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ABSTRACT: Motivated by recent studies of the information paradox in (141)-D anti-de
Sitter spacetime with a bath described by a (14+1)-D conformal field theory, we study the
dynamics of second Rényi entropy of the Sachdev-Ye-Kitaev (SYK) model (x) coupled
to a Majorana chain bath (¢). The system is prepared in the thermofield double (TFD)
state and then evolved by Hj + Hp. For small system-bath coupling, we find that the
second Rényi entropy S>(<2L)7X » of the SYK model undergoes a first order transition during
the evolution. In the sense of holographic duality, the long-time solution corresponds to
a “replica wormhole”. The transition time corresponds to the Page time of a black hole
coupled to a thermal bath. We further study the information scrambling and retrieval by
introducing a classical control bit, which controls whether or not we add a perturbation
in the SYK system. The mutual information between the bath and the control bit shows
a positive jump at the Page time, indicating that the entanglement wedge of the bath
includes an island in the holographic bulk.
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1 Introduction

The black hole information paradoxes refer to various kinds of obstruction in combining
black hole gravitational physics and quantum mechanics. As a well known example, Hawk-
ing’s calculation [1] for the entropy of the radiation from a pure state evaporating black hole
leads to a monotonically growing result, which is inconsistent with an unitary evolution
where the late time entropy is expected to follow a Page curve [2].

To compute entropy in holographic systems, a powerful tool is provided by the Ryu-
Takayanagi (RT) formula [3-5]. The formula was first proposed for stationary asymptotic
anti-de-Sitter (AdS) spacetime, and has been subsequently generalized to time-dependent
cases, known as the Hubeny-Rangamani-Ryu-Takayanagi (HRRT) formula [6]. After taking
the contributions from the bulk quantum fields into account [7, 8], the general proposal
states that the von Neumann entropy of a boundary region A is determined by finding all
extremums of the generalized entropy:

SyN(A) = min [extm (ATZ(JZA) + Smlk)] 5 (1.1)



among all possible bulk surfaces v that are homologous to A and then look for the minimal
one. In the formula, Sy is the entropy of the bulk quantum fields in the region bounded
by the quantum extremal surface v4 and the boundary.

Recently, new insights on the information paradox have been brought by discovering a
new quantum extremal surface for an evaporating AdS black hole [9, 10]. As emphasized
in [11, 12], when applying eq. (1.1) to calculate the entropy of the radiation, one must
consider possible solutions involving entanglement “islands” in the bulk. In most of these
papers, the set-up is to allow the black hole evaporating into a bath by gluing the AdS
boundary with an auxiliary spacetime with no gravitational degree of freedom. Before the
Page time, the quantum extremal surface of the radiation in the bath is trivial, and the
entropy of the radiation agrees with Hawking’s field theory calculation. In contrast, after
the Page time the quantum extremal surface becomes nontrivial and bounds an isolated
island in the bulk. The first order transition between these two solutions gives the Page
curve. In [13, 14], these new solutions are explained as coming from the replica wormhole
solutions in the gravitational path integral derivation of the entropy, and the transition
becomes a cross-over if one sums over all geometries in the model of [14]. See also recent
discussions on the information paradox, islands and replica wormholes in [15-23]. Since the
quantum extremal surface of the radiation bounds an island in the bulk, the entanglement
wedge reconstruction proposal [24] implies that the information inside the island, which
covers part of the black hole interior, should become accessible to the bath after the Page
time [25]. Concrete ways to recover the information inside the island have been proposed
via the Petz map [14] or the modular flow [22].

In this paper, we study the black hole evaporation problem by considering a Sachdev-
Ye-Kitaev (SYK) model coupled with a (1 + 1)-dimensional free fermion bath. The SYK
model [26, 27] is a (0 + 1)-dimensional strongly correlated fermion model with emergent
nearly conformal dynamics at low temperature. The low energy dynamics of the SYK model
has a holographic dual theory which is the Jackiw-Teitelboim gravity in AdSs [26, 27].
Previously, the physics of a SYK model coupled to a large SYK bath has been studied
in [28-30], while the entropy dynamics of the SYK model have been studied in [14, 31]
using coupled SYK model with equal number of modes. A new saddle point solution
after the Page time, which corresponds to the replica wormhole, has been discovered in the
micro-canonical ensemble in [14]. In this work, we instead model the bath by free Majorana
chains. Having the simple free dynamics in the bath is helpful in simplifying the problem,
and is also closer to the setups with AdS black holes coupled with non-gravitational flat
space bath.

For simplicity we consider a thermofield double state of the SYK model coupled to free
fermion bath, which then contains two SYK models (left and right) and two baths (also
left and right). Denoting the Hamiltonian of each side as Hy and Hp respectively, the
thermofield double state is invariant under the time evolution of H; — Hgr. We consider
the time evolution by Hj + Hgr which changes the state and leads to increase of the
entanglement between the SYK sites and the baths. This corresponds to a setup with
a two-sided eternal black hole in equilibrium with two flat baths, as has been discussed
in ref. [12]. The set-up is discussed in detail in section 2. Using the Schwinger-Dyson



equations in the large N limit, we study the second Rényi entropy of the union of the two
baths in the time-evolved thermofield double state. Equivalently, this can be expressed in
terms of the correlation function of two twist operators. As explained in section 3, for small
system-bath coupling, numerically we find that the second Rényi entropy S>(<2L),x » shows a
first-order transition. The short-time saddle can be studied using perturbation theory
(section 4) and the long-time solution can be explained by twist operator factorization
(section 5). By introducing a classical control bit, we could ask whether the information
thrown into the SYK system can be extracted from the bath by looking at the mutual
information between the bath and the control bit. This is discussed in section 6. We find
that the mutual information has a jump at the Page time, which signals that there is an
“island” outside the horizon in the gravity picture. Finally, in section 7, we conclude our
work and discuss some open questions.

