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We ask whether the knowledge of a single eigenstate of a local Hamiltonian is sufficient
to uniquely determine the Hamiltonian. We present evidence that the answer is “yes”
for generic local Hamiltonians, given either the ground state or an excited eigenstate. In
fact, knowing only the two-point equal-time correlation functions of local observables with
respect to the eigenstate should generically be sufficient to exactly recover the Hamiltonian
for finite-size systems, with numerical algorithms that run in a time that is polynomial in the
system size. We also investigate the large-system limit, the sensitivity of the reconstruction
to error, and the case when correlation functions are only known for observables on a fixed
sub-region. Numerical demonstrations support the results for finite one-dimensional spin
chains (though caution must be taken when extrapolating to infinite-size systems in higher
dimensions). For the purpose of our analysis, we define the “k-correlation spectrum” of a
state, which reveals properties of local correlations in the state and may be of independent
interest.
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1 Introduction
Can one determine the Hamiltonian of a system from knowledge of a single eigenstate? Without
any restrictions on the form of the Hamiltonian, the answer is clearly “no,” because infinitely many
Hermitian operators share the same eigenstate. However, most Hermitian operators are not physically
sensible Hamiltonians. If we place strong enough restrictions on the class of Hamiltonians (due to some
pre-existing knowledge about the system), it becomes plausible that a single eigenstate does determine
the Hamiltonian. For instance, given a single-particle Hamiltonian of the form H = p2 + V (x), the
unknown function V (x) can be determined up to a constant by any eigenstate wavefunction ψ(x).
Another case was studied by Ref. [1], demonstrating that a many-body Hamiltonian may be recovered
from the knowledge of a single excited eigenstate (with nonzero energy density) whenever the system
satisfies the eigenstate thermalization hypothesis (ETH) [2, 3].

In this paper, we address this question for a broad class of many-body Hamiltonians: local lattice
Hamiltonians with finite-range interactions. More precisely, we consider many-body systems with a
tensor-factorization of the Hilbert space H = ⊗xHx, where each factor Hx is a finite-dimensional
Hilbert space associated with a site x. Given the tensor factorization, we can define range-k local
operators as operators that only act nontrivially on k spatially contiguous sites. For Hamiltonians
that are linear combinations of range-k local operators, we argue that almost all such Hamiltonians
may be uniquely recovered from the knowledge of a single eigenstate. We first provide an intuitive
argument based on parameter counting, and then we develop a more constructive approach by defining
a quantity we call the k-correlation spectrum. Our methods can be generalized straightforwardly to
certain other classes of Hamiltonians, such as k-local Hamiltonians (defined as linear combinations of
terms acting on k sites that may not be spatially contiguous).

The intuitive parameter-counting argument is presented in Section 2.1, which we first sketch here.
Define a map from local Hamiltonians to states, mapping each Hamiltonian to its i’th eigenstate, for
some fixed i. Because the dimension of the vector space of local Hamiltonians is polynomial in system
size (that is, the number of lattice sites), while the dimension of Hilbert space is exponential in system
size, the image of this map lies in a relatively low-dimensional submanifold of the Hilbert space. We
might therefore expect the map to generically have non-singular derivative – which, for this particular
map, implies injectivity.

The above argument is only suggestive, and there do exist mulitple Hamiltonians with the same
eigenstate. For instance, if the Hamiltonian has zero couplings between lattice sites, the eigenstates will
be separable (non-entangled), with many Hamiltonians sharing that eigenstate. More generally, if the
Hamiltonian commutes with a local conserved quantity O, then the modified Hamiltonian H → H+λO
must share all non-degenerate eigenstates with H. However, these cases are not generic. Granting an
assumption explained in Section 2.3, we then show that such counter-examples form a measure-zero
set in the space of local Hamiltonians on finite-size systems.

In Section 2.2 we develop a constructive approach to obtain the Hamiltonian from one eigenstate.
We introduce the matrix of connected correlations of (spatially) local observables of range k, which
we call the k-correlation matrix M (v) associated to any state v in the Hilbert space. Specifically, we
define

M
(v)
ij = 1

2 〈v| {Li, Lj} |v〉 − 〈v|Li |v〉 〈v|Lj |v〉 (1.1)

where {·, ·} denotes the anti-commutator and Li ∈ Herm(H) are operators that form an orthonormal
basis for the space spanned by operators local to spatially contiguous regions of size k.

We call the eigenvalue spectrum of this matrix the k-correlation spectrum, and it may be calculated
for any state, without reference to a Hamiltonian. This spectrum reveals information about the
correlations and entanglement properties of the state, and it is invariant under local unitary operations.
We will observe that the number of zeros in the correlation spectrum is the dimension of the subspace
of traceless local Hamiltonians that have v as an eigenstate. (For convenience, we will generally
restrict our analysis to traceless Hamiltonians, in order to disregard the component of the Hamiltonian
proportional to the identity, which only introduces a constant shift in energy.) Thus v is an eigenstate
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of some traceless, nonzero local Hamiltonian if and only if the correlation spectrum has at least one
zero, and such a Hamiltonian is unique (up to an overall scaling1) if and only if the correlation spectrum
has exactly one zero.

After introducing the correlation matrix, we calculate correlation spectra numerically for eigenstates
of one-dimensional spin chains. For randomly generated local Hamiltonians on up to n = 12 qubits,
both in the disordered case and the translation-invariant case, we are able to numerically recover
the Hamiltonian from the knowledge of any single eigenstate. In fact, granting certain assumptions
supported by numerical evidence, we prove analytically that almost all Hamiltonians may be uniquely
and exactly determined by any single eigenstate.

For practical purposes, it’s important to ask how sensitive the reconstruction is to error. If the
given eigenstate has some error relative to the actual eigenstate, the smallest nonzero eigenvalue of the
correlation spectrum bounds the sensitivity of the reconstructed Hamiltonian to this error. Moreover,
if the eigenstate is only known on some sub-region of the entire system, the Hamiltonian on this region
may still be approximately recovered in some cases. The question of approximate recovery is addressed
in Section 3.1.

