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Abstract. In a previous paper, Vértesi and the first author used grid-like Heegaard dia-
grams to define tangle Floer homology, which associates to a tangle T a differential graded

bimodule C̃T(T ). If L is obtained by gluing together T1, . . . , Tm, then the knot Floer ho-

mology ĤFK(L) of L can be recovered from C̃T(T1), . . . , C̃T(Tm). In the present paper,
we prove combinatorially that tangle Floer homology satisfies unoriented and oriented skein
relations, which are analogues of the skein exact triangles for knot Floer homology.

1. Introduction

Heegaard Floer homology is an invariant of closed, oriented 3-manifolds introduced in [32]
that has found numerous applications in recent years, and is known to be equivalent [18–22] to
monopole Floer homology [17], and also equivalent [5] to embedded contact homology [8–10].
In [31,39], it is extended to give an invariant, knot Floer homology, of null-homologous knots
in closed, oriented 3-manifolds, which is further generalized to oriented links in [35]. Knot

Floer homology comes in many flavors; its simplest form, ĤFK(L) for an oriented link L,
is a bigraded module over F2 or Z. There is a combinatorial description of the knot Floer
homology of links L ⊂ S3 called grid homology [29, 30, 36], defined using grid diagrams.
Because knot Floer homology, defined analytically, is known to categorify the Alexander

polynomial, it is often compared with Khovanov homology K̃h(L) [14, 15], a link invariant
from representation theory that categorifies the Jones polynomial.

Ozsváth and Szabó [33] show that the Heegaard Floer homology ĤF(−Σ(L)) of the
branched double cover of a link L satisfies an unoriented skein exact triangle, from which

they derive a spectral sequence from K̃h(L) to ĤF(−Σ(L)), thus relating the two theories.
Following this, Manolescu [27], by counting holomorphic polygons, shows that knot Floer
homology with F2 coefficients also satisfies an unoriented skein exact triangle, and uses it

to show that rk ĤFK(L;F2) = 2ℓ−1 det(L) for a quasi-alternating link L with l components.
Manolescu and Ozsváth [28] then use the skein exact sequence to show that quasi-alternating
links are Floer-homologically σ-thin over F2.

While the discussion above seems to suggest that there may be a spectral sequence relat-

ing K̃h(L) and ĤFK(L) that comes from iterating Manolescu’s skein relation, Baldwin and
Levine [1] discover that the E2 page of the spectral sequence they so construct is not even
a link invariant. However, one may be able to relate the two theories with some modifica-
tions: Baldwin, Levine, and Sarkar [2] construct another spectral sequence that converges

to ĤFK(L)⊗V n for some module V of rank 2 and some integer n, where the differential D0

counts some of the holomorphic polygons in Manolescu’s unoriented skein sequence. They
conjecture that the E1 page of this spectral sequence coincides with a variant of Khovanov
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homology for pointed links, the proof of which would imply a version of the following con-
jecture, first formulated by Rasmussen [38] for knots:

Conjecture 1. For any ℓ-component link L ⊂ S3, we have

2ℓ−1 rk K̃h(L) ≥ rk ĤFK(L).

Remark. During the peer review process of this article, Dowlin [6] has announced the exis-

tence of a spectral sequence relating K̃h(L) and ĤFK(L), and hence a proof of Conjecture 1.
How this spectral sequence compares with the candidate constructed by Baldwin, Levine,
and Sarkar [2] remains unknown.

To better understand Manolescu’s skein relation and the related conjectures, there are sev-
eral approaches. One idea involves computing the maps in the skein relation combinatorially:
The second author [41] gives a version of the skein sequence for grid homology, generalizing
the results on quasi-alternating links [27,28] to Z-coefficients and giving a spectral sequence
from a cube-of-resolutions complex with no diagonal maps. Lambert-Cole [23] exploits the
computability in [41] to show that δ-graded knot Floer homology is invariant under Conway
mutation by a large class of tangles.

Another idea, suggested to the authors by Levine [24], is to understand the maps in the
skein relation on a local level, by slicing the links involved into tangles and studying a
tangle version of knot Floer homology. One such theory is tangle Floer homology, defined
by Vértesi and the first author [37]. In this theory, to a sequence of points one associates
a differential graded algebra, and to a tangle T ⊂ I × R2 one associates an A∞-module

C̃T(T ) over the differential graded algebra(s) associated to its boundary. If a link L is

obtained by gluing together tangles T1, . . . , Tm, then ĤFK(L) can be recovered by taking a

suitable notion of tensor product, called the box tensor product, of C̃T(T1), . . . , C̃T(Tm). The

A∞-modules C̃T(T ) are defined combinatorially using nice diagrams (in the sense of Sarkar
and Wang [40]) that are similar to grid diagrams. The tangle Floer package is inspired by
bordered Floer homology, an invariant of 3-manifolds with parametrized boundary that can
be used to recover the Heegaard Floer homology of a manifold obtained by gluing, defined
by Lipshitz, Ozsváth, and Thurston [25].

Similar to knot Floer homology, tangle Floer homology also comes in multiple flavors.

For example, C̃DTDu(T, n) is an ungraded type DD structure, C̃DTDδ(T, n) is a δ-graded

type DD structure, and C̃DTD(T, n) is an (M,A)-bigraded type DD structure, where M
and A are the Maslov and Alexander gradings respectively. As the notation suggests, these
structures do not depend on the choice of Heegaard diagramH for T , but only on the number
of markers in H, which we denote by n. There is also a richer bigraded version, CDTD−(H),
which recovers the richer version of knot Floer homology HFK−(L), and which is believed
but not yet proven to be an invariant of T . We postpone the precise definitions of these, as
well as other type DA, type AD , and type AA structures, to Section 2.

The first part of this paper addresses the idea above; namely, we prove an unoriented skein
relation for tangle Floer homology. Suppose T∞, T0, and T1 are three unoriented tangles in
I × R2 identical except near a point, as in Figure 1.1.

Theorem 2. There exists a type DD homomorphism F0 : C̃DTDu(T0, n) → C̃DTDu(T1, n)
such that

C̃DTDu(T∞, n) ≃ Cone(F0 : C̃DTDu(T0, n) → C̃DTDu(T1, n))
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T∞ T0 T1

Figure 1.1. Top: Three tangles T∞, T0, T1 form an unoriented skein triple
if they are identical except near a point, as displayed. Bottom: A specific
example of an unoriented skein triple.

as ungraded type DD structures. Analogous statements hold for type DA, AD, and AA
structures.

In fact, we prove a strengthened version of Theorem 2 for oriented tangles, taking into
account the δ-grading. Suppose T∞, T0, and T1 are three tangles as above, but oriented,
and choose corresponding oriented planar diagrams that are identical (after forgetting the
orientations) except near a point. Let neg(Tk) denote the number of negative crossings in
the diagram for Tk, and let e0 = neg(T1)− neg(T0) and e1 = neg(T∞)− neg(T1).

Theorem 3. There exists a type DD homomorphism F0 : C̃DTDδ(T0, n) → C̃DTDδ(T1, n)
of δ-degree (e0 − 1)/2 such that

C̃DTDδ(T∞, n) ≃ Cone(F0 : C̃DTDδ(T0, n) → C̃DTDδ(T1, n))

[
e1 − 1

2

]

as δ-graded type DD structures. Analogous statements hold for type DA, AD, and AA
structures.

Remark. Following [36, 37], our δ-gradings differ from those in [28, 41] by a factor of −1.

By taking the box tensor product, we immediately obtain a combinatorially computable
unoriented skein exact triangle for knot Floer homology analogous to those in [27,41]. Sup-
pose L∞, L0, and L1 are three oriented links that are identical (after forgetting the orienta-
tions) except near a point, so that they form an unoriented skein triple. Let ℓ∞, ℓ0, and ℓ1
be the number of components of L∞, L0, and L1 respectively, and define neg(Lk), e0, and e1
in a fashion analogous to neg(Tk), e0, and e1 above.

Corollary 4. For sufficiently large m, there exists a δ-graded exact triangle

· · · → ĤFK∗(L1;F2)⊗ V m−ℓ1 ⊗W → ĤFK∗+
e1−1

2

(L∞;F2)⊗ V m−ℓ∞ ⊗W

→ ĤFK∗−
e0+1

2

(L0;F2)⊗ V m−ℓ0 ⊗W → ĤFK∗−1(L1;F2)⊗ V m−ℓ1 ⊗W → · · · ,

where V is a vector space of dimension 2 with grading 0, andW is a vector space of dimension
2 with grading −1.

Remark. Due to a difference in the orientation convention, the arrows in the exact triangle
point in the opposite direction from those in [27,28]. We follow the convention in [29–31,41],
where the Heegaard surface is the oriented boundary of the α-handlebody.
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Remark. Technically, we do not show that the exact triangle in Corollary 4 agrees with the
ones in [27] and [41], which themselves are not known to coincide. However, we do expect
all three to agree.

Parallel to the above, we also prove an oriented skein relation for tangle Floer homology in
the second part of this paper, which can be viewed as a local analogue of the oriented skein
relation for knot Floer homology proven by Ozsv́ath and Szabó [31, 34]. While formally
similar to the unoriented skein relation, we pursue this direction for a slightly different
reason—we do so with a view towards the further development of knot Floer homology in
the framework of categorification.

Precisely, tangle Floer homology has been shown by Ellis, Vértesi, and the first author [7]
to categorify the Reshetikhin–Turaev invariant for the quantum group Uq(gl1|1). This puts
tangle Floer homology on a similar footing as the tangle formulation of Khovanov homology
[3,4,15], which categorifies the Reshetikhin–Turaev invariant for Uq(sl2). What is missing in
the work of Ellis, Vértesi, and the first author is a construction of 2-morphisms, corresponding
to tangle cobordisms. For knot Floer homology, cobordism maps are defined by Juhász [11]
using contact geometry, and independently by Zemke [42] using elementary cobordisms, and
together they [13] show that their definitions coincide. Juhász and Marengon [12] prove
that the cobordism maps in [11] fit into a skein exact triangle, providing evidence that
these cobordism maps are actually the maps in skein sequences. Thus, one approach to
constructing the 2-morphisms mentioned above is to study the skein relations of tangle
Floer homology further.

To state our results, suppose T el

+ , T el

− , and T el

0 are three oriented elementary tangles
identical except near a point, with the strands at which the tangles differ oriented from right
to left, as in Figure 1.2. There are corresponding Heegaard diagrams H+, H−, and H0,

Figure 1.2. From left to right, the elementary tangles T el

+ , T el

− , T el

0 .

which we describe explicitly in Section 5. Below, U1 and U2 are variables corresponding to
the strands at which the tangles differ.

Theorem 5. There exists a type DD homomorphism P+,− : CDTD−(H+) → CDTD−(H−)
of (M,A)-degree (0, 0) such that

Cone(P+,−) ≃ Cone(IdCDTD−(H0)⊗(U2 − U1) : CDTD−(H0) → CDTD−(H0)) [1]

{
1

2

}

as (M,A)-bigraded type DD structures. Analogous statements hold for type DA, AD, and
AA structures.

Remark. Since CDTD− is not yet known to be a tangle invariant [37], Theorem 5 is stated
for the type DD bimodules of Heegaard diagrams rather than for bimodules associated to a
tangle.

Remark. Tangle Floer homology is currently only defined over F2, and so the negative
signs in Theorem 5 could be replaced by positive signs. However, the stated signs are what
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one would expect for a theory defined over Z. This remark applies also to Lemma 5.4 and
Lemma 5.10.

Restricting to C̃DTD, we also obtain a local oriented skein relation for that version. In this
case, we have a proven tangle invariant, so the relation holds for general tangles. Suppose
T+, T−, and T0 are three tangles that form an oriented skein triple, as in Figure 1.3.

T+ T− T0

Figure 1.3. Top: Three tangles T+, T−, T0 form an oriented skein triple
if they are identical except near a point, as displayed. Bottom: A specific
example of an oriented skein triple.

Theorem 6. There exists a type DD homomorphism P̃+,− : C̃DTD(T+, n) → C̃DTD(T−, n)
of (M,A)-degree (0, 0) such that

Cone(P̃+,−) ≃ C̃DTD(T0, n) [0]

{
−
1

2

}
⊕ C̃DTD(T0, n) [1]

{
1

2

}

as (M,A)-bigraded type DD structures. Analogous statements hold for type DA, AD, and
AA structures.

Again by taking the box tensor product, we obtain an oriented skein exact triangle for knot
Floer homology analogous to those in [31, 34]. Suppose L+, L−, and L0 are three oriented
links that are identical except near a point, so that they form an oriented skein triple.

