QUANTUM gl,;; AND TANGLE FLOER HOMOLOGY
ALEXANDER P. ELLIS, INA PETKOVA, AND VERA VERTESI

ABSTRACT. We identify the Grothendieck group of the tangle Floer dg algebra with a tensor
product of certain Uq(gly);) representations. Under this identification, up to a scalar factor,
the map on the Grothendieck group induced by the tangle Floer dg bimodule associated to a
tangle agrees with the Reshetikhin-Turaev homomorphism for that tangle. We also introduce
dg bimodules which act on the Grothendieck group as the generators E£ and I of Uy (gly|1)-
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1. INTRODUCTION

1.1. Alexander and Jones. The Reshetikhin-Turaev construction [RT91] is a machine for
turning a representation I of a quantized enveloping algebra U,(g) into a tangle invariant.
It takes:

(1) asequence of oriented points to a tensor product of copies of W and W* and
(2) atangle 7 to a U,(g) intertwiner RT(7) between the representations associated to its
incoming and outgoing boundaries.

The map associated to a tangle is an invariant of the tangle.

Special cases include the Jones polynomial (g = slz, W the vector representation U) and
the Alexander polynomial (g = gl;|;, W the vector representation V). As interesting as these
invariants are, more interesting still are their lifts—categorifications—to more complicated in-
variants.

Khovanov homology is the poster child for categorification. In its formulation for tangles
[CK14, BS11], it takes:
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(1) asequence of n points to a graded ring H,, and
(2) an (m,n)-tangle 7 to a complex Cky,(7) of bimodules over (H,,, Hy,).

(See also the earlier work in [Kho02] and the more geometrically flavored [BNO5] when m and
n are even.) The homotopy equivalence class of Cg,(7) is an invariant of the tangle. Iden-
tifying a basis for the (complexified) Grothendieck group of the category of such complexes
with a basis for Homy, (q,) (U™, U®™), the functor given by tensor product with C;, (T') acts
by RT(T).

Furthermore, Khovanov homology is functorial: with some adjustments, one can associate
a homotopy class of homomorphisms of complexes of bimodules over (H,,, Hy,) thatis an in-
variant of tangle cobordisms [Kho06, Jac04, MSKO09]. The total package, then, is an extended
2D TQFT which categorifies the Reshetikhin-Turaev 1D TQFT.

A more recent approach, initiated by Khovanov-Lauda [KL09, KL10] and Rouquier [Rou08],
seeks to categorify an even wider swath of quantum algebra: quantized enveloping al-
gebras themselves, tensor products of their integrable highest weight representations, the
Reshetikhin-Turaev intertwiners, and more. Webster has used this approach to construct link
homology theories which categorify the Reshetikhin-Turaev invariant for all representations
and Kac-Moody types [Web13] (without the maps for cobordisms).

None of these constructions, however, extend to the case of the Alexander polynomial.
There has been some work on the categorification of Uq(g[m) [Kho14, Tial6, Tial4] (see also
an approach via u ,—(sl) [Vir06, EQ16]), but so far, the only categorification of the Alexan-
der polynomial has a rather different, non-representation theoretic origin.

Knot Floer homology, introduced by Ozsvath-Szab6 [OS04] and Rasmussen [Ras03], asso-
ciates a bigraded chain complex C/FTi(H) to a Heegaard diagram H for a link L. The differen-
tial on (TFT{(”H) counts pseudoholomorphic curves with prescribed boundary conditions in
an almost complex manifold defined in terms of #. The homology of C/FTi(H) is an invariant
of L denoted ITFT{(L)

Like its distant cousin Khovanov homology, PTFT{(L) has proven to be a powerful invari-

ant. Unfortunately, despite a completely combinatorial description of (TIZ“T((”H) [MOS09], the
invariant is still global in nature; local modifications are only partly understood [OS04, OS09,

Man07]. In order to fit PTFT{(L) into the general pattern of Reshetikhin-Turaev invariants,
then, two initial hurdles must be addressed: locality and the relation to U,(gly;)-

1.2. Jumping hurdles. In 2014, the second and third authors introduced a local construction
of knot Floer homology [PV16a]. A dg algebra A(P) is associated to each oriented 0-manifold

P, and a dg bimodule CT(7) is associated to each oriented tangle 7. For a closed tangle, i.e.
a link, this bimodule agrees with knot Floer homology tensored with a 2-dimensional vector
space. The general structure should feel familiar to any bordered Heegaard Floer homolo-
gist: the bimodules in question are type DA structures in the sense of [LOT15], composition
of these bimodules is via the box tensor product, and while the algebras and bimodules of
[PV16a] admit combinatorial descriptions inspired by Heegaard diagrams, the proof of in-
variance is topological and analytic.
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The Alexander polynomial, then, admits a categorification with local pieces very much like
its construction as a Reshetikhin-Turaev invariant. The wildly optimistic reader will expect
these local pieces to categorify their Reshetikhin-Turaev counterparts.

Fortunately, this optimism is rewarded.

In Subsection 2.3, to a sign sequence P € {£1}" we associate the U (gl;|;)-representation
Vp® L(Ap), where Vp is a tensor product of copies of V and V* (V for plus and V* for minus)
and L(\p) is an appropriately chosen 2-dimensional representation depending on P, and a
basis B for Vp ® L(Ap) whose vectors are in bijection with subsets of [n] = {0, 1,...,n}.

The dg algebra A(P) has primitive idempotents in bijection with subsets of the set [n].
Wrrite e for the primitive idempotent corresponding to s C [n].

Theorem A. Let P = (Pi,...,P,) € {£1}" be a sign sequence. Then the Grothendieck group
of dg modules over the dg algebra A(P) is a free Z[q*']-module with basis {{A(P)es] | s C [n]}.
Identifying the basis vector [A(P)es] with the basis vector in B associated to the subset s determines
an isomorphism of vector spaces

K()(A(P)) ®Z[qi1] (C(q) = VP & L()\p)
Let T be a tangle and color each strand of T by the vector representation V. Under the identification
above, up to an overall factor of a positive integer power of (1 — q=2), box tensor product with the

type DA bimodule CT(T) acts on Ko(A(P)) as the Reshetikhin-Turaev intertwiner associated to
the colored tangle ‘T (with reversed orientation) tensored with idp,y . (see Figure 1). The precise

statement is given in Equation (50). '

— | | Veoor L(Agr7)
- 7 — - lﬂ RTT ® Tid
Ko(A(=9°T)) L Ko(A(8'T)) | | Vorr L(\si7)

FIGURE 1. The Reshetikhin-Turaev invariant RT(7) for the U,(gly)-

representation V, later denoted by (7 ), corresponds to the action of CT(T)
on Ky(A(P)).

Theorem A is proved in Subsections 4.1 and 4.2.

We also introduce dg bimodules E(P) and F'(P) over (A(P), A(P)) which act on K(A(P))
as the elements £ and F of Uy(gly);). In disanalogy with other categorifications of quantized

IThe appearance of the extra representation L(\p) is possibly related to the fact that tangle Floer homology
recovers knot Floer homology tensored with a 2-dimensional vector space, rather than knot Floer homology
alone.
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enveloping algebras, these dg bimodules do not arise from induction and restriction with
respect to a tower of algebras comprising the dg algebras A(P).

Theorem B. For any sign sequence P, under the identification of the elementary basis with the basis
B from the previous theorem, the actions of the dg bimodules E(P) and F'(P) on Ko(A(P)) equal the
actions of E, F' € Uy(glyy) on Vp @ L(Ap).

There are quasi-isomorphisms
E(P) éA(p) E(P)~0, F(P) éA(p) F(P)~0.

Furthermore, there is a distinguished triangle

E(P)®a(p) F(P) A(P) F(P) ®p) E(P) — E(P) @4(py F(P)[1],

in D(A(P)). Forany tangle T,
BE(~0°T) R CT(T) =~ A(~0"T) R CT(T) @ a7y E('T),

F(=0°T) R CT(T) = A(~8"T) RCT(T) @ aen ) F(O'T)
as type A A bimodules over (A(—=0°T), A(O'T)).

Theorem B is proved in Subsection 4.3.

1.3. Outline. The reader already conversant with A, algebra in the context of bordered
Heegaard Floer homology is encouraged to skip Subsections 2.1 and 2.2, which review dg
and A, algebras, including derived categories of type A and type D structures.

In Subsection 2.3, we review the decategorified setting: Uy (gly|;), the particular repre-
sentations we will be concerned with, a canonical basis for these representations, and the
Reshetikhin-Turaev maps on these representations. This subsection concludes with a de-
scription of how to construct the Alexander polynomial in this language.

Section 3 is an exposition of the tangle Floer package in the language of strand diagrams
(see also [PV16a, Section 3]). Since we only need a special case of the general construction, we
are able to make several simplifications; see the dictionary in Subsection 3.6. Subsections 3.1
through 3.4 review the construction, and Subsection 3.5 recalls the main theorems of [PV16a].

Theorems A and B are proved in the aptly named Section 4. Subsection 4.1 computes the
Grothendieck group of A(P). Subsection 4.2 computes the action of CT(7) on this group
and relates the result to the representations Vp ® L(Ap) and the Reshetikhin-Turaev maps of
Subsection 2.3. Subsection 4.3 gives the categorical U, (gl;|;)-module structure on the derived
category of compact dg modules over A(P).

For the reader uninterested in the details, Section 4 can be understood at a purely formal
level after giving Section 3 not much more than a good skim.

Acknowledgments. We thank Mikhail Khovanov, Anthony Licata, Robert Lipshitz, Andy
Manion, You Qi, and Joshua Sussan for many helpful comments and conversations. We
thank the referees for many useful suggestions. A.P.E. and I.P. each received support from
an AMS-Simons travel grant. V.V. was supported by ERC Geodycon, OTKA grant number
NK81203 and NSF grant number 1104690.
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2. PRELIMINARIES

2.1. A algebras and modules. In this and the following subsection, we review some def-
initions and constructions from [LOT18, LOT15]. This subsection will review modules and
bimodules over dg and A, algebras; the next will discuss categories of modules and their
Grothendieck groups. For more details, see [LOT15, Section 2]. Throughout, we work over
a ground ring k that is assumed to be a direct sum of a finite number of copies of the two-
element field Fo. Although the A, algebras in our main construction are all dg algebras, the
general A, context is more natural, so we will work in that generality. Our review will be
brief and mostly serves to establish notation; see [Kel06, LOT15] for more details.

Throughout, we will need to distinguish between homological (later, “Maslov”) and inner
(later, “(twice) Alexander”) gradings. The former is the grading which interacts with differ-
entials, A, structure maps, and so forth. Structure maps will preserve inner gradings. For
a bigraded chain complex V, we write V[k] for the complex obtained from V by decreasing
the homological grading by k. It has graded pieces V[k|; = Vj4,. To shift inner rather than
homological gradings, we write V{k}.

Throughout, all algebras and modules will be assumed to be finitely generated.

Write 7*(V)) = @72, VEF for the tensor algebra of V and T" (V) = [[}2, V®* for its com-
pletion. The k-th graded piece of T*(V[1]) is V®¥[k].
Definition 2.1.1. An A algebra over k is a (homologically) Z-graded k-bimodule A equipped with
degree 0 k-linear maps
i s AP — A[2 —d] fori=1,2,...
satisfying a certain compatibility condition. To state this condition, we first define a degree 1 k-linear
map DA : T*(A[1]) — T*(A[1]). On (A[1])®", D4 acts as

n n—j+1
Dappen = 3 Y 15V Y op @idi Y. (1)
j=1 =1
The compatibility condition is that
DAoDA =0 2)

(or, equivalently, that the part of DA o DA with image in A[1] is zero).

Intuitively, the condition says that the sum over all ways to apply two of the y;’s in se-
quence is zero. There is also a graphical formulation in terms of trees (see, for instance,
[LOT15]).

Definition 2.1.2. We say an A algebra A is (strictly) unital if there is an element 1 € A such that
po(l,a) = po(a,1) = aforall a € Aand py(ai,...,ax) = 0if k > 2 and a; = 1 for some j. A
strictly unital A algebra A is augmented if it is equipped with a k-linear map € : A — k such that
€(1) =1, e(p2(a1,a2)) = €(ar)e(az), and € o py, = 0 for k # 2. If A is unital and augmented, we
write A for ker(e).

From now on, we assume all A, algebras to be strictly unital and augmented. Let A be an A
algebra over k. Undecorated tensor products are assumed to be taken over k.
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Definition 2.1.3. A right A, module over A (also called a right type A structure over A) is a
graded k-module M equipped with degree 1 k-linear maps

miy1: M@ (AQ)®" — M fori=0,1,2,..., (3)

satisfying a certain compatibility condition. Assemble all the m;’s to form a single degree 1 map
m: M ® T*(A[l]) — M, as we did for D4 above. Then the compatibility condition is that

my om +mo (idy ®@D4) = 0. (4)

A type A structure is strictly unital if ma(x,1) = x and m;(z,a1,- -+ ,a,—1) = 0if i > 2 and some
a; € k. If M is strictly unital, then equivalently, we can restrict m to M @ T*(A[1]) and impose
the same condition (4) on this restriction.

In the case that A is a dg algebra (meaning p; = 0 for ¢ > 2) with differential d4 = p1, the
type A module condition simplifies to

0= Z mi(mj(x,al,--- ,aj_l),--- ,an_l)
i+j=n+1

n—1
+ Zmn(xyalv T 7ai—17dA(ai)7 e 7an—1)
i=1

n—2
+ E mn—l(‘raala”' s Ai—1, AiQj4-1, " * 7an—1)
=1

for all n > 1. If we further assume that M is a dg module (meaning m; = 0 for i > 2) with
differential dy; = my, the condition simplifies to

n=1: da; =0,
n=2: ma(dy (), a) + dar(ma(x,a)) + ma(x,da(a)) =0,
n=3: ma(ma(z,a),b) + ma(x,ab) = 0.

We assume all type A structures to be strictly unital. Left type A structures can be defined
analogously. We will write 4M (respectively M4) to indicate that M is a left (respectively
right) module over A.