The correlation spectrum of a state is interesting in its own right. We investigate how the correlation
spectrum of an eigenstate varies with the energy of the eigenstate. For translation-invariant states, the
spectrum may be organized into bands (or rather curves) parameterized by momentum. We find that
ground states of gapped, translation-invariant systems exhibit a certain band gap in the correlation
spectrum.

Finally, these results may have direct application for experimental setups. For instance, consider a
translation-invariant spin system in the laboratory, where the Hamiltonian and even the ground state
may not be known, but where the correlation functions of local observables in the ground state may
be measured in some fixed region. Then the Hamiltonian could be approximated using the correlation
matrix, as discussed in Section 3.2.

2 Reconstructing the Hamiltonian using the correlation matrix
2.1 Setup and dimension counting
First we present a heuristic argument that a single eigenstate of a local Hamiltonian uniquely deter-
mines the Hamiltonian. Consider a quantum system on a finite lattice of spatial dimension d with n
sites, where the dimension of the Hilbert space at each site is m, for total Hilbert space H of dimension
N = mn. By a “range-k local Hamiltonian,” we mean a Hamiltonian that may be written as a sum of
interactions of k spatially contiguous sites. Throughout the paper, we will only directly consider finite
systems.

The vector space of all Hamiltonians has real dimensionN2 = m2n, but the space of local Hamiltoni-

ans is much smaller, with dimension of order nm2kd

. Most importantly, the space of local Hamiltonians
has dimension that scales linearly with system size n, unlike the space of states, which scales expo-
nentially with n. This observation provides the basis for the ability to recover the Hamiltonian from
an eigenstate, which then only requires recovering a small number of parameters (linear in n), starting
with a large number of parameters (exponential in n). We will see that actually, only the correlations
of local observables are required to recover the Hamiltonian, and these correlations are described by a
number of parameters quadratic in n.

The exact dimension counting is easy to see in one dimension. For simplicity, consider a qubit spin
chain (i.e. spatial dimension d = 1 with local Hilbert space dimension m = 2) with nearest-neighbor
interactions (range k = 2) and periodic boundary conditions. The most general traceless Hamiltonian

1We will subsequently omit the caveat that the reconstructed Hamiltonian is only unique up to scaling and adding
multiples of the identity.
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with these properties may be written using Pauli matrices as

H =
n∑
i=1

Hi =
n∑
i=1

3∑
a=0

3∑
b=1

ciabσ
i
aσ

i+1
b (2.1)

with 12n real parameters ciab, where a = 0, 1, 2, 3 and b = 1, 2, 3. Denote this space of local Hamil-
tonians LH ⊂ Herm(H), with real dimension dim(LH) = 12n. Equivalently, LH is the vector space
spanned by local operators of range k = 2. The set of states in H that are the unique eigenstate of
a local Hamiltonian must then be contained within a submanifold M ⊂ H of real dimension at most
12n, whereas the Hilbert space H has real dimension 2N = 2n+1. For systems of sufficiently large size
n, dim(LH)� dim(H). Hence almost all states in H are not the unique eigenstate of any local Hamil-
tonian. A similar argument indicates that almost all states cannot be in the degenerate eigenspace of
a local Hamiltonian, provided the degeneracy is not exponential in system size. (Moreover, one may
explicitly construct states that are guaranteed to be far from any eigenstate of any local Hamiltonian
[4].)

Now we ask, for states that are eigenstates of some local Hamiltonian, is that Hamiltonian unique?
Consider the mapping from LH to H taking a local Hamiltonian to its i’th eigenstate for some fixed
i. This map goes from a relatively small space to a much larger space, so we might expect it to have
non-singular derivative at most points. Because every fiber of this map (i.e. the preimage of a point in
the image) is a linear subspace, a non-singular derivative implies the fiber contains exactly one point,
or rather the Hamiltonian can be recovered from the eigenstate.

Of course, dimension counting alone does not guarantee that the map has a non-singular derivative.
We analyze uniqueness more rigorously and explicitly in the following subsections.

2.2 Defining the correlation matrix
Given a state v ∈ H, how can one determine whether it is the eigenstate of some local Hamiltonian,
and in particular whether the Hamiltonian may be uniquely recovered? First, note that a Hermitian
operator O has eigenstate v if and only if

〈O2〉v − 〈O〉2v = 0, (2.2)

i.e. the variance or “fluctuation” of O with respect to v is zero. The above condition directly follows
if v is an eigenstate of O. Conversely, to see that the above condition implies v is an eigenstate of O,
decompose the vector O|v〉 into a term proportional to |v〉 and orthogonal to |v〉, i.e.

O|v〉 = α|v〉+ α⊥|v⊥〉, (2.3)

for some normalized |v⊥〉. Then
〈O2〉v − 〈O〉2v = |α⊥|2, (2.4)

and if the above quantity is zero, then α⊥ = 0 and hence v must be an eigenvector of O.
We will re-express this condition using the correlation matrix M (v) of Equation 1.1,

M
(v)
ij = 1

2 〈{Li, Lj}〉v − 〈Li〉v〈Lj〉v,

where the expectations are taken with respect to state v, and Li ∈ Herm(H) are operators that form
a basis for LH ⊂ Herm(H), the space of range-k local Hamiltonians. Equivalently, LH is spanned
by operators local to spatially contiguous subsystems of size k; we occasionally refer to these sums
of local operators as local operators themselves, so that “local Hamiltonian” and “[Hermitian] local
operator” have identical meaning. While we have allowed the freedom to choose any basis {Li} of LH,
it is useful to choose a basis such that each operator Li is local to a particular region of size k, rather
than being a linear combination of such operators. For instance, the {Li} could always be chosen as a
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subset of products of (generalized) Pauli operators. With such a choice, the entries of the correlation
matrix will actually be two-point connected correlations of operators of range k, rather than sums of
such correlations.

We choose {Li} orthonormal in the Hilbert-Schmidt inner product, with a normalization convention
‖1‖ ≡ 1

NTr(12) = 1. Then the condition that operator O = wiLi has eigenstate v may be written

〈O2〉v − 〈O〉2v = wTM (v)w (2.5)
= 〈O|M (v) |O〉
= 0.

