both high-temperature and low-temperature phases. This is consistent
with the large-q solution which suggests that the two-point function in these two phases
are qualitatively the same. However, the quasi-particle energy and life time change discon-
tinuously across the phase transition.

The remainder of this paper is organized as follows. In section 2, we give a brief review
of the SYK model and coupled SYK model. In section 3, we use the Keldysh approach
to derive the self-consistent equation for spectral function and analyze the lifetime by
perturbation. Then we discuss the numerical results for ¢ = 4 and ¢ = 20 separately in
section 4 and 5. Finally, further discussions are presented in section 6.

2 Review of the coupled SYK model

The SYK model [22, 31] describes N Majorana fermions x; with random ¢/2 body inter-
actions. (Complex fermion version of this model has also been studied.) The Hamiltonian
is written as:

Hsyk[al = (07 D Jjjega X Xoo *** Xig- (2.1)
1< 1 <ja-<Jq

IThis formalism has also been used to study the quench dynamics of the coupled SYK model [29].



We take the convention that {x;, x;} = dij. Jjj,-j, with different j; labels are independent
random Gaussian variables (up to anti-symmetrization) with zero mean and the following
variants:

20-172(q — 1)!
2 —
For 8J — oo, the system has emergent conformal symmetry. At low temperature, the
low energy effect theory of this model is described by Schwarzian dynamics [23], which
is consistent with a holographic dual theory of dilaton gravity. The AdSs metric can be
chosen as
—dt? + do*
ds? =~ 4o (2.3)

sin? o

with o € (0,7). The dilaton field solution breaks the SL(2,R) isometry of AdSs to a boost

symmetry. The boundary is set by a constant dilaton value, which corresponds to the curves

t 1
cost 1 (2.4)

sin o €

The two boundaries have finite distance with each other, but remain space-like separated,
which represent two systems that are entangled but not coupled.
On comparison, we can consider the same AdSs geometry with the boundary at

sino = e (2.5)

which breaks the SL(2,R) symmetry to time translation along ¢ direction. This is called
global AdSy geometry, which is an “eternal traversible wormhole” because the two bound-
aries are causally connected.

It is not possible to realize such a traversible wormhole geometry without violating the
average null energy condition [2, 3]. As is Shown by the work of Gao-Jafferis-Wall [4], it
is possible to violate the ANEC and create a traversible wormhole with a finite lifetime by
introducing a coupling between the two boundaries. The corresponding physics in SYK
model has been discussed in refs. [11, 12].

Based on these developments, ref. [1] proposed that the eternal traversible wormhole
geometry is dual to the ground state of the following coupled SYK Hamiltonian:

H = Hgyk [xF] + (—1)2 Hgyk [X,R] + Hint,  Hint = iuZXZ'LXzR- (2.6)
;

Without losing generality, we take p > 0. In the zero-temperature limit, for small
interaction strength p < J, ref. [1] assumed that the low-energy physics is still governed
by two reparametrization modes t;(u) and ¢,(u) [1]. In real-time, the effective action is the
sum of the Schwarzian term and the coupling term:

A
B ag ti(u) tr(u) N ty(u)ty (u)
s a5 ({5t o {0} ) v [”“

(2.7)
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Here {f(u),u} is the Schwarzian derivation defined as {f(u),u} = J}—, -3 <%) . The

saddle point t;(u) = t.(u) = t'u gives the Green’s function of fermions:

2A
) '
O ()xi (0)) = (X (w)x[(0)) = cae™™ [mt(u_)] : (2.8)
2
y 2A
<X1L(u) f(0)> = <Xﬁ(U)XzL(O)> =ica [W] ) (2.9)
with A 2(1-)
1 tanTA t’ A 2ca
a=3 (“‘m) A ) : (y) = 3705 258"

Since the real time Green’s function is oscillating, we expect the system to be gapped.
By expanding eq. (2.8) in Fourier series, we find the following discrete energy spectrum of
fermions:

E™ = (A +n), (2.10)

n

which is the same as a bulk field in AdS2 space-time. The higher frequency modes have
smaller spectral weight. There are also gravitational sector of the spectrum, described by
the fluctuation of #;(u) and ¢,(u), which can be calculated to be:

EYW =+.\/2(1 - A)) (n + ;) : (2.11)

Comparing eq. (2.10) and eq. (2.11) for A = 1/q, we find that the gap of the system is
determined by the matter field E, = t/A.