We say that M is bounded if m; = 0 for all sufficiently large i.

Definition 2.1.4. A left type D structure over A is a graded k-module N equipped with a degree 0
k-linear homogeneous map

YN — (A N)[1]
satisfying a certain compatibility condition. To state this condition, define maps
F N = (A)F e N
for k > 0 inductively by §° = idy and
6% = (id ye(e—r) ®01) 0 6% for k > 2. (5)
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Defineamap § : N — T (A[1]) by
§(x) = Z 5 (x).
The compatibility condition is then -
(n®@idy)ed(z) = 0. (6)

Right type D structures can be defined analogously. We write AN (respectively N4) to
indicate that NV is a left (respectively right) type D structure over A.

A type D structure is bounded if for any z € N, §'(z) = 0 for all sufficiently large i.

If M, is a right A, module over A and “N is a left type D structure over A, and at least
one of them is bounded, we can define the box tensor product M X N = My X AN to be the
vector space M ®y N with differential

9:M&N — (Mo N)[]

defined by
0= (my @idy) o (idy 5" ).
k=1
The boundedness condition guarantees that the above sum is finite. In that case 9% =0,

and M X N is a graded chain complex. The box tensor product is a model for the derived
tensor product of two type A modules, as we explain in the following subsection. The idea:
1A RAN is a left type A module, and M X N is homotopy equivalent to the usual derived
tensor product (which we define below) M R4 (AXI N). The advantage to M X N is that it is
often finite dimensional, while M ® 4 (A X N) is always infinite dimensional.

Given dg algebras A and B over k and j with differentials and multiplications d4, dp, f14,
and x, respectively, four types of bimodules can be defined in a similar way: types DD, AA,
DA, and AD. See [LOT15, Section 2.2.4] for details; we will review them briefly.

An A, bimodule or type AA bimodule over (A, B) is a graded (k, j)-bimodule M, together
with degree 0 maps

mi;: (A[Q)® @ M @ (B))® — M
subject to compatibility conditions analogous to those for type A structures, see [LOT15,
Equation 2.2.38].

We assume all type AA bimodules to be strictly unital: my1,0(1,2) = x = mo1,1(x,1) and
miqj(at,...,a;,x,b1,...,b;) =0if i+ j > 1 and some a; or b; lies in k or j.

A type DA bimodule over (A, B) is a graded (k, j)-bimodule M, together with degree 0,
(k, j)-linear maps

811 M@ B[] — Ae M[1],
satisfying a compatibility condition combining those for type A and D structures, see [LOT15,
Definition 2.2.42].

A type AD structure can be defined similarly, with the roles of A and B interchanged.
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A type DD structure over (A, B) is a type D structure over A ®p, B°P. In other words, it
is a graded (k, j)-bimodule M and a degree 0 map §' : M — A ® M ® BJ[1], again with an
appropriate compatibility condition.

When A is the trivial algebra {1}, a type AD structure over (A, B) is the same thing as a
right type D structure over B. Similar statements hold for other bimodule structure types,
mut. mut.

There are notions of boundedness for bimodules similar to those for one-sided modules.
For each compatible pair of bimodule types, there is a corresponding box tensor product.
When forming a box tensor product, we always assume that one of the factors is bounded.
We illustrate the idea below for the box tensor product of two type DA structures; for details,
see [LOT15, Section 2.3.2].

Let M be a type DA module over (A, B) and N a type DA bimodule over (B,C). As a
chain complex, define

AMpREPNe = Fi(*Mp)R F(PNe), 7)

where F; (4 M p) is the right type A structure over B obtained from “ M g by forgetting its left
type D structure over A (and analogously for F(Z N¢)). This chain complex can be given
the structure of a type DA bimodule over (A, C') in a natural way.

2.2. Categories and Grothendieck groups of A, modules. Besides [LOT15, Section 2], help-
ful references for the material in this section include [BL94, Kel06, Khol4]. We will work in
the language of A, and dg categories. While we recommend [Kel06] as a reference for these,
the reader is invited to not worry about the details and instead let the analogy “A., cate-
gories over k are to A, algebras over k as k-linear categories are to k-algebras” be their
guide. In other words, A, categories have higher compositions, and compositions hold up
to homotopies of homotopies of. .. ad. inf.

2.2.1. Categories of type A modules. Let Abe an A, algebra and M4, N4 right type A modules
over A. Define

Mor4(M, N) = Homy (M ® T*(AL[1]), N),
the morphism space of type A maps from M to N. The usual differential

d(f)=dyof+ fody

makes Mor 4(M, N) into a chain complex. We use these as the morphism spaces to define
the A, category Mod 4 of right type A modules over A. The cycles of Mor4(M, N) are the
Ao homomorphisms from M4 to N4, and the boundaries are called null-homotopic morphisms.
Explicitly, a morphism f : M — N is null-homotopic if there is a degree —1 map h such that
hom' +puy oh=f. (8)
Define the dg category ,Mod of left type A modules over A analogously.
When A is an A algebra, there are two models for the derived category of A-modules:

e the 0-th homology category H(,Mod) (same objects as 4Mod, quotient each mor-
phism space by the subspace of null-homotopic morphisms);
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o thelocalization of ;Mod at the class of quasi-isomorphisms (morphisms which induce
an isomorphism on homology).

These two categories are equivalent as triangulated categories [LOT15, Proposition 2.4.1].
If Ais a dg algebra, then there are three more models for the derived category:

e dg modules and homotopy classes of dg module homomorphisms, localized at the
class of quasi-isomorphisms;

e dg modules and homotopy classes of A, homomorphisms;

e the localization of the previous at the class of quasi-isomorphisms.

All five models are equivalent as triangulated categories [LOT15, Proposition 2.4.1]. By abuse
of notation, write D(A) for any of these triangulated categories.

For the rest of this subsection, we restrict to the case where A is a dg algebra and use the dg
modules, dg homomorphisms model of D(A). In our main construction later, all A, algebras
will be dg algebras.

In this case, the shift functor D(A) — D(A) is given on objects by (M, dys) — (M[1], —dar).
The distinguished triangles are those isomorphic to triangles of the form

ML N —— () — M,

where C(f) is the cone of f, and the maps in and out of C(f) are the evident inclusion and
projection maps. This triangulated structure can also be obtained by viewing the category of
dg modules and dg module homomorphisms as a Frobenius category and identifying D(A)
with its stable category [Kel06].

Let #(A) be the usual homotopy category of dg modules over A: objects are left dg mod-
ules over A, and morphisms spaces are the quotient of all dg homomorphisms by the null-
homotopic homomorphisms.

In the derived category of an ordinary algebra, morphism spaces can be computed by tak-
ing projective resolutions. The analogous notion in dg algebra is that of a cofibrant module
(also called “projective” in [Kho14], “K-projective” in [BL94]). We say a dg module P over A
is cofibrant if whenever we are given a surjective quasi-isomorphism L — M and a morphism
P — M, we can factor the latter through L,

P
s
o
»

L—= M.

RNY

Let H.f(A) be the smallest subcategory of #(A) containing all cofibrant modules and closed
under arbitrary direct sums. Then the restriction of the localization functor H(A) — D(A) to
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H.r(A) is an equivalence of triangulated categories,

H(A) — D(A).

s

Her(A)

There is a standard way to choose a cofibrant replacement for a dg (or A.,) module M. There
is a type DD bimodule “Bar(A)“ (see [LOT15, Definition 2.3.16]) such that

Bar(M,) = M, K 4Bar(A)A K 4 A4 9)
is cofibrant for any M 4. This bar resolution is functorial in M4 and comes with a canonical

map Bar(M4) — My. There is the obvious definition for left modules as well.

Remark. We do not need to localize at the class of quasi-isomorphisms when we use the
“dg modules and A, homomorphisms modulo homotopy” model because the definition of
aMor already includes the bar resolution.

We now turn to Grothendieck groups. If C is a triangulated category (assumed to be es-
sentially small) with shift functor X +— X[1], then its Grothendieck group K(C) is the quotient
of the free abelian group on the set of symbols

{[X] | X is an isomorphism class of objects of C}
by the following two relations:

(1) [Y] = [X] + [Z] for every triangle X — Y — Z — X[1] isomorphic to a distinguished
triangle;
(2) [X[1]] = —[X] for every object X.

As with ordinary algebras, we must restrict to a class of suitably small modules in order
to get a nontrivial Grothendieck group (recall the “Eilenberg swindle”, A®> ¢ A = A®>),
A useful condition is the following: we say a dg module M over A is compact (also called
“small” in [Kel06]) if the functor Homp4)(M, —) commutes with arbitrary direct sums. Let
D.(A) be the smallest full triangulated subcategory of D(A) that contains all compact objects
and is closed under isomorphisms; we call this the compact (or perfect) derived category of A.
Define the Grothendieck group of the dg algebra A to be

Ko(A) = Ko(De(A)). (10)
This is not necessarily the same as the Grothendieck group of the category of finitely gener-
ated (non-dg) projective modules over A.
A dg bimodule M over (A, B) gives rise to a derived tensor functor
M &5 (=) : D(B) — D(A),
N — M ®p Bar(N).

There is also a derived hom functor, right adjoint to the derived tensor functor. If M @5 ()
sends compact objects to compact objects, then there is an induced homomorphism

[M ®p —] : Ko(B) = Ko(A).



QUANTUM gly|; AND TANGLE FLOER HOMOLOGY 11

2.2.2. Categories of type D modules; bimodules and functors. 1f AM and “ N are left type D struc-
tures over A with respective structure maps §* and §%, let
AMor(AM,4N) = Homy (M, A® N). (11)

Write h! for an element of this morphism space, and for each ¢ > 2, define M — A®"Q N
by

i—1

W= 3 i go ©F) 1) o (ides @) o (571 12
=0
and h: M — T (A) @ Nby h = 3.2, h’. We give this space a differential 9 defined by
(0h)! = (n®idy) o h. (13)

Let “'Mod be the A, category of left type D structures over A with these morphism com-
plexes (see [LOT15, Lemma 2.2.27] for the definition of the higher composition maps). When
Ais a dg algebra, 4 Mod will be a dg category.

Cycles in % Mor are called homomorphisms of type D structures. Since any morphism between
bounded type D structures is bounded [LOT15, 2.2.30], the subcategory of bounded type D
structures and bounded morphisms in 4Mod is a full A, subcategory. Let “Mod be the
full A, subcategory of left type D structures homotopy equivalent to a bounded type D
structure.

Functors between categories of left type A or type D structures can be constructed using
bimodules of appropriate types. For example, suppose 4M?% is a type AD bimodule over
(A, B), bounded as a type D module. The assignment

gN — JMBX N

induces functors
gMod — 4Mod

and
D(B) — D(A).

If we were to define functors on the derived category using dg bimodules (rather than
type A or D bimodules), we would have to use the derived tensor product. This requires
taking a cofibrant replacement of one of the factors; in practice, cofibrant replacements of
finite dimensional modules are often infinite dimensional (functorial ones, always so). As we
presently explain, the category of type D structures can be used as a model of the category
of cofibrant dg modules. Box tensor product with a type DA bimodule takes the place of
derived tensor product with a dg (or type AA) bimodule. In our main construction, this
technique will allow us to compute classes in K((A) by dimension counting.

Given a left type D structure N over a dg algebra A, the left box tensor product with
the dg bimodule A over (A, A) makes 4A , X “4N a cofibrant left dg module over A. If the

resulting module is compact, then there is a corresponding class in K((A). In fact, up to
quasi-isomorphism, we get all dg modules over A in this way:
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Proposition 2.2.1 ([LOT15], Proposition 2.3.18). Let A be a dg algebra and “N a left type D
structure over A. The A, functors

AMod — 4Mod
AN — 4A,RAN
A“LA
and
4Mod — “Mod

AM — Bar(A)A K M
are homotopy inverse via canonical homotopies.

They intertwine the tensor products X and ® in the sense that there is a canonical homotopy
equivalence
MyRAN ~ M, & (A, RAN)
for any right type A module M and left type D module N over A. In particular, the categories “Mod
and 4Mod are quasi-equivalent. Hence their derived categories are equivalent, and their Grothendieck
groups are isomorphic.

Corresponding statements hold with left and right exchanged.

We will use Proposition 2.2.1 in the proof of Proposition 4.1.1 below.

Remark. If a dg algebra A is considered as a dg category A, (objects: primitive idempotents
e € A; morphism complexes: primitive idempotented pieces ¢’ Ae), then (bounded) type D
structures over A are equivalent to one-sided twisted complexes over A.. We have chosen
to use the language of type D structures because it is more standard in the low dimensional
topology literature. For more on twisted complexes, see [BK90].

2.3. Quantum gl,|; and bases for tensor powers of V and V*. Much of the exposition of this
subsection follows the development of [Sar15].

2.3.1. Quantum gly|;. Let

gl = Ende(C') (14)
be the Lie superalgebra of superlinear endomorphisms of a (1, 1) dimensional supervector
space. Its Cartan subalgebra is the supervector space

b = span(hy, h2) C glys,

where h; (respectively hs) is projection onto the subspace C!” (respectively CO'). Let £y, 9
be the basis vectors of h* dual to h;, ho respectively. We have weight and coweight lattices

P =7Ze1 & Zey C b, P* = Zhy ® Zhy C b,
respectively. The unique positive root is
a=¢e — 9.
Let (-, -) denote the canonical pairing between h) and b*,
(hisej) = 04 5. (15)
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We define a non-degenerate symmetric bilinear form on h* by
1 ifi=j=1,
(eirej) =4 —1 ifi=j=2, (16)
0 ifi#j
We give a Z/2Z-grading to the additive group P by

p(e1) =0, ple2) =1,
so that p(’I’L1€1 + 7”L2€2) = ngoy.