The second line is simply an alternative notation that will be useful later, treating the operator O as
a vector in the vector space LH of local Hamiltonians.

Therefore one can think of M (v) as a symmetric bilinear form on the vector space LH. The bilinear
form simply maps operators to their correlation with respect to v. That is, for operators O1 and O2,

〈O1|M (v) |O2〉 = 〈O1O2〉v − 〈O1〉v〈O2〉v. (2.6)

Equivalently, we can see M (v) as a (super-)operator on LH. By the condition of Equation 2.5,
the kernel of M (v) is precisely the space of local Hamiltonians with eigenstate v. Recalling Equation
2.4, we can think of 〈O|M (v) |O〉 = |α⊥|2 as measuring the degree to which O fails to have v as an
eigenstate.

For an eigenstate v of a local Hamiltonian, the kernel of M (v) must have dimension at least one.
If dim kerM (v) is exactly one, there is no other Hamiltonian with v as an eigenstate, so that the
Hamiltonian is uniquely recovered from v. The correlation matrix then provides a simple construction
of the Hamiltonian: For a given state v, we first calculate the correlation matrix M (v) (which has
relatively small dimension, quadratic in system size). Or in some situations, we might start with M (v)

directly, without ever knowing v. Then we diagonalize M (v) to look for its zero eigenvalue, which
takes a polynomial time O(n3). (The correlation matrix has dimension O(n), because it includes
correlations of only spatially local observables.) If there is no zero eigenvalue, we conclude that v is
not an eigenstate of any local Hamiltonian. If there is a unique zero eigenvalue, with the eigenvector
wi, then H =

∑
i wiLi is the unique local Hamiltonian with state v as an eigenvector. If M (v) has

more than one zero eigenvalue, the Hamiltonian cannot be uniquely determined by v. We call the
spectrum of M (v) the “correlation spectrum” of v, which depends on the subspace LH but is evidently
independent of the basis {Li}.

As an example, we numerically study spin chain Hamiltonians as in Equation 2.1 with i.i.d. random
Gaussian couplings ciab acting on 12 qubits. The correlation spectrum of each eigenstate was found
to have a single zero, implying the reconstructed Hamiltonian is unique. Indeed, the reconstructed
Hamiltonian consistently matches the original to within error of about θ ≈ 10−10, with θ defined in
Equation 3.2. The correlation spectrum for the ground state of such a Hamiltonian is shown in Figure
1; note the single zero at the bottom left corner.

Given only the two-point correlation functions of range-k observables for an eigenstate, the re-
constructed Hamiltonian could then be used to determine the eigenstate itself. (Each “two-point”
correlation probes up to 2k sites.) In this way, one reconstructs the eigenstate from its local correla-
tions. It is already well-known that (non-degenerate) eigenstates of local Hamiltonians are uniquely
determined by their local correlations [5, 6, 7]. The results here take this conclusion a step further: one
recovers not only the eigenstate but also the Hamiltonian. (Reference [6] constructs “parent Hamilto-
nians” for states using only local expectation values, but these parent Hamiltonians are not generally
range k, so they do not recover the original range-k Hamiltonian.)

In the case of ground states, the state is actually already determined by the expectation values
of single local observables (rather than the two-point correlation functions needed to recover excited
eigenstates). Thus for nearest neighbor translation-invariant systems, the ground state is uniquely
determined by the reduced density matrix (RDM) on any two adjacent sites. Ref. [8] discusses how
this 2-body RDM reveals properties of the ground state.
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Figure 1: The correlation spectrum is shown for the ground state of a 10-qubit spin chain Hamiltonian with randomly
generated coefficients (non-translation-invariant). Although the reconstructions were tested for up to n = 12 qubits,
an example with n = 10 is shown here for visual clarity (to see how the eigenvalues are separated).

The correlation matrix may also be written

M̄
(ρ)
ij = 1

2Tr([ρ, Li]+[ρ, Lj ]), (2.7)

where ρ = |v〉 〈v|, which extends the definition of the correlation to mixed states. (The bar is used to
distinguish M̄ (ρ) from the M (ρ) of Equation 3.9, which offers a different generalization of the correlation
matrix to mixed states.) In this form, the correlation matrix shows a resemblance to the quantity

M
(H)
ij = 1

2Tr([H,Li][H,Lj ]), (2.8)

studied with slight modifications in [9] and [10]. While the eigen-operators of M (v) with the smallest
eigenvalues are the operators that have the least fluctuation with respect to ρ, the eigen-operators of

M
(H)
ij with the smallest eigenvalues are the operators that change most slowly in time.

2.3 Showing the reconstructed Hamiltonian is generically unique
For some H ∈ LH with eigenstate v, we now ask whether to expect that the correlation spectrum

of v has only one zero, allowing unique recovery of H. Denote the correlation spectrum of v as

spectrum(M (v)) = {λ(v)
i }

N
i=1 (2.9)

with eigenvalues ordered from smallest to largest, λ
(v)
1 ≤ · · · ≤ λ

(v)
N . Then for any eigenstate v of a

local Hamiltonian, λ
(v)
1 = 0, and the Hamiltonian may be reconstructed if and only if λ

(v)
2 > 0. We

want to show that for almost all H ∈ LH, for any eigenstate v of H, the only Hamiltonian that has
eigenstate v is H. That is, we want to show that almost all H ∈ LH may be reconstructed from any
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one of their eigenstates. We therefore prove the following result, which assumes there exists some H0
for which the reconstruction is unique:

Theorem. For a given Hilbert space and tensor factorization into n sites, with a given subspace of
local operators LH, let us assume there exists a single Hamiltonian H0 with non-degenerate spectrum,
such that the i’th eigenstate v of H0 allows unique reconstruction of H0. In other words, we assume
there exists some H0 for which the i’th eigenstate has correlation spectrum with exactly one zero.
Given this assumption, the set of Hamiltonians in LH that cannot be reconstructed from their i’th
eigenstate has measure zero.
Proof. Let X ⊂ LH be the set of local Hamiltonians with non-degenerate spectrum. Then H0 ∈ X,
and X is a connected open set with measure zero complement. Consider the i’th eigenstate v of H0.