2 Set-up

The SYK model [32, 33] describes N Majorana fermion modes x; labeled by i = 1,2,..., N
with random interaction. We consider coupling each mode y; to an individual (141)-d free
Majorana chain v;(z) with constant hopping A/2 and periodic boundary condition. These
Majorana chains serve as a thermal bath for the SYK system. In most of the following
discussion, we will refer to x as the system (or the black hole in the gravity analogy), while
1 as the bath. The Hamiltonian of the coupled system is the following:

Jijkl

H=H,+ Hy + Hyp = Z Sl XiXg kX + ZZ —gi(@)hi(z+ 1) + Hi,  (21)
Zv]vk l x l

where x € Z labels different sites in the Majorana chain, and the interaction term Hiyy will

be specified later. We choose the convention that {x;, x;} = d;; and {¢;(x), ¢ (y)} = 8ij0zy.

Jijii are Gaussian random variables with the mean and variance:

Jijkr =0, (Jijki)? = ?)J'Vf (2:2)
One can perform a Fourier transform on the Majorana chain:
Pi(z) = Fz etk (2.3)
where Np, is the total number of sites. This gives
szwz il +1) = Y Asin(ka)] (k)i(k) = el (R)gi(k),  (24)

0<k<T 0<k<

B

the summation is over a half of the first Brillouin zone. Here a is the lattice spacing of the
Majorana chain. In the low energy limit, the bath contains a left-moving Majorana mode
with k£ ~ 7/a and a right-moving Majorana mode with k£ ~ 0. For simplicity, we choose
a =1/A. As a result, in the continuum limit A — oo, we have €, ~ £k near the gapless



points. The central charge ¢ of the conformal field theory for the bath in the continuum
limit, which contains N copies of the Majorana chains, is then N/2.

In this work, we choose the interaction term Hiy as a hopping of the SYK fermion to
the center site = 0 of the Majorana chain:

Hipy = ZZ’V\“XH%(O)- (2.5)

(2

Here we have introduced a factor of v/A since v/At;(z) = n;(z) corresponds to the con-
tinuous fermion operator in the limit A — oo, with the Dirac d-function anti-commutator
{ni(z),n;(y)} = di56(x — y).

The set up of the problem is as follows. We first introduce two copies of the coupled
system — Left: xr, ¥ and Right: xgr, ¥, and prepare them in a thermofield doubled
(TFD) state [34] with inverse temperature 5. When we only look at the left or right system,
it is in a thermal density matrix with Hamiltonian given by (2.1), while the whole system is
in a pure state. The definition of the thermofield double state in this model is not unique.
Without losing generality, we make the following explicit choice. We begin by constructing

the state [I), ., which satisfies
(XLj + iXR.,;) |I>XL,XR =0, j=1,2,...,N. (2.6)
|I) is a maximally entangled state between the x system and ypr system. Similarly,

XL>XR
we construct a maximally entangled state |1 >¢L . between the 17, system and ¥ g system

with spatial locality, which satisfies

(Yr(@) + iR () M)y, y, =0, j=12,....N; z€Z (2.7)
The thermofield double state is then given by

e~ B(HL+HR)/4
I TFD) = —————— |y, xelDvrwn (2.8)

Z(B)
where Hy, and Hp are the Hamiltonian (2.1) defined on the left and right system. After
we have the state [T F'D), we evolve the system in time using Hy + Hg. One important
property of the thermofield double state is that it is annihlated by Hy, — Hp, and thus we can
pull all the evolution on the right system onto the left system, and write the time-evolved
TFD state as:

o—i2HLt o —BHL /2

’TFD(t» = Z(5) ’I>XL1XR‘I>’¢L7'¢}R' (2'9)

The |TFD(t)) state can be represented graphically as in figure 1(a). The inner/outer line

represents the y /1 system. We have suppressed the extra spatial dimension for ¢. The
half circle with length /2 corresponds to the Euclidean preparation for the |T'F'D) state,
followed by a real time evolution of 2¢ represented by the horizontal lines. The dotted lines
between y and v denote the interaction in the system.



B/2

(a) The |[TFD(t)) state (b) The density matrix py, v p(t)

Figure 1. The graphical representations of (a) the |[TFD(t)) state and (b) the reduced density

operator py, yp(t).

In this paper, we will focus on calculating the second Rényi entropy of subsystem
X1 U xg. This is in analogy of calculating the entropy for the black holes in [12]. Due to
the inherent unitarity here, this is the same as calculating the second Rényi entropy of the
baths, since we started from a pure state. This is different from the gravity story, where a
priori one cannot assume unitarity when trying to address the information paradox.

The reduced density matrix of subsystem x U xg is given by:

Pxexr(t) = Wy g [TED(E))(TFD(#)]. (2.10)

We draw the graphical representation of the density matrix in figure 1(b). We take two
copies of the state in figure 1(a), one for the ket and one for the bra, and then trace out
the 11, U ¢r system (denoted by the dashed lines in figure 1(b)).