Upon increasing temperature of the coupled system, the coupling term between two
sides becomes less important (in the renormalization group sense), and the system would
ultimately goes back to two weakly coupled black holes. A first-order transition at 7T, is
found to separate these two phases by either large ¢ expansion or numerical calculation
for finite g, which is an analogy of Hawking-Page transition in higher dimension. In the
large-q expansion, a third phase which is unstable in canonical ensemble is also found.

3 Self-consistent equation for the spectral function

In this work we focus on the finite temperature behavior of the spectral function of the
coupled SYK model, mainly around the transition temperature 7.. To derive the self-
consistent equation for the spectral function, we directly consider the Keldysh Contour
in real-time [30] with a forward evolution contour and a backward evolution contour as
shown in figure 1. Consequently we have two copies of field Xfi and Xf”i. The generating
function is defined as:

Z= / dJP(J) / DXL DXEDYEDxE exp <z / dtL> , (3.1)

1 Ane 1 ab
L=37 5xty ((E71) e = Hxke xdl] + B XL (32)
2
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Figure 1. A sketch for the Keldysh contour with a forward and backward evolution. There are
two copies of fields Xfi and x7%;.

Here n,6 = £ and a,b = L or R. GV is the bare Green’s function for J = p =0, defined as:

GT’ab(t) G<’ab(t)>
né

G (t) = —i <x§ﬁn(t)x?,g(o)> = (Gm (1) GTab() (3.3)

Due to unitarity, all information about two-point function is contained in G~ and G<.
Moreover, for Majorana fermions, we have the relation G~ (t) = (G<(t))*. For sim-
plicity, we assume that ¢ = 4n with n an integer. The expression for the self-energy
3 = (Gy—o)~! — G~ is simple in this basis:

. %) -2 (t) J? g-1
ab . X ~X _ ab
2o (1) = (—Z;’“b(t) ST ) e [QGng(t)} (3.4)

We are interested in the spectral function p(w) of the system, which is now a ma-
trix in L/R space. It can be determined from the traditional retarded Green’s function

GR(t) = —if(t) ({x{ (1), x¢(0)}) by:

(@) = ~5—(Gr ~ (@r)) (35)

X

The relation between G in the % basis and G can be determined by standard Keldysh
rotation, which gives:

GE () = 0(t)(G™™(t) — G=(t)). (3.6)
Similarly, the self-energy
Yk = (Grg=o)' =Gy = (w+ie)l + poy — Gp' (3.7)
is also given as:
SH () = 0(1) (57 (1) — 2<(1) = —9<t>‘z2 (267 (1)1t — (2G<(1)7]| . (3.8)

In thermal equilibrium, all two point correlators are just functional of p(w). We have:

G (W) = —ip®(w)np(—w). (3.9)



We could then numerically solve eq. (3.5), eq. (3.7), eq. (3.8) and eq. (3.9) iteratively.
Before presenting the numerical results, let’s consider what should happen in the low-
temperature limit. At the zero-temperature limit eq. (2.8) and eq. (2.9), the spectral
function of the system should contain J-function peaks with zero width, which corresponds
to well-defined quasiparticles with infinite lifetime. However, at finite temperature, there
should be scattering between quasi-particles and the life-time should become finite.