By definition, λ
(v)
1 = 0 for all H ∈ LH, and by assumption, λ

(v)
2 > 0 for H0. The argument will

essentially run as follows: we consider λ
(v)
2 as a function of H, and this function will be analytic

(subject to subtleties concerning whether λ
(v)
2 is a degenerate eigenvalue). Crucially, the set of zeros of

an analytic function has measure zero, unless the function itself is zero. So if λ
(v)
2 is nonzero for some

point H0 ∈ X, then λ
(v)
2 must be nonzero almost everywhere in X, implying almost all H ∈ LH may

be reconstructed from their i’th eigenstate. To avoid the subleties mentioned above, the argument

below does not directly consider λ
(v)
2 as a function of H, but it is similar in spirit.

Because λ
(v)
1 = 0 and λ

(v)
2 > 0 for H0, M (v) has nullity 1, or rank N − 1. Note that a matrix

has rank at least r if and only if all of its r-by-r matrix minors have nonzero determinant. Hence
all (N − 1)-by-(N − 1) matrix minors of M (v) have nonzero determinant. Moreover, the determinant
is a polynomial of the matrix entries of M (v). In turn, M (v) has entries whose real and imaginary
parts are real polynomials of the real and imaginary parts of v, the i’th eigenstate of H. Consider
the map fi : X → P(H) sending a Hamiltonian to the ray of its i’th eigenstate, where P(H) is the
projective Hilbert space. The map fi is analytic. Then the determinants of the (N − 1)-by-(N − 1)
matrix minors of M (v) depend analytically on H, and so the determinants must be nonzero almost

everywhere. Hence M (v) has rank N − 1 almost everywhere, and so λ
(v)
2 > 0 almost everywhere, and

H may be reconstructed from v for almost all H ∈ LH. �

For a lattice of some fixed finite size, any single example of a local Hamiltonian that may be
recovered from its eigenstate would then serve as rigorous proof that almost all Hamiltonians on this
lattice are recoverable; this is the power of analyticity. Such examples were found numerically for spin
chains of size up to n = 12, as illustrated in Figure 1. This numerical evidence effectively proves that
for chains of n = 12 qubits, almost all Hamiltonians are recoverable from their eigenstates.

The observations in Section 3.3 suggest how results for specific systems of finite size might be
used to prove statements about generic systems of arbitrarily large size. However, in the infinite-
size limit, the analysis is more complicated, especially because the subset X of non-degenerate local
Hamiltonians may no longer be dense nor connected, due to the existence of topological phases in
d ≥ 2 spatial dimensions. Thus an example of a Hamiltonian recoverable from its ground state would
only show that almost all Hamiltonians in that same quantum phase are also recoverable from their
ground states.

In the case of a translation-invariant Hamiltonian, we may consider the same Hamiltonian extended
to systems of different size. As mentioned in Section 3.3, the ability to recover a Hamiltonian from
its ground state for systems of a certain size may then guarantee the ability to recover the same
Hamiltonian from its ground state on all larger systems, assuming an energy gap.

Finally, let us note a relationship between the above discussion and the “quantum geometric tensor”
introduced by [11]. Here, we have considered the map from Hamiltonian to eigenstate. In the case
of ground states, this map was studied in a different context when thinking about quantum phase
transitions. The quantum geometric tensor measures how the ground state changes with respect to
perturbations in the Hamiltonian, and it may be calculated explicitly with perturbation theory.
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2.4 Translation-invariant systems and banded correlation spectra
Translation invariance simplifies the the analysis in several ways. For translation-invariant systems of
qudits, a range-k local Hamiltonian is specified by a finite number of parameters that is independent of
system size. For a periodic system, the translation invariance also allows the correlation spectrum to
be divided into bands,2 much in the same way that translation-invariant Hamiltonians have a banded
energy spectrum, with different eigenvalues within a single band corresponding to different momenta.

Consider a translation-invariant state v, the eigenstate of some translation-invariant local Hamilto-
nian. More generally, v might be an eigenstate of nonzero momentum, but we will assume v has zero
momentum to simplify the discussion. For a translation-invariant state, it is helpful to consider the
correlation matrix M (v) in a momentum basis, where it will become block diagonal. More specifically,
first consider a basis

{Lxα} (2.10)
for the space of range-k local Hamiltonians LH, where the index x = 1, ..., n labels the site, Lxα has
support within sites x to x+k-1, and α = 1, ..., S/n labels all range-k local operators at fixed position,
with S = dim(LH). The correlation matrix for a translation-invariant state may then be written

M
(v)
xα,yβ = 1

2 〈{Lxα, Lyβ}〉v − 〈Lxα〉v〈Lyβ〉v (2.11)

≡ fαβ(|x− y|)

where {fαβ(r)}S/nα,β=1 denote the two-point correlation functions of operators labeled by α and β, with
separation r ∈ {0, ..., n− 1}.

Denote the Fourier-transformed basis as {L̃qα}, for α = 1, .., S/n and momentum q = 2πj/n with
j ∈ {0, ..., n− 1}. Specifically, define

L̃qα = 1√
n

n∑
x=1

Lxαe
iqx. (2.12)

For instance, the operators L̃qα for q = 0 span the space of translation-invariant local Hamiltonians.
For a translation-invariant eigenstate v with zero momentum, it is straightforward to show that the
correlation matrix in the momentum basis becomes block diagonal,

M̃
(v)
pα,qβ = 1

2 〈{L̃pα, L̃qβ}〉v − 〈L̃qα〉v〈L̃pβ〉v (2.13)

= δpqM̃
(v)
pα,qβ (2.14)

= δpq f̃αβ(p)

where f̃αβ(p) are the Fourier-transformed correlation functions

f̃αβ(p) = 1√
n

∑
x

fαβ(j)eipx (2.15)