The n-th Rényi entropy of a density matrix p is defined as

1
S =1

log trp™. (2.11)
—n

Specifically, we are interested in the second Rényi entropy of the density matrix py, y,(t),
given by

exp (—S&?XR (t)) =11 (P xn(H)?) - (2.12)

Equivalently, we could express the right hand side as the expectation of twist operators
on two copies of the coupled system on state |TFD(t)) ® |TFD(t)):

o1 (pxpn (t)?) = (TLTR).- (2.13)

Here the twist operator 17, operates on the two copies of the xr,/r system by swapping
their states:

Ta|\IJ1>Xa ® |\IJ2>XL1 = |‘112>Xa ® ‘\Il1>Xa’ a = L/R (214)

We can formulate the calculation of the second Rényi entropy in terms of a path-
integral over a replicated contour C with twisted boundary conditions. The contour C is



(a) (b)

Figure 2. Two equivalent illustrations of the contour C' of path integral for computing the second
Rényi entropy.

shown in figure 2(a), where we take two copies of the density matrix in figure 1(b), and
join the open ends of the x systems in a twisted way (denoted by the dashed lines). In
this figure, we’ve also marked how we parametrize the contour using a real parameter
s: s € [0,8 + 4t) covers the upper part of the contour in the clockwise direction, while
s € (B + 4t, 20 + 8t] covers the lower part of the contour, also in the clockwise direction.
The parameterization will be needed later in the presentation of our numerical results.
Another equivalent way to picture the contour C is in figure 2(b), where it makes clear that
the replica contour has the topology of four circles.
The path integral has the following form

eShn = 2 [ Dx(6)D0(s,3) exp(-Selx. v, (2.15)
1 1
el = [ ds | 30 3t + 3 gu@on(a) (2.16)

Jijki ~ A :
+7(s) Z XXk Z S vila)di(z +1) + Z iVVAXii(0)
i,0,k,l T, i
Because we are using a single real parameter s to label the contour, we need to introduce an
extra factor f(s) to account for whether we are doing imaginary time evolution (f(s) = 1),

forward real time evolution (f(s) = i) or backward real time evolution (f(s) = —i).! The

More explicitly, by the parametrization in figure 2(a), f(s) is defined as
—i, s€(0,2t)U(B+4t,B+6t),

f(s) =4 i, se(B+2t0+4t)U (284 6t,26 +8t),
1, s€ (2t,5+2t)U (B +6t,26 +6t).



expression (2.15) applies for a single realization of the SYK Hamiltonian. However, in
order to apply the standard large N technique of the SYK model, one has to average over

the disorder coupling, and approximate S)((2L)7X »(t) by the disorder-averaged value:?

S§<2L)7XR (t) ~ —log(trpibxﬂt) ~— log(trpiwm). (2.17)

The second approximation comes from the assumption that the dominant saddle point re-
mains replica diagonal. It should be noted that there are two different kinds of replica dis-
cussed here. In computing (tr(p2))k, there are 2k replica labeled by s = 1,2, a = 1,2, ..., k.
We assume the dominant saddle point is diagonal in «, so that (tr(p?))" ~ (tr(pz))k. In
general, the solution is off-diagonal in s which labels the two replica we discussed above in
computing W

After the standard procedure of introducing the bilocal G, ¥ fields, and integrating out
the fermion fields x and (x), one arrives at

1 . _
e~ SN = ZQ/DZDGexp(—SC[Z,G]), (2.18)
- = N _ ~ N _
SelE, G) = —= log det (G(]»l( - 2) — 5 log det (Gojb)
NV2 . N . 24
+/dsds' — VGgF+<GZ—JGF>
. 2 2 4

where we've introduced the factor F(s,s’) = f(s)f(s'). We have Go (s, s') = Ssgn(s — s')
if both s, s’ lie on the same contour in figure 2(b) and otherwise zero. Gy (x — ', s, ') =

(Tep(x, s)i(a', s)) is the Green’s function for the bath fermion 1, without coupling to the
SYK system. Since x only couples to bath 1 at = 0, only g(s,s') = Go(0,s,s)A

(2.19)

appears in the second line of (2.19). For completeness, the explicit expression for g(s,s’)
is given in appendix A.

We calculate the large N leading order result of S>(<2L),x » by doing saddle point approx-
imations to the above path integral. The saddle point equations are

G '=Go—%, T=(JG°+V?gF. (2.20)

This set of equations can be solved using iteration numerically. Generally, there could
be several different solutions to the saddle point equation and the dominating solution in
the large N limit is determined by comparing the action. The on-shell action Iz can be
written as

I 1 _1 1 . , 3J2G*
N =3 log det ( o — Z) ~3 log det (Go’w) + /cds ds 5 (2.21)
Here the log det term for 1) does not depend on the saddle point solution G, and cancels

with the normalization Z([3).

2There have been many recent discussions in gravity about the role of disorder/ensemble average and its
relation with replica wormholes, see [14, 23, 35] for examples. The “replica wormhole” solution that we will
discuss below does not rely on the disorder average, since different replicas are directly coupled together as
in figure 2(b).



3 Numerical results

We numerically solve the self-consisitent equation (2.20) and the results of S’>(<2L)7XR (t) for
BJ = 4 and A = 5J are shown in figure 3. The result is qualitatively different for large
and small coupling V2/.J:

1. For the large coupling case V2/J = 0.25, as shown in figure 3(a), the entropy is a
smooth function of time.

2. For small coupling V2/J = 0.05 case in (b), there is a first-order transition between
two different saddle point solutions. The entropy initially grows almost linearly in
time, and then switches to be almost time-independent, governed by a different saddle
point. The two saddle points coexist for a finite time interval, which can be reached
by choosing different initial conditions for the iteration. The transition time is the
analog of Page time in evaporating black holes [12].