Corollary 7. If the two strands of L0 belong to the same component, then there exists an
(M,A)-bigraded exact triangle

· · · → HFK−
m(L+, s)⊗W → HFK−

m(L−, s)⊗W

→ (HFK−(L0)⊗ V ⊗W )m−1,s → HFK−
m−1(L+, s)⊗W → · · · ,

and if the two strands of L0 belong to different components, then there exists an (M,A)-
bigraded exact triangle

· · · → HFK−
m(L+, s)⊗W → HFK−

m(L−, s)⊗W

→ Hm−1((CFK
−(L0)/(U2 − U1))⊗W, s) → HFK−

m−1(L+, s)⊗W → · · · ,

where m and s are the Maslov and Alexander gradings, respectively, V is a module of rank
2 with bigradings (0, 0) and (1, 1), and W is a module of rank 2 with bigradings (0, 0) and

(−1, 0). Analogous statements hold for ĤFK.

Remark. Similar to the unoriented skein exact sequence, we expect but do not prove that
the sequence in Corollary 7 coincides with the ones in [31, 34].
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To put Theorem 6 in the context of categorification discussed above, we briefly outline the
Reshetikhin–Turaev construction, specializing to the case yielding the Alexander polynomial.
To the boundaries of an oriented tangle one associates a tensor product of copies of the
standard Uq(gl1|1)-representation V and its dual V ∗, and to the tangle a map between these
representations. The construction is combinatorial, decomposing a diagram D for a tangle
T into elementary pieces (cups, caps, and crossings), assigning morphisms to the elementary
pieces and defining Q(D) as the composition of these morphisms. The map Q(D) is an
isotopy invariant of the oriented tangle. Further, for the triple of oriented elementary tangles
T+, T−, and T0 from Figure 1.2, Q satisfies the skein relation

(1.1) Q(T+)−Q(T−) = (q − q−1)Q(T0).

The ground ring here is C(q). If we present a link L as a (1, 1)-tangle TL and set q2 = t,
then it turns out that Q(TL) = ∆(L) idV , where ∆(L) is the Alexander polynomial of L.

In [7], it is shown that tangle Floer homology categorifies the construction described
above—tensor products of copies V and V ∗ lift to categories of left type D modules over
the dg algebras associated to the boundaries of T , and the map Q(T ) lifts to the functor

C̃DTA(T ) ⊠ −. In particular, Q(T el

+ ), Q(T el

− ), and Q(T el

0 ) lift to C̃DTA(T el

+ ), C̃DTA(T el

− ),

and C̃DTA(T el

0 ), respectively. With this set-up, we have:

Corollary 8. The homotopy equivalence in Theorem 6 categorifies the skein relation in
Equation 1.1.

Since tangle Floer homology shares some similarities with grid homology, our approach to
proving Theorems 2 and 3 is similar to that in [41], and our approach to proving Theorem 5
is similar to that in [36, Chapter 9]. In particular, all maps involved are combinatorially
computable.

Organization. We review the necessary algebraic background and the definition of tangle
Floer homology in Section 2. We prove the ungraded unoriented skein relation, Theorem 2,
in Section 3. We then determine the δ-gradings in Section 4 to prove the graded skein
relation, Theorem 3. Theorems 5 and 6 are proven in Section 5.

Acknowledgments. The authors thank Robert Lipshitz and Vera Vértesi for useful con-
versations. The authors are also grateful to Robert Lipshitz and the anonymous referee for
many insightful comments and corrections on previous drafts. IP received support from an
AMS-Simons travel grant and NSF Grant DMS-1711100. Part of the research was conducted
while IP and MW were affiliated with Columbia University. IP thanks Louisiana State Uni-
versity, and MW thanks Rice University and Dartmouth College for their hospitality while
this research was undertaken.

2. Background

2.1. Algebraic structures. We first review the underlying algebraic structures of tangle
Floer homology. We will only define the immediately relevant structures here, and refer the
interested reader to [26, Section 2].

Let A be a unital differential graded algebra (DGA) with differential d and multiplication µ
over a base ring k of characteristic 2. In this paper, k will always be the ring of idempotents,
which is a direct sum of copies of F2 = Z/2Z. We will also write a · b to denote µ(a, b) for
algebra elements a, b ∈ A, whenever no confusion can arise.
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A (left) type D structure over A is a graded k-module M equipped with a homogeneous
map

δ1 : M → (A⊗M)[1]

satisfying the compatibility condition

(d⊗ idM) ◦ δ1 + (µ⊗ idM) ◦ (idA ⊗δ1) ◦ δ1 = 0.

It may be advantageous to represent this graphically:

δ1

d

+

δ1

δ1

µ

= 0.

The map δ1 is called the structure map of M . Defining

δi : M → (A⊗i ⊗M)[i]

inductively by

δi =

{
idM for i = 0,

(idA ⊗δi−1) ◦ δ1 for i ≥ 1
,

we say that M is bounded if for all x ∈ M , there exists an integer n = n(x) such that
δi(x) = 0 for all i > n.

Let A and B be two unital differential graded algebras, with differentials dA and dB,
and multiplications µA and µB, over the base rings k and j respectively. (Recall that the
base rings have characteristic 2.) A (left-right) type DD structure over (A,B) is a graded
(k, j)-bimodule M equipped with a homogeneous structure map

δ1 : M → (A⊗M ⊗B)[1]

satisfying the compatibility condition

(dA ⊗ idM ⊗ idB) ◦ δ
1 + (idA⊗ idM ⊗dB) ◦ δ

1 + (µA ⊗ idM ⊗µB) ◦ (idA ⊗δ1 ⊗ idB) ◦ δ
1 = 0.

Graphically, this can be represented as:

δ1

dA

+
δ1

dB

+

δ1

δ1

µA µB

= 0.

Like for type D structures, we can define δi and the notion of boundedness analogously.
Type DD structures are the main objects of study in this paper. We will denote type DD
structures by calligraphic letters (e.g. M,N ), and reserve M,N for the underlying (k, j)-
bimodules.

A morphism f : M → N of degree ℓ is simply a module homomorphism

f : M → (A⊗N ⊗ B)[−ℓ].
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(By abuse of notation, we use f to denote both maps above.) Given a morphism, we can
define its boundary ∂f : M → (A⊗N ⊗ B)[−ℓ + 1] by

∂f =(µA ⊗ idN ⊗µB) ◦ (idA⊗δ1N ⊗ idB) ◦ f + (µA ⊗ idN ⊗µB) ◦ (idA ⊗f ⊗ idB) ◦ δ
1
M

+ (dA ⊗ idN ⊗ idB) ◦ f + (idA⊗ idN ⊗dB) ◦ f,

or graphically,

δ1N

f

µA µB

+

δ1M

f

µA µB

+
f

dA

+
f

dB

.

For convenience, although this is not found in the literature, we will use the notation
df : M → (A⊗N ⊗B)[−ℓ + 1] to represent the last two terms above:

df = (dA ⊗ idN ⊗ idB) ◦ f + (idA ⊗ idN ⊗dB) ◦ f.

Given two morphisms f : M → N of degree ℓ1 and g : N → P of degree ℓ2, where M, N ,
P are type DD structures over (A,B), their composition g ◦ f : M → P, of degree ℓ1 + ℓ2,
is defined as the map

g ◦ f : M → A⊗ P ⊗ B

given by
g ◦ f = (µA ⊗ idP ⊗µB) ◦ (idA ⊗g ⊗ idB) ◦ f,

or graphically,

f

g

µA µB

.

Note that the structure map δ1M : M → (A ⊗M ⊗ B)[1] can be thought of as a morphism
δ1M : M → M, and so we can consider the morphisms f ◦ δ1M : M → N and δ1N ◦ f : M → N
also. In this notation, we can write

∂f = δ1N ◦ f + f ◦ δ1M + df.

The above operations make type DD structures over (A,B) a differential graded category.
A type DD homomorphism (or simply a homomorphism) from M to N of degree ℓ is a

morphism satisfying ∂f = 0. Graphically, this can be represented as

δ1N

f

µA µB

+

δ1M

f

µA µB

+
f

dA

+
f

dB

= 0.

For example, the identity morphism IdN : N → N of a type DD structure N is the map that
sends x ∈ N to IA⊗x⊗IB, where IA (resp. IB) is the unit of the algebra A (resp. B). In the
context of tangle Floer homology, IA and IB will be the sum of all primitive idempotents.
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Given a homomorphism f : M → N of degree ℓ between two type DD structures over
(A,B), the mapping cone Cone(f) of f is the type DD structure with underlying (k, j)-
bimodule M [ℓ + 1]⊕N and structure map δ1f given by

δ1f (m,n) = (δ1M(m), f(m) + δ1N (n)).

Let f, g : M → N be two homomorphisms of degree l. A homotopy between f and g is a
morphism h : M → N of degree l + 1 such that

∂h = f + g,

or graphically,

δ1N

h

µA µB

+

δ1M

h

µA µB

+
h

dA

+
h

dB

=
f

+

g

.

Note that h is a morphism, but not a homomorphism unless f = g. We write f ≃ g if f and
g are homotopic. We say that two type DD structures M,N are homotopy equivalent, and
write M ≃ N , if there exist grading-preserving type DD homomorphisms f : M → N and
g : N → M such that g◦f is homotopic to IdM and f ◦g is homotopic to IdN via homotopies
of degree 1. In the full subcategory of type DD structures that are homotopy equivalent to
bounded ones, the notion of homotopy equivalence coincides with an appropriate notion of
quasi-isomorphism [26, Corollary 2.4.4]. All algebraic structures in bordered Heegaard Floer
homology and tangle Floer homology are homotopy equivalent to bounded ones; this can be
seen by choosing an admissible Heegaard diagram that defines the same bordered 3-manifold
or tangle [26, Lemma 6.6].

Although we will only focus on type D—in fact, type DD structures—we should mention
that there are also type A structures over a differential graded algebra A, which (in the
present context) are just differential graded modules over A. By extension, there are also
type DA, AD, and AA structures. There is a box product (or box tensor) operation⊠ between
a right (resp. left) type A structure M and a left (resp. right) type D structure N (at least
one of which is bounded), resulting in a chain complex M⊠N (resp. N ⊠M) over F2. The
box tensor is defined also for bimodules; for example, box-tensoring a type AD structure M
and a type AA structure N yields a type AA structure M ⊠ N . We refer the interested
reader to [26, §2.3.2].

We may treat A itself as a type AA structure; box-tensoring with A then turns a type DD
structure M into a type DA structure M ⊠ A. In fact, this defines a differential graded
functor from the full subcategory of type DD structures that are homotopy equivalent to
bounded ones to the full subcategory of type DA structures that are homotopy equivalent
to bounded ones. This functor is actually a quasi-equivalence [26, Proposition 2.3.18], im-
plying that it preserves quasi-isomorphisms. Corresponding statements hold for type AD
and type AA structures. Since the notions of quasi-isomorphism and homotopy equivalence
coincide for structures of any type given that they are homotopy equivalent to bounded
ones [26, Corollary 2.4.4], to prove Theorem 2, we need only prove it for type DD structures.

In our proof of Theorem 2, we will need to adapt to the setting of type DD structures a
lemma in homological algebra, whose version for chain complexes first appeared in [33].
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Lemma 2.1. Let Mk = {(Mk, δ
1
k)}k∈Z/3Z be a collection of type DD structures over (A,B),

where A and B are both unital differential graded algebras over a base ring k of characteristic
2, and let fk : Mk → Mk+1, ϕk : Mk → Mk+2, and ψk : Mk → Mk be morphisms satisfying
the following conditions for each k:

(1) The morphism fk : Mk → Mk+1 is a type DD homomorphism, i.e.

∂fk = 0;

(2) The morphism fk+1 ◦ fk is homotopic to zero via the homotopy ϕk, i.e.

fk+1 ◦ fk + ∂ϕk = 0;

(3) The morphism fk+2 ◦ϕk+ϕk+1 ◦fk is homotopic to the identity Idk via the homotopy
ψk, i.e.

fk+2 ◦ ϕk + ϕk+1 ◦ fk + ∂ψk = Idk .

(A graphical representation of the conditions above is given in Figure 2.1.) Then for each k,
the type DD structure Mk is homotopy equivalent to the mapping cone Cone(fk+1).