For fixed p, we have the matrix M̃
(v)
pα,pβ = fαβ(p), with indices α, β taking on values 1 to S/n. It may

be diagonalized to yield the eigenvalues {λqα}
S/n
α=1,

{λqα}
S/n
α=1 = spectrum(M (v)

pα,pβ). (2.16)

In the n→∞ large-system limit, p ∈ [0, 2π) becomes a continuous parameter. Because the Fourier
transform of an exponentially decaying function is smooth, the Fourier space correlation functions

2We say “band” in analogy with a banded energy spectrum, but each band is actually a one-dimensional curve, unlike
the thickened band that appears in band theory.
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f̃αβ(p) will depend smoothly on p if the position space correlation functions fαβ(|x− y|) are exponen-
tially decaying in distance. Such states with exponentially decaying correlations include gapped ground
states, eigenstates of many-body localized systems, and eigenstates of systems satisfying ETH, with
the last case subject to caveats discussed at the end of the section. When the correlation matrix entries
depend smoothly on q, the set of eigenvalues will also depend smoothly on q, so that the eigenvalues
form momentum bands. The number of bands is S/n = dim(LH)/n, independent of the number of
lattice sites n. For example, S/n = 12 for qubit spin chains. For a fixed translation-invariant Hamil-
tonian on system of finite size n, the eigenvalues in each momentum band should become continuous
as n→∞ and tend toward some limiting curves.

While the full structure of the bands is helpful for characterizing properties of the state, only the
zero-momentum sector of the correlation spectrum is relevant to the reconstruction of a translation-
invariant Hamiltonian from its eigenstate. That is, one only needs to consider the part of the correlation

matrix M̃
(v)
pα,qβ at p, q = 0, corresponding to the correlation matrix of translation-invariant observables.

The reconstruction of the Hamiltonian is then possible if and only if the eigenvalue spectrum of the
translation-invariant correlation matrix has exactly one zero. The eigenvector in the kernel of the
translation-invariant correlation matrix specifies the parameters of the recovered Hamiltonian.

An example of the banded correlation spectrum is shown in Figure 2 for the ground state of a
40-qubit translation-invariant spin chain with randomly generated couplings. The correlation spec-
trum has a single zero, which occurs in the lowest band at q = 0. The corresponding eigen-operator
of the correlation matrix yields the reconstructed Hamiltonian, and the single zero in the correla-
tion spectrum implies that the reconstructed Hamiltonian is unique. As expected, the reconstructed
Hamiltonian numerically matches the original, randomly generated Hamiltonian. Note that the bands
are approximately smooth, due to the exponential decay of correlations in a gapped ground state.
The example shown is qualitatively typical for gapped, zero-momentum ground states of randomly
generated, translation-invariant spin chain Hamiltonians.

Again, the q = 0 eigenvalue of the lowest band corresponds to the Hamiltonian itself, H =
∑
xHx.

Meanwhile, the eigenvalues at q 6= 0 in the lowest band are associated with eigen-operators that
approximately correspond to the energy density times a nonzero phase factor, i.e.

∑
xHxe

iqx. For
arbitrarily large systems, as the band becomes continuous, the correlation spectrum has many eigen-
values arbitrarily close to zero. As discussed further in Section 3.1, small nonzero eigenvalues in the
correlation spectrum imply that the reconstructed Hamiltonian is highly sensitive to numerical error,
or to error in the known eigenstate. This sensitivity is easy to understand: small nonzero eigenvalues
in the correlation spectrum correspond to candidate Hamiltonians that are orthogonal to the true
Hamiltonian but for which the given state is still an approximate eigenstate.

When the Hamiltonian is known to be translation-invariant, the very small eigenvalues in the lowest
band discussed above do not necessarily imply an error-prone reconstruction, because eigenvalues may
be ignored by restricting attention to the correlation matrix at q = 0. However, even if the Hamiltonian
were not known to be translation-invariant, there is a sense in which these small eigenvalues would not
pose a problem for reconstruction: although the operator

∑
xHxe

iqx is orthogonal to the Hamiltonian,
it approximately matches the Hamiltonian up to an overall phase when truncated to regions of size
less than q−1.

When reconstructing the Hamiltonian from exponentially decaying correlation functions, this sort
of error is inevitable: the correlations in a local region only aid in reconstructing the Hamiltonian on
that region, and only up to an overall phase; on length scales much larger than the correlation length,
one cannot guarantee that the Hamiltonians reconstructed on each region are stitched together with
the correct phase to yield the correct total Hamiltonian.

The preceding discussion becomes more important in the case of non-translation-invariant Hamil-
tonians, for which operators like

∑
xHxe

iqx for small q will again lead to small nonzero eigenvalues in
the correlation spectrum. In that case, one can only hope to recover the Hamiltonian up to this slowly
varying phase factor.

Meanwhile, Figure 3 shows the correlation spectrum for a mid-spectrum excited state of the same
translation-invariant Hamiltonian with randomly generated coefficients (though on a system with fewer
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Figure 2: The correlation spectrum is shown for the ground state of a 40-qubit translation-invariant spin chain
Hamiltonian with randomly generated coefficients. The “momentum mode number” refers to integer j = 0, ..., n−1
in the momentum q = 2πj/n. Unlike in other examples, the ground state here was found approximately using matrix
product state methods rather than exact diagonalization, so that a larger system with more discretized momentum
values could be used, to better showcase the structure of the bands.

qubits, due to computational constraints). The correlation spectrum again has a single zero (in the
lower left corner), yielding an accurate reconstruction of the Hamiltonian. However, note the lowest
band appears to have a discontinuity at q = 0, implying that the two-point correlations of the energy
terms Hx in the Hamiltonian H =

∑
iHi must not decay exponentially (otherwise the band would

be smooth). The example shown is qualitatively typical of mid-spectrum excited states of randomly
generated, translation-invariant spin chain Hamiltonians.