We will study the solutions in more detail in latter sections. Here we just mention
several properties of the solutions.

Firstly, the short-time solution for the small V2/.J case is almost replica diagonal: the
correlation between two SYK Majorana operators on different solid contours in figure 2(b)
is small. On the other hand, the long-time saddle is highly non-diagonal. The anti-diagonal
peak for the long-time saddle is from the approximate cancellation between the forward
and backward evolution for two halves of the y contour interacting with the same v system.
There is a change of the paring between the forward and the backward evolution, which
has been found in [36] for a coupled SYK system. Note that the forward evolution and the
backward evolution on the same solid contour of figure 2(b) could not cancel exactly since
they interact with different ¢ systems.

Secondly, for large V2/.J, the off-diagonal terms are of the same order as the diagonal
terms. The short-time solution described above is smoothly connected to the long-time
solution. This is similar to the equilibrium problem of coupled SYK model [36], where for
a small coupling there is a first order transition, while for a large coupling the free energy
is smooth.

Thirdly, the entropy for the long-time solution is almost constant and close to 25’%),

where St(i) is the second Rényi entropy between x and % in a thermal density matrix with
the Hamiltonian in (2.1).

4 The short-time solution

In this subsection, we discuss the analytic calculation of the Rényi entropy. Without
turning on interaction between the system and the bath in the real-time evolution, the
entropy S is time-independent. As a result, focusing on the time dependence of S, we
perform a perturbative calculation in V? starting from the V = 0 replica diagonal solution
for short-time. The calculation is similar to [31], where one first calculates the action in
Euclidean time and then continue the result to Lorentzian time.
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Figure 3. (a) Numerical result for V2/J = 0.25, 3J = 4 and A = 5.J. The entorpy is a smooth
function of time. (b) Numerical result for V2/J = 0.05, 3J = 4 and A = 5J. There is a first order
transition of the entropy. (c¢) The real part of Green’s function G(s,s’) corresponding to the short-
time saddle in (b). Here we take ¢/8 = 1.5 as an example. Orange/Blue means positive/negative
while their darkness indicates magnitude. The numbers on the axes correspond to the discretization
of parameter s in numerics. (d) The real part of Green’s function G(s,s’) corresponding to the
long-time saddle in (b). Here we take t/5 = 6 as an example. Here and in latter figures we have
removed tiny matrix elements |G(s, s’)| < 1072 in the plot to make the plot clearer.

The conformal limit solution for the x system is

N|=

1 ™

2\1/4 . w(r1i—T2)
(4mJ?) ﬁsm%

G(m1,m2) = Ge(T1 — 12) = (4.1)

Similarly, at the low-temperature limit A5 — oo, we expect G (0, 71, 72) to be dominated
by low energy modes. We can use the conformal two-point function with scaling dimension
A = 1/2 for the bath:

1 s

g(11,72) = =

T \ Bsin _’T(Tlﬂ—fz) (4.2)
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Figure 4. Comparison of the analytic formula (B.2) with numerics for V2/J = 0.005, 8J = 4 and
A=5J.

To calculate the change of entropy, we rewrite the n-replica action as

I(n) N N .
) log det (07 — X) — 5 log det (Go,w>
B B NV?2 N J2G4
+/ dTl/ dry [— Gg+ — <GZ— >]
0 0 2 2 4
(4.3)
To—€ B—e
+ / dr / dr, NV2Gy.
€ To+e€
1 1
= =5+ —AS,
n n
n—18",, IMinlogz AS m—e  hc
( ])VXLaXR _ L 82 _ ~ = nVQ/e dry /7'o+6 dry G(11,72)9(1,72),

(4.4)

where € is a small UV regulator. We take 7y = g — 24t in the end. The details are provided
in appendix B. For time ¢t > 3, the entropy shows a linear growing behavior:

SCixn(t) _ 8V2L ()" \/ﬁ t
N =i 73 + const. (4.5)

Here in the slope of the linear growth, there is an additional factor /3 compared to the
results in [14, 31]. This is due to the fact that the coupling V is relevant with scaling dimen-
sion 1/4, whose effect becomes larger when we lower the temperature. In figure 4, we com-
pare the analytic formula (B.2) with the numerics for V2/J = 0.005, 3J = 4 and A = 5J.
There we have chosen the constant piece in (4.5) to match the ¢ = 0 numerical result.

~10 -
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Figure 5. (a) The long-time solution with ¢t = 63,V2/J = 0.05. The two matrix plots are the
real part and the imaginary part respectively (same in (b)). (b) The trivial solution that we do not
insert any twist operators.

VBJ

The linear entropy growth in (4.5) can not persist to time much long than ¢ ~ Y5,
since the entropy cannot exceed the thermal entropy at the same energy density. At this
time scale, a first order transition occurs for small V2/J. Note that here the Page time is
finite at N — o0, because the central charge of the bath is proportional to N and there is
an extensive entropy flow between the bath and the system. This is also consistent with

the gravity analysis in [12] with ¢ oc N.

5 The long-time solution

In this section, we discuss the structure of the long-time solution and give arguments for
the long-time saturation value.