(1) δ1k+1

fk

µA µB

+

δ1k

fk

µA µB

+
fk

dA

+
fk

dB

= 0;

(2)

fk

fk+1

µA µB

+ δ1k+2

ϕk

µA µB

+

δ1k

ϕk

µA µB

+

ϕk

dA

+

ϕk

dB

= 0;

(3)

ϕk

fk+2

µA µB

+

fk

ϕk+1

µA µB

+ δ1k

ψk

µA µB

+

δ1k

ψk

µA µB

+
ψk

dA

+
ψk

dB

=
Idk

.

Figure 2.1. Graphical representations of the conditions in Lemma 2.1.

Proof. Observe that the mapping cone Cone(fk+1) is defined because fk+1 is a type DD
homomorphism, using Condition (1). It has underlying module Mk+1⊕Mk+2, and structure
map

δ1fk+1
(mk+1, mk+2) = (δ1k+1(mk+1), fk+1(mk+1) + δ1k+2(mk+2)).

Test width:
We may treat A itself as a type AA structure; box-tensoring with A then turns
To show that Mk ≃ Cone(fk+1), we will define homomorphisms Gk : Mk → Cone(fk+1)

and G′
k : Cone(fk+1) → Mk, and homotopies Hk : Mk → Mk and H ′

k : Cone(fk+1) →
Cone(fk+1). For ease of reading, we provide a schematic diagram in Figure 2.2.
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Mk Mk+1 Mk+2 Mk+1 Mk+2Mk

ϕk ϕkϕk+1 ϕk+2

ψk
ψk+1 ψk+2

fk fkfk+1 fk+2

Figure 2.2. A diagram for the maps discussed in the proof of Lemma 2.1.
The mapping cone Cone(fk+1) is boxed. The maps Gk, G

′
k, Hk, and H ′

k are
shown in red, blue, green, and orange, respectively.

We define Gk : Mk → Cone(fk+1) and G
′
k : Cone(fk+1) → Mk as follows:

Gk(mk) = (fk(mk), ϕk(mk)),

G′
k(mk+1, mk+2) = ϕk+1(mk+1) + fk+2(mk+2).

We first claim that Gk and G′
k are type DD homomorphisms. Indeed,

∂Gk(mk) = δ1fk+1
◦Gk(mk) +Gk ◦ δ

1
k(mk) + dGk(mk)

= (δ1k+1 ◦ fk(mk), fk+1 ◦ fk(mk) + δ1k+2 ◦ ϕk(mk))

+ (fk ◦ δ
1
k(mk), ϕk ◦ δ

1
k(mk)) + (dfk(mk), dϕk(mk))

= (∂fk(mk), fk+1 ◦ fk(mk) + ∂ϕk(mk))

= (0, 0),

where the last equality follows from Conditions (1) and (2). Similarly,

∂G′
k(mk+1, mk+2) = δ1k ◦G

′
k(mk+1, mk+2) +G′

k ◦ δ
1
fk+1

(mk+1, mk+2) + dG′
k(mk+1, mk+2)

= δ1k ◦ ϕk+1(mk+1) + δ1k ◦ fk+2(mk+2)

+ ϕk+1 ◦ δ
1
k+1(mk+1) + fk+2 ◦ fk+1(mk+1) + fk+2 ◦ δ

1
k+2(mk+2)

+ dϕk+1(mk+1) + dfk+2(mk+2)

= (fk+2 ◦ fk+1(mk+1) + ∂ϕk+1(mk+1)) + ∂fk+2(mk+2)

= 0,

where again the last equality follows from Conditions (1) and (2).
We next claim that G′

k ◦Gk ≃ Idk and Gk ◦G′
k ≃ IdCone(fk+1). To show this, we define the

homotopy morphisms Hk : Mk → Mk and H ′
k : Cone(fk+1) → Cone(fk+1) as follows:

Hk(mk) = ψk(mk),

H ′
k(mk+1, mk+2) = (ψk+1(mk+1) + ϕk+2(mk+2), ψk+2(mk+2)).

Then

∂Hk(mk) +G′
k ◦Gk(mk) = ∂ψk(mk) + ϕk+1 ◦ fk(mk) + fk+2 ◦ ϕk(mk)

= Idk(mk),

where the last equality follows from Condition (3). The homotopy Gk ◦G
′
k ≃ IdCone(fk+1) is

a little more tedious.

∂H ′
k(mk+1, mk+2) +Gk ◦G

′
k(mk+1, mk+2)
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= δ1fk+1
◦H ′

k(mk+1, mk+2) +H ′
k ◦ δ

1
fk+1

(mk+1, mk+2) + dH ′
k(mk+1, mk+2)

+Gk ◦G
′
k(mk+1, mk+2)

= (δ1k+1 ◦ ψk+1(mk+1) + δ1k+1 ◦ ϕk+2(mk+2),

fk+1 ◦ ψk+1(mk+1) + fk+1 ◦ ϕk+2(mk+2) + δ1k+2 ◦ ψk+2(mk+2))

+ (ψk+1 ◦ δ
1
k+1(mk+1) + ϕk+2 ◦ fk+1(mk+1) + ϕk+2 ◦ δ

1
k+2(mk+2),

ψk+2 ◦ fk+1(mk+1) + ψk+2 ◦ δ
1
k+2(mk+2))

+ (dψk+1(mk+1) + dϕk+2(mk+2), dψk+2(mk+2))

+ (fk ◦ ϕk+1(mk+1) + fk ◦ fk+2(mk+2), ϕk ◦ ϕk+1(mk+1) + ϕk ◦ fk+2(mk+2))

= ((fk ◦ ϕk+1(mk+1) + ϕk+2 ◦ fk+1(mk+1) + ∂ψk+1(mk+1))

+ (fk ◦ fk+2(mk+2) + ∂ϕk+2(mk+2)),

(fk+1 ◦ ϕk+2(mk+2) + ϕk ◦ fk+2(mk+2) + ∂ψk+2(mk+2))

+ (ϕk ◦ ϕk+1(mk+1) + fk+1 ◦ ψk+1(mk+1) + ψk+2 ◦ fk+1(mk+1)))

= (Idk+1(mk+1), Idk+2(mk+2) + ηk+1(mk+1)),

where the last equality uses Conditions (2) and (3), and ηk+1 : Mk+1 → Mk+2 is the mor-
phism

ηk+1 = ϕk ◦ ϕk+1 + fk+1 ◦ ψk+1 + ψk+2 ◦ fk+1.

Letting Jk : Cone(fk+1) → Cone(fk+1) be the morphism

Jk(mk+1, mk+2) = (Idk+1(mk+1), Idk+2(mk+2) + ηk+1(mk+1)),

we see that Gk ◦G′
k ≃ Jk. Observe also that Jk ◦ Jk = IdCone(fk+1). But then

Jk ≃ Gk◦G
′
k = Gk◦Idk ◦G

′
k ≃ Gk◦(G

′
k◦Gk)◦G

′
k = (Gk◦G

′
k)◦(Gk◦G

′
k) ≃ Jk◦Jk = IdCone(fk+1) .

This shows that Gk ◦G′
k ≃ IdCone(fk+1), as desired. �

Remark. In [33], a proof is given for the chain-complex version of this lemma. That proof
does not translate to the case of type DD structures, since it involves taking the homology
of the chain complexes. Instead, the proof we have presented here is the type DD version of
an alternative proof for the lemma in [16, 27, 33, 41], which is known in the community but
not found in the literature.

In our proof of Theorem 5, we will also use another lemma in homological algebra, which
is the analogue of a well-known lemma for chain complexes.

Lemma 2.2. Let M,N1,N2 be type DD structures over (A,B), where A and B are both
unital differential graded algebras over a base ring k of characteristic 2. Let P : N1 → N2 be
a homotopy equivalence of type DD structures, and for i = 1, 2, let fi : M → Ni be type DD
homomorphisms such that

P ◦ f1 = f2.

Then Cone(f1) is homotopy equivalent to Cone(f2).

Proof. By definition, there is a type DD homomorphism P′ : N2 → N1 such that P′ ◦ P =
IdN1

+∂H1 and P ◦ P′ = IdN2
+∂H2 for some morphisms Hi : Ni → Ni. The mapping cone

Cone(fi) has underlying module M ⊕Ni, and structure map

δ1fi(m,ni) = (δ1M(m), fi(m) + δ1Ni
(ni)).
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We will define homomorphisms F1 : Cone(f1) → Cone(f2) and F2 : Cone(f2) → Cone(f1)
and homotopies Φi : Cone(fi) → Cone(fi); see Figure 2.3 for a schematic diagram.

M M M M

N1 N2 N1 N2

H1 H2

f1 f2 f1 f2

Id Id Id

P P
′

P

H
1 ◦
f
1

Figure 2.3. A diagram for the maps discussed in the proof of Lemma 2.2.
The vertical pieces form the mapping cones. The maps F1, F2, Φ1, and Φ2 are
shown in red, blue, green, and orange, respectively.

We define the morphisms F1 : Cone(f1) → Cone(f2) and F2 : Cone(f2) → Cone(f1) by

F1(m,n1) = (IdM(m),P(n1)),

F2(m,n2) = (IdM(m),H1 ◦ f1(m) + P
′(n2)).

We first claim that F1 and F2 are type DD homomorphisms. Indeed,

∂F1(m,n1) = δ1f2 ◦ F1(m,n1) + F1 ◦ δ
1
f1(m,n1) + dF1(m,n1)

= (δ1M(m), f2(m) + δ1N2
◦ P(n1)) + (δ1M(m),P ◦ f1(m) + P ◦ δ1N1

(n1))

+ (d IdM(m), dP(n1))

= (0, 0),

where the last equality follows from P ◦ f1 = f2, the fact that P is a homomorphism, and
dAIA = dBIB = 0. Similarly,

∂F2(m,n2) = δ1f1 ◦ F2(m,n2) + F2 ◦ δ
1
f2
(m,n2) + dF2(m,n2)

= (δ1M(m), f1(m) + δ1N1
◦H1 ◦ f1(m) + δ1N1

◦ P′(n2))

+ (δ1M(m),H1 ◦ f1 ◦ δ
1
M(m) + P

′ ◦ f2(m) + P
′ ◦ δ1N2

(n2))

+ (d IdM(m), d(H1 ◦ f1)(m) + dP′(n2))

= (0, f1(m) + δ1N1
◦H1 ◦ f1(m) +H1 ◦ f1 ◦ δ

1
M(m) + P

′ ◦ f2(m)

+ dH1 ◦ f1(m) +H1 ◦ df1(m)).

= (0,P′ ◦ f2(m) + f1(m) + δ1N1
◦H1 ◦ f1(m) + dH1 ◦ f1(m) +H1 ◦ δ

1
N1

◦ f1(m))

= (0,P′ ◦ f2(m) + P
′ ◦ P ◦ f1(m))

= (0, 0),

where the last four equalities follow, respectively, from the fact P′ is a homomorphism, that
f1 is a homomorphism, that H1 is a homotopy between IdN1

and P′ ◦P, and that P◦f1 = f2.
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We next claim that F2 ◦ F1 ≃ IdCone(f1) and F1 ◦ F2 ≃ IdCone(f2). To show this, we define
the homotopy morphisms Φi : Cone(fi) → Cone(fi) for i = 1, 2, as follows:

Φ1(m,n1) = (0,H1(n1)),

Φ2(m,n2) = (0,H2(n2)).

Then

∂Φ1(m,n1) + F2 ◦ F1(m,n1)

= δ1f1 ◦ Φ1(m,n1) + Φ1 ◦ δ
1
f1
(m,n1) + dΦ1(m,n1) + F2 ◦ F1(m,n1)

= (0, δ1N1
◦H1(n1)) + (0,H1 ◦ f1(m) +H1 ◦ δ

1
N1
(n1)) + (0, dH1(n1))

+ (IdM(m),H1 ◦ f1(m) + P
′ ◦ P(n1))

= (IdM(m), IdN1
(n1))

= IdCone(f1)(m,n1),

where the third equality follows from the fact that P
′ ◦ P is homotopic to IdN1

via H1.
Similarly,

∂Φ2(m,n2) + F1 ◦ F2(m,n2)

= δ1f2 ◦ Φ2(m,n2) + Φ2 ◦ δ
1
f2
(m,n2) + dΦ2(m,n2) + F1 ◦ F2(m,n2)

= (0, δ1N2
◦H2(n1)) + (0,H2 ◦ f2(m) +H2 ◦ δ

1
N2
(n2)) + (0, dH2(n2))

+ (IdM(m),P1 ◦H1 ◦ f1(m) + P ◦ P′(n2))

= (IdM(m), IdN2
(n2) +H2 ◦ f2(m) + P1 ◦H1 ◦ f1(m)),

where the last equality follows from the fact that P ◦ P′ is homotopic to IdN2
via H2. An

argument similar to the last part of the proof of Lemma 2.1 finishes the proof. �

2.2. Tangle Floer homology. Tangle Floer homology is an invariant of tangles, which
takes the form of a (bi)module such as the ones discussed in Section 2.1; see [37]. In this
section, we review the combinatorial construction of tangle Floer homology for tangles in
I × R2, with special focus on those tangles that are relevant to our proof.