The Hopf superalgebra U, = Uy(gly),) is defined as follows. The underlying superalgebra

is generated over C(q) by E (odd), F (odd), and {q" : h € P*} (all even) subject to the
relations

q’ =1,
q'q"” = """ forall h,h' € P*,
q"E = ¢ Eq", for all h € P*,
q"F = ¢ Fg" forall h € P*,
E?=F?=0,
K- Kt
q—q '
We have used the shorthand definition K = q"*"2. Since (h; + hy,a) = 0, it follows that
K € Z(Uy(gly)1))- The coproduct on U,(gly;) is defined by

/

EF+FE =

AE)=E®K '+1®E,
A(F)=F®1+KQF,
Ald") =q"®q"

The antipode of U,(gl;;) is defined by

S(E) = —EK,
S(F)=-K~'F,
S(a")=q"

Recall that a Hopf superalgebra A over C(g) acts on a tensor product of A-modules M ® N
by a - (m ®n) = Aa) - (m ® n), where A ® A acts on M ® N by (a1 ® a2) - (m®@n) =
(—=1)P(@2)P(M) (g1 . m) ® (ag - n). Also recall that A acts on the dual M* = Homg g (M;C(q)) of
an A-module M by (a - )(m) = (—1)P@P@ p(S(a) - m).

Some more notation: if n € Z, we set

q" —q 1
nlg = —— € Zlq,q"].
[n]y o [ ]
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For A € P, define
[Alg = [(h1 + h2, N)]g-
For a sequence A = (A1,...,Ay) € P", set [Alg = [ + ... + An]g and (R, A) = 32 (R, Aj).

2.3.2. The representations L(X). For each A € b*, let L(\) be a two dimensional vector space
over C(q) with basis {v}, v7}. We give this the structure of a U;-module by declaring v} and
v7 to have weights A and A — a and gradings p(\) and p(\) — 1, respectively, and setting

E(vy) =0, F(ug) = [Ngvq,

E@}) =, F()=0,

q"(v)) = ¢" M),  q"(v]) = ¢
The representation L(J) is irreducible if and only if A does not annihilate h; + hs. For a
sequence A\ = (A1,...,\,) of weights, let L(\) = L(A\1) ® ... ® L(\,).

For a binary sequence a = (ay, ..., ay), let
Ve =1l @ @upm € L(A) ®@ -+ @ L(\y).
An example of the action of F on a tensor product: on L(g1)®3,
F(’Uloo) = (F®1®1+K®F®1+K®K®F)(Uloo)

- 5 (17)
= —qu110 — ¢ V101

There is a handy exterior algebra model for L()). Let W be a vector space over C(q) with

basis eq,...,e,. If A € P, then foreach 1 < j < n, let
Aci =My Aj-1), Asy = (Nt -5 An)-
and similarly let
Aci = Ay0585), Asi = (Vs )
For )\ € P, define
¢ = gtha )

and for any sequence )\ € P", let

p) =D "p(N), ===
j=1

Define the vectors

lp =) (~1)PRA<i)g2ie;, fp =) (~1)PR<i)gd<i\j]ge; (18)
=1 7=l
and the operators
E=lp,, F=lpn (19)

on A*W. Here . is the contraction operator,

€j 1€ = 5j,k-
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Note that
(ei_n)(ej/\) + (Ej/\)(ei_l) = 0j,j id .
It is easy to check that
EF + FE = [)\],id.

In fact, it is not hard to check that we have an isomorphism of U, (gl;|;)-modules
AW — L(A)
(20)
€y N - N ey = Ug(),

where i = (i1,...,4), and S(i) is the binary sequence of length n with a 1 in the j-th slot if
and only if j € i.

The subspace of highest weight vectors of L()) (i.e., those v € L()) such that E(v) = 0)
has half the dimension of L()). Foreachi =1,2,...,n— 1, let

l; = _(_1)10()\2‘)62. + q_)\i+1€i+1. (21)
For I C {1,2,...,n — 1} with elements i; < ... < iy, let
g[:fil/\"'/\fik. (22)

It is easy to check that {¢; | I C {1,2,...,n — 1}} is a basis for the space of highest weight
vectors of L(A). If (hy + ha,A) # 0, then L()) splits into a direct sum of two-dimensional
simple modules, so that
{gfagF/\gl | Ic {1,2,...,’0— 1}}

is a basis of L(A). If (h, \) = 0, however, F'({;) is still a highest weight vector, so the highest
weight vectors do not generate L()). In this case, Byss = {{1,¢r A {1} is a basis with several
desirable properties. This is a basis in both the semisimple and non-semisimple cases, and
the matrix coefficients of £ and F' with respect to this basis admit a uniform description
across all cases.

Our main construction in Section 3, however, categorifies a different basis than B,,s; and
only makes use of the semisimple case. We now turn to the representations and bases we
will categority.

2.3.3. The representations Vp ® L(A\,+1). For short, set V' = L(e;) (the vector representation) and
V* = L(—¢2) (the dual vector representation). We also write V; for V and V_; for V*. For a sign
sequence P = (Py,...,P,) € {£1}", let

Vp=Vp, @Vp,®--- @ Vp,.
Define a weight sequence A = (\1,..., A\p,+1) by setting

(23)

\oo e ifl<i<nand P, =1,
" l-e ifl1<i<nand P, = —1,

and \,11 = €1 — > ;- A (in fact, any weight A, such that (hy + ho, A\p1) = 1= > 1" | B
would work in this paper). It follows that

P‘n+1]q = [1 - ZPZ

q>\n+1 — ql_zi Pi'

9

q
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For the remainder of this subsection we work with the tensor product L(A) = Vp @ L(Ap41).
Since A, 11 depends on the sum of the elements in P, rather than on the length of P, we use
the notation Ap for \,,;; in all other sections.

When regarding the formulas below, bear in mind that L(}) is a tensor product of n + 1
two dimensional representations, instead of n as in Section 2.3.2. The representation L(\) has
exterior-generating highest weight vectors /1, ..., ¢,, as described above:

0= —(—1)PMe; 4+ g 16,4
Note that (hy + ho, A;) = P, and (—1)p(’\i) = P, for1 <i < n,sowe can write

6 = —Pie; + ¢ MFlei

and

n+1 j—1 n+1 j—1

te =Y _(J[Pd™)a" ;s tr = _(J] Pia"™)Nlee

j=1 i=1 j=1 i=1

Let
o—eF—Z HPQ_PZ 5 (24)
7j=1 =1

Note that

E(ty) = E(tp) = EF(1) = 1.
Using the derivation property of contraction, it follows that
E(lg Ner) =11 (25)
forany I C {1,...,n}. We also have

J

F(tr) —EO/\EI—i—Z [1Pa ") A,

7j=1 =1 (26)
F(lo N lp) = ZHBq Vo ALj A L.
7=1 =1
It follows that {4, ¢1, ..., ¢, } is a basis for W, so that
B:{617€0/\€I‘Ig{177n}} (27)
is a basis for A*W. We will always consider B with respect to the complement reverse lexico-
graphic order: let (s, {, be two elements of B; s,t C {0,...,n}. Lets’, t’ be the complements of

s, t respectively. Let w(s'), w(t") be the words in the alphabet {0, ..., n} obtained respectively
by reading the elements of s’, t’ backwards. We say that 5 precedes /4 if w(s’) precedes w(t’)
in the lexicographic (“alphabetical”) order. A word precedes any of its initial subwords. For
example, if n = 2, the lexicographic order on the subsets s’ is

D < {0} < {1} < {0,1} < {2} < {0,2} < {1,2} < {o0,1,2}.
The induced order on B is

boNOLNly < LNl < LogNbly < by < boNl < 01 < £y < 1.
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Zhang has constructed a canonical basis for the representations V" (n > 0) coming from
a super Howe duality with the Hecke algebra in type A [Zha09]. Since we study a different
representation (except in the trivial case P = ()), we cannot directly compare our basis with
that of [Zha09]. Zhang’s basis also appears in [Sar16], the results of which we expect to be
related to ours.

An easy inductive argument computes the matrices [E]p, [F]p of E and F' with respect to
B. Inthebase casen = 0, {g = bp = by = e1, 30 E(1) = e1ul = 0, E(ly) = e1ue1 = 1,
F(1) = e; = lp, and F(lp) = e1 A e; = 0. The ordering on the basis is {; < 1, so the matrices

Ela= (3 o). W= (o o-

The inductive step: let P = (Py,...,P,) and P’ = (Py,..., P,_1). The subsets sequence for
the ordered basis B’ for Vpr ® L(\y,) is just the first half of the corresponding sequence for the
ordered basis B for Vp @ L(A,+1). Looking at (25) and (26), we see that [E]p and [F]z have

block forms
(e &) we-(F B)

where Dp is a diagonal matrix. For a subsets C {0,1,...,
(which is in the Dp part) is

1] (_(_1)p<xi>q—&) — (—1)lsHpQen) A,
=1

— 1}, the s,s U {n} matrix entry

2.3.4. Ribbon category structure. Although U, is not a ribbon Hopf superalgebra, its module
category is a ribbon category [Sar15]. One way of specifying this extra data is to give a functor
from oriented framed tangles to the category of U,-modules. So we will need to write down
maps of U,-modules that are the images of ribbon twists, crossings, caps, and cups under
this functor.

We begin with crossings. If W;, W; are U,-modules, let R= RWi,Wj W, W; = W, @ W,
be the intertwiner coming from the braiding structure, so that

(Rw,,ws @ idw, ) (idw, @ Ry ws) (Bwy w, © idws)
= (idw; @ Rwy,wy) (B, ws @ idw, ) (idw, © R, w)-

On the representations Vp ® L(A,+1) of our main construction, we will only need to consider
crossings among the factors coming from Vp, all of which are isomorphic to either V or V*.
Forl <i¢<n —1,define

R : Vp ® L(Aps1) = Vi,(p) @ L( A1),
Ri = idVP<i ®RVPivPi+1 ® idVP><i+1)®L(>\n+1) .

(Here, the simple transposition s; acts on {£1}" in the obvious way.) We never apply the
R-matrix that crosses Vp, with L(\,,11). Denote the weight sequences for Vp ® L(A,+1) and
Ve,(p) © L(Any1) by Aand ), the vector spaces for the exterior algebra models by W and W,



18 ALEXANDER P. ELLIS, INA PETKOVA, AND VERA VERTESI

the generating vectors by e; and ¢} (or ¢; and ¢}), and the ordered bases from Section 2.3.3 by
B and B/, respectively. Define a linear map f; : W' — W by

e; TTETRERS
file)) = § PiPipa(1 — ¢*Fitt)e; + PigMiei  if j =1, (29)
Piiiqlitre; ifj =1+ 1.

If we extend f; to a map from A*W' to A*W by defining
file Ny) = fi(x) A fiy), (30)

then the inverse of R; is given by

R = (Pg™")"" " (31)

(2

From this description it follows that R; intertwines the action of £ and F on Vp ® L(\y41)
and V,(p) ® L(An+1). Thus

Ry Ay =t AR, (32)
and in particular,
RN (tp) = (Pig™P) "1ty

It is easy to check that the action of R; ! on 4, ..., £, is given by

e) (Pig L)Pptﬂe ifj£i—1,4,i+1

by) = (P ) "res gy 4 (Pg™) e, .
R7N(E) = (=Pig™) ™0 gy, >
FH () = (P+1qpl“) PR e (PP T .

Equations (32) and (33) and the exterior homomorphism property (30) suffice to compute
the matrix [R; '] g (Where rows correspond to the basis B and columns correspond to B').

The image of 1] ' restricted to the subspace spanned by ¢_,, ¢, £, is contained in the
subspace spanned by ¢;_1,¢;, ;1. Below, subsets of basis elements are listed in the order we
get if we first sort by weight, and then use the induced ordering from Section 2.3.3 within
each weight. With columns corresponding to £;_; A G A€y, € Ny, by Ny, C_ N LG,
li 1, 0, 01, 1 and rows Correspondlng tol;_1 N&; A €Z+1, 0 A fz+1, biiy AN, iy N, fz+1,
Y;, ¢;_1, 1, the submatrix for RZ
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—q
—q 1 0
0 ¢t 0
0 1 - .
1 —q 1
0 0 ¢!
q—l
1
1 q 0
0 1 0
0 —¢ ' 1 .
d 1 O O If (P’iJP’i-l-l) = (+7 _)/
-t 1 gq
0 01
1
1
1 —¢' 0
0 1 0
0 1 .
g 1 —q!
0 0 1
1
q—l
q_1 1 0
0 —¢q O1
0 1 - .
q _q O 0 lf (})iv})i-i-l) = (_7 _)/
1 ¢t 1
0 0 —gq
—q

where all omitted entries are zeros, since they correspond to incompatible pairs of weights.
For I C{0,...,n}\{i—1,4,i+1}and J C {i—1,i,i+1}, wehave R, (¢, Al))) = L; AR;(Ly).
Note that P; and P, refer to the codomain of Ri_ ! For example, the third matrix covers the
case (P, P11) = (—, +) and (si(P;), si(Pi41)) = (+,—), i.e. locally R; ! is applied to V @ V*.

The maps assigned to left-oriented caps and cups are just the canonical evaluation and
coevaluation maps. With label V, in the standard basis we have been using for V' and V*,
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they are
lcap =ev:V*®@V — C(q)
Voo, v11 — 0,
v — 1, (34)
Vo1 — —4;
lcup = coev : C(q) —» V@ V*
(35)

1= —q¢ 'vig + vo1-
For any two representations W; and W, let ow,w, be the super-flip map which takes w; ®
wj + (—1)P@IP(Wi)y; @ w;. The adjusted evaluation and coevaluation maps

€V = evooyys, COeV = gy« 0 Ccoev

are intertwiners. To account for framing, though, we will adjust these by a ribbon element
which is defined in a variant Uy, of U, (see [Sar15, Section 2] for details as well as definitions
of the notation used below). Let

u= (1 + (g — q_l)EFK) eh(Hg_H%),
v=K lu=uK""! (36)

in Uy,. The elements u and v are both central; v acts by 1 on both V' and V*, and u acts by ¢ on
V and by ¢~! on V*. Define the right-oriented cap and cup maps to be rcap = évo (uv ! ®id),
rcup = (id ®vu~1) o coev. For V, these are

rcap : V@ V* — C(q)

Voo, v11 = 0,
9 (37)
v10 F— 97,
Vo1 > @,
rcup: C(q) = V* @V,
1 (38)

1 g tvig + ¢ %o

As with crossings, we can define lcap, to act as lcap on Vp, ® Vp,,, and the identity else-
where; and analogously for rcap;, lcup;, rcup;. We only do this for 1 < i < n — 1 (we never
cap or cup with the L(\,+1) factor). For a sign sequence P = (P, ..., P,), we compute the
cap and cup maps on Vp ® L(A,41) with respect to the bases of interest. Denote the weight
sequences for the codomain and domain by A and )/, the vector spaces for the exterior alge-
bra models by W and W/, the generating vectors by e; and e (or ¢; and ¢}), and the ordered
bases from Section 2.3.3 by B and B’, respectively.