To gain some insight of the problem, in figure 5(a), we show how the long-time solution
of G looks like (it is similar to the one shown in figure 3(d), but the time is longer, and
we set the small elements to zero). In figure 5(b), we show the solution with the same
parameters, but on the contour without inserting any twist operators and thus being two
disconnected circles. The important observation is that the solution of (a) is very similar
to (b), with the only significant differences locating at the places near the twist operators.

- 11 -
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Figure 6. The solutions with only one insertion of the twist operator.

What this tells us is that for the long-time solution, the backreaction of the twist
operators is only local. Thus we expect the correlation function of the twist operators to
be approximately factorized, i.e.

(TLTr) =~ (T1)(TR)- (5.1)

The solutions with only one insertion of twist operator are shown in figure 6(a)(b). A
more careful argument for the relation between local back-reaction of twist operators on
the on-shell solution and the factorization in (5.1) is given in appendix C.

For the computation of each one-point function (717 /g), the other side of the system
(R/L) is traced out within replicas. As a result, the one-point function of the twist operator
computes the second Rényi entropy between one copy of the system and the bath in a
thermal state: one prepares the system x and bath ¢ into a thermal ensemble with density
matrix py, = exp(—pH)/Z, and then compute the second Rényi entropy of the system
X, denoted by Sg). Note that for the one-point function in a thermal ensemble, the
time evolution is trivial since the density matrix commutes with the unitary evolution.
Consequently, by the above argument, the saturation value of the second Rényi entropy
should be S>(<2L)7XR o~ 2575(2). This is also consistent with the gravity calculation in [12]. In
figure 7, we see that this estimation agrees quite well with the numerical results.

- 12 —
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Figure 7. We compare the value of S;QL),X & after the Page time (the dots) and twice the second
Rényi entropy St(i) between x and ¢ in the thermal density matrix of a single system (the dashed
lines).

6 Information retrieval from the bath

By the gravity picture in [9-14], after the Page time, there is an island in the bulk which
belongs to the entanglement wedge of the bath. This means that if one throws in a particle
after the Page time and wait for a scrambling time, one should be able to tell the difference
between the state with and without the particle by only accessing the state of the bath.
In other words, the information carried by an infalling particle can be retrieved from the
bath after a scrambling time. In comparison, a particle thrown in before Page time can
only be retrieved after the Page time. From the quantum mechanical point of view, this
suggests that an information initially scrambled in the SYK system should emerge in the
bath after the Page time. In this section, we will study this phenomena in our model.

In the quantum mechanical system, throwing a particle into the black hole corresponds
to adding a perturbation §U to the evolution of the TFD. For simplicity, we choose the
perturbation to be 6U = v/2x1, applied at time ty. We then study its effect on the state
of the bath at a later time ¢ > tg. The set up is illustrated in figure 8.

We denote the bath reduced density matrix at time ¢ in the perturbed case as pp (1),
and the unperturbed one as pp2(t). Obviously, pp1(to) = pp2(to) since tracing over
the system cancels §U with 6UT. For t > tq the effect is generically nontrivial. The
informational retrieval depends on the distinguishibility of pp 1 and pp 2.

We would like to define an appropriate quantum information measure for the distin-
guishability of the two density operators. For this purpose, we introduce an ancilla qubit A
with two internal states |0) and |1). We initialize A in a maximally mixed state pa = 31,
where Iy is the identity matrix with dimension 2. We then perform a classically control
operation: if the A system is in the state |0) (|1)), we prepare a system without (with)
perturbation §U, respectively. Tracing out the system Y, the reduced density matrix for
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(b)

Figure 8. We prepare two density matrices pp,1 and pp 2, where for pp; we inserted a fermion
operator x; at time ¢y (represented by the red crosses). In the figure, the denominators are the
proper normalization factors, while the factor 1/2 comes from y? = 1/2.

the ancilla qubit A and the bath is given by

panlt) = 5 <pB’§(t) p32<t>> | oy

We can then compute the second Rényi mutual information 11(4239 (t) between the bath and
the control bit A, which quantifies whether we are able to reconstruct the perturbation by
measuring the bath.? The relevant entropy quantities are given by:

exp (S2(1)) = 1r (Fha(t) + phat) + 2054()ps 2(1)) (62)
exp (<SP0) =5, o (~SBM) = 1 (Gha )+ o). (63)

As a result, we have

1 tr (p(t)pB2(t)) > ' (6.4)

@ ) = _low [+
Ip(t) = —log <2 T (B1(8)?) + tr (pB2(1)?)

Right after the insertion of the Majorana operator, we have pp1(t9) = pp2(to) and 11(42)3 =

0. As a result, the bath is not affected by the perturbation. On the contrary, from the
gravity picture, we expect that in the long time limit, density matrix with and without the
perturbation becomes orthogonal tr (pp 1(t)pp2(t)) = 0, which leads to 11(427)3 = log(2).

To study (6.4), we could further express both tr(pp1(t)ps2(t))/tr (pp2(t)?) and
tr (pp,1(t)?)/tr (pB,2(t)?) in terms of the Green’s functions of Majorana fermions on the

30ther Rényi mutual information and von Neumann mutual information quantities can also be studied,
but we will focus on the second Rényi mutual information since it can be computed directly from our
two-replica numerics.
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Figure 9. We illustrate how the overlap tr(pp 1(t)pp,2(t)) is related to our saddle point solution
G, to the leading order in N.
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Figure 10. Numerical results on the Rényi mutual information and the overlap for tg = 8 < tpage
(blue dots), with V2/J = 0.05,3J = 4,A = 5J. The black dashed line is the analytical result
using the Schwarzian four point function and the red dashed line is the result coming from the
disconnected four point function.

contour in figure 2. As an example (see figure 9), we have:

tr (pp,1(t)pB2(t))
tr (pp,2(t)?)