An (m,n)-tangle (or simply a tangle) T is a properly, smoothly embedded, oriented 1-
manifold in I × R2, with boundary ∂T = ∂LT ⊔ ∂RT , where ∂LT = {0} × {1, . . . , m} × {0}
and ∂RT = {1}×{1, . . . , n}×{0}, treated as oriented sequences of points. A planar diagram
of a tangle is a projection to the I×R subset of the (x, y)-plane, with no triple intersections,
self-tangencies, or cusps, and with over- and under-crossing data preserved (as viewed from
the positive z direction). The boundaries of T can be thought of as sign sequences

−∂LT ∈ {+,−}m, ∂RT ∈ {+,−}n,

according to the orientation of each point (+ if the tangle is oriented left-to-right, − if the
tangle is oriented right-to-left at that point). Given two tangles T and T ′ with ∂RT = −∂LT ′,
we can concatenate them to obtain a new tangle T ◦ T ′, by placing T ′ to the right of T and
scaling in the x direction by 1/2. We also consider unoriented tangles, and think of their
boundaries as sequences of (unoriented) points.

In [37], to a sign sequence one associates a DGA, and to a tangle a left-right bimodule
over the DGAs for the respective boundaries. First, we recall the definition of the algebra.
For more details, see [37, Section 3].
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Let P = (p1, . . . , pn) ∈ {+,−}n be a sign sequence and let [n] = {0, 1, . . . , n}. One
associates to P a differential graded algebra A−(P ) over F2[U1, . . . , Ut], where the variables
U1, . . . , Ut correspond to the positively oriented points in P . The algebra is generated over
F2[U1, . . . , Ut] by partial bijections [n] → [n] (i.e. bijections s → t for s, t ⊂ [n]), which can
be drawn as strand diagrams (up to isotopy and Reidemeister III moves), as follows.

Represent each pi by a horizontal orange strand [0, 1] × {i − 1
2
} oriented left-to-right if

pi = + and right-to-left if pi = − (in [37], those are dashed green strands and double orange
strands, respectively). Represent a bijection ϕ : s → t by black strands connecting (0, i) to
(1, ϕi) for i ∈ s. We further require that there are no triple intersection points and there are
a minimal number of intersection points between strands.

Let a : s1 → t1, b : s2 → t2 be generators. If t1 6= s2, define the product ab to be 0. If
t1 = s2, consider the concatenation of a diagram for a to the left and a diagram for b to the
right. If there is a black strand that crosses a left-oriented orange strand or another black
strand twice, define ab = 0. Otherwise define ab = (

∏
i U

ni

i )b ◦ a where ni is the number of
black strands that double cross the ith right-oriented orange strand. See Figure 2.4.

For a generator a, define its differential da as the sum of all ways of smoothing one black-
black crossing in a diagram for a locally, subject to the following rules. Any resulting diagram
with a black-black double crossing, or a double crossing between a black strand and a left-
oriented orange strand, is discarded. If a resulting diagram has a double crossing between
the ith right-oriented orange strand and a black strand, it represents Uib, where the diagram
for b is obtained from this diagram by performing a Reidemeister II move to remove the
aforementioned double crossing. (This process may have to be iterated a number of times
before we obtain a diagram without double crossings.) See Figure 2.4.

d
U1

Figure 2.4. The algebra A−(P ) for P = (−,+,+,−). Left: an example of
the multiplication. Right: an example of the differential.

The subalgebra of idempotents I−(P ) is generated by the identity bijections es : s → s.
The algebra has a differential gradingM called theMaslov grading, and an internal grading

A called the Alexander grading. They are defined on generators by counting crossings, as
follows:

2A(a) = �տ(a) +�ւ(a)−�ց(a)−�ր(a),

M(a) = ��(a)−�ց(a)−�ր(a).

Further,

A(Uia) = A(a)− 1,

M(Uia) = M(a)− 2.

Setting all Ui to zero, we get a bigraded quotient algebra Â(P ) = A−(P )/(Ui = 0) over
F2.

Further collapsing the bigrading on Â(P ) to a single grading δ =M −A, we obtain the δ-

graded algebra Âδ(P ). Observe that the orientation of the orange strands is not seen by this
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algebra, since all types of double crossings are set to zero, and the δ-grading on generators
is given by

δ(a) = ��(a)−
�ց(a) +�ր(a) +�տ(a) +�ւ(a)

2

= ��(a)−
��(a) +��(a)

2
,

i.e. it counts the number of black-black crossings minus one half the number of black-orange

crossings. So if n = |P |, we use the shorter notation Aδ
n for Âδ(P ). See Figure 2.5. As

we just pointed out, this algebra already does not detect the orientation on the sequence of
points. However, when studying unoriented tangles, we will work with the ungraded version

of this algebra, Âu(P ), also denoted Au
n.

d

Figure 2.5. The algebra Aδ
4. Left: an example of the multiplication. Right:

an example of the differential.

Given a tangle T , we can define various bigraded bimodules over (A−(±∂LT ),A−(±∂RT )),
where again the homological and internal gradings are denotedM and A, respectively. These
descend to δ-graded bimodules over (Aδ

|∂LT |,A
δ
|∂RT |), for δ = A−M , as well as to ungraded

bimodules over (Au
|∂LT |,A

u
|∂RT |). The latter are also invariants of the underlying unoriented

tangles. In [37], an explicit description was given only of a type DA bimodule associated to
a multipointed bordered Heegaard diagram. However, one could similarly define a type AA,
AD , or DD bimodule. Here we explicitly define the type DD bimodule in the special cases
of interest; see [37, Section 4] for more details.

Let T be an (n, n)-tangle consisting of straight strands, or of one crossing, or of a cap
followed by a cup at the same height, possibly with straight strands on either side. Then
T can be represented by a genus-one multipointed Heegaard diagram H = (Σ,α,β,X,O)
such as the diagrams in Figure 2.6; see [37] for a complete definition. If we cut H through
the middle along a vertical plane, all relevant data is contained in the two resulting bordered
grids. We may occasionally refer to the two grids as the left grid and the right grid, based
on where they stand relative to each other when the diagram is drawn as in Figure 2.6.
Here, Σ is a genus-one surface with two boundary components, β is a set of n + 1 circles
in Σ, α is a set of 2n + 2 arcs, and X and O are sets of n points labeled X1, . . . , Xn and
O1, . . . , On, respectively (we often omit the indices, both in figures and in writing). One
can see the tangle by connecting X to O markings in the complement of the β curves and
pushing the interior of the resulting arcs below the Heegaard surface, and connecting X and
O markings to the boundary of the diagram in the complement of the α curves so that the
X ’s are endpoints and the O’s are starting points. The tangle is oriented so that the arcs in
the complement of the β curves flow into the O’s, and the arcs in the complement of the α
curves flow away from the O’s. See the first diagram in Figure 2.6.
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Figure 2.6. Examples of (n, n)-tangles that can be represented by genus-one
Heegaard diagrams, and their respective Heegaard diagrams.

Similarly, one can represent unoriented tangles by multipointed Heegaard diagrams with
onlyX markings (to get from a diagram for an oriented tangle to a diagram for the underlying
unoriented tangle, simply replace all O’s with X ’s). See Figure 3.1 for example.

As seen in Figure 2.6, label the curves on H as follows. Label the α arcs touching the left
boundary by αL

0 , . . . , α
L
n , and those touching the right boundary by αR

0 , . . . , α
R
n , indexed by

their relative height, starting from the bottom. Label the β circles by β0, . . . , βn, indexed
from the outermost to the innermost.

One defines a left-right type DD structure CDTD−(H) over (A−(−∂LT ),A−(−∂RT )) as
follows. As a module, CDTD−(H) is freely generated over F2[U1, . . . , U2n] (where each Ui

either corresponds to an Oi ∈ O or is a variable in the ground ring for A−(−∂LT ) or
A−(−∂RT )) by the set S(H) consisting of tuples of intersection points x in α ∩ β such
that there is exactly one point on each β and at most one point on each α. For x ∈ S(H),

let oL(x) =
{
i
∣∣αL

i is occupied by x
}
, oR(x) =

{
i
∣∣αR

i is occupied by x
}
, oL(x) = [n] \

oL(x), and oR(x) = [n] \ oR(x). Define an (I−(−∂LT ), I−(−∂RT ))-bimodule structure on
CDTD−(H) by

esxet =

{
x if s = oL(x) and t = oR(x),

0 otherwise.

Denote e
oL(x)

and e
oR(x)

by eLD(x) and e
R
D(x), respectively.

We next describe a structure map

δ1 : CDTD−(H) → A−(−∂LT )⊗I−(−∂LT ) CDTD−(H)⊗I−(−∂RT ) A
−(−∂RT )

by counting the following types of embedded 2-chains in H:

(1) A rectangle r with boundary on α ∪ β. Given generators x and y, r connects x to
y if the two corners where ∂r jumps from an arc in β to an arc in α are points in
x, the other two corners are points in y, and x and y coincide elsewhere. Define
aL(x, r) = eLD(x) and a

R(x, r) = eRD(x).
(2) A rectangle r such that along its oriented boundary we see ∂LΣ, followed by αL

i ,
followed by βm, followed by αL

j . We say that r connects x to y if αL
j ∩ βm = x \ y

and αL
i ∩ βm = y \x. Define aL(x, r) as the bijection from oL(x) to oL(y) that sends

i to j and is the identity elsewhere, and define aR(x, r) = eRD(x).
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(3) A rectangle r such that along its oriented boundary we see ∂RΣ, followed by αR
i ,

followed by βm, followed by αR
j . We say that r connects x to y if αR

j ∩ βm = x \ y

and αR
i ∩βm = y \x. Define aR(x, r) as the bijection from oR(y) to oR(x) that sends

j to i and is the identity elsewhere, and define aL(x, r) = eLD(x).
(4) A rectangle r with boundary two entire arcs αL

i and αL
j and two arcs in ∂LΣ. We say

that r connects x to y if x = y and i, j /∈ oL(x). Define aL(x, r) as the bijection with

domain oL(x) that exchanges i and j and is the identity elsewhere, and aR(x, r) =
eRD(x).

(5) Defined analogously to 4, but interchanging the superscripts L and R throughout.

For types 1–5, define U r as the product of all Us with corresponding Os in the interior of r.

(6) For i < j and m < n, the union r of two rectangles of the second type, such that one
has boundary on αL

i , βm, α
L
j , ∂

LΣ, and the other has boundary on αL
j , βn, α

L
i , ∂

LΣ.

We say that r connects x to y if {αL
j ∩βm, α

L
i ∩βn} = x\y and {αL

i ∩βm, α
L
j , βn} = y\x.

(7) For i < j andm < n, the union r of two rectangles of the third type, such that one has
boundary on αR

j , βm, α
R
i , ∂

LΣ, and the other has boundary on αR
i , βn, α

R
j , ∂

RΣ. We

say that r connects x to y if {αR
i ∩βm, α

R
j ∩βn} = x\y and {αR

j ∩βm, α
R
i , βn} = y\x.

For types 6 and 7, define aL(x, r) = eLD(x) and aR(x, r) = eRD(x). Also define U r as the
product of all Us with corresponding Os in the interior of r, and all Ut corresponding to
positively oriented points above the ith and below the jth point in −∂LT (if type 6) or in
−∂RT (if type 7).

A 2-chain of one of the first five types is empty if Int r∩x = ∅ and Int r∩X = ∅. A 2-chain
of the sixth or seventh type is empty if, in addition to the requirement that Int r ∩ x = ∅
and Int r ∩ X = ∅, the interior of its complement in the strip bounded by αL

i and αL
j , or α

R
i

and αR
j respectively, contains j − i− 1 points in X and j − i− 1 points in x. From now on,

we abuse notation and call each of the seven types of 2-chains “rectangles”, even though the
latter two are, strictly speaking, unions of such. Define

δ1(x) =
∑

y∈S(H)

∑

r empty
r connects x to y

aL(x, r)⊗ U ry ⊗ aR(x, r).