To estimate the quasiparticle lifetime, we focus on the mode near w = E, and
approximate
_ +i' —iFE
GOyt = 9], 3.10
r () iE, w+il (3.10)

with I" the inverse quasiparticle lifetime. Now we would like to compute I' approximately
using the self-consistent equation.
According to eq. (3.5), this Green’s function corresponds to the spectral function

ﬁ(o) (W) = 1 or(w — Eg) + or(w + Eg)  idr(w — Eg) — idp(w + Eg) (3.11)
2 —iér(w — Eg) + i5r(w + Eg) (5{‘(&) — Eg) + 5p(w + Eg)
In the limit I' < Ey, E,6 > 1, the self-energy in eq. (3.8) is approximately
SR (1) o« T* (np(Bg)) 2™ (np(~Ey)? exp(=iEyt — (¢ = 1)T?)
2 _ T 1\ Bt — (g —
J“exp ( BE, (2 1) iEqgt — (q 1)I‘t) , (3.12)
J? q
Y% (w) ~ —BE, (=—1)). 1
7 w) w—Eg+i(q—1)FeXp( p 9(2 )) (3.13)
The imaginary part of this self-energy at w = E; should be I', which means
ab 2 _ g _
'~ Im¥% (w) < J exp( BE, (2 1)) JT.
2—-1
T ~ Jexp <—BE9(Q/2)> . (3.14)

Here we have neglected some overall g-dependent factors in the inverse life time, and
focused on its temperature dependence. This result can also be derived using a semi-
classical Boltzmann equation [32]. Physically, the inverse lifetime is determined by density
of other quasiparticles around and their interaction 7.

In the next two sections, we will analyze the numerical solution for small ¢ and large
q, respectively, and compare it with the estimation here.

4 Spectral functions for small g

We first present the result for small ¢. To be concrete, we choose ¢ = 4 as an example.
We first fix pu/J = 0.1. According to [1], there would be a first order transition near
BJ =~ 35. In figure 2, we show the spectral function and Green’s functions for 57 = 40
with wormhole geometry (a;) and SJ = 30 with two black holes geometry (by).
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Figure 2. The spectral function and the Green’s function for ¢ = 4 and p = 0.17. (aj-ag).
The spectral function pL(w), the real-time Green’s function Re G>'L(¢) and the imaginary-time
Green’s function G (1) for BJ = 40. The system is in the wormhole phase. (b;-bz). The numerical
results of the same quantities for 57 = 30. The system is in the two back holes phase.

In the first case 8 J = 40, the spectral function is a superposition of narrow peaks
with small but finite width, suggesting the existence of well-defined quasi-particles with
finite life-time. As a result, the real time Green’s function G>¥(t) (as shown in (figure 2
ag)) oscillates rapidly for short time but eventually decays in the long-time limit. This is
different from the zero-temperature conformal approximation (2.8) without any damping.
We could also study the imaginary-time Green’s function defined as:

. LL(1y QLR (;
G (r) = (T (rl(0)) = (gRL§§ gRRED , (4.1)

which is related to the spectral function by:
Gliwy) = —/dwﬁ(w). (4.2)
Wy, — W

(2n+1)w

Here w,, = is the Matsubara frequency for fermions. The result for GF(7) and
—iGL (1) is shown in figure 2 (ag), which shows rapid exponential decay, consistent with
the presence of an energy gap. We have also checked that our result matches a direct
imaginary-time numerics to high accuracy.

For 57 = 30 in the high-temperature phase, the numerical results are very different.
The spectral function shown in figure 2 (b;) shows a continuous spectrum similar to that
of a single SYK model, except a small splitting near w ~ 0, due to the relevant coupling
. As a result, we find G>L(t) decays rapidly while G(7) decays much slower than the

previous case.
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Figure 3. Numerical results for ¢ = 4 and p/J = 0.1. (a). The temperature dependence of the
position w(® of the first three peaks. (b). The temperature dependence of the decay rate I' for the
lowest mode. The red line represents an exponential fit.

Since the high temperature phase is more-or-less similar to two decoupled SYK models,
we now focus on the low-temperature phase. For fixed /7 = 0.1, we study the temperature
dependence of the energy of the first three peaks w®), i = 1,2, 3. As shown in figure 3 (a),
we find that they are almost independent of temperature, even when the system is close to
the transition point.