The image of lcap, (and similarly the image of rcap;) restricted to the subspace spanned
by ¢;_,,¢;,0;, is contained in the subspace spanned by /; ;. With columns corresponding to
Oy NN N N O AN, 2 2, 1 and rows corresponding to 41,1
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(again we use the induced ordering from Section 2.3.3, but sorted by weight), the submatrices
for Icap; and rcap; are the same, given by

Forl; C{0,...,i—2}, L, C{i+2,...,n},and J C {i — 1,4,i + 1}, we have

lcap; ( /11 ANy NLL) = L, Aleap;(£y) N1y (=2),
rcapi(ﬁ}l NN LL) = Lr, Nrcap; (L) A lry(=2)s

where I5(—2) is the set obtained from I, by subtracting 2 from each element.

Similarly, the image of lcup; (and similarly the image of rcup;) restricted to the subspace
spanned by /;_, is contained in the subspace spanned by ¢;_1,¢;, ¢;11. With columns cor-
responding to ¢/_;,1 and rows corresponding to ¢;_; A £; A b1, 0; A liy1,bicq A lig1, i1 A
li,lis1,4;, 01,1, the submatrices for lcap,; and rcap; are the same, given by

T
0
g !
0
q—l
o

ForI, € {0,...,i—2}, Iy C {i,...,n},and J C {i — 1}, we have

lcupi(ﬁ}l ANAL) = Lr, Aleup;(£5) A Cry(2)5
veup; (€, AyAL) = £, Arcup;(£y) ALy ),

where I5(2) is the set obtained from I by adding 2 to each element.

2.3.5. The Alexander polynomial from U,(gly1). Let OT AN be the monoidal category of ori-
ented tangles. The crossing, cap, and cup maps from Section 2.3.4 give a monoidal functor

Q: OTAN — U;—mod

as follows.
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Applying this to a closed link, we get an element of the ground field C(g). (The framing is
irrelevant because with label V' on all strands, the ribbon element acts as 1.)

FIGURE 2. Left: A link L. Right: The same link L seen as the closure of a
(1,1)-tangle T7..

This invariant vanishes on any closed link diagram. So to get an interesting invariant,
we must modify this construction. It turns out that if we cut, say, the topmost strand of a
link L at some horizontal coordinate and isotope it to get a (1, 1)-tangle (see Figure 2), then
the value of @ on the resulting (1, 1)-tangle 77, is an invariant of the original link. That is,
this assignment is unchanged if we apply Reidemeister moves at the beginning and cut a
different strand. See [Sar15, Proposition 4.4, Proposition 4.5, Theorem 4.6] or [Vir06]. It is
easy to show that

R=R '+ (qg—qid,
which matches the skein relation
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for the Alexander-Conway polynomial if we let ¢? = ¢. Since Q(7) sends the unknot to idy
and A sends the unknot to 1, it follows that

QI1) = A(L)idy .

Note that since there is no monoidal structure on tangle Floer homology, here we think of
(@ as the regular functor coming from the maps R;, lcap,, rcap;, lcup;, and rcup;.

3. TANGLE FLOER HOMOLOGY

In this section, we give a brief review of Tangle Floer homology; a similar summary can be
found in [PV16b]. An (m,n)-tangle T is a proper, smoothly embedded oriented 1-manifold
in [to, t1] x R?, with boundary 0T = 8°T L' T, where 8°T = {to} x {%,...,m— 3} x {0} and
OMT ={t1} x{3,...,n— 3} x {0}, treated as oriented sequences of points. A planar diagram
of a tangle is a projection to [tp,t:1] X R x {0} with no triple intersections, self-tangencies,
or cusps, and with over- and under-crossing data preserved (as viewed from the positive z
direction). The boundaries of 7 can be thought of as sign sequences

—OT € {£1}™,0'T € {x1}",

according to the orientation of the tangle at each point (+ if the tangle is oriented left-to-right,
— if the tangle is oriented right-to-left).

N A4
/xi

FIGURE 3. A projection of a (3, 1)-tangle 7 to I x R. Here —0°T = (+,+, —)
and 9'T = (+).

In [PV16a], the last two authors defined:

e a dg algebra A(P) for any sign sequence P € {£1}" and
e atype DAbimodule CT(T) over (A(—9°T), A(8'T)) (defined up to homotopy equiv-
alence and tensor-factors of Fy @ Fy[1]{2}).

In this section, we will give a combinatorial description of A(P) and CT(7"). We start by
describing A(P) and a certain subalgebra I(P) in Subsection 3.1. The subalgebra (P) will
serve as our ground ring. After a digression in Subsection 3.2 on elementary decompositions
of tangles, we describe in Subsection 3.3 a homogeneous [F»-basis for CT (7). In Subsection
3.4, we endow CT(7) with the structure of a DA bimodule. Subsection 3.5 is a summary
of the main results from [PV16a] about invariance, pairing, and the relation to knot Floer
homology. Lastly, Subsection 3.6 compares the notation used here with that of [PV16a].
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3.1. The dg algebra of a sign sequence. Let P € {£1}" be a sign sequence and let [n] =
{0,1,...,n}.

Definition 3.1.1. A generator associated to P is a partial bijection [n| — [n] (that is, a bijection
from a subset s C [n] to a possibly different subset t C [n]). If x is a generator which is the identity
function on some subset of [n], we say x is an idempotent generator. The weight |z| of a generator
x is the number of elements in the subset on which it is defined.

Let z : [n] — [n] be a generator for P with underlying bijection s — t. The diagram
associated to z is drawn in [0, 1] x [0, n] as follows:

e draw red strands from (0,4 — ) to (1,4 — &) fori = 1,2,...,n;
e orient the red strands according to the sign sequence P (right for +, left for —);
e draw black dots at the 2(n + 1) points {0,1} x [n];
e draw a black strand from j to x(j) for each j € s, such that:
- black strands have no critical points with respect to the horizontal coordinate
(“don’t turn back”),
— there are no triple intersection points among red and/or black strands, and
— there are a minimal number of intersection points between strands (subject to the
above conditions).

Up to the evident notion of equivalence fixing boundaries (allowing ambient isotopies and
Reidemeister III moves among black and red strands), there is exactly one such diagram for
each generator x.

FIGURE 4. The diagram of the generator of A(+, —, —, +) of weight 3 which
sends0+— 4,2+ 2,and 3 — 1.

Definition 3.1.2. Let A(P) be the Fo-span of all generators for P, and let I(P) be the subspace of all
idempotent generators for P. Below, we will give both of these the structure of bigraded algebras and
A(P) the structure of a dg algebra over I1(P).

We define the Alexander grading A(x) and Maslov grading M (z) of a generator z as follows:

24(z) = K(z) +X(z) = X(z) = X(z),

M(z) = X(x) = X(x) = X(z).
Here, () means the number of crossings between a left-oriented red strand and a black
strand passing from below-left to above-right with respect to that red strand; and analo-

gously for the other terms. The Maslov grading will be the homological grading and 2 times
the Alexander grading will be the internal grading.
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Let z and y be two generators for P with underlying bijections s; — t; and so — t»
respectively. If t; # sy, define their product in A(P) to be 0. If t; = sg, consider the diagram
obtained from diagrams for x and y by concatenating them with x on the left, y on the right.
If the resulting diagram has a minimal number of crossings, then define zy = yoz, so that the
diagram of the product xy is obtained from the concatenated diagram by horizontal scaling
by 1. If not, then the product is defined to be 0. See Figure 5 for examples.

L] /“. L[] L] L] \/—‘ L] /" 'j L[] L[] L] .'\ L]
I. I ° L] o o ° ."\ L]
e g =0 &.:%C._Bﬁﬁ_o 3&._\/ =S
LTS~ R AR R e
o—jco—/ ° o o ° . ° ° o o o o \e

FIGURE 5. Examples of the multiplication. Left: the two diagrams cannot be
concatenated. Middle: the concatenation does not have a minimal number
of crossings. Right: the product is the concatenation followed by horizontal
scaling by 3.

It is clear that I(P) = F;eznﬂ, so I(P) is a suitable ground ring of the form discussed in
Section 2.

Given a black-black crossing in a diagram for a generator z, there is (up to the evident
equivalence) a unique picture in which that crossing is locally resolved, as in Figure 6. The
differential on A(P) sends a generator = to the sum of all generators y whose diagrams can
be obtained from that of x by resolving one crossing in such a way that the result has a minimal
number of crossings. Figure 7 computes the differential of the generator of Figure 4.

IR ,-® .. e
M . \‘ .'
X’
—_—
5 ,A‘
S SN
-’ ‘-e .’ ‘e

FIGURE 6. The resolution of a crossing. The diagram is unchanged outside
the grey circle.

FIGURE 7. The differential of a generator. The three diagrams after the arrow
are those obtained from the leftmost diagram by resolving a crossing. The last
one does not have minimal intersection.

The following lemma is an easy consequence of the definitions:
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Lemma 3.1.3 ([PV16a], Theorem 3.9). A(P) is a differential graded algebra over the graded algebra
I(P) with respect to the Maslov grading. The Alexander grading is preserved by the differential and
the multiplication. The primitive idempotents are precisely the idempotent generators. O

For a subset s C [n], we write e for the corresponding primitive idempotent. If = : [n] —
[n] is a generator defined on s with t = z(s), let

so(@)=s, sy =[n]\s, si(@)=t, sP(x)=[]\t.

For short, we define

o) = egay el (2) = egp(y

for i = 0,1, so that z is an element of the idempotented piece ef (z) A(P)ef (x).
Note that

(&

A(P) = D Au(P)
=0
as dg algebras, where A,(P) is the subspace spanned by all generators of weight /.

3.2. Decompositions of tangles. The notion of decomposing a tangle into elementary pieces
is standard, and we don’t make use of any non-standard results in this direction. For conve-
nience, we will insist on arranging these rather specifically, as we presently explain.

Definition 3.2.1. An elementary tangle is a tangle of one of the following five types:

(i) an (n,n)-tangle consisting of only straight strands is trivial;
(ii) an (n+ 1,n — 1)-tangle consisting of a single cup and straight strands is a cup;
(iii) an (n — 1,n + 1)-tangle consisting of a single cap and straight strands is a cap;
(iv) an (n,n)-tangle consisting of straight strands and a single crossing where the strand with the
higher slope is over the strand with the lower slope is an e-crossing;
(v) and an (n,n)-tangle consisting of straight strands and a single crossing where the strand with
the higher slope is under the strand with the lower slope is an o-crossing.

In all of the above cases we assume n > 0.

The choice of “cup” an “cap” terminology is made to match our view (for this paper) of
tangles as running right-to-left, opposite to the indexing in the decompositions below. See
for example the direction of the map [CT] in Figure 1.

Any (m,n)-tangle diagram 7 admits a decomposition T = (71, ...,7;) such that 7 = 7; o
--- 0T, with each 7; an elementary (n;_1, n;)-tangle. By an “inactive strand” of an elementary
tangle we mean any strand other than one of the two crossing strands in a crossing, or the
strand which forms the semi-circle part in a cap or a cup.

After possibly performing ambient isotopy rel boundary, we can and will always assume
the following:

o T,Cli—1,i] xR T ={i—1} x {5,...,niy — 1},0'T; = {i} x {3,...,m; — &} for
i=1,2,....,k;
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We will refer to the pieces of the diagram lying above intervals of form [i,7 + %] as the odd
pieces/halves, and the pieces lying above intervals of form [i + 3, -+ 1] as the even pieces/halves.
We further assume:

e if 7; is an e-crossing (respectively an o-crossing), then all inactive strands are horizon-
tal, and the two strands that cross do so in the even piece (respectively odd piece),
and are horizontal in the other piece, whence the terms e-crossing and o-crossing;

e if 7; is a cup (respectively cap), then the curved strand is a left-opening (respectively
right-opening) semi-circle of radius % centered at {i — 1} x {r} (respectively {i} x {r})
for some non-negative integer r. In particular, cups occur in odd halves, caps occur
in even halves. Strands below the “curved” strand are horizontal; strands above the
curved strand are horizontal in the odd (respectively even) half, then connect to points
2 lower on the right (respectively left) boundary of 7;.

A cap or a cup whose semi-circle is centered at {i} x {r} is said to be “at height r.” Note that
our cup/cap terminology is consistent with “reading tangles right-to-left”.

Figure 8 is an example of a decomposition of the form we will consider.

FIGURE 8. The trefoil, decomposed as T = (71,...,77). The elementary tan-
gles 71 and 73 are examples of caps, 73 and 75 are e-crossings, 74 is an o-
crossing, 7¢ and 77 are cups.

In the literature, trivial tangles are not usually considered to be elementary. For us, it is
convenient to consider them to be.