Figure 2.7. Left: Rectangles of types 2 (green) and 3 (grey). Center: Rect-
angles of types 4 (green) and 5 (grey). Right: Rectangles of types 6 (green)
and 7 (grey). All generators are omitted. Note the shading at the back of the
center and right diagrams.

The above types of 2-chains are the projections onto Σ of certain embedded curves in
Σ×I×R that would appear in a holomorphic interpretation of (minus) tangle Floer homology.
In this perspective, the algebra elements aL(x, r) and aR(x, r) correspond to Reeb chords that
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arise as the intersection of the 2-chains with the left and right boundaries of H respectively.
Note that, as in bordered Floer homology [25], the Reeb chords on the left boundary get
the reverse orientation while those on the right boundary inherit the usual orientation; the
definitions of aL(x, r) and aR(x, r) for types 2–7 above take into account the resulting subtle
asymmetry. For further details, we refer the reader to [37].

Next, we restate the definition of the bigrading on generators from [37, Section 3.4] in
terms of the Heegaard diagrams described above. Gradings will not be used until Section 4,
so the reader only interested in the ungraded version of the skein relation should feel free to
skip to the end of the proof of Lemma 2.4.

Let H = (Σ,α,β,X,O) be a Heegaard diagram as above. Let XR and XL be the subsets
of X that lie in the right or left grid, respectively. Define OR and OL similarly, and for
x ∈ S(H) define xR and xL similarly. We say that αR

j ∩ βi has coordinates (i, j). For a

point p ∈ XR ∪OR, we say that p has coordinates (i+ 1
2
, j + 1

2
) if it lies between βi and βi+1

and between αR
j and αR

j+1. Given two finite sets S, T ⊂ R2, let inv(S, T ) be the number of
pairs (s1, s2) ∈ S and (t1, t2) ∈ T with s1 < t1 and s2 > t2, or s1 > t1 and s2 < t2. For a set
S ⊂ R2, define inv(S) = 1

2
inv(S, S). Thinking of points in the right grid in terms of their

coordinates, define

M(xR) = inv(xR)− inv(xR,OR) + inv(OR),

2A(xR) = inv(xR,XR)− inv(xR,OR) + inv(OR)− inv(XR)− |XR|.

Define coordinates for points in the left grid analogously, and define

M(xL) = − inv(xL) + inv(xL,OL)− inv(OL)− |OL|,

2A(xL) = − inv(xL,XL) + inv(xL,OL)− inv(OL) + inv(XL)− |OL|.

The Maslov grading of x is given by M(x) = M(xR) +M(xL), and the Alexander grading
of x is given by A(x) = A(xR) + A(xL). By further defining

A(Uix) = A(x)− 1,

M(Uix) = M(x)− 2.

we get a bigrading compatible with the structure map on CDTD−(H).

Lemma 2.3. For the left-right type DD structure CDTD−(H) defined above, δ1 lowers the
Maslov grading by one, and preserves the Alexander grading.

Proof. Suppose x and y are connected by an empty rectangle r of the third type above
(such that along its oriented boundary we see ∂RΣ, followed by αR

i , followed by βm, followed
by αR

j ), let a be the corresponding algebra element aR(x, r) ∈ A−(−∂RT ), and let U r be

the corresponding power of Us variables. The rectangle r contributes to the map δ1(x) =
eLD(y)⊗ U ry ⊗ a. We compute the bigradings of a, x, and y below.

Assume i < j; the proof when j > i is analogous. Let t be the number of α-arcs between
αR
i and αR

j unoccupied by y, and let s be the number of O’s between αR
i and αR

j (so the

number of X ’s between αR
i and αR

j is j − i− s). Then s and j − i− s are the number of the

coordinates i+ 1 through j in −∂RT that are positive and negative, respectively, so

��(a) = t,

�ց(a) +�ր(a) = j − i− s,

�տ(a) +�ւ(a) = s,
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and we have

M(a) = t− j + i+ s,

A(a) =
i− j

2
+ s.

Next, we compare the inversions used in the definition of the bigrading for x and for y.
For example, inv(yR) − inv(xR) is given by counting the points in x ∩ y that are in the
interior of the strip bounded by αR

i and αR
j with negative sign if they are in r (there are no

such points, as r is empty) and with positive sign if they are not in r. So

inv(yR)− inv(xR) = j − i− t− 1.

Similarly, letting p be the number of O’s in r, we obtain

inv(yR,OR)− inv(xR,OR) = (s− p)− p = s− 2p,

inv(yR,XR)− inv(xR,XR) = j − i− s.

All other counts in the definition of the bigrading are the same for x and for y, therefore

M(x)−M(U ry) = M(x)−M(y) + 2p = −j + i+ t + 1 + s =M(a) + 1,

A(x)− A(U ry) = A(x)−A(y) + p =
i− j + 2s− 2p

2
+ p = A(a).

This completes the proof of the lemma. �

As an immediate consequence, it follows that δ1 lowers the δ-grading by one.
Similarly, one could define a type AA structure CATA−(H) over (A−(∂LT ),A−(∂RT )),

or a type AD structure CATD−(H) over (A−(∂LT ),A−(−∂RT )), with the same underlying
bigraded module as for CDTD−(H) and CDTA−(H).

Lemma 2.4. For the left-right type AA structure CATA−(H), the multiplication maps are
compatible with the Maslov grading, and they preserve the Alexander grading.

For the left-right type AD structure CATD−(H), the structure map δ10 lowers the Maslov
grading by one and preserves the Alexander grading, and the structure map δ11 preserves the
bigrading.

Proof. The proof is analogous to that of Lemma 2.3. �

One can also define CDTD−(H), as well as CDTA−(H), CATA−(H), and CATD−(H), for
a more general combinatorial bordered Heegaard diagram H for a tangle, see [37, Section 4].

Setting all Ui variables to zero yields an (M,A)-bigraded type DD structure C̃DTD(H)

over (Â(−∂LT ), Â(−∂RT )). This corresponds to only counting rectangles which do not con-
tain any O’s and are of the first three types above. Further collapsing the bigrading to a single

grading δ = A−M yields a δ-graded type DD structure C̃DTDδ(H) over (Aδ
|∂LT |,A

δ
|∂RT |).

Proposition 2.5. The structure C̃DTDδ(H) is a type DD structure. Moreover, the structure
map lowers the δ-grading of homogeneous generators by one.

Proof. By Lemma 2.3, C̃DTD(H) is a type DD structure for which δ1 lowers the Maslov
grading by one, and preserves the Alexander grading. The claim now follows directly from

the definition of C̃DTDδ(H). �



SKEIN RELATIONS FOR TANGLE FLOER HOMOLOGY 21

Similarly, one can represent an unoriented tangle T by a Heegaard diagram H that only
has X markings and no O markings. Given a Heegaard diagram H for an oriented or an

unoriented tangle, define an ungraded type DD structure C̃DTDu(H) over (Au
|∂LT |,A

u
|∂RT |)

by counting rectangles in the same way as in the definition of C̃DTD(H).

Proposition 2.6. The structure C̃DTDu(H) is a type DD structure.

Proof. For any Heegaard diagram H for an oriented or an unoriented tangle T , there is some
choice of replacing some X ’s with O’s to obtain a Heegaard diagramH′ for an oriented tangle

T ′ that is the same as T as an unoriented manifold. By [37], C̃DTD(H′) is a type DD struc-

ture. But C̃DTDu(H) and C̃DTD(H′) are clearly (ungraded) isomorphic, so C̃DTDu(H′) is
a type DD structure too. �

Proposition 2.7. Let H1 = (Σ1,α1,β1,X1,O1) and H2 = (Σ2,α2,β2,X2,O2) be Heegaard
diagrams for the same oriented tangle, with |X1 ∪O1| − |X2 ∪O2| = 2k ≥ 0. Then

C̃DTDδ(H1) ≃ C̃DTDδ(H2)⊗F2
V ⊗k

where V = F2 ⊕ F2 is supported in δ-grading 0.
Similarly, let H1 = (Σ1,α1,β1,X1,O1) and H2 = (Σ2,α2,β2,X2,O2) be Heegaard dia-

grams for tangles T1 and T2, where the tangles may be oriented or unoriented. Suppose that
T1 and T2 are the same as unoriented tangles and |X1 ∪O1| − |X2 ∪O2| = 2k ≥ 0. Then

C̃DTDu(H1) ≃ C̃DTDu(H2)⊗F2
(F2 ⊕ F2)

⊗k.

Proof. The first case follows directly from the fact that by [37], C̃DTD(H1) ≃ C̃DTD(H2)⊗
(F(0,0) ⊕ F(−1,−1))

⊗k, where F(i,j) is the vector space F2 in (M,A)-grading (i, j).
For the second case, replace some X ’s with O’s, or O’s with X ’s, if necessary, to obtain

diagrams H′
i for tangles T

′
i from Hi, so that T ′

1 and T
′
2 are the same as oriented tangles. Then

C̃DTD(H′
1) ≃ C̃DTD(H′

2)⊗(F(0,0)⊕F(−1,−1))
⊗k, so C̃DTDu(H′

1) ≃ C̃DTDu(H′
2)⊗V

⊗k, since

C̃DTD(H′
i) and C̃DTDu(H′

i) are ungraded isomorphic. Since C̃DTDδ(Hi) ∼= C̃DTDδ(H′
i),

the statement follows. �

Proposition 2.7 implies that if H1 and H2 are two diagrams for T with the same number

of markers n, then C̃DTDδ(H1) ≃ C̃DTDδ(H2) and C̃DTDu(H1) ≃ C̃DTDu(H2). In view of

this, here and afterwards we use C̃DTDδ(T, n) and C̃DTDu(T, n) to denote the homotopy
types of the structures arising from a diagram with n markers associated to a tangle T .

We end this section by stating a version of the gluing theorem for tangle Floer homology:

Proposition 2.8. If T = T ′ ◦ T ′′, then

C̃DTDδ(T, n′ + n′′) ≃ C̃DTAδ(T ′, n′)⊠ C̃DTDδ(T ′′, n′′),

C̃DTDu(T, n′ + n′′) ≃ C̃DTAu(T ′, n′)⊠ C̃DTDu(T ′′, n′′).

An analogous equivalence holds for any other pair of bimodules for which the box tensor
product is defined (e.g. a type AA and a type DA bimodule).

Proof. This is essentially [37, Corollary 12.5]. �
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Description
Type DD
Bimodule

Associated
Algebras

Gradings
Endowed

Unblocked1, bigraded tangle Floer
bimodule of an oriented tangle T

CDTD−(T )
A−(−∂LT )
A−(−∂RT )

M,A

Fully blocked, bigraded tangle Floer
bimodule of an oriented tangle T

C̃DTD(T, n)
Â(−∂LT )

Â(−∂RT )
M,A

Fully blocked, δ-graded tangle Floer
bimodule of an oriented tangle T

C̃DTDδ(T, n)
Âδ(−∂LT ) = Aδ

|∂LT |

Âδ(−∂RT ) = Aδ
|∂RT |

δ

Fully blocked, ungraded tangle Floer
bimodule of an unoriented tangle T

C̃DTDu(T, n)
Âu(∂LT ) = Au

|∂LT |

Âu(∂RT ) = Au
|∂RT |

None

Table 2.1. A summary of the notation relevant to the four flavors of tangle
Floer homology discussed in this section.

Table 2.1 summarizes the notation from this section.

3. The unoriented skein relation

Our strategy for proving Theorem 2 is to prove it first for the simplest case, where the
skein triple has one crossing, and then to apply a gluing theorem.

More precisely, fix integers n and i with n ≥ 2 and 1 ≤ i ≤ n. Let T el

∞ be the (unoriented)
elementary (n, n)-tangle that consists of one crossing where the strand with the higher slope
crosses over the strand with the lower slope, and there are i− 1 horizontal strands running
below the crossing and n − i − 1 horizontal strands running above the crossing; let T el

0 be
the resolution of T el

∞ that results in only horizontal strands, and let T el

1 be the resolution of
T el

∞ that results in a cup and a cap, as in Figure 3.1. Up until the very end of this section,
we will be working with the type DD structures associated to these three tangles.