To study the life-time of quasi-particles, we define the width I' of i-th peak by
pFE(w® —T @) = pLL(w®) /2. We focus on the lowest peak with w(!) = E,. (According to
our estimation (3.14), the higher peaks will have an exponentially smaller width, which is
more difficult to study numerically.) In figure 3 (b), we show the numerical results for T'(1).
Using first seven points, we fit the expression: T'") = g exp(—cy/x) where z = 1/87. We
find ¢g = w x 0.535, close to the analytical prediction. We also check this result holds
for u = 0.057. In gravity perspective, this suggests that in the low-temperature phase the
system may be identified as weakly interacting bulk fields in global AdS, background.

Now we fix the temperature and study the p/J dependence of the energy levels w®,
The convergency for iteration is bad deep in the wormhole phase, because the spectral
function becomes exponentially narrow. As a result, we only focus on the parameter
regions near the phase transition. Fortunately, as we shown in figure 3 (a), there is almost
no temperature dependence for w®. We could then put numerical results with different
BJ together.

In figure 4 (a), we plot the positions of first three peaks w® as a function of p/.J. We
take 8J = 80 for u/J < 0.05, while 3J = 60 for other points. To compare with the
analytical result eq. (2.10), we fit w® = q;x%, with z = w1/ J by using the low-temperature
data. We find the position of the first mode corresponds to ¢; ~ 0.675, which is close to the
analytical result ¢ o u2/3. However, the other two modes have ¢y ~ 0.545 and ¢3 ~ 0.520,
which clearly deviate from the low temperature effective theory prediction. In figure 4 (b),
we plot the energy ratios for these first three peaks as a function of u/J. In the limit of
1/ J — 0, the analytical result eq. (2.10) predict w® : w® : w®) =1:5:9. Our numerical
results are consistent with this prediction, while the second peak approaches 5w much
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Figure 4. Numerical results for ¢ = 4: (a). Positions of the first three peaks w( as a function
of u/J. The line is a power-law fit. We take 8J = 80 for u/J < 0.05, while 8J = 60 for other
points. (b). energy ratio for the first three peaks as a function of p/J. The three dots at u/J =0
are the theoretical values 1,5, 9.

quicker than higher modes. On the contrary, the energy ratios approaches 1 : 3 : 5 in the
large p1/J limit where the interaction is a perturbation, which are exactly the energy ratios
for free fermion states with 1, 3, 5 particles.

5 Spectral functions at large ¢q

In the large ¢ limit, ref. [1] shows that the first order phase transition occurs in a temper-
ature range 8J « ¢gloggq. In this region, the large ¢ solution leads to an exactly periodic
Green’s function in real time, such that the lifetime of the quasiparticles stays infinite. In
this section, we numerically study the spectral function for ¢ = 20, and compare it with
the ¢ = 4 case.

According to eq. (2.8) and eq. (2.10), in the zero-temperature and p/J — 0 limit, the
second peak locates at w® = (¢+ 1)w(1), and its weight is suppressed by 1/¢. As a result,
here we could just focus on the lowest mode.

As shown in figure 5 (a), the low temperature phase is similar to the ¢ = 4 case, with
an oscillating Green’s function in real time and an exponentially decaying Green’s function
in imaginary time. We take p = 0.57/q and 8J = 120. The width of the peak is below
the numerical resolution limit set by cutoff € in eq. (3.7).

The high temperature phase is very different from the ¢ = 4 case. The numerical result
for fJ = 80 is shown in figure 5 (b). After the first order transition, we only find a jump
for w® and T, There is no qualitative difference from the low-energy phase. We also
check that in the high temperature case the width of the peak is larger than the numerical
resolution limit e.