3.3. Generators associated to tangles. Let 7 be a (m, n)-tangle and fix a decomposition T =
(Th,Tz,...,Tx) of the form described in Subsection 3.2; 7; is a (n;—1,n,)-tangle. To such a

decomposition, we will associate a type DA bimodule CT(T) over (A(—8°T), A(O'T)). In

this subsection, we will describe (ﬁ‘(']l‘) as a bigraded bimodule over (I(—9°T),I(0'T)),
leaving the rest of the structure for the following subsections.
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Foreachi=1,2,...,k, let N; = max(n;_1, n;), and define a subset B; C [V;] by
B — [V;] if 7; is trivial or a crossing,
") [Vi]\ {r} ifT;isacap or cup at height r.
Fori=0,1,...,k, let
Vi ={i} x [ni],
and for:=1,2,...,k, let
1
In Figures 9 and 10, the dark red dots are the sets V; and the dark blue dots are the sets

W;. The vertical lines through the sets V; and W; cut the diagram for T into its even and
odd pieces. Since e-crossings only occur inside even pieces, and o-crossings only occur

O € 0 € 0 € 0 €
36 © 0 0 0 o o o

~<\/

FIGURE 9. The tangle from Figure 3 decomposed as T = (71, 72, 73, 71), along
with the sets of points Vj, ..., Vy (in dark red) and W7, ..., Wy (in dark blue).
The even and the odd pieces are marked with an e and an o, respectively. The
elementary tangles 7; and 73 are examples of an e-crossing, 75 is an o-crossing,
and 7; is a cup.

inside odd pieces, we will work with singular projections of tangles from now on and not
necessarily draw diagrams to scale. See, for example, Figure 11.

Definition 3.3.1. A generator associated to the decomposition T of a tangle T is a choice of partial
bijections V;_y — W; and W; — V for each i = 1,2,... k such that every point of each V; (i =
1,2,...,k—1)and each W; (i = 1,2,... k) is either in the domain or the range of one of the chosen
partial bijections, but not both. Note that there is no restriction on the points of Vo and V.

We define diagrams of generators associated to T in analogy with our definition of those
of algebra generators (no triple intersections, minimal number of intersections, etc.). In such
a diagram, each point of V; or W; (except for Vj and V}) is the boundary of exactly one black
strand.

Definition 3.3.2. Let (ﬁ(']l‘) be the Fy-vector space spanned by all generators for T. Below in this

subsection, we will give CT(T) the structure of a bigraded bimodule over (I(—8°T), I(0T)). In the
following subsection, we will give it the structure of a type DA bimodule over (A(—0°T), A(0'T)).
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4 | . e e e e e o e o o

FIGURE 10. The trefoil decomposition from Figure 8, along with the sets of
points Vg, ..., V7 (in dark red) and W7y, ..., W7 (in dark blue).

If x € &f(']l‘) is a generator, define s (), sP(z), e/ (x), and P (z) for i = 0,1 in analogy
with the corresponding definitions for algebra generators in Subsection 3.1. For example,
if the f : Vj — W) part of  has domain t, then s{'(z) = t and sf(z) = [no] \ t. The

(I(—=0°T), I(8'T)) bimodule structure on CT(T) is defined on generators x as follows:

D\ — Al —
o {:c Ky =s . _ {:c si'(x) = s,

0 otherwise, 0 otherwise.

Figure 11 depicts the diagram of a generator for the tangle decomposition of Figure 9.

[ ] .—O/—..—.
[ ] .—‘\/

. /“fﬁ)&
" o — o & ‘e

FIGURE 11. A diagram for a generator associated to the decomposition T
from Figure 9.

The degree of a generator x is a sum of the degrees of its constituent partial bijections,
which are defined in terms of diagrams as follows. The Alexander grading of a partial bijec-
tion diagram f is defined by

2A(f) =2X(F) +X() = X(f) = XF) +2X(f) = XK(f) = ().

All but the last term on the right-hand side are counts of the number of occurrences of the
relevant crossing type in the diagram. The last term counts the total number of left-oriented
red strands in the diagram. In the semi-circle part of a cap or a cup, we consider there to be
one left- and one right-oriented strand.
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The Maslov grading is defined differently on the partial bijections V;_; — W; and on those
W; — V;. On the former,

M(f) = =X(f) +2X(f) + X (f) = X(f) = «(f),
while on the latter,

M(f) = X(f) = A(F) = X(f) + 2X()-

As with the definition of A(P), 2 times the Alexander grading will be the internal grading,
and the Maslov grading will be the homological grading.

Example. The Alexander grading of the generator in Figure 11 is —5, and the Maslov grading
of the same generator is —1.

3.4. Bimodules associated to tangles. Let T be a decomposition of a tangle 7. In this sub-
section we endow CT(T) with the structure of a DA bimodule.
We define an algebra action

CT(T) ® A(0'T) — CT(T)
r®a—T-a.

similarly to how we defined the multiplication on the algebras. For generators + € CT(T)
and a € A(0'T),if s{(z) # s{'(a), define the product tobe z-a = 0. If s{!(z) = s{'(a) consider
the diagram obtained from diagrams for x and a by concatenating them with = on the left and
a on the right. If the resulting diagram has a minimal number of crossings, define z-a = aox,
where the generator a o x is obtained from x by composing the rightmost partial bijection for
x with the partial bijection a, so that the diagram for x - a is obtained from the concatenated
diagram by horizontal scaling of the rightmost piece for = along with the diagram for a by 1.
If not, then define z - a = 0.

We sometimes write za for = - a. Note that whether xa vanishes only depends on a and on
the rightmost piece for x. See Figure 12 for an example where T = (73, 73) for the elementary
tangles 73 and 73 from Figure 9.

/—.

Fembon
R .—.j ..—/“ _ . .—.j%
e T he A

o/ e

FIGURE 12. A non-zero product. The diagram for the result is the concatena-
tion of diagrams for the input, followed by the appropriate scaling.

Next, we define a map
0: CT(T) — CT(T)
as the sum 0, + 0 + Oy, with the three components defined on generators below.

The map J; modifies even pieces analogously to the differential on the algebra—it sends
a generator z to the sum of all generators y whose diagram can be obtained from that of =
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by resolving one black-black crossing in an even piece in such a way that the result has a
minimal number of crossings.

The map 0— modifies odd pieces in a “dual” way—it sends a generator z to the sum of all
generators y whose diagram can be obtained from that of = by introducing a crossing between
black-black strands that do not cross, in such a way that the total intersection number (taking
into account both black and red strands) increases by one. This means we can introduce a
crossing exactly when the change can be made local, as in Figure 13. Observe that if we think

.-\‘ "'. .-\\ ’,’.
—
A~ X
e e °-’ ‘-0
FIGURE 13. Introducing a crossing. The diagram is unchanged outside the
grey circle.

of a map on CT(T) which sends a generator = to a sum of generators ) y; graphically by
drawing an arrow from z to each y;, then the graph representing J_ is obtained from the
graph for 0, by changing the direction of each arrow.

The map 0,, modifies pairs of adjacent pieces of T. It sends a generator « to the sum of all
generators y whose diagram can be obtained from that of = by exchanging endpoints of black
strands as follows. Given a pair of endpoints p and ¢ that lie on one and the same vertical
line, we allow the two respective black strands to exchange these endpoints if:

e both strands are in an odd piece, they cross, and each black or red strand that ends
between p and ¢ is on the odd side and crosses both of the given strands;

e both strands are in an even piece, they don’t cross, and all black or red strands that
end between p and ¢ are on the even side, and do not cross either of the given strands;
or

e the two strands are in two adjacent pieces, and the exchange does not gain new cross-
ings with black or red strands on the odd side, or lose such crossings on the even
side.

See Figure 14.
Last, we define a map
§L: CT(T) — A(—8°T) ® CT(T)

as follows. First, we represent a non-zero generator a ® z for A(—9°T) ® CT(T) diagrammat-
ically by gluing a diagram for a to the left of a diagram for x. Left (resp. right) multiplication
is given by concatenating with the leftmost (resp. rightmost) piece of the diagram for a ® x
and scaling horizontally; the differential is given as the sum 0, + 0_ + 0, of maps defined
as above, where we treat the leftmost piece (the diagram for a) as even. For a generator z,
§%(z) is the sum of all generators a ® y whose diagram can be obtained by gluing a diagram
for el (z) (treated as an even diagram) to the left of a diagram for z, and exchanging two
endpoints of black strands that lie on the gluing line, as in the definition of 9,,. See Figure 15
for an example.
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€ o

— X g

DS K
._:_Lff .__:_'—»0
.—._,*\N .__.._.»0

FIGURE 14. The map 0, along a vertical line with an even piece to the left
and an odd piece to the right. For the opposite case, one can simply reflect
all diagrams about a vertical line and swap the colors of the dots. Left: The
map 0Oy, counts four types of exchanges (along the vertical line separating two
adjacent pieces) of pairs of black strands, subject to a condition drawn to the
right. Right: For a fixed pair of black strands, if there is a black or a red strand
in the same relative position to the pair as one of the displayed grey strands,
we do not exchange.

foas == == B3

apply Om here

FIGURE 15. The map oL applied to the generator from Figure 11.

Definition 3.4.1. Given a tangle decomposition T, we give the (I(—9°T),I1(0'T)) bimodule of
Definition 3.3.2 the structure of a type DA bimodule over (A(—3°T), A(0'T)) using the following
structure maps: let 5} = 0 for i > 2, define

5. CT(T) = A(—8°T) ® CT(T)
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on generators by
01 (z) = ef (z) ® O(x) + 8" (x),
and define
85 : CT(T) @ A(D'T) = A(—8°T) @ CT(T)
on generators by
63z ®a) = el (2) ® za.

By Section 5.2. of [PV16a], the above structure is indeed a type DA bimodule. Define the
weight of a generator x of CT(T) just as we did for a generator of A(P), so that |z| = |ef(z)|.
The bimodule (ﬁ(']l‘) decomposes as a I(—9°T), I(0'T) bimodule as

max{|9°T,|0 T |} +1
M= P CT(),
k=0
where (ﬁk(T) is the subspace of elements of weight k.
Note that by forgetting the “right map” -, the “left map” 9%, or both, we can view CT(T)

as a left type D structure with §' = 6}, a right type A structure with structure maps m; = 9,
ma = -, and m; = 0 for s > 2, or a chain complex with differential 0.

For any of the above four types of structures, the Maslov grading M is the homological
grading, and 2 times the Alexander grading A is the internal grading.

3.5. Invariance, pairing, and relation to knot Floer homology. To state precise theorems
below, we define the size |T| of a tangle decomposition T as one half of the sum «(p) + —(p),
taken over all even and odd pieces p of the decomposition.

Up to a factor that depends on the size of the chosen decomposition, tangle Floer homology
is an invariant of the topological tangle 7.

Theorem 3.5.1 (Invariance, cf. [PV16a, Theorem 5.3]). If T’ and T” are two decompositions for a
tangle T with |T'| > |T"|, then there is a bigraded DA homotopy equivalence

CT(T') ~ CT(T") ® (Fy @ (Fo[1]{2}))2(T =]

Further, CT is functorial under composition (this follows automatically from the definition
of CT; see also [PV16a, Definition 5.2]).
Theorem 3.5.2 (Pairing). If Ty and Ty are decompositions for tangles Ty and Ts with 0'T; = —3°Ts,

then (ﬁ‘(']l‘) is bigraded isomorphic to CT(T;) W CT(Ty) as type DA structures, where T is the
decomposition for Ti o Ty that is the concatenation of the two decompositions Ty and Ta.

In the case of a closed link, tangle Floer homology agrees with knot Floer homology
}TFT{(IC), the bigraded invariant of knots and links defined, in its various versions, in [OS04,
Ras03, MOST07, OS08]. As defined here, given a link decomposition T, (?:J?(']I‘) = (ﬁ‘O(T) @
(ﬁ‘l(’]l‘). The two summands (ﬁ‘o(’]l‘) and ﬁl(’]l‘) are bigraded homotopy equivalent (for

experts: each of (?:JTO(T) and (/ﬁ“l(']I') corresponds to a certain Heegaard diagram for the link
for T), and the relation to knot Floer homology can be stated in terms of either.
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Theorem 3.5.3 (cf. [PV16a, Theorem 6.1, item (4) of Corollary 12.5]). Suppose that T is a de-
composition for a closed link IC with |KC| connected components. Then there is a bigraded homotopy

equivalence of complexes

CTo(T) =~ CTy(T) ~ HFR(K) @ (F2 ® (F[1]{2}))2("-1KD & (Fy @ (F2[1]{0})).

3.6. Dictionary. Section 3 can be thought of as a “user’s guide” to [PV16a]; the terminology
and notation here are different from [PV16a] to ease readability. Below is a (non-comprehensive)
list of the major correspondences between this section and [PV16a, Section 3].

Here

In [PV16a]

a tangle decomposition

T=(T1,...,Tx)

an alternating sequence of shadows and mirror-
shadows P = (Pf,Pa,..., Py_1, Pak)

the i-th even piece in T

the shadow P»;
(drawn over white background color)

the i-th odd piece in T

the mirror-shadow P3;_;
(drawn over grey background color)

— in an even piece on P

+— in an odd piece on P*

<— in an even piece onP

— in an odd piece on P*

P cC {+1}" e e (2lFhHn

Vi a for P; and Py; | (called a; below)
W; b for P;;_; and Py; (called b; below)

Further, fix a generator x of T, where T is as above, and label the respective partial bijec-
tions as x9;—1 : Vi-1 — W, and x9; : W; — V;. We have the following correspondences.

Here

In [PV16a]

zy: Wi = Vi

(S2i, To;, ¢2i), where Sy; C by, Ty; C a; and
¢2;i + S2; — Th; is a bijection

22i-1: Vici = W;

(S2i—1,Toi—1, ¢p2i—1)*, where So; 1 C b1, Th—1 C a;
and ;1 : So;—1 — Th;—1 is a bijection

a black strand for z;

a pair (s, ¢s) for s € S;

si' ()

Ty,

s¢ (@)

a( \TO
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4. PROOFS OF THE MAIN RESULTS

4.1. The Grothendieck group of A(P). If an element z € A(P) satisfies ez = sy, We say
that « has left I(P)-degree equal to s. We define right I(P)-degree as well as such degrees for
elements of A(P)-modules analogously.