In fact, we can argue that the correlation functions of energy in an eigenstate that satisfies ETH
never decay exponentially, thereby yielding the discontinuity in the lowest band of the correlation
spectrum. The key fact is that for a state with exponentially decaying correlations, the total fluctuation
(i.e. variance) of any operator O =

∑
iOi is approximately the sum of the fluctuation in each sub-

region, where the total lattice has been partitioned into sub-regions of sufficient size. That is, for states
where correlations of Oi decay exponentially,

〈O2〉 − 〈O〉2 ≈
∑
A

〈O2
A〉 − 〈OA〉2 =

∑
A

∑
i,j∈A

〈OiOj〉 − 〈Oi〉〈Oj〉 (2.17)

where the lattice has been partitioned into regions A of length much greater than the correlation
length of the state. For an eigenstate that satisfies ETH on regions small compared to the total system
size, the fluctuation of the Hamiltonian in any such region will be equal to the thermal fluctuation in
that region, so the right-hand side of the above will be proportional to total volume. But the total
fluctuation of the Hamiltonian will be zero, so the above equation cannot hold. Hence the correlations
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Momentum mode number

Figure 3: The correlation spectrum is shown for a mid-spectrum excited state of a 10-qubit translation-invariant
spin chain Hamiltonian with randomly generated coefficients. The “momentum mode number” refers to integer
j = 0, ..., n− 1 in the momentum q = 2πj/n.

of energy cannot decay exponentially for ETH eigenstates, at least on scales comparable to the total
system size n; the correlations must be of order at least 1

n . This nonzero, non-decaying correlation
of energy density at large distances makes sense when considering energy conservation: measuring an
extra unit of energy in one region implies measuring 1

n fewer units of energy elsewhere, on average. A
related discussion appears in [1].

The correlation spectra shown in Figures 2 and 3 and appear qualitatively typical of such randomly
generated translation-invariant local Hamiltonians, at least when the ground state is gapped with
momentum q = 0. Notice that for the ground state in Figure 2, the spectrum has a gap in momentum
bands, between the lower 8 bands and the upper 4. This gap appears typical. On the other hand, the
correlation spectrum in Figure 3 for a mid-spectrum excited state shows no such gap. Thus the gap in
the correlation spectrum appears to distinguish ground states from excited states. Excited states also
have a larger smallest-nonzero-eigenvalue, allowing more robust reconstruction of the Hamiltonian.

Why is the gap between bands present in the correlation spectrum of the ground state? No
conclusive calculation is presented here. However, it is illuminating to consider the correlation spectrum
of a product state, such as the all-spin-up state

∏
| ↑〉 in the qubit chain, which yields 8 flat bands at

exactly λ = 0 and 4 bands at λ = 1, producing a gap similar to that of a general gapped ground state. If
a ground state is related to the product state by an adiabatic evolution, we expect the gap to stay open
for a finite parameter range, since the correlation spectrum is a continuous function of the state. We
numerically verified that if a sufficiently short quantum circuit is applied to the product state, the bands
will change but the gap will persist. (Rather than using a circuit, to preserve translation invariance one
may instead consider evolution for a short time with a translation-invariant local Hamiltonian.) The
eigen-operators will only obtain slightly expanded spatial support after evolution via a short circuit,
and these operators may be approximated with a truncation to subsystems of size k = 2. Intuitively, we
expect that the operators in the bands below the gap come from finite-size truncations of almost-local
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conserved quantities, but a precise relation is not known.

3 Approximate reconstruction
3.1 Reconstruction from data with error
If the eigenstate is only known approximately – if the given state has some “error” relative to the
true eigenstate – then the reconstructed Hamiltonian will have some corresponding error relative to
the true Hamiltonian. Understanding the sensitivity of the reconstruction to error is important for
several reasons. First, the error analysis is necessary when extrapolating results about smaller systems
to arbitrarily large systems, as discussed in Section 3.3. If the sensitivity of the reconstruction to
error were to diverge in the large-system limit, the Hamiltonian would not be robustly determined by
an eigenstate for large systems, and the numerics performed for finite systems would be misleading.
The error analysis is also relevant for experimental applications, where it is possible that (1) the
correlations of local observables are measured with error, (2) the state is not an exact eigenstate, and
(3) measurements of correlations are only known for observables confined to a sub-region within the
entire system. We will find that the sensitivity to error is related to the correlation spectrum.

First we consider a situation in which the correlations are known for the whole system, but they
are measured with some error. For some eigenstate v of H, let the measured correlation matrix be

M ′(v) = M (v) + ε∆M (v). (3.1)

(If the true state of the system were not an exact eigenstate, the error could be considered in the same
way.) Assume that M (v) has exactly one zero eigenvalue, i.e. v allows unique reconstruction of H.
Call the vector in the kernel |H〉, following the notation under Equation 2.5, where the components of
|H〉 correspond to the components of H in the space LH of local Hamiltonians. In general M ′(v) may
have trivial kernel, but one still obtains a candidate reconstruction |H ′〉 by taking a vector of smallest
eigenvalue. Take |H〉 and |H ′〉 to have norm 1. The error of H ′ relative to H may be quantified as

θ = cos−1 ‖ 〈H|H ′〉 ‖, (3.2)

i.e. the angle between the reconstructed Hamiltonians, or their distance in the space of projectivized
Hamiltonians. To check that θ is a sensible measure of error, one must understand its normalization
and how it scales with system size. Consider two translation-invariant Hamiltonians H =

∑n
i=1 hi and

H ′ =
∑n
i=1 h

′
i, for convenience normalized to ‖H‖ = ‖H ′‖ = 1 with ‖hi‖, |h′i‖ ∝ 1√

n
. Let the terms hi

be chosen to be orthogonal for different i, and likewise for h′i. Then the angle θ between hi and h′i is
also the angle θ between H and H ′, so θ is a measure of the distance between the individual terms of
the Hamiltonians, and this quantity does not scale with the total system size for translation-invariant
systems.