We draw three Heegaard diagramsH∞,H0,H1 associated to T el

∞, T
el

0 , T
el

1 respectively, with
all marked points being X ’s (since these are unoriented tangles); see Figure 3.1. In Section 4,
when we endow these tangles with orientations, we will be working with the same kind of
diagrams, but with both O’s and X ’s. We label the α and β curves for each diagram as in
Section 2.2. The number of α arcs is 2n + 2 and the number of β circles is n + 1 in each
diagram. Next, we combine all three diagrams into one diagram to obtain Figure 3.2. Note
that H∞,H0,H1 share the same α arcs (2n + 2 in total) and marked points (i.e. the X ’s),
and also all β circles but one. We label by βi,∞ (dark blue), βi,0 (green), βi,1 (purple) the
three different circles corresponding to H∞,H0,H1 respectively.

1The unblocked version of tangle Floer homology is not yet proven to be an invariant, as remarked in [37,
Section 1].
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Figure 3.1. Top: From left to right, the three elementary tangles T el

∞, T el

0 ,
and T el

1 . Bottom: The corresponding Heegaard diagrams H∞, H0, and H1.

cFR0

cFRn

cFL0

cFLn

cBL

0

cBL

n

..
.

..
.

..
.

Figure 3.2. The diagram obtained by “combining” H∞, H0, and H1 so that
they share the same α arcs, marked points, and all β circles but one. Choosing
the dark blue, green, or purple circle, and forgetting the other two, gives H∞,
H0, or H1, respectively.

For ease of visualization, we cut open the Heegaard diagram along the indicated grey circle
in Figure 3.2, and also delete the non-combinatorial regions (“the forbidden regions” with
the light green arcs) to obtain Figure 3.3. What we call the “right grids” in Section 2.2
combine to give the right half of the diagram as drawn in Figure 3.2, or equivalently the top
half of the diagram as drawn in Figure 3.3. The “left grids” combine to give the left half of
Figure 3.2, or equivalently the bottom half of Figure 3.3.

We denote the underlying surface for the combined diagram by Σ, and let the common
α and β curves inherit their labels from H∞, H0, and H1. Recall, for example, that the
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cFR0

cFRi

cFRn

cFL0

cFLi

cFLn

cBR

0

cBR

i

cBR

n

cBL

0

cBL

i

cBL

n

︸
︷︷

︸

∂FLΣ

︸
︷︷

︸

∂FRΣ
︷

︸︸
︷

∂BLΣ

︷
︸︸

︷
∂BRΣ

v0

u1

u∞

u0

v1

v∞

βn . . . βi,∞βi,1 βi,0 . . . β0

Figure 3.3. The combined diagram for the three elementary tangles, ob-
tained by cutting open the diagram in Figure 3.2 along the indicated grey
circle and deleting the non-combinatorial regions.

αL
j ’s are the α arcs that intersect the left boundary in Figure 3.2, and the αR

j ’s the right

boundary. Note also the positions of αL
i , α

R
i and βi,k; in particular, βi,∞, βi,0, βi,1 are between

βi−1 and βi+1. We write αL =
{
αL
j

}n

j=0
,αR =

{
αR
j

}n

j=0
, and α = αL ∪ αR. Likewise, for

k ∈ {∞, 0, 1}, we write βk = {β0, . . . , βi−1, βi,k, βi+1, . . . , βn}, and β = β∞ ∪ β0 ∪ β1.
We introduce a couple of more labels that we will use later. The front half and back half

of ∂RΣ, as seen on Figure 3.2, are denoted ∂FRΣ and ∂BRΣ respectively, and translate to
the top right edge and top left edge of the diagram in Figure 3.3, respectively. Similarly, we
denote the front and back sides of ∂LΣ by ∂FLΣ and ∂BLΣ, respectively. We let

cFLi = αL
i ∩ ∂FLΣ, cFRi = αR

i ∩ ∂FRΣ,

cBL

i = αL
i ∩ ∂BLΣ, cBR

i = αR
i ∩ ∂BRΣ.

Last let uk and vk be the two intersection points in βi,k ∩ βi,k+1, so that uk is to the left of
vk as seen in Figure 3.3; in other words, uk lies on the boundary of the unique annulus in
Σ \ β with no X ’s in it.
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We let C̃DTDu(Hk) be the type DD structure associated to Hk, for each k ∈ {∞, 0, 1};

these are type DD structures over (Âu(∂LT el

k ), Âu(∂RT el

k )) = (Au
n,A

u
n). We also endow the

set {∞, 0, 1} with an action by Z/3Z by identifying ∞ with 2, so that ∞ + 1 = 0 and
1 + 1 = ∞.

In this setting, Theorem 2 will follow from the following proposition:

Proposition 3.1. There exists a type DD homomorphism f0 : C̃DTDu(H0) → C̃DTDu(H1)
such that

C̃DTDu(H∞) ≃ Cone(f0 : C̃DTDu(H0) → C̃DTDu(H1))

as type DD structures.

From now on, we will write Mk = C̃DTDu(Hk). To prove Proposition 3.1, we will use
Lemma 2.1. We shall define the morphisms to which we will apply Lemma 2.1, fk : Mk →
Mk+1, ϕk : Mk → Mk+2, ψk : Mk → Mk, by counting polygons.

Definition 3.2. Given x ∈ S(Hk) and y ∈ S(Hℓ) (where k, ℓ ∈ {∞, 0, 1}), a polygon p
from x to y is an embedded disk in the surface Σ, which we also call p by abuse of notation,
satisfying the following conditions:

(1) The boundary of p lies on the α curves, β curves and the boundary of Σ: ∂p ⊂
α ∪ β ∪ ∂Σ;

(2) The interior angles of p are all acute;
(3) If we write ∂βp = ∂p ∩ β, then

∂(∂βp) = x− y,

where the orientation of p, and hence that of ∂p, is inherited from Σ;
(4) Traversing each connected component of ∂βp in the inherited orientation, βi,k is

always followed by βi,k−1. In other words, if uk is a vertex of p, then the “east-west”
multiplicity of p is greater than its “north-south” multiplicity; similarly, if vk is a
vertex of p, then the “north-south” multiplicity of p is greater than its “east-west”
multiplicity.

A polygon p from x and y is empty if the interior of the embedded disk does not intersect
any components of x (or equivalently y), and also does not intersect X.

It may be helpful to note here that in the proofs that follow in this section, uk and vk
cannot arise as the shared corner of two polygons.

In Heegaard Floer homology, there is a more general notion of a domain, which is a more
general 2-chain together with the initial and terminal generators. In this paper, the domains
that we investigate are always juxtapositions of multiple polygons: Given a polygon p from
x to y, and a polygon p′ from y to z, we can form the juxtaposition p ∗ p′, which is a domain
from x to z. The underlying 2-chain of p ∗ p′ is the sum of the underlying 2-chains of p and
p′.

To clarify (following [36]), when we speak of a domain, we always think of it as the
underlying 2-chain together with the initial and terminal generators x and y. So if (x,y) 6=
(x′,y′), a domain from x to y is viewed as different from a domain from x′ to y′, even if
the underlying 2-chains are the same. The underlying 2-chain is called the support of the
domain.

Fix a domain p. Like ∂βp, we can similarly define ∂αp = ∂p ∩ α, ∂Lp = ∂p ∩ ∂LΣ, and
∂Rp = ∂p ∩ ∂RΣ. Then ∂αp, ∂βp, ∂Lp, ∂Rp inherit an orientation from ∂p so that ∂p =
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∂αp + ∂βp + ∂Lp + ∂Rp. We say that p is a left-bordered domain if ∂Lp 6= ∅, right-bordered
domain if ∂Rp 6= ∅, two-bordered domain if it is both left-bordered and right-bordered, and
interior domain if ∂Lp = ∂Rp = ∅. (In [25, 26, 37], interior domains are called provincial
domains instead.)

As a warm-up example, we express the rectangles in the definition of δ1k (for C̃DTDu(Hk))
as defined in Section 2 in the present language. For CDTD− as in Section 2, the structure

map counts rectangles of seven types; however, since we are only dealing with C̃DTDu,
only rectangles of the first three types are counted. In fact, in our present context, for
x,y ∈ S(Hk), a rectangle from x to y is just a polygon from x to y whose boundary
consists of four oriented segments. The structure map δ1k then counts empty rectangles.
Specifically, for x,y ∈ S(Hk), denote the space of empty interior rectangles from x to y by

Rect◦,Intk (x,y), the space of empty left-bordered rectangles from x to y by Rect◦,Lk (x,y), and

the space of empty right-bordered rectangles from x to y by Rect◦,Rk (x,y). Denote the union
of these three spaces, the space of empty rectangles from x to y, by Rect◦k(x,y). Now

(1) if r ∈ Rect◦,Intk (x,y), define aL(r) = eLD(x) and a
R(r) = eRD(x);

(2) if r ∈ Rect◦,Lk (x,y), then the oriented arc ∂Lr is either an arc on ∂FLΣ or an arc on
∂BLΣ. In the former case, it goes from cFLj1 to cFLj2 , for some j1 > j2; in the latter

case, the arc goes from cBL

j1 to cBL

j2 , for some j1 < j2. In either case, define aL(r) to

be the bijection from oL(x) to oL(y) that sends j2 to j1 and is the identity elsewhere.
Define aR(r) = eRD(x);

(3) if r ∈ Rect◦,Rk (x,y), then the oriented arc ∂Rr is either an arc on ∂FRΣ or an arc on
∂BRΣ. In the former case, it goes from cFRj1 to cFRj2 , for some j1 < j2; in the latter

case, the arc goes from cBR

j1 to cBR

j2 , for some j1 > j2. In either case, define aR(r) to

be the bijection from oR(y) to oR(x) that sends j1 to j2 and is the identity elsewhere.
Define aL(r) = eLD(x).

Then we can write δ1k : Mk → Au
n ⊗Mk ⊗Au

n as

δ1k(x) =
∑

y∈S(Hk)

∑

r∈Rect◦
k
(x,y)

aL(r)⊗ y ⊗ aR(r).

We now turn to defining the polygons to be counted in our maps fk, ϕk and ψk.

Definition 3.3. Let x ∈ S(Hk).

(1) For y ∈ S(Hk+1), a triangle from x to y is a polygon from x to y whose boundary
consists of three oriented segments. Note that triangles are always interior domains.

(2) For y ∈ S(Hk+1), a pentagon from x to y is a polygon from x to y whose boundary
consists of five oriented segments. Note that a pentagon can be a left-bordered,
right-bordered, or interior domain.

(3) For y ∈ S(Hk+2), a quadrilateral from x to y is a polygon from x to y whose
boundary consists of four oriented segments. Note that quadrilaterals are always
interior domains, and always empty.

(4) For y ∈ S(Hk+2), a hexagon from x to y is a polygon from x to y whose boundary
consists of six oriented segments. Note that a hexagon can only be a right-bordered
or interior domain.
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(5) For y ∈ S(Hk), a heptagon from x to y is a polygon from x to y whose boundary
consists of seven oriented segments. Note that a heptagon can only be an interior
domain.

We denote the respective spaces of each type of polygons by Trik(x,y), Pentk(x,y), Quadk(x,y),
Hexk(x,y), and Heptk(x,y). We also write, for example, Pent◦k(x,y) for the space of empty

pentagons from x to y, and Pent◦,Lk (x,y) and Hex◦,Rk (x,y) for the obvious spaces of left-
bordered and right-bordered domains. Triangles and quadrilaterals are called triangle-like
polygons; rectangles, pentagons, hexagons and heptagons are called rectangle-like polygons.

We emphasize here that x and y must be generators of the appropriate diagrams for these
spaces to make sense; for example, to mention Hex◦,Intk (x,y), x must be in S(Hk) and y

must be in S(Hk+2).
Like rectangles, other polygons have algebra elements associated to them.

Definition 3.4. Let p be a polygon from x to y, where x and y are generators in their
respective type DD bimodules; then aL(p) and aR(p) are defined as follows.

(1) If p is interior, then define aL(p) = eLD(x) and a
R(p) = eRD(x). (Recall that eLD(x) =

eLD(y) and e
R
D(x) = eRD(y).)

(2) If p is left-bordered, then the oriented arc ∂Lp is either an arc on ∂FLΣ or an arc on
∂BLΣ. In the former case, it goes from cFLj1 to cFLj2 , for some j1 > j2; in the latter

case, the arc goes from cBL

j1
to cBL

j2
, for some j1 < j2. In either case, define aL(p) to

be the bijection from oL(x) to oL(y) that sends j2 to j1 and is the identity elsewhere.
Define aR(p) = eRD(x).

(3) If p is right-bordered, then the oriented arc ∂Rp is either an arc on ∂FRΣ or an arc
on ∂BRΣ. In the former case, it goes from cFRj1 to cFRj2 , for some j1 < j2; in the latter

case, the arc goes from cBR

j1
to cBR

j2
, for some j1 > j2. In either case, define aR(p) to

be the bijection from oR(y) to oR(x) that sends j1 to j2 and is the identity elsewhere.
Define aL(p) = eLD(x).