Let P € {£1}" be a sign sequence, A(P) the corresponding tangle Floer dg algebra, and
I(P) the ring of idempotents in A(P). For a subset s C [n], let es be the corresponding

primitive idempotent. Since I(P) = Fgﬂ"“ with zero differential, we have

Ko(I(P) = 2" @2 Z[¢*"). (39)
A free Z[q*]-basis for Ko(I(P)) is given by {[I(P)es] | s C [n]}. We call this the primitive
basis of Ko(I(P)).

Let V be a bigraded F»-vector space and write V; ; for the part of V' in homological (Maslov)
degree i € Z and internal (twice Alexander) degree j € Z. Suppose P, Vi ; is finite dimen-
sional for each j € Z. The graded Euler characteristic of V' is the formal series

X(V) = D (=1)'¢’ dime, (Vi). (40)
ijez
In all our cases of interest, (V) will be a polynomial in g**.

Let “Fy{s} be the one-dimensional left type D structure over A spanned by a homoge-
neous generator x5 of Maslov degree 0, Alexander degree 0, I(P)-degree s, and satisfying
§1(zs) = 0. The corresponding left type A module

AR AF{s} = Aecs. (41)

Proposition 4.1.1. Let P € {£1}".
(1) Then the Grothendieck group of the compact derived category of left dg modules over A(P) is
Ko(A(P)) =22 @ Z[¢*] (42)
() If g(pyM is a compact cofibrant dg module over A(P), then [M] = 3, cs[A(P)es] for
certain constants cs € Z[qg™t). The set {[Aes] | s C [n]} is a basis of Ko(A(P)) over Z[g*].
(3) Under the quasi-equivalence of Proposition 2.2.1, we can view the class of a bounded left type

D structure as an element of Ko(A(P)). Under this identification, for any bounded left D
structure AF) N,

APINT =" x(esN)[A(P)es]. (43)

sClnl

Proof. The idea of the proof is analogous to that of [Pet18, Theorem 21]. We give the details
here for completeness.

The dg (I(P), A(P))-bimodule A(P) induces a derived tensor functor (as in Subsection
2.2) D(A(P)) — D(I(P)). This functor takes a dg module M over A(P) to M/(A(P)yM).
In particular, for a primitive idempotent e, the induced map on Grothendieck groups takes
[A(P)eg] to the primitive basis vector [I(P)eg]. It follows that

{[A(P)es] [ s € [n]}
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is a Z[g*!]-linearly independent set in Ko (A(P)).

It suffices, then, to express the symbol of any compact cofibrant dg module over A(P) as
a Z[g*']-linear combination of symbols of the form [A(P)es]. By Proposition 2.2.1, it suffices
to consider modules of the form A(P) X N, where N is a bounded left type D structure over
A(P).

Given such a module, choose an Fy-basis z1, ..., z, for N such that z; = eOD (x;)x; for each
i. By boundedness, we can choose j such that §*(z;) = 0. In the sum

da®z)=Y [(mk ®idy) o (idy ®55 )| (a ® ),
k=1
only the k = 1 term survives. This term equals m;(a) ® z; = d(a) ® z;. Hence A(P) ® ;
is a dg submodule isomorphic to A(P)ey; [~M (z;)|{—2A(z;)}, where e, is the primitive
idempotent with the same I(P)-degree as x;. Write M; = A(P)ey,;[—M (z;){—2A(z;)} for
short, and let ¢ be the inclusion of this submodule. Then the triangle

M; —= A(P)X N C(v) M;[1]
is isomorphic to a distinguished triangle, so
[A(P) ®INT = [M;] + [(A(P) B N)/M;].
We have [M;] = (—1)M(®5)g=24(;) [A(P)eg,]. So by induction on the dimension of N, [A(P)X

N] is a sum of terms of the form +¢*[A(P)es]. So Ko(A(P)) is a free Z[g*']-module with a
basis given by the 2"+ symbols {[Aes] | s C [n]}.

Equation (43) follows immediately from the above analysis and the quasi-equivalence of
Proposition 2.2.1. O

Proposition 4.1.1 implies the first half of Theorem A of the Introduction.

We call {[Aes] | s C [n]} the primitive basis of Ky(A). When discussing elements of and
linear maps between Grothendieck groups of A(P)’s, our default will be to use this basis. We
call as the “s component” of an element

> ag[Aeg] € Ko(A),

and if X : Ko(A(P)) — Ko(A(P)) is a Z[g*!]-linear map and
X([A(P)es]) = ) X[ A(P")es],

we call X ¢ the “(s, t) matrix entry” of X. In our main construction, X will usually be the
linear map induced by the derived (or box) tensor product with some bimodule. In the case
of a type DA bimodule, the computation of the components X 1 is just a graded dimension
count, as we presently explain.

Proposition 4.1.2. Let M be a bounded type DA bimodule over (A(P"), A(P)) for two sign sequences
P, P'. M induces a homomorphism

(MR —]: Ko(A(P)) — Ko(A(P"))
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via the rule

[ME =] [4py M| = [AP) BAPIM ypy & apyM]. (44)
Using the quasi-equivalence of Proposition 2.2.1, this rule can also be stated as
(MK~ : [APIN] s [APIM yp) RAPIN]. (45)
This homomorphism has matrix entries
M X —]s¢ = x(esMey). (46)

Proof. That M induces a homomorphism via (44) follows from the quasi-equivalence of Propo-
sition 2.2.1 and the fact that the derived tensor product with a dg module induces a homo-

morphism of Grothendieck groups (cf. Section 2.2). Again by Proposition 2.2.1, the rules

(44) and (45) are equivalent. Abbreviating A(P) by A and A(P’) by A, the matrix entry

description is an easy computation:

A MA® ARAF{s)] S [ MG Aeg) = YA ReMes] = ¥ xl(esMeg)[Aley]. O
t t
Corollary 4.1.3. Let T be a tangle with decomposition T. Then the matrix entries of the homomor-
phism [CT(T) X —] : Ko(A(9'T)) — Ko(A(—9°T)) are given by

[CT(T) X —]s s = x(esCT(T)et). (47)
We will abbreviate [M X —|s ¢ as [M]s s below.

4.2. The action of (ﬁ‘(T) on the Grothendieck group. In this subsection, we compute the

symbol [érf(’]l‘)] for any tangle decomposition by induction. Our base case is an explicit
computation for the smallest elementary tangles. Then we induct by computing the result of
adding a horizontal strand above or below a decomposition T.

Remark. All matrices below are with respect to the primitive basis {[A(P)es] | I C [n]} of
Ky(A(P)) as defined in the previous subsection. We give this basis the reverse lexicographic
order with respect to the alphabet 0 < 1 < ... < n: a subset s is treated as a word w(s) spelled
in decreasing order, and we say s < t if w(s) < w(t) in the lexicographic (“alphabetical”)
order. For example, when |P| = 2, the ordering is

ey < €{0} < €{1} < €{0,1} < €{2} < €{0,2} < €{1,2} < €{0,1,2}

Suppose |P| = nand P’ is the sign subsequence which omits the last entry of P. The ordered
primitive basis for P has length 2", Its first 2" elements are exactly the ordered primitive
basis for P/, and the (2" +1)-th element is sLI{n}, where s is the i-th element of either ordered
basis.

From now on, using the previous remark and Proposition 4.1.1, we will identify
Ko(A(P)) ®z[¢=1) C(q) =2 Vp ® L(Ap)
[A(P)es] 4 €j1 VANIRVAN Ejr,
where {j; < ... < jr} = [n]\ s. Note that this identification is order preserving.

(48)
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Although by invariance it suffices to compute only one of the eight possible oriented cross-
ings, we provide the matrices for all crossings (but provide details for only one).

In the discussion below, let P = (Py, P») be a sign sequence of length 2.

Let ep denote the elementary tangle that is an e-crossing of two strands such that 8! (ep) = P.
Let op denote the elementary tangle that is an o-crossing of two strands such that —9°(op) = P.
With this notation, T = (ep,op) is a decomposition for the tangle 7 = I x (FP», P;), and
(op,ep) is a decomposition for the tangle I x P.

To compute the action of CT(T) on Ko, we just need to compute the bigradings of the
generators, and take the graded Euler characteristic. Recall that the primitive idempotents

are of form e, where s C {0, 1, 2}, and that a generator x for CT(T) occupies the black dot at
height h on the left (respectively right) exactly when h ¢ s’ () (respectively h € s{(z)). For
ease of reading, we give the matrices for each weight separately.

We discuss the computation of [(ﬁ‘g(e++)]{0,2},{1,2} below. Since the induced order on
subsets of size 2is {0,1} < {0,2} < {1,2}, this corresponds to the (2,3) entry of the
matrix for [CT2(e44)].

The DA bimodule (ﬁ‘(e++) for the crossing e (depicted on the left diagram below) is
generated by pairs of partial bijections associated to the right diagram below.

9\ ° ° °
Po PG
The vector space 6{0’2}67/11(64_4_)6{172} is generated over [, by the strand diagrams in Figure
16. The formulas from Section 3.3 yield the bigradings listed in Figure 16.

FIGURE 16. The generators of e{O,Q}CT(e++)e{172} and their (M, 2A) bigradings.

Thus,
[CTa(er )03, 11.2) = X(ego23 CT(esp)eioy) = D (—)M@2A® = (1 g72)2,

T a generator

Analogous computations for the remaining weights of CT(e;4) and for the remaining
e-crossings yield the matrices in Table 1.

An elementary tangle trivp = I x P acts as a scalar multiple of the identity on K,
[CT(trivp)]ss = (1 — ¢~ 2)%id. (49)
One can see this by computing [(ﬁ‘(id() )], and then applying Proposition 4.2.1 (below).

By invariance (Theorem 3.5.1), since (op, ep) is isotopic to trivp, we have

CT(op,ep) ~ CT(trivp) ® (Fy @ Fa[1]{2})%2,
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Tangle

Diagram

Action on K

RE:

[CTo(e++)] = (1 —q %)% (—q)

. —q 1 0
[CTi(es4)) = (1 —q %) ( 0 ¢ 0 )
0 1 —q

N ¢! 0 o0
[CTz(e++)](1q2)2( —q 11)

Q
—
w
—
(0]
+
+
=
|
—
—
|
|
[N}
SN—
(3]
—~
Q
»I—-O)—t
SN—
o
()

W

[CTi(e—4)] = (1~¢7%)?

[CTa(e—)]=(1—q¢ ) —¢' 1 )
0 0
(CTs(e_ )] = (1—q 22 (1)
(CTy(es)] = (1—q 22 (1)
. 1 —q_1 0
ef_ [CTi(es )] =(1—q?)? (0 1 0)
° ° ° O q 1
IS S N Lo 0
0 0 1
(CTs(e. )] = (1—q 22 (1)
[CTo(e--)] = (1—q7*)*(¢7)
__ gt 1 0
e _ [CTi(e-)]=(1—=q¢2)*| 0 —q 01>
° ° ° 0 1 q—
D IR S _ 4 0 0
[CTa(e— )] =(1—q?)? ( I )
0 0 —q

[CT3(e—-)] = (1 — ¢ %)?*(~q)

TABLE 1. The action of the crossing bimodules on the Grothendieck group
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s0 [CT(op,ep)] = (1 — ¢~2)*id. Then
[CTi(op)] = (1= ¢7*)'[CTi(ep) "
Alternatively, one can compute the Euler characteristic explicitly.

Letcup, _ or cup_, denote the elementary tangle that is a single cup such that 9°(cup, ) =
(4, —) ord°(cup_, ) = (—, +), respectively. Let cap, _ or cap__ denote the elementary tangle
that is a single cup such that 8'(cap, ) = (+,—) or 8*(cap_, ) = (—,+), respectively.

The only nonzero summands of CT for the two cups are those of weight 0 and 1, and the

only nonzero summands of CT for the two caps are those of weight 1 and 2. Their action on
K is given by the matrices in Table 2.

Tangle Diagram Action on K

cup_, . (CTo(cup_,)] = (1-¢7%)

[CT1(cup_,)] = (1—q?)

cup., _ [CTo(cup, )] = (1-¢7)

= ;

1/

OO PO, OO = O+-

[CT1(cup, )] = (1—¢?)

010

[ ]
aQ
—
—
o
Y]
o]
+
Z
1
—
|
QI
no
S~—

U
Q)
H
[ \)
a
[V]
o]
_l’_
_
Il
—

|

|
N4

[ ]
[ )
—_
)
—

(aw]
—_
o

cap,_
-

cap_, . o1 -
- 2 [CTy(cap )] =(1—-q (1 0 1

)
)
)
)

TABLE 2. The action of the cup and cap bimodules on the Grothendieck group

Any elementary tangle can be obtained from one of the small elementary tangles above
by adding straight strands above and/or below it. We now discuss the effect that adding a

strand has on [CT(T)].
If T is a decomposition for a tangle 7, let T* be the decomposition (for another tangle)

obtained by adding a right-oriented horizontal strand above T, see Figure 17. Let T~ be the
decomposition obtained by adding a left-oriented horizontal strand above T. Similarly, let
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T+ and T_ be the decompositions obtained by adding a right- or left-oriented horizontal
strand below T, respectively.

FIGURE 17. The decomposition T, obtained by adding a strand oriented to
the right above T.

Proposition 4.2.1. Let T be a decomposition for an (m,n)-tangle into k elementary tangles, and let
T" be one of T+, T, T4, T_. Foranys C [m]and t C [n], lets’ =s,t' =t,s" =sU{m+1},t" =
tl_l{n+1}zf']I" Ti ands' = {s+1|ses},t/={t+1|tet},s"=su{0}, t"=tU{0}if
T = Ty. Then

[CT(T)]g,w = (1 — ¢ HFCT(T)]s v,

[CT(T)]rpr = (1 — ¢~ FCT(T)]s ¢,
[CT(T/ ]s” ¢ =0,
[CT(T)]g ¢ = 0.

Proof. We provide the proof for the case T’ = T™. The other three cases are analogous.

)
)

It suffices to prove the proposition for an elementary tangle. The general case then follows
from Theorem 3.5.2 and from the fact that tensoring DA bimodules corresponds to composing
homomorphisms on K (i.e. multiplying matrices).