Note that, although the mutual information is more physical, this overlap, which is equiv-

=2 <X1(25 + 7t + tO)Xl(t — t0)> = 2G(2ﬁ + 7t + to,t — t()). (6.5)

alent to the Green’s function, also measures the difference between the density matrices.
Similarly, tr (pp,1(t)?) /tr (pB,2(t)?) can be expressed as a four-point function, the
leading order contribution of which is given by the factorized result:

2
m =4(x1(28 + Tt +to)x1(8 + 5t — to)x1(B + 3t + to)xa(t — to))
= 4[G(2B + Tt + to, t — t)G(B + 5t — to, B + 3t + to)
— G(2B+ Tt +to, B+ 3t +19)G(B + 5t — to, t — tg)
+G(2B + Tt + to, B+ 5t — t)G(B + 3t + to, t — to)] . (6.6)
From the discussion in the previous sections, we learned that across the phase transition
at the Page time, the Green’s function changes discontinuously. In figure 10, we show an
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Figure 11. Numerical results of the mutual information and the overlap (blue dots), with
V2/J =0.05, BJ = 4,A = 5J for a late perturbation at tq = 33 > tpage-

example of how the mutual information and the overlap looks like if we add the pertutbation
at tg = B. It should be noted that the Rényi mutual information is nonzero even before
the Page time, which is because the particle created by x1(tp) has a finite probability to
directly hop to the bath. In other words, xi(tg) creates a particle that is not entirely
infalling, but has a finite probability of going out into the bath. The contribution of this
direct coupling to the Rényi mutual information is proportional to V2.

At the Page time, both the mutual information and the overlap are discontinuous.
The jumps correspond to the fact that after the Page time, the information carried by the
infalling particle is encoded in the bath in a nonlocal way. If we throw in a particle before
the Page time, most information will only be retrievable after Page time. In comparison,
if we throw in the information after the transition, we only need to wait for a scrambling
time ts. ~ [, as shown in figure 11. Note that because the bath has a central charge N,
the information retrieval time is order 1 rather than order log N. In the bulk picture [12],
this corresponds to an island that is finite distance outside the horizon.

In figure 10, we have also plotted the perturbative result for the Green’s function
in (6.5). Focusing on a single replica, the change of the Green’s function comes from the
effective action (4.4). We copy it here for convenience:

0S8 = NVQ/ dry | dre G(11,72)9(m1,T2). (6.7)
C1 Ca
To the V2/.J order, we have the change of the Green’s function being:
(5G(T1,7’2) = — <G(T1,7'2)(5S> + <G(T1,7'2)> <5S>
= —(G(71,72)095),

_ V2 /C drs /c dra (G(71,72)G (73, 72)), 973, 70). (6.8)

Note that the connected part of four-point function is 1/N, which cancels the factor N
in front. Instead of using the imaginary time and applying an analytical continuation
at the end, here we directly include the real-time contour in the calculation. We set
T = 5/2—!—6/2—!—%0, Ty = ﬁ/? —6/2+it0, T3 = 5/24—6/24—#3 and 7, = ,3/2 — 6/2—|—it4.
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The main time dependence is from:

/dtg/ dtyFe( 7'1,72,73,74)5 W(TS _k (6.9)
B

Here we use the four-point function F, from the Schwarizan theory (for g = 27) [27, 33]:
;bQ
2V21ag
O e (o) [ CORMAEY)
3 . (6.10)
32sin2 (012> sin2 (9374>

We evaluate the integral in eq. (6.9) numerically since there is no closed analytic form. We

Fe(61,02,05,04) =

X

choose the cutoff € = 2‘;—2, and adjust ¢y to match with the numerical result. For ¢y = 4, the
result is shown in figure 10(b) as the black dashed line, which suggests that the estimation
works reasonably well. In the long time limit ¢ > 3, the first order perturbative result is
linear in time:

by/BJtV2D (1)
18\[ 2megl (g) ’

6G /G ~ (6.11)

Wlthég_Gﬁ = Ef’]

The linear decrease comes from the fact that for G (71, 72) with 71 = 8/2 + €/2 + ito,
o = /2 — €/2 + itp, the four-point function is finite even if t3 ~ t4 > to. Physically, the
reason is that the infalling particle carries an SL(2, R) momentum, and the boundary will
gain an opposite momentum, required by the overall SL(2,R) symmetry. Consequently,
the backreaction induced by the infalling particle does not decay with time.

For comparison, we also study the result if we approximate the four point function by

only the disconnected part:
F.(01,09,05,04) = G(61,03)G(04,02) — G(01,04)G(03,02). (6.12)

In the bulk interpretation, this corresponds to neglecting the backreaction and considering
a free fermion problem. In this case, it is easy to see that F. — 0 in the limit t3 ~ t4 > t.
The free fermion result is also plotted in figure 10(b) by the red dashed line. Instead of
linear t dependence, the overlap saturates to a finite value (until the Page time), corre-
sponding to a finite probability of the initial particle moving outwards. Comparing the two
approximations, we see that the change of the overlap before Page time is mainly due to
the backreaction.