The evolution of w® for both phases and T'™) for the high temperature phase is shown
in figure 6. Close to the transition point, we find the gap of the low temperature phase drops
a little. After the transition, the gap is almost a constant. Since the peak is almost zero-
width, the low-energy phase is described by nearly non-interacting bulk fermions in global
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Figure 5. The spectral function and the Green’s function for ¢ = 20 and p = 0.57/q. (ai-a3).
The spectral function pL(w), the real-time Green’s function Re G>'Z(¢) and the imaginary-time
Green’s function G%(7) for B3J = 120. The system is in the wormhole phase. (b;-bz). The
numerical results of the same quantities for 57 = 80. The system is in the two back holes phase.
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Figure 6. Numerical results for u = 0.57 /q with ¢ = 20: (a). The temperature dependence of the
energy of the first mode, (b). T™") as a function of 3.7, the red line is an exponential fit. (c). The
behavior of Y& (w) for BT = 80.

AdSs background. In the high temperature phase, the quasi-particle has finite life-time,
which is shown in figure 6 (b). However, an exponential fit gives ') ~ exp(—1.84w/3.7),
different from the analytical approximation (3.14). This suggests the interaction is strong
and the approximation with only the on-shell processes is not applicable. In other words,
the excitation number is not conserved for relevant scattering processes. This can also be
seen from directly study the self-energy as shown in (c), where the peak with w ~ 3E,
that correspond to an off-shell process is not well-separated from the on-shell peak around
w~ by

~10 -



6 Conclusion

In this work, we study the finite temperature spectral function of the coupled SYK model
numerically by solving the Schwinger-Dyson equation on the Keldysh contour.

For small ¢ = 4, in the low-temperature wormhole phase, we find the system can be
described by a weakly interacting Fermion in global AdSs. The spectrum of the fermion
consists of sharp quasi-particle peaks with finite lifetime, which is very different from the
high temperature phase without quasi-particles. The energy of these modes is almost
independent of temperature and their ratio approaches the AdSs prediction in the small p
limit. The inverse life time of quasi-particles is consistent with contributions from on-shell
scattering processes without the change of particle number, which vanishes exponentially
in the low-temperature limit.

For the large ¢ = 20, we find that the high temperature phase behaves similar to the
low temperature phase, with finite life-time quasi-particles. Across the phase transition,
the energy levels experience a jump. In the high temperature phase, the fermions are
strongly interacting and the off-shell scattering becomes significant.
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A  Numerical details

In this appendix, we describe our numerical method to solve eq. (3.5), eq. (3.7), eq. (3.8)
and eq. (3.9) iteratively.

In numerics, we set § = 27 and the coupling strength 57 is tuned by changing 7.
We take finite cutoff in both the time and frequency domain. As an example, for ¢ = 4
we take the time domain cutoff A; = 240 and the frequency domain cutoff A, = 35. A
moderate change of the cutoff would not affect the numerical result. We then discretize the
function in both the time and frequency domain. To increase the accuracy, we consider an
inhomogeneous discretization using the Gaussian quadrature rule with an order of 2000.
After the discretization, all functions become vectors, where the Fourier transformation
can be performed by multiplying a matrix.

In the program, we firstly guess the spectral function by using the solution with J =0
and finite e. We then begin the iteration by compute (3.9) using the input spectral function
pin. Performing the Fourier transformation, we get the Green’s function in the time domain
and thus (3.8). An inverse Fourier transformation then leads to (3.7) and the new retarded
Green’s function, whose imaginary part gives new spectral function poy. The input spectral

- 11 -



function for the next round is then a combination 0.9pi, + 0.1pout. The iteration proceeds
until the difference between poy and pi, reaches the desired accuracy. Additional tricks are
used to stabilize the numerics: for each pout, we average over the nearest three points to
reduce the effect of a finite cutoff. We also impose the symmetry that p™(w) and p*%(w)
are symmetric functions, while p®(w) and p™*(w) are anti-symmetric.

After solving the spectral function, we could compare the imaginary-time Green’s
function calculated by using the spectral function (4.2) to that from direct imaginary time
numerics [1]. We see a nearly perfect match between two results, which validates our
numerical methods.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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