Let 7 be an elementary tangle, and let Vj = {ag,...,am}, Wi ={bo..., 0}, Vi ={co...cn}
be the three sets of points for 7 as in Section 3.3, with each of a;, b;, ¢; indexed by its height.

Recall that the generators for 7 are pairs of partial bijections V, — Wy, W; — Vi, such
that each b; is either in the range of the former, or in the domain of the latter, but not both.
The generators for 7' are then pairs of partial bijections Vj — W{,W| — V/, where V] =
Vo U {ams1}, Wi = Wh U {by1}, V] = ViU {cnt1}. We think of a generator z for 7' as

={(p1,q1);---,(P1+1,q+1)}, where p; and ¢; are matched by one of the two bijections for z,
i.e. they are connected by a black strand in a diagram for . We enumerate pairs that cancel
out in Euler characteristic, and list the remaining ones and their bigradings.

Generators for which b; and b;; do not connect to a,,+1 or ¢, cancel out in pars — if =
is such a generator with (b, p), (bj+1,9) € z, then z cancels outy = z \ {(b;,p), (bi+1,9)} U
{(b1,q), (bi+1,p)}. See Figure 18. One can explicitly compute the bigradings of x and y, or just
observe that one generator is in the differential of the other.

Generators for which ;41 connects to a point in {p, ¢} = {am+1,cn+1}, and the other point

in {am+1, 41} is also an endpoint of a strand also cancel out in pairs — if (b;41,p), (¢,t) € z,
then x cancels out y = = \ {(bi+1,p), (¢,t)} U {(bi+1,q), (p,t)}. See Figure 19.
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77 TN TR

FIGURE 18. Generators for which b; and b;;1 do not connect to a,,+1 Or ¢,41
cancel out in pairs. Only the two strands at which a pair differs are shown.

FIGURE 19. Generators for which b; and b, connect to points in Vp U V; \
{a@m+1, cnt1} cancel out in pars. Only the two strands at which a pair differs
are shown.

We pair up the remaining generators as (z, y), so that M (z) — M(y) = 1and A(z) — A(y) =
1, see Figure 20 (calculating the relative bigrading for each pair is an exercise left to the
reader). The x generators containing the strand (a,,+1, b;+1) do not have a strand ending at

e '[1@}'76 : : y[lg}'ii'

i 'mg}';z ! ! F\‘mg}' i

FIGURE 20. Remaining generators that cannot be cancelled, grouped into
pairs (z,y). Only the two strands at which z and y differ are shown.

cn+1, s0 they correspond bijectively with the generators of CT(T), by removing the top of the
diagram, namely, the strand (ay,+1, b;+1), the points @11, bj+1, ¢n+1, and the top (red) strand
of TV. Thus,

[CT(T)]y e = (1 — ¢ )[CT(T))gr o
Similarly, the x generators containing the strand (¢ 41, b;+1) correspond bijectively with the

generators of CT(T), so
[CT(T)sr e = (1 — ¢ 2)[CT(T)s v 0
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To summarize, the computations from this section agree with the computations from Sec-
tion 2.3.4 in the following way. Let T be a decomposition for an (m,n)-tangle 7. Let 7™
be the tangle obtained by rotating 7 clockwise by 7/2 and reversing the orientation. Then,
under the identification (48),

[CT(T)] = ¢"2" (1= )MQT™) ®idra,, ) (50)

where () is the Reshetikhin-Turaev invariant from Section 2.3.5. (Note that A1 = A_go1.)
See Figure 21.

— || Veer L)
_ oL =qz (1-¢) 4 QT ® Tid
Ko(A(=0°T)) fon Ko(A(0'T)) | | Vorr Lor7)

FIGURE 21. The more precise version of Figure 1, showing the relation be-
tween tangle Floer homology and the Reshetikhin-Turaev invariant.

This concludes the proof of Theorem A.

4.3. Adding and removing black strands: E and F. Fix a sign sequence P € {+1}". In this
subsection, we describe dg bimodules which induce maps on Ky(A(P)) which correspond
to the action of E, F' € U, via the identification (48).

Definition 4.3.1. A lowering generator of weight k associated to P is a partial bijection x : {—1}1
[n] — [n] defined on a subset with k elements which contains —1.

The diagram associated to a lowering generator = of weight k is drawn as follows. Draw
n horizontal red strands from (0,7 — ) to (1,4 — 3) for 1 < i < n (oriented according to P)
and a black strand connecting (0, ) to (1, z(¢)) for each i on which z is defined. We constrain
such diagrams to rules analogous to those in Subsection 3.1 (no horizontal coordinate critical
points, no triple intersections, minimal number of crossings).

If x is a lowering generator of weight k associated to P defined on a subsett C {—1} LI [n],

let
s (z) =t\{-1}, si(z) = ().

Definition 4.3.2. Let Fj,(P) be the Fo-span of all lowering generators of weight k associated to P.
Give it the structure of a bigraded chain complex by using the same Alexander and Maslov degree
formulas as for generators of A(P),

24(z) = K(z) +X(z) = X(z) = X(z),
M(z) = X(x) = X(x) = X(z).
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We give Fy,(P) the structure of a dg bimodule over (Ap_1(P), Ax(P)) as follows.
If a is a generator of Aj,_1(P), s{(a) = s{(z), and the diagram obtained by concatenating that of
x with that of a has a minimal number of crossings, let a - x = x o a/, where a’ : s{(a) U {—1} —
st (a) U {1} is defined by
d'lsa@y =a, a'l—1y =id(_yy.

Otherwise, let a - x = 0. If b is a generator of Ay (P), s{(x) = s{'(b), and the relevant concatenated

diagram has a minimal number of crossings, let x - b = b o x; otherwise, let x - b = 0.

The differential of a generator of Fy,(P) is the sum of crossing resolutions, just as for the differential
on the algebra A(P).

Let Ey(P) be the bimodule over (Ay(P), Ax—1(P)) opposite to Fy,(—P). Let

E(P) = Ex(P), F(P)=EPFu(P).
k=0
See Figures 22 and 23 for examples.

When the choice of P is understood or unimportant, we will sometimes write Ay, Iy, Ey, F}, for

FIGURE 22. Left: the background diagram for the (A(P), A(P)) bimodule
F(P), when P = (—, —, +, +). Right: an example of the dg bimodule action.

%

/4

FIGURE 23. Left: the background diagram for the (A(P), A(P)) bimodule
E(P), when P = (—,—, +,+). Right: an example of the dg bimodule action.

Proposition 4.3.3. Fix a weight k, and let G, be the set of generators of Fy,.
(1) Fori=1,2,...,n,let

F' = spang, {z € G | 2(-1) < i}.
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Then F* = (0 C F* ¢ F* C F? C --- C F" = Fy) is a filtration of Fy by dg left
submodules over Aj_q. For each i,

Fi/Fi_l = @ Ap-res[~M (yi,s){—2A(yis)}- (51)

sCn]\{i}
|s|=k—1

Here, y; s is the generator defined on s LI {i} which is the identity when restricted to s and
takes —1 to i (see Figure 24).
(2) Forany subset t = {t1 < ... <t} C [n], let
F}! = Fl N Fey.

This gives the filtration F on Fyeq induced by the filtration F'* (less some redundant pieces
which yield subquotients equal to 0), and its subquotients are

Fy/FT 2 Apre =M (e 002400 000D ) (52)
(3) Let
F' = spang, {z € G}, | « is defined at 0},
F" = spang, {x € G} | x is not defined at 0}.
Then as dg right submodules over Ay, F = F' & F". The submodule F' is acyclic, and

F'e @ e (53)
sCln]
|s|=k and Oes
(4) Lett C [n]with [t| =k — 1. If 0 € t, then ey F}, is acyclic. If 0 ¢ t, then ey i, = eq 10y A

Opposite (interchanging left with right actions) statements to (1)—(4) hold for the bimodule Ej,.

FIGURE 24. The generator y; s fori =1, s = {0,4}, when P = (—, —, +,+).

Proof. For (1), note that F" is a filtration because the differential acting on a generator x can-
not increase x(—1). The subquotient is as described because in the diagram associated to any
lowering generator, we can isotope the strand originating at —1 so as to make all its crossings
to the left or to the right of all other crossings. Since the differential on a particular sub-
quotient does not change any crossing of this strand, doing such an isotopy for all lowering
generators sending —1 to ¢ and for fixed right-side idempotent es yields a dg left module iso-
morphic to A(P)eg (;3 with the grading shift as described. From this description, (2) follows
easily too.
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For (3) and (4), we can factor F” as

Fé®k<0 k—-k 0>,

where F{ is the span of all lowering generators in F’ with z(—1) < z(0). Hence F” is acyclic.
The description of F” follows from the obvious isotopy.

The analogous results for Ej, follow immediately, as the bimodule Ej(P) is by definition
the opposite bimodule to Fj,(—P). O

Corollary 4.3.4. As a dg left module over Ay_1, Fy, is cofibrant. As a dg right module over Ay_1,
Ey, is cofibrant.

Proof. By Proposition 4.3.3, F}, admits a left dg module filtration with cofibrant subquotients.
This filtration splits when the dg structure is forgotten. By [Kel94, Section 3], then, F}; satisfies
Property (P) and is thus cofibrant. O

We can now compute [F(P) ® A(p) —]- Since Aes is projective, we have that Fj, ® A(p) Aes =~
Fy ® 4(p) Aes = Fyes. In other words, the action

[ ®4, =]« Ko(A(P)) — Ko(A(P))
is given by
[Fr ®a, —] @ [Aes] = [Fres).
Writing s = {s1 < ... < s;} C [n] and using the filtration from Proposition 4.3.3 (2), we have

k

[Fres) = [F]+ 2/ 4+ [FE/EET = ) [Ak 160 o =M (W 0 (50 245, 0 ()}
i=1

Observe that M (ys, ¢\ (s,3) =@ — 1 — s and 2A(ys, s\(s,}) = 5; — 5; , where s;" is the number

of plusses in the first s; elements of P, and s; is the number of minuses. So

(_1)i—1—sjq5;_sj 1ft =S \ {Si}7

. (54)
0 otherwise.

[F(P) ©a(p) —lts = {

The easiest way to describe the general pattern of the matrix for [F(P) @ A(p) —) and com-
pare it to the matrix from Subsection 2.3 is by induction on the length of P. Recall from
the end of Subsubsection 2.3.3 that the reverse lexicographic ordering on subsets of [n] has
the following property: if we write the sequence of subsets as s, s2, ..., S9n+1, then the first
half (s; through sgn) is the sequence of subsets for [n — 1], and for 1 < ¢ < 2", we have
Sony; = 8; U {’I’L}

For P = (), the empty sequence, we can directly see that F'ey = 0 and Feggy = Aegqy, so

FO1= (7 o)-
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Let P’ be the subsequence of P consisting of all but the last element. Observe that for
s; < n, the quantities s;” and s; are the same with respect to both sequences, so [F(P)] has

block form (P |
F(P Dp >
F(P)| = .
P = (L ot
By Equation 54, the matrix Dp is diagonal, with entry corresponding to (s \ {n},s) given by
(—1)lsl=1=P+gP-=P+ where p, is the number of plusses in P and p_ is the number of minuses.

The computation for [E(P)® A(p)] is simpler. Since Ej, is right cofibrant, we can compute
the induced functor Fj, ® 4, — with an underived tensor product,

Ey, éAk M ~ E, ®4, M.
In particular, By ® 4(p) Aes = Ejes, so the action
[Ex ®a, =] : Ko(A(P)) = Ko(A(P))
is given by N
[Er ®a, —| : [Aes] — [Ejes).
By Proposition 4.3.3 (4) (the version for E), if 0 € s, then Ejes is acyclic, so [Eies] = 0, and if
0 ¢ s, then Ereg = Ak‘esu{O}/ so [Eres] = [Ak‘esu{O}]' Thus,
1 ifs=tU{0},
0 otherwise.

Bo1= (3 o). - (EPH ).

The above discussion and the computations of Subsection 2.3 imply the following.

[E(P) ®a(py —lst = {

or, recursively,

Corollary 4.3.5. The matrices of [E(P)], [F'(P)] with respect to the primitive basis equal the matrices
of E, F € Uy acting on Vp @ L(Ap41) with respect to the basis of Subsection 2.3. O

This completes the proof of the first part of Theorem B. We continue with proving the
categorified relations.

Proposition 4.3.6. Let P be a sign sequence of length n. We have homotopy equivalences
F(P) éA(p) F(P) >~ O,
E(P) @A(p) E(P) >~ O,

and an exact triangle

E(P)®a(p) F(P) A(P) F(P) @ p) E(P) — E(P) @4(py F(P)[1],

Further, for any tangle T and any decomposition T of T,
B(=8"T)R CT(T) ~ A(—0°T) B CT(T) & so11) E(O'T),
F(—0°T) B CT(T) ~ A(~8"T) ’ CT(T) ® aen 1) F(O'T)
as type AA bimodules over (A(—9°T), A(9'T)).
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Proof. For the first two equivalences and the exact triangle, we fix a sign sequence P of length
n, and denote E(P), F(P), A(P) by E, F, A, respectively.
Since F'is left cofibrant, we have

F@sF~F®uF.

We can represent the underived tensor product F' ® 4 F' graphically by concatenating dia-
grams. Let x1, 29 : {—1} U [n] — [n] be generators of F' such that y = (z1,z2) is nonzero in
F ®4 F and such that z3 o 21(—1) < x2(—1). This means the respective black strands in a
diagram for (z1,x2) cross, or, equivalently, the black strands in a diagram for xs cross. Let
y2 be the generator whose diagram is obtained from that of z by resolving that crossing.
Then f(x) = (x1,y2) is the generator whose diagram is obtained by resolving the respective
crossing in (z1,x2), see Figure 25. Note that f(x) is a term in the differential of =, and f is
a bijection from those generators for F' ® 4 F' for which the black strands starting at height
—1 cross to the remaining generators. Taking this component f of the differential on F ®4 F
cancels out all pairs of generators, and shows that F' ©4 F =~ 0.

f A

FIGURE 25. The differential cancels generators of F' ® F' in pairs.