Comparing the Rényi mutual information and the overlap, we see that the mutual
information changes much slower for short time. This is because in the short time limit,
V?2/.J contribution for the mutual information vanishes:

(2) ~ 1 1+26G 4,72y _ 4,72
IA’B(t)N log <2+1+(1+25G)2 +0O(V2/J?) ) =O(V*/J?). (6.13)

(2)

The decrease of 1 AB then comes from higher order corrections including correlation between
different contours.

17 -



(@) | (b)

Figure 12. Bulk dual interpretation of the boundary perturbation of adding a y; fermion. We
sketch the Penrose diagram of an AdS» eternal black hole coupled with the flat space bath, discussed
in ref. [12]. The blue solid curve indicates the worldline of the boundary of the island. (a) When
backreaction is neglected, this perturbation creates a superposition of infalling fermion mode (blue
arrow) and outgoing fermion mode (red arrow). The blue diamond is contained in the entanglement
wedge of the bath at the Page time. A particle created earlier than the Page time can be retrieved
from the bath soon after the Page time, while a particle created after Page time can be retrieved
after a finite scrambling time. (b) Considering the backreaction, the infalling fermion induces a
change of the boundary location, described by the Schwarzian action in low energy. This leads to a
decreasing overlap between the perturbed and unperturbed states of the bath even before the Page
time (see text).

7 Conclusion and discussion

In conclusion, we have studied the SYK model coupled to a free Majorana fermion bath,
as a toy model to investigate the physics of black hole evaporation. We studied the time
evolution of the two-point function and the second Rényi entropy of the thermofield dou-
ble state of this coupled system. For low coupling with the bath, we found a first order
transition in the second Rényi entropy, which corresponds to the formation of a “replica
wormhole”, similar to the results in the section 5 of ref. [14]. We also studied the infor-
mation retrieval from the black hole by creating a single fermion on the boundary. By
comparing the perturbed and unperturbed reduced density operators of the thermal bath,
we see a combination of two kinds of effects, as shown in the figure 12. Before the Page
time, the bath already knows partially about the perturbation to the black hole system,
because the boundary fermion has a finite chance to directly leak to the bath, and also
because the backreaction of the infalling fermion. The latter effect makes dominant contri-
bution. At the Page time, the information available to the bath about the perturbation has
a finite jump, which is consistent with the expectation that the black hole almost saturates
to its maximal entropy state after the Page time and therefore almost cannot preserve any
information about the perturbation.

With this concrete model, there are many open questions. Although we’ve shown
that the information is in principle retrievable through quantum information argument,
we’ve not provided an explicit construction of the form of the bulk fermion operator.
It will be interesting to study the bulk fermion operators more explicitly, especially the
fermions behind the horizon. If the bulk fermion operators can be identified, it may become
possible to more explicitly investigate the black hole information paradox such as the
firewall paradox [37]. It would also be nice if one can see explicitly how the proposals for
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recovering operators in the island [14, 22] work in this set-up. Another question about
the information retrieval is whether the backreaction effect we observed for two-replica
calculation should vanish if we take the von Neumann limit. For example if we compute
the relative entropy S(pp1i|pp2), will the backreaction effect still be significant?
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A The Green’s function of the bath on the Keldysh contour

In this appendix, we list the detailed expression for g(s,s’) depending on the different
locations of s and s'. Since g(s, s’) is only non zero when s and s’ is on the same contour
in figure 2(b), here we only draw a single Keldysh contour. We have:

_ = g(t1 — t2). (A.1)

TA dk e—iek(tl—tg)
/WA 21 1+ e Bek

/7rA dk e*’LEk( iT1—t2)

= g(—iT — t2). A2
A 2m 14 e Bek g(=im —t2) (A-2)

A —i€ (t2 tl)
dk e~k

A 27T 1+ e—Bek

TA e—€k(7'1 72)
Q:F — [ e — it =) (A.4)

A dk e—ZEk(t1+ZTQ) ‘
:/ _gti—i(B-m).  (AD)

A 27T 1+665k

TA —ieg(t1—12)
dk e 'k
/ = g(t1 — t2). (A.6)

7r[‘27'(' 1+€ Bﬁk
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We are mainly interested in the low-energy modes. Consequently, we further make the
approximation by using a linear dispersion €, ~ k with a cutoff of the order of A. The
integral can then be carried out explicitly which gives

A gl ikt —e_%tB_eA@ (1 — %,0) + e%tB_eAa (%,0) + imesch (%t)

gty =2 | — = .
A 2m 1+ e Bk el

(A.7)

Here B, (a,b) is the incomplete beta function defined as
¥4
B.(a,b) = / deu® (1 — u)’ldu,
0

and the factor of 2 comes from the summation over the left-moving and right-moving
modes. At low-temperature limit A5 — oo, using

(=) ()T (—a — b+ 1)

lim, ,_~B.(a,b) = T =) (A.8)
and (A.7), we recover the conformal Green’s function
. 1 T
g(—i(m — 7)) = = D An-m) | (A.9)
T \ Bsin —F

as expected.

B Perturbative analysis in the short time limit

In this appendix, we give details for the calculation of the short-time action (4.4).
Defining 0; = %rn- and using the explicit formula (4.1) (4.2) for the Green’s function,
we find

3

(n — 1)5(71) nV? 1 1 s /9069 /271'6@ 1 2
- T — B.1
v e\, Y, e | Y

0 (]

with eg = 2me/B. The integral can be carried out explicitly. After continuation to real
time by 79 = 5 — 2it and taking € — 0, we get

S 32“”5E(% 2> LB somt) (5579 (ot
— = — = — cos — —, =i, —;COS —
N 93 iV 3 15 s\ ew

164/ cosh (%) (ﬁtsinh <%> o Fy (17 %; %;CoshQ (%)) _ 6ﬁ>
o + const.