Calculating this quantity is an application of the perturbation theory of matrices and eigenvectors,
familiar from quantum mechanics. Mathematically, |H ′〉 is the perturbed “ground state” (eigenvector
of lowest eigenvalue) of M ′(v). In particular,

|H ′〉 ∝ |H〉+ ε
S∑
i>1

〈Oi|∆M (v) |H〉
λi − λ1

|Oi〉+O(ε2) (3.3)

where |Oi〉 are the eigenvectors (or rather eigen-operators) of M (v), λi are the eigenvalues in the
correlation spectrum, and λ1 = 0. The above expression for |H ′〉 is not normalized; accounting for
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normalization, one obtains the bound

1− ‖ 〈H|H ′〉 ‖ ≤ε
2

2

∥∥∥∥∥
s∑
i>1

〈Oi|∆M (v) |H〉
λi − λ1

∥∥∥∥∥+O(ε)3 (3.4)

≤ε
2

2
1
λ2

2
‖∆M (v)‖2 +O(ε4), (3.5)

where λ2 is the second-smallest eigenvalue of the correlation spectrum. Using a small angle approxi-
mation,

θ = cos−1 ‖ 〈H|H ′〉 ‖ . ε‖∆M (v)‖ 1
λ2

+O(ε2). (3.6)

The above error bound considers only the first derivative of the error with respect to infintesimal
perturbations of the M (v). Rather than merely bound the infintesimal sensitivity of H to v, one may
also bound the error in H due to non-infintesimal perturbations of v or M (v), using the Davis-Kahan
sin-theta theorem [12]. The theorem yields the exact bound

1
2 sin 2θ ≤ ε‖∆M

(v)‖
λ2

. (3.7)

Therefore the error of the reconstructed Hamiltonian is inversely proportional to the smallest
nonzero eigenvalue λ2 of the correlation spectrum.

If the Hamiltonian is known to be translation-invariant, then we can restrict our attention to the

correlation matrix of translation-invariant observables, M
(v)
0α,0β , whose dimension S/n will be indepen-

dent of system size, with spectrum λqi (see Equation 2.16). The error of the reconstructed Hamiltonian

is then inversely proportional to λq=0
2 , the smallest nonzero eigenvalue of the correlation spectrum for

zero momentum. By the discussion of the preceding section, for an eigenstate with exponential decay
of correlations, one expects λq=0

2 to have some finite limiting value in the large-system limit. Then
the sensitivity of the reconstruction would be upper bounded in the large-system limit, assuming λq=0

2
tends to a nonzero value.

Finally, we can gain alternative perspective on the correlation spectrum and the sensitivity of the
reconstruction in a more geometric way. Given H ∈ LH with eigenstate v, consider the subspace
Ov ⊂ Herm(H) of Hermitian operators that have v as an eigenstate. By definition, H ∈ Ov, and the
intersection LH ∩ Ov ⊂ Herm(H) is precisely the space of traceless local Hamiltonians that have v
as an eigenstate, i.e. the kernel of the correlation matrix M (v). For the purpose of reconstruction,
we are interested in dim(LH ∩ Ov), which must have dimension at least one. Generically, we might
expect dim(LH ∩ Ov) = 1, because dim(LH) + dim(Ov) < dim(Herm(H)). If the planes LH and Ov
intersect at a small angle, then small errors in v (and hence Ov) may generate large deviations of the
intersection. The “angle” between two hyperplanes is characterized by a list of angles called principal
angles. A calculation in linear algebra reveals that the principal angles between subspaces L and Ov
are actually related to the correlation spectrum by

θi = cos−1 (1− λ2
i

)
, (3.8)

where {λi}si=1 is the correlation spectrum of v. For small angles, the equation yields θi ≈ 2λi. We see
that the smallest nonzero eigenvalues in the correlation spectrum provide a measure of the smallest
angles between the subspaces L and Ov, again indicating the sensitivity of the reconstruction of H.

3.2 Reconstruction from data restricted to a sub-region
Now we consider the case that the correlations are only known for observables local to a particular
sub-region of the system. In particular, consider a qubit spin chain of length n, where correlations
are only known for a subsystem A consisting of m contiguous sites. Assume the full system is in
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eigenstate v of the Hamiltonian H, and let ρA = TrĀ(|v〉 〈v|) be the reduced state of v on A. Using the

notation of Equation 2.11, we assume that we only know the entries of the correlation matrix M
(v)
xα,yβ

for x, y ∈ A. This sub-matrix of the correlation matrix may also be expressed as M (ρA), where we
define the correlation matrix for a general mixed state as

M
(ρ)
ij = 1

2Tr(ρ{Li, Lj})− Tr(ρLi)Tr(ρLj). (3.9)

Can one recover H from knowledge of M (ρA)? When the system is disordered (that is, not
translation-invariant), one could only hope to recover HA, the sum of terms in H that are local
to A. When the system is translation-invariant, one could hope to recover H in its entirety.

For both the translation-invariant and disordered case, the possibility for recovery is very different
for excited states at nonzero energy density than for ground states. For an eigenstate v at nonzero
energy density, if the system satisfies the eigenstate thermalization hypothesis (ETH) – which is thought
to hold for generic non-integrable systems – then ρA is approximated by the thermal Gibbs state for
m� n:

ρA ≈
TrĀ(e−βH)
Tr(e−βH) (3.10)

≈ e−βHA

Tr(e−βHA)

where the inverse-temperature β is defined by dS(E)
dE |E=Ev

= β, for eigenstate v at energy Ev, with
density of states S(E). Then

log(ρA) ∝ HA + const., (3.11)

so knowledge of ρA is sufficient to approximately recover HA. The subtleties and implications of this
procedure are discussed in detail in reference [1].