Similarly, E ©4 E ~ 0.

Next, we turn to the exact triangle.

Since E is right cofibrant and F is left cofibrant, E ® 4 F ~ E ®4 F. Diagrammatically, one
can represent F ® 4 F' by concatenating diagrams for £ and F', see Figure 26. We can think of

a strand diagram for a generator of £ ® 4 F as a partial bijection = : {—1} U [n] — {—1} U [n]
with —1 both in the domain and range and z(—1) # —1.

R g . = »=
. .®. e — o . ®o—/ e — o .
. . . . . . . W re
. \: :/ . o\"/o :]o o\q‘,/o

FIGURE 26. The bimodule £ ®4 F, when P = (—, —,+,+). Left: The back-
ground diagram for £ ®4 F is obtained by concatenating the background
diagrams for E and F'. Right: an example of a nonzero generator of £ ® 4 F.

Defineamap f : E ®4 F' — A on generators as follows. If z : {—1} U [n] — {—1} U [n]is
a generator for £ ®4 F with z(—1) = 0 or z(0) = —1, then f(z) = y, where y(z~!) = (1)
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FIGURE 27. An example of the map f.

and y\[n]\{fl(_l)} = x][n}\{xﬂ(_l)}. Otherwise, f(z) = 0. For example, f takes the generator
shown at the right of Figure 26 to 0. See Figure 27 for an example where f(z) # 0.

Observe that the cone of f, C(f), is generated over Fy by partial bijections = : {—1} U
[n] = {—1} U [n] with —1 both in the domain and range, with bimodule structure as follows.
The diagram associated to a generator « for C'(f) consists of n horizontal red strands from
(0, — %) to (1,i — %) for 1 < i < n (oriented according to P) and a black strand connecting
(0,7) to (1,z(7)) for each i in the domain of x. The left and right algebra actions are given
by concatenation, and the differential is given by resolving crossings, subject to the same
relations as for the algebra. See Figure 28.

+

—_—

—e

] [ ] ] [ ]
L] L L] L] L.
- L C

FIGURE 28. The bimodule C(f) in the case P = (—, —, +,+). Left: the back-

ground diagram for C'( f). Right: the generators for C( f) corresponding to the
two generators in Figure 27.

Below, we argue that F' @4 E ~ C(f).
By [PV16a, Theorem 5.4], A K CT(trivp) ~ A ® (Fo ® F[1]{2})®", s0
(F &4 E)® (Fo @ Fo[1]{21)®" ~ F ®4 (AR CT(trivp)) ®4 E
= ((F &4 A) R CT(trivp)) ®4 E
= (FRCT(trivp)) 4 E
= FR (CT(trivp) &4 E)
= FR (CT(trivp) ®4 E),
where the last equality holds since CT(trivp) is both left and right cofibrant.

Given a generator = of (ﬁ‘(triv p) and a generator y of E, one can interpret z ® y as a
concatenation of diagrams by placing a diagram for y to the right of a diagram for » and
scaling the right piece for 2 and the diagram for y by 3. See Figure 29.
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e e e . . e e e L e . . L e
o o ) ) . ° ° ° + ° e +/—o
° ) .®. e — o ) ° o/ o\/—o®o—/.:.-/ o\/.
° e e ) ) e e e .: :;)S. ) ) o\(o—)C.

ha ha .\_.\_:

FIGURE 29. The DA bimodule (?:f(trivP) ®a E,when P = (—,—,+,+). Left:
The background diagram for (ﬁ‘(triv p)®4 E is obtained by concatenating the
even (right) piece of the background diagram for CT(trivp) with the back-
ground diagram for E. Right: The tensor product (z1,z2) ® x3 of generators
is given by concatenating a diagram for x5 with a diagram for x3.

Thus, we can represent /' X (CT(trivp) ®4 E) diagrammatically as follows. Place the
background diagram for F' to the left of the odd piece for trivp and the background diagram
for E to the right of the odd piece for trivp. Generators are sequences (z1, z2,x3) of partial
bijections such that

o 1 : {—1} U [n] — [n] with —1 in the domain of z;,

o 15 :[n] — [n],

e 23 :[n] = {—1} U [n] with —1 in the range of =3, and

e fori = 1,2, every element of [n] is either in the domain of z;;; or in the range of z;
but not both.

We draw diagrams for generators of F'X (CT(trivp) ® 4 E) as we have done for A(P), CT(T),
and so forth. The differential is defined to be the sum 0, + 0_ + 0,,, with each summand
defined by the same conditions as the corresponding differential summand for CT(T). The
algebra action is the evident one defined in analogy with the actions on E and F; it appears
diagrammatically as a modified concatenation. See Figure 30.

L] L ] L] L] L /—. \/—. L ]
[ ) ° [ ] [ ) ° [ +. /—.
L] [ ] L] L] .—// .-/ .\/ [ ]
L] L L] L] .\( .—C L

- - T\l

FIGURE 30. The AAbimodule F K (CT(trivp) ®4 E), when P = (—, —, +,+).
Left: the background diagram. Right: an example of a generator.

Next we show that FK(CT(trivp)® 4 E) is homotopy equivalent to AXCT(trivp)® 4 C(f).
To do so, and to prove the last two equivalences in Theorem B, we appeal to the interpretation
of our algebras and bimodules in terms of Heegaard diagrams (see [PV16a, Section 8], for
example). Below, we briefly recall some basics about Heegaard diagrams, omitting technical
details, and specializing to our needs.



QUANTUM gly|; AND TANGLE FLOER HOMOLOGY 51

Most generally, a bordered Heegaard diagram consists of a compact surface ¥ with one
or more boundary components, along with two sets of pairwise disjoint, properly embed-
ded curves (circles and/or arcs) on the surface, typically denoted as a-curves and -curves
(drawn in red and blue below, respectively), and some additional arcs and/or points on the
surface, typically denoted as z-arcs (drawn in green below), and X- and O-basepoints, satis-
fying certain conditions. Depending on which type of curves touch the boundary, the Hee-
gaard diagram is called o~ bordered, 3-a bordered, and so on. A bordered Heegaard dia-
gram specifies a topological object with boundary, such as a bordered 3-manifold, a bordered-
sutured 3-manifold, or a tangle in a (bordered) 3-manifold. See [LOT18, LOT15, LOT11,
Zar(09, PV16a], among others.

A bordered Heegaard diagram is called admissible, if a certain technical condition is sat-
isfied. We do not need the definition here, but we remark that every diagram can be “con-
verted” to an admissible diagram that describes the same topological object, and that all
diagrams described in this paper are admissible.

To the boundaries of an admissible bordered Heegaard diagram one can associate dg al-
gebras, and to the diagram various bimodules (type AA, DD, etc.) over these algebras. The
bimodules are generated by sets of intersection points between a-curves and g-curves, with
one point on each circle, and at most one point on each arc; the structure maps are defined by
counting certain pseudo-holomorphic curves in ¥ x I x R; box tensor product corresponds to
gluing diagrams along some common boundary. If two bordered Heegaard diagrams are re-
lated by a sequence of the usual Heegaard moves (isotopies, index one/two (de)stabilizations
and handle slides of circles over arcs or circles), then the corresponding bimodules are ho-
motopy equivalent, whereas an index zero/three stabilization results in tensoring with a
two-dimensional vector space Fo @ Fa[1]{2}.

Next, we describe more precisely some specific types of bordered Heegaard diagrams rel-
evant to this paper.

In [PV16a], there are descriptions of -a and a-« diagrams for the algebras A(P) and
tangle decompositions T respectively, such that the associated generators and structure maps
are in bijection with those for the strand diagrams described in this paper. We give an outline
below.

We describe the $-a diagram H 4(py for A(P); see the left diagram of Figure 32, for exam-
ple. This diagram consists of n + 1 parallel a-arcs and n + 1 parallel 3-arcs on a genus zero
surface X with three boundary components, i.e. on a pair of pants, which form a grid. Label
the a-arcs ay, . . ., o, from bottom to top, and the S-arcs By, ..., 5, from right to left, as seen
in Figure 32. In the square formed by «;_1, o;, Bi—1, fi, placean O if p; = 1l oran X if p; = —1.
The bijection between Heegaard diagram and strand diagram generators is defined by the
bijection between intersection points and black strands sending the point a;; N 3; to the strand
connecting (0, ) to (1,¢). The differential is defined by counting empty rectangles (in bijec-
tion with resolving black-black crossings), and the algebra action by counting sets of partial
rectangles (in bijection with concatenating with strand diagrams for algebra generators); see
[PV16a, Chapter 4], where these counts are described in detail.
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Given a tangle decomposition T, the a-ae diagram Ht and the correspondence of its gen-
erators and structure maps with the strand diagrams ones are defined in a similar way. The
precise description is rather lengthy, and not needed for the arguments in the remaining
proof, so we direct the interested reader to [PV16a, Chapter 4], and illustrate an example in
Figure 31.

O ] ] XA
<7 So—<7 AN

FIGURE 31. Left: an a-a bordered Heegaard diagram for a tangle decomposi-
tion, along with a generator. Right: the corresponding tangle decomposition
and generator.

Similarly, below we construct 3-a bordered Heegaard diagrams H py and Hp(py, so that
the generators and structure maps for the associated A A bimodules are in bijection with those
in the strand diagram descriptions for E(P) and F'(P). These diagrams combine properties
of diagrams seen in [LOT15, Zar09, PV16a] and the definition and properties of bordered
Floer homology generalize to them in a straight forward way.

We start with H 4(p). To get Hg(p), we add a 1-handle to X with feet just bottom-left and
bottom-right of the grid, as well as an a-circle, denoted a_;, going once over the handle. To
get Hp(p), we add a 1-handle to 3 with feet just bottom-right and top-right of the grid, as well
as a f-circle, denoted 5_1, going once over the handle. See the middle and right diagrams
in Figure 32, for example. The bijection between Heegaard diagram and strand diagram
generators and structure maps is analogous to that for H 4(p). For the curious reader, we
remark that the topological objects described by these diagrams are certain trivial tangles in
S2% x I with a solid torus drilled out.

FIGURE 32. Left: the 3-o diagram H 41 _y) for the algebra A((+,—)). Mid-
dle: The diagram Hp((4 ). Right: The diagram Hp((4 ).
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We now return to the proof of Proposition 4.3.6.
The combinatorics (i.e. generators and structure maps) of the strand diagram presentation

of the bimodule F' X (CT(trivp) ® 4 E) described earlier correspond to the combinatorics in
the left Heegaard diagram of Figure 33. The g-circle that goes over the dark grey 1-handle
can be slid over the outermost 3-circle to its right, to produce the second Heegaard diagram
in Figure 33. The handle slide induces a homotopy equivalence between the structures asso-
ciated to the two Heegaard diagrams. The combinatorics of the right Heegaard diagram of
Figure 33 correspond to the combinatorics of the strand diagram presentation for the bimod-

ule AR CT(trivp) ®.4 C(f).

F  CT(trivp) @4 E A CT(trive) @4 C(f)

FIGURE 33. Left: a Heegaard diagram for the bimodule F'X (CT(trivp) @4 E).
Right: a Heegaard diagram for the bimodule A X CT(trivp) ®4 C(f).

In terms of strand diagrams, the handle slide can be thought of as moving the dot at (0, —1)
two units to the right. See Figure 34.

el A «” ™

FIGURE 34. Left: the background diagram for the bimodule F X
(CT(trivp) ®4 E). Right: the background diagram for the bimodule A X
CT(trivp) ® 4 C(f). In this example, P = (—, —, +, +).

Now, since A ® CT(trivp) ~ A ® (F5 ® Fo[1]{2})%", we have A K CT(trivp) ®4 C(f) ~
A®aC(f)® (F2 @ F2[1{2})*" = C(f) ® (F2 @ F2[1]{2})*".

Last, we observe there is a triangle
E@uaF -t A~ 0(f)—> Eo, F[1].
Replacing objects with equivalent ones, we get a triangle

E@QAF —>A—>F@),FE— E®y4 F[1].
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Last, we show that E and F commute with CT. We may assume that the rightmost ele-
mentary tangle of T is trivial, so that (ﬁ‘(’]l‘) is automatically right cofibrant: For any decom-
position T of a tangle 7, we know that if T” is obtained from T by concatenating with a trivial
elementary tangle to the right, then (ﬁ‘(']I") o~ (ﬁ‘(']l‘) ® (Fy @ Fo[1]{2})®19' 71, So if E and F
commute with CT(T’), as in the statement of the proposition, then it follows they commute
with CT(T).

So assume T is a decomposition for a tangle 7 and the rightmost elementary tangle in T
is trivial. We use a Heegaard diagram interpretation of the bimodules, as above. The combi-
natorics of the bimodule F(—0°7) X (ﬁ‘(T) correspond to the combinatorics in the top left
Heegaard diagram of Figure 35. The /-circle that goes over the dark grey 1-handle can be slid
over the outermost -circle corresponsing to each elementary tangle, one by one, to produce
the top right Heegaard diagram in Figure 35. These handle sides induce homotopy equiv-
alences between the algebraic structures for the respective Heegaard diagrams. Since the
bimodule for the rightmost elementary tangle is cofibrant, the combinatorics of the top right
Heegaard diagram correspond to the combinatorics for A(—9°T) X (ﬁ‘(']l‘) D arm) F(OMT),
which is equivalent to A(—9°T) X (ﬁ(']l‘) ® Ao F (0}T). The argument for E is analogous,
see the bottom of Figure 35. O

FIGURE 35. Top: the first and last diagram in a sequence of handle slides,
showing that F(—9°T) K CT(T) =~ A(~°T) K CT(T) @ aor7) F(9"T) (pieces
of the Heegaard diagram are labeled with their respective bimodules). Bot-
tom: the first and last diagram in a sequence of handle slides, showing that

BE(—0°T) B CT(T) ~ A(~8°T) R CT(T) & a1y E(O'T).

This concludes the proof of Theorem B of the Introduction.
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