With these definitions, we can now define the following polygon counts, which are mor-
phisms of type DD bimodules:

(1) The triangle count Tk : Mk → Mk+1 is defined by

Tk(x) =
∑

y∈S(Hk+1)

∑

p∈Tri◦
k
(x,y)

aL(p)⊗ y ⊗ aR(p).

(2) The pentagon count Pk : Mk → Mk+1 is defined by

Pk(x) =
∑

y∈S(Hk+1)

∑

p∈Pent◦
k
(x,y)

aL(p)⊗ y⊗ aR(p).

(3) The quadrilateral count Qk : Mk → Mk+2 is defined by

Qk(x) =
∑

y∈S(Hk+2)

∑

p∈Quad◦
k
(x,y)

aL(p)⊗ y ⊗ aR(p).

(4) The hexagon count Hk : Mk → Mk+2 is defined by

Hk(x) =
∑

y∈S(Hk+2)

∑

p∈Hex◦
k
(x,y)

aL(p)⊗ y ⊗ aR(p).
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(5) The heptagon count Kk : Mk → Mk is defined by

Kk(x) =
∑

y∈S(Hk)

∑

p∈Hept◦
k
(x,y)

aL(p)⊗ y ⊗ aR(p).

We can finally define the morphisms fk, ϕk and ψk:

(1) The morphism fk : Mk → Mk+1 is defined by

fk = Tk + Pk.

(2) The morphism ϕk : Mk → Mk+2 is defined by

ϕk = Qk +Hk.

(3) The morphism ψk : Mk → Mk is defined by

ψk = Kk.

Lemma 3.5. The morphisms fk are type DD homomorphisms, i.e. they satisfy Condition (1)
of Lemma 2.1. In fact, Tk and Pk are both type DD homomorphisms.

Proof. The proof is similar to that of Lemma 3.3 of [41], which is in turn inspired by
Lemma 3.1 of [30]. In fact, we shall see that

δ1k+1

Tk

µAu
n

µAu
n

+

δ1k

Tk

µAu
n

µAu
n

= 0.(3.6)

δ1k+1

Pk

µAu
n

µAu
n

+

δ1k

Pk

µAu
n

µAu
n

+
Pk

dAu
n

+
Pk

dAu
n

= 0.(3.7)

We first prove Equation 3.6. Fix a domain that can be written as a juxtaposition p ∗ r
(resp. r∗p), where p is a triangle and r is a rectangle. Recall that triangles are always interior
polygons; this means that aL(p) = eLD(x) and aR(p) = eRD(x), and so the algebra elements
that a juxtaposition p ∗ r (resp. r ∗ p) outputs are always aL(r) and aR(r). At least one of
these is an idempotent element, since the rectangle r cannot be two-bordered. Focusing on
p ∗ r (resp. r ∗ p), there are three cases; the polygons may be disjoint, their interiors may
overlap, or they may share a common corner.

If the polygons are disjoint or if their interiors overlap, the domain can be alternatively
decomposed as r′ ∗ p′ (resp. p′ ∗ r′), where r and r′ have the same support, and so do p and
p′. Thus, the domain contributes twice to the sum in the first equation above. Since the
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base rings are of characteristic 2, the total contribution is 0. The output algebra elements
are obviously the same for both juxtapositions, since the underlying rectangles are the same
in the two canceling juxtapositions. All possibilities of p ∗ r and r ∗ p, where p and r have
overlapping interiors, are listed in Figure 3.4. In this and following figures, all possibilities
of composite domains are to be understood up to rotation by π. The reader may verify that
these lists are complete by examining Figure 3.3 and using basic planar geometry.

Figure 3.4. All possibilities of p ∗ r and r ∗ p, where p and r are a triangle
and a rectangle that have overlapping interiors, along with the alternate de-
composition. In each figure, the black dots represent a generator x, the brown
squares a generator y, the teal triangles a generator t, and the white dots a
generator z; the domain can be decomposed as p ∗ r, where p ∈ Tri◦(x,y) and
p ∈ Rect◦,Int(y, z), or as r′ ∗ p′, where r′ ∈ Rect◦,Int(x, t) and p′ ∈ Tri◦(t, z).

If, instead, the polygons p and r share a common corner, p ∗ r (resp. r ∗ p) always has
exactly one alternative decomposition as r′ ∗ p′ (resp. p′ ∗ r′), where p and p′ are triangles
with distinct supports, and r and r′ are rectangles with distinct supports. See Figure 3.5.
Again, this domain does not contribute to the sum. It is also apparent from the same figure
that the intersections of the domain in question with both ∂LΣ and ∂RΣ (which may or
may not be empty) are the same in both decompositions, and so again the output algebra
elements are the same. All possibilities where p and r share a common corner are listed in
Figure 3.6.

Figure 3.5. The two figures on the left show the two decompositions of the
same interior domain; the first figure decomposes the domain into r ∗ p, where
r ∈ Rect◦,Int(x,y) and p ∈ Tri◦(y, z), while the second figure decomposes the
domain into p′ ∗ r′, where r′ ∈ Tri◦(x, t) and p′ ∈ Rect◦,Int(t, z). The two
figures on the right show a similar decomposition for a bordered domain.

We now turn to proving Equation 3.7. Fix a domain that can be written as a juxtaposition
p ∗ r (resp. r ∗ p), where p is a pentagon and r is a rectangle. There are four cases this time:
The two polygons may be disjoint, their interiors may overlap, they may share exactly one
common corner, or they may share exactly one edge and two corners. The first three cases
are similar to the cases with triangles. Note, however, that there is an additional possibility
in the case where p and r share exactly one common corner: the alternative decomposition
is not necessarily r′ ∗ p′ (resp. p′ ∗ r′), but is sometimes p′ ∗ r′ (resp. r′ ∗ p′); see the fourth
figure from the left in the top row of Figure 3.8. All possibilities for the second case and the
third case are listed in Figures 3.7 and 3.8 respectively.
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Figure 3.6. All possibilities of p∗r or r∗p, where p and r are a triangle and a
rectangle that share a common corner, along with the alternate decomposition.
In each example, the teal cut gives one decomposition of the domain, and the
brown cut gives the canceling decomposition.

Figure 3.7. All possibilities of p ∗ r and r ∗ p, where p and r are a penta-
gon and a rectangle that have overlapping interiors, along with the alternate
decomposition.

Figure 3.8. All possibilities of p ∗ r and r ∗ p, where p and r are a pentagon
and a rectangle that share exactly one common corner, along with the alternate
decomposition.

The last case, where the two polygons share exactly one edge and two corners, can only
occur if both p and r are right-bordered (or left-bordered). Let us illustrate this case more
closely by the following example.
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r

p
p′ dAu

n−−→· =

aR(r) aR(p) aR(r) · aR(p) aR(p′) dAu
n
aR(p′)

αR
j1

αR
j2

αR
j3

αR
j1

αR
j2

αR
j3

Figure 3.9. Left: The domain p ∗ r. The two algebra elements aR(r) and
aR(p) in Au

n multiply to a non-zero algebra element. Right: The same domain,
considered as a single pentagon p′. The differential of the algebra element
aR(p′) is the same algebra element as aR(r) · aR(p). The generator x is repre-
sented by a black dot, y by a teal triangle, and z by a white dot.

Consider the left of Figure 3.9. Here, the generators are x ∈ S(Hk) and y, z ∈ S(Hk+1),
and the relevant components of x,y, z lie on αR

j1
, αR

j2
, αR

j3
respectively. There is a pentagon p

from x to y, and a rectangle r from y to z. This gives us a term in ∂Pk(x) that is illustrated
in Figure 3.10a. At first glance, the domain p ∗ r seems to contribute no other terms in
∂Pk(x); however, upon closer inspection, we notice that the domain p′ = p ∗ r is itself a
pentagon! This means that eLD(x) ⊗ z ⊗ aR(p′) is a term in Pk(x). Furthermore, note that
since there is a pentagon p from x to y, αR

j2
must be unoccupied by x, and so we must have

j2 ∈ oR(x). For simplicity, let us assume that there are no other j with j1 < j < j3 such that

j ∈ oR(x). Then the algebra element aR(p′) is exactly as shown in the right hand side of
Figure 3.9, and we can take its differential to obtain dAu

n
aR(p′). This gives us another term

in ∂Pk(x), as in Figure 3.10b. Note that dAu
n
aR(p′) = aR(r) · aR(p), and so we see that the

two terms above cancel out in this simple case.

x

Pk

y

δ1k+1

z

eLD(x) aR(p)

eLD(x) aR(r)

µAu
n

µAu
n

eLD(x) aR(r) · aR(p)

.

(a) The term in ∂Pk(x) arising from p ∗ r.

x

Pk

z

aR(p′)

dAu
n

eLD(x) dAu
n
aR(p′)

.

(b) The term in ∂Pk(x) arising from p′.

Figure 3.10. Two terms in ∂Pk(x) that cancel each other.
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In general, there may be other j’s with j1 < j < j3 such that j ∈ oR(x). If there are
m such j’s, then dAu

n
aR(p′) is a sum of m terms, one for each j. See Figure 3.11 for an

illustration. This means that Figure 3.10b now represents m terms in ∂Pk(x). Each of
these terms corresponds to a decomposition of the domain p′ into some p ∗ r or r ∗ p, as in
Figure 3.9, and consequently cancels with a term as in Figure 3.10a. The situation when p′

is left-bordered is completely analogous.

p′

dAu
n−−→ + +

Figure 3.11. Left: A pentagon p′ from the black dot x to the white dot z.
The algebra element aR(p′) is displayed below. Right: Decompositions of p′

into p ∗ r or r ∗ p, with the corresponding algebra elements aR(p) · aR(r) or
aR(r) · aR(p). Note that dAu

n
aR(p′) is equal to the sum of these elements.

We have thus proven Equations 3.6 and 3.7. Since Equation 3.7 immediately shows that
∂Pk = 0, we see that Pk is a type DD homomorphism. The left-hand side of 3.6 differs from
∂Tk by two terms involving dAu

n
. However, since all triangles p are interior, aL(p) and aR(p)

are both idempotents, and so dAu
n
aL(p) and dAu

n
aR(p) are necessarily zero. Therefore, we see

that ∂Pk = 0, and Tk is also a type DD homomorphism. �

In the proofs of the following lemmas, in which we prove that our maps satisfy the remain-
ing conditions of Lemma 2.1, we will again be considering domains of the form p ∗ p′, where
p and p′ are different polygons, showing that such juxtapositions cancel each other. Often,
as in the previous proof, p and p′ may be disjoint, or they may have overlapping interiors.
In these cases, the domain can also be decomposed as p′ ∗ p, and so does not contribute a
term to the morphisms.

The case where p and p′ share an edge and two corners also arises frequently. In this case,
p and p′ are both bordered polygons. We can always handle such domains as in the proof of
the previous lemma, canceling terms as in Figures 3.10 and 3.11.

Therefore, from now on, we shall omit all domains described in the previous two para-
graphs, and only focus on the case where p and p′ share exactly one common corner.

Most of the time, as before, a domain that can be written as a juxtaposition p∗p′ can always
be written as exactly one alternative juxtaposition p′′ ∗ p′′′, and the two terms cancel out.
However, a new situation arises in the proofs of the following lemmas that was not present in
the proof of Lemma 3.5. There are now some special cases, in which a juxtaposition resulting
in one domain may cancel a juxtaposition resulting in a different domain! We shall discuss
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all special cases and provide figures in each lemma. We shall also provide a table in each
lemma that shows all cancelations, including the special cases. For the expert reader, the
existence of such special cases is not uncommon in multipointed Heegaard Floer theory.

In each upcoming proof, we will enumerate all relevant juxtapositions of polygons. To
facilitate the enumeration, we now set up some notation to help us categorize polygons.

Figure 3.12. Left: The annuli s and d are lightly shaded. The s-height (resp.
d-height) of a domain p is the sum of the multiplicities of the dark pentagonal
regions on the left (resp. right) in the support of p. Center: An sd-domain of
s-height 2 and d-height 1. It admits two decompositions as p∗p′ ∈ P∞◦P1 with

path R1
(0,1)
−−→ C∞

(2,0)
−−→ L0 (as reflected in the shading), and as r ∗ p′′ ∈ H1 ◦ δ11

with path R1
(0,1)
−−→ L1

(2,0)
−−→ L0. Right: The light domain is a rectangle of

type o, and the dark one is a rectangle of type sd. Both rectangles have path

C0
NM
−−→ C0, and their s- and d-heights are both 0.