When the thermal Gibbs state ρ ∝ e−βH is given, the Hamiltonian may be obtained by taking a
logarithm. However, this method of obtaining H requires knowledge of ρ, not just the 2-point local
correlation functions encoded by M (ρ). The correlation matrix M (ρ) of the thermal state generally
has no kernel, so the method used for recovery from eigenstates on the full system will fail for thermal
states, and likewise will fail for eigenstates that have been reduced to subsystems. Is there a way
to recover H using only the local correlations encoded by M (ρ), without direct knowledge of ρ? In
principle, the Gibbs state ρ is fully determined by the 1-point expectation values Tr(ρLi) [7]. But
the procedure in [7] for reconstructing ρ from the values Tr(ρLi) may have computational complexity
that is exponential in the system size. One alternative is to examine M̄ (ρ) as defined in Equation
2.7. Indeed, numerical tests demonstrate that the kernel of M̄ (ρ) is generically |H〉, but the procedure
appears highly sensitive to error, and the entries of M̄ (ρ) are not expectation values given by simple
measurements, unlike the entries of Mv for a pure state v. 3

For the case of a translation-invariant Hamiltonian, the approximate recovery process is very simple.
Let v be the eigenstate of the total system of size n, and consider a singly connected subsystem A of

size m. Then the q = 0 part of M (v), or M̃
(v)
0α,0β , may be estimated using M (ρA) with error that decays

with m as e−m/ξ for correlation length ξ. Using the estimate of M
(v)
0α,0β obtained from M (ρA), one can

then find the kernel, yielding the Hamiltonian.
For the case of a non-translation-invariant Hamiltonian with an eigenstate that exhibits exponential

decay of correlations, the ability to recover the Hamiltonian from a sub-region is less clear, and we are
unable to comment conclusively. One might expect that the eigen-operator of M (ρA) with the smallest
eigenvalue approximately recovers the Hamiltonian HA, at least if the terms near the boundary of A

3One promising approach would be to make use of efficient (polynomial time) algorithms for generating tensor-network
representations for Gibbs states of local Hamiltonians [13]. To recover H from M(ρ), perhaps one could efficiently search
over all local Hamiltonians for the Hamiltonian whose Gibbs state yields the desired correlation functions.
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are ignored when comparing the original Hamiltonian to the reconstruction. In numerical examples
for spin chains of length n = 12 and sub-regions of length n = 8, the Hamiltonian reconstructed from
the eigenstate of the sub-region matched the Hamiltonian on region, ignoring boundary terms, with
an accuracy of θ ≈ 20◦ − 40◦ using θ as defined in Equation 3.2.

3.3 Unique reconstruction in the large-system limit
Numerical examples readily demonstrate that the Hamiltonian may be uniquely recovered from an
eigenstate for finite-size systems, and the arguments of Section 2.3 show that even one such numerical
example is sufficient to make rigorous statements about almost all local Hamiltonians on finite-size
systems. We expect, moreover, that such examples exist for arbitrarily large finite-size systems –
perhaps they could be found analytically, for instance, with exactly solvable models. In that case, one
could conclude that almost all local Hamiltonians are uniquely determined by a single eigenstate, even
for arbitrarily large systems. However, while this statement is likely true, it ignores two important and
related questions: the question of sensitivity to error, and the question of the infinite-size limit.

Consider the value of λ2 as a function on the space of local Hamiltonians, LH. Recall from Section
3.1 that wherever λ2 is nonzero, the Hamiltonian is uniquely determined by the eigenstate, and the
sensitivity of the reconstruction to error goes like (λ2)−1. One might worry about the behavior of this
function as the system size increases: even though λ2 may remain almost everywhere nonzero for large
systems, does it become arbitrarily small in some regions of LH? And for a formally infinite system,
is the Hamiltonian still uniquely determined by the eigenstate?

For translation-invariant systems, at least, if one has shown the ability to approximately reconstruct
the Hamiltonian from the eigenstate on a sub-region, then these concerns become irrelevant: as system
size increases, the reduced density matrix of the ground state on a fixed sub-region converges, at least
for typical gapped ground states [14], and the Hamiltonian may always be reconstructed from this sub-
region. Using results from [14], combined with those of Section 3.2, one could possibly use a numerical
example of some Hamiltonian on a finite-size system to lower bound λ2 for the same Hamiltonian on
all larger systems, thus proving the Hamiltonian is recoverable with some bounded error on systems
of arbitrary size.

For non-translation-invariant systems, recovery in the large-system limit remains unclear, which we
leave as the subject of future work. And even in translation-invariant systems, for spatial dimension
d ≥ 2, little is known rigorously about the ground states of generic local Hamiltonians, so it is difficult
to speculate about the zeros of the correlation spectrum in different phases.

4 Conclusion and discussion
In summary, we found that for finite-size lattice systems, a generic local Hamiltonian may be recovered
from a single eigenstate. To reconstruct the Hamiltonian from the eigenstate, we made use of the
correlation matrix of the state, which encodes all connected two-point correlations between range-k
local observables. The kernel of the correlation matrix yields the reconstructed Hamiltonian, and the
reconstruction is possible within polynomial time, demanding knowledge only of two-point correlation
functions of range-k observables. The correlation spectrum indicates whether unique reconstruction of
the Hamiltonian is possible, as well as the sensitivity of the reconstruction to error. For translation-
invariant systems, the correlation spectrum may be arranged in momentum bands, which appear to
exhibit different structure for ground states and excited states. Finally, in some cases it is possible
to reconstruct the Hamiltonian knowing only the correlations of the state within a restricted region.
However, more work is necessary in this direction.

The correlation spectrum may be of independent interest for analyzing the correlation properties of
a state. On one hand, one may think the correlation spectrum captures little information that is not
already captured by a standard quantity, like a correlation length or entanglement entropy. However,
unlike the correlation length of a particular observable, the correlation spectrum (and corresponding
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eigen-operators) offers canonically packaged data that is independent of any particular choice of ob-
servable. The correlation spectrum for a general state may be an analog of the scaling dimension
spectrum in a conformal field theory, while the eigen-operators are an analog of conformal quasipri-
mary operators. The correlation spectrum also provides more numerical data than a single number
like entanglement entropy, and one may investigate the k-correlation spectrum for different k. Finally,
the average correlation spectrum may be analytically calculable for certain ensembles of random local
matrices.
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[9] H. Kim, M. C. Bañuls, J. I. Cirac, M. B. Hastings, and D. A. Huse, “Slowest local operators in
quantum spin chains,” Physical Review E, vol. 92, no. 1, p. 012128, 2015. https://doi.org/10.
1103/PhysRevE.92.012128.

[10] T. O’Brien, D. A. Abanin, G. Vidal, and Z. Papić, “Explicit construction of local conserved
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