(B.2)
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Here E (¢|m) is the elliptic integral of the second kind and ,Fy (a1, ... ap; b1, ...by; 2) is the
generalized hypergeometric function. Since we are mainly interested in the time depen-
dence, we do not give the explicit formula of the constant term. Taking the leading order
contribution with ¢ > (, we arrive the result quoted in the main text:

S<2> 8V2T (3 \[
N 7r5/4 7B + const. (B.3)

C Factorization of the two-point function of twist operators

In this appendix we give more detailed argument for the factorization of the correlation
function of the twist operators. In numerics, we observed that the backreactions of the
twist operators are local. This means that we can approximate the Green’s function of x by

GTLTR ~ G+ 5GTL + (5GTR, (Cl)

where G is the solution with no twist operator inserted (figure 5(b)), where I stands for
identity, while 6G, and 6Gr, corresponds to the backreaction of the twist operator 77,
and Tg. The support of 6G1, and G, are separated by a real time evolution ¢ much
greater than £ on the contour. When we evaluate the action, this leads to

Ic(TLT, 1 3J%G;
C<J\L[R) ilogdetGTLTR logdet< /dsds %

1 1
= §logdet G[—i—ilogdet(l—{—G; oéGTL)—|—§logdet(l—|—G;105GTR)

2 4 2 4
_%logdet (Go w) /dsds’ 3J°(Gr+9Gr,) —i—/dsds' 3J°(G1+0Gry)
C C

8 8
3J2G4 4
—/dsds’ I—i-fc
C

8 N
_1e(Tr) | Ie(Tg) Ie(I) | 6lc
=t N vt (C.2)

Here we have separated out crossing terms of 0G(17,) and 6G(TRr) into dIc. There are two
kinds of diagrams in 6I¢. Terms from G* is of the form:

/dsds’&GT 8Gh GT 0 ~ O(e™/P). (C.3)
C

Here we have a > 0, b > 0 and a + b < 4. Terms from the logdet term is also suppressed
by e ¥/#. As an example:

tr [0Gr, 0 G710 6Gr, 0 GT'] ~ O(e71P). (C.4)

Since G~!(s,s’) decays exponentially for large real-time separation. Combining these re-
sults, we have

(T Tr)  1e(Tr) | Ie(Tr) _ IeU)

N N N N

Realizing that exp(—Ic(I)) = Z? is just the partition function, we find the saturation value

of the entropy is just twice of the thermal Rényi entropy for subsystem yx, which means

(C.5)

the factorization of twist operators.
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D Entropy dynamics with an SYK bath

In this appendix, we present results for a related model by replacing the Majorana chain
bath by an large SYK bath. This is an extension of the results in [14], where the authors
studied the case with equal number of modes. We find similar results as the chain bath
case. We now consider two SYK systems x and v with different number of modes N, and
Ny. The Hamiltonian of the system is written as:

X

‘] z k:l
H=Hy+Hy+ Hp = »_ —2 4, I XXX+ D —ar Vit + Hin, (D.1)
i,7,k,l ,7,k,l

with the variances for Jz?;‘kl and Jz‘lﬁkl being:

3172 3172

_ 1) _
(Ji?klp - N;’ ) (Jijkl)Q - N{Z : (D'Q)

We add an interaction term Hjy that couples x and v system. In this model, we consider

two types of interaction. One is of the “x?1%” form:

Vijkl 212
H1>I<lt = Z Z XXk, (VZ;(M)Q = N.NZ (D.3)
1,5,k X"
and another is of the “x3” form:
3 jkl 31?2
Hﬁftp = Z ZJ de’ﬂ/’kﬂ’l? (VZ;(kl)Q = NXNi. (D.4)
1,5,k,l

We define the ratio of fermion number to be r = Ny /N,.
We again compute the second Rényi entopy (2.12) after the evolution of a TFD state.
For the x21? case, the path-integral formalism now reads

1 .. . -
—S}fL) XR — Z/DZX'DZ‘¢DGXDG¢ exp(—Se[2, G]) (D.5)
.. N, 4 = Ny 1 <
Se[®,G) = 5 log det <G0,x - EX) > ¥ Jog det (G 0 — ¢>
N o J2G4 J2G4
+ [ dsds' | =X (G5, — N fg,5 = F D.6
; [ 5 ( I~ ) 5 | Gusu (D.6)
v
+/dsds’ [ GwG2 }
C
which gives the saddle point equation
Gl =Gy = S = (PG +VIGIGYF, (D7)
Gyl =Gl =Sy, Sy = (J2G} +V2GiGy/r)F. (D-8)

Similar effective action and saddle point equation can be worked out straightforwardly for
the y? case.
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The 7 = 1 case with x?? interaction has been studied in [14, 31], where no transition
is found in the canonical ensemble. The transition appears if we instead consider the
micro-canonical ensemble [14].

Here we instead focus on large r limit, whose equilibrium physics and quench dynamics
have been studied in [28-30]. Since the qualitative features (the short time linear growth
and tirst order transition regardless of the strength V2/J2. On the contrary, for the yy3
interaction, similar to the chain case, there is no consistent exact replica diagonal solution
and the transition only appears for small V?2/J2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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