We define s (resp. d) to be the unique annulus in Σ\β whose boundary contains the points
uk (resp. vk). See the left of Figure 3.12. Observe that s \ (s ∩ α) has 2n + 2 connected
components, three of which are pentagonal regions. Given a domain p, we define the s-height
of p to be the sum of the multiplicities of each of these pentagonal regions in the support of
p. Likewise, d \ (d ∩ α) has three connected components that are pentagonal regions, and
we define the d-height of a domain p to be the sum of the multiplicities of each of these
pentagons in the support of p.

For a fixed k ∈ {∞, 0, 1}, the module Mk splits as a direct sum of modules Mk = Lk ⊕
Ck⊕Rk, where Lk is spanned by those generators in S(Hk) whose βi,k-component lies on the
boundary of the annulus s, Rk is spanned by the generators whose βi,k-component lies on
the boundary of the annulus d, and Ck is spanned by the remaining generators. Visually, the
points in α∩ (βi,∞∪βi,0∪βi,1) lie on three distinct vertical lines, as seen in Figure 3.13; then
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Figure 3.13. Suppose we have a generator x ∈ S(Hk). If x has a component
on one of the black dots, then x ∈ Lk. The brown squares correspond to Ck,
and the teal triangles to Rk. Note that x has exactly one component on
βi,∞ ∪ βi,0 ∪ βi,1, so these three cases are mutually exclusive.

the modules Lk, Ck, and Rk are spanned by the generators that intersect the left, central,
and right line, respectively.

Furthermore, we say that a domain p is of

(1) type o if p ∩ (s ∪ d) = ∅;
(2) type s if p ∩ s 6= ∅ and p ∩ d = ∅;
(3) type d if p ∩ s = ∅ and p ∩ d 6= ∅; and
(4) type sd if p ∩ s 6= ∅ and p ∩ d 6= ∅.

We will also use the words s-domains, d-domains, etc. to describe domains as appropriate.
If p is a polygon from x ∈ Mk to y ∈ Mk+∗, we define its path to be the following

information:

(1) whether x belongs to Lk, Ck, or Rk;
(2) whether y belongs to Lk+∗, Ck+∗, or Rk+∗; and
(3) the s- and d-heights of p.

For example, in the central figure of Figure 3.12, the light pentagon p from x ∈ R1 (the black
dots) to y ∈ C∞ (the brown squares) has s-height 0 and d-height 1. We use the notation

R1
(0,1)
−−→ C∞ to denote the path of p. Likewise, the dark pentagon p′ from y ∈ C∞ to z ∈ L0

(the white dots) has s-height 2 and d-height 0, so its path is C∞
(2,0)
−−→ L0.

We can extend this to composite domains p ∗ p′, where p and p′ are both polygons. In the

example above, the path of the composite domain p ∗ p′ from x to z is R1
(0,1)
−−→ C∞

(2,0)
−−→ L0.

The s-height of the domain is 2, and the d-height is 1. Note that s- and d-heights are
additive under composition of domains.

It is also useful to note whether the support of a polygon p has any corners on βi,∞∪βi,0∪βi,1
or not. The latter case is possible only if p is a rectangle. See the right figure of Figure 3.12
for two examples. The support of the light rectangle r from x ∈ C0 to y ∈ C0 does not
have any corners on βi,∞ ∪ βi,0 ∪ βi,1. Note that this implies that the components of x and
y on βi,∞ ∪ βi,0 ∪ βi,1 are exactly the same, i.e. the component of x on βi,∞ ∪ βi,0 ∪ βi,1 is
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not moved by p. In this case, instead of writing C0
(0,0)
−−→ C0 for the path of r, we will write

C0
NM
−−→ C0 (where NM stands for “not moving”). No information is lost by doing so, since

the s- and d-heights of such rectangles are always 0.
Figure 3.12 also highlights the following fact. It may seem at first glance that the type of a

domain p is a redundant piece of information because it seems to be available from the s- and
d-heights of p; however, this is not true. In the right figure, the light rectangle is of type o,
while the dark rectangle is of type sd, even though both rectangles have s and d–heights 0,
because they both have the label NM. In fact, rectangles with the label NM are the only
polygons that can have different types, and they are always o-domains or sd-domains. This
little piece of information eases our enumerations greatly.

We can now give a complete list of all possible paths and types for the defined polygons,
simply by inspecting Figure 3.3. For convenience, we suppress all subscripts.

• Rectangles:

– type s: L
(0,0)
−−→ L, C

(1,0)
−−→ L, C

(0,0)
−−→ C, R

(0,0)
−−→ R.

– type d: L
(0,0)
−−→ L, C

(0,2)
−−→ L, C

(0,0)
−−→ C, C

(0,1)
−−→ R, R

(0,1)
−−→ L, R

(0,0)
−−→ R.

– labelled NM: L
NM
−−→ L (type o), L

NM
−−→ L (type sd), C

NM
−−→ C (type o),

C
NM
−−→ C (type sd), R

NM
−−→ R (type o), R

NM
−−→ R (type sd).

• Triangles:

– type o: C
(0,0)
−−→ R, R

(0,0)
−−→ L.

• Pentagons:

– type s: L
(1,0)
−−→ L, C

(2,0)
−−→ L.

– type d: C
(0,2)
−−→ C, C

(0,3)
−−→ R, R

(0,1)
−−→ C, R

(0,2)
−−→ R, R

(0,3)
−−→ L.

• Quadrilaterals:

– type o: R
(0,0)
−−→ C.

• Hexagons:

– type s: L
(2,0)
−−→ L, C

(3,0)
−−→ L.

– type d: R
(0,3)
−−→ C.

• Heptagons:

– type s: L
(3,0)
−−→ L.

Using this list, we will obtain a complete list of all possible paths and types for the relevant
juxtapositions p ∗ p′ in each lemma. In general, given the path and type of a given domain
p ∗ p′, we can almost always recover the general shape of the support of p ∗ p′ on Figure 3.3,
which will help us determine the canceling juxtaposition. The only ambiguity arises when
p ∗ p′ is of type s or type d (and not type sd), and p and p′ are both rectangle-like polygons;
we eliminate this ambiguity in the following paragraph.

Fix a domain p ∗ p′ of type s or type d from x to z, where p and p′ are rectangle-like
polygons that share exactly one common corner. Suppose that the support of p∗p′ is not an
annulus. This implies that the support of p ∗ p′ has exactly one distinguished corner whose
internal angle is reflex (i.e. larger than π). We say that p ∗ p′ has shape A if x does not
contain the distinguished corner as one of its components, and shape B otherwise. In the
former case, z must contain the distinguished corner as a component. If instead the support
of p ∗ p′ is an annulus, we say that p ∗ p′ has shape C. Since there is a marker on the annulus
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Figure 3.14. Left: A domain of shape A. The black dots represent the rel-
evant components of the initial generator x. Center: A domain of shape B.
Right: A domain of shape C. Note that, in each case, the domain is either of
type s or of type d, and is a juxtaposition of two rectangle-like polygons.

d, this is possible only if p ∗ p′ is of type s, with s-height 3; also, neither p nor p′ can have
label NM. See Figure 3.14 for examples of each of the three shapes.

We remark here the notion of shapes is unnecessary for sd-domains p ∗ p′.

Lemma 3.8. The composition fk+1 ◦ fk is homotopic to zero via homotopy ϕk. In other
words, the morphisms fk and ϕk satisfy Condition (2) of Lemma 2.1.

Proof. The strategy of the proof is to enumerate all possible paths, types, and shapes for a
domain appearing in fk+1 ◦ fk + δ1k+2 ◦ϕk +ϕk ◦ δ1k, and find a cancelation for each case. We
do so in Table 3.1, displayed at the end of this proof. The domains p ∗ p′ in Table 3.1 are
ordered by

(1) the polygons that p and p′ belong to (Column 2);
(2) the path of p, following the order in the list of paths on p. 35 (Column 3);
(3) the path of p′ (Column 3); and
(4) the shape of p ∗ p′ (Column 5), if applicable.

As mentioned before, there are special cases, in which a juxtaposition resulting in one
domain cancels a juxtaposition resulting in a different domain. Table 3.1 includes all special
cases. The special cases are further illustrated in Figures 3.15, 3.16, 3.17, 3.18, and 3.19, and
discussed in more detail below, along with references to the corresponding rows of Table 3.1.

Let us look at Figure 3.15, for example. If x ∈ S(H1) occupies αt ∩ βi,1, for αt ∈
{αL

0 , . . . , α
L
i } ∪ {αR

0 , . . . , α
R
i−1}, then T∞ ◦ T1(x) cancels out with a term in H1 ◦ δ11(x), P∞ ◦

P1(x), or δ
1
0 ◦H1(x), depending on the position of the βi+1-component xi+1 of x, as seen on
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Figure 3.15. A special case of a term in T ◦T canceling out a term in H◦ δ1,
P ◦ P, or δ1 ◦H.

Figure 3.3. If xi+1 is below αt or above αR
i , the canceling term is in H1 ◦ δ11(x); if xi+1 is

on αR
i , the canceling term is in P∞ ◦ P1(x); if xi+1 is below αR

i and above αt, the canceling
term is in δ10 ◦H1(x). Analogous special cases occur when x ∈ S(H0) occupies α

R
i ∩βi,0, and

when x ∈ S(H∞) occupies αt∩βi,∞ for αt ∈ {αL
i+1, . . . , α

L
n}∪{αR

i+1, . . . , α
R
n }. See Table 3.1,

Rows 14, 40, 60, and 63.
The remaining special cases go as follows.
Figure 3.16 illustrates a term in P∞ ◦ T1 canceling out a term in T∞ ◦ P1. Depending on

the starting generator, some terms may output non-trivial algebra elements, corresponding
to a domain juxtaposition that is bordered. In an analogous special case, a term in P1 ◦ T0

cancels out a term in T1 ◦ P0. See Table 3.1, Rows 3 and 6.
Figure 3.17 illustrates another term in P∞ ◦T1 canceling out a term in T∞ ◦P1, with paths

different from those of the terms in Figure 3.16. See Table 3.1, Rows 4 and 7.
Figure 3.18 illustrates a term in T0 ◦ P∞ canceling out a term in δ11 ◦ Q∞. Depending on

the starting generator, some terms may output non-trivial algebra elements, corresponding
to a domain juxtaposition that is bordered. See Table 3.1, Rows 8 and 31.

Figure 3.19 illustrates another term in T0 ◦P∞ canceling out a term in δ11 ◦Q∞, with paths
different from those of the terms in Figure 3.18. Depending on the starting generator, some
terms may output non-trivial algebra elements, corresponding to a domain juxtaposition
that is bordered.

Table 3.1 summarizes the cancelations of domains in this lemma. The reader is reminded
that it only shows composite domains p ∗ p′ such that p and p′ share exactly one common
corner.
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Figure 3.16. A special case of a term in P ◦ T canceling out a term in T ◦ P.

Figure 3.17. Another special case of a term in P ◦T canceling out a term in
T ◦ P.
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Figure 3.18. A special case of a term in T ◦ P canceling out a term in δ1 ◦ Q.

Figure 3.19. Another special case of a term in δ1 ◦ Q canceling out a term
in T ◦ P.
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No. Term in Path Type Shape Cancels with Notes

1 T ◦ T C
(0,0)
−−→ R

(0,0)
−−→ L o 14, 40, 60, or 63 (i), (ii), (v)

2

P ◦ T

C
(0,0)
−−→ R

(0,1)
−−→ C d 54

3 C
(0,0)
−−→ R

(0,2)
−−→ R d 6 (i), (vi)

4 C
(0,0)
−−→ R

(0,3)
−−→ L d 7 (i), (vii)

5 R
(0,0)
−−→ L

(1,0)
−−→ L s 27

6

T ◦ P

C
(0,2)
−−→ C

(0,0)
−−→ R d 3 (i), (vi)

7 C
(0,3)
−−→ R

(0,0)
−−→ L d 4 (i), (vii)

8 R
(0,1)
−−→ C

(0,0)
−−→ R d 31 (i), (viii)

9 R
(0,2)
−−→ R

(0,0)
−−→ L d 29 (i), (ix)

10

P ◦ P

L
(1,0)
−−→ L

(1,0)
−−→ L s

A 35
11 B 73
12

C
(2,0)
−−→ L

(1,0)
−−→ L s

A 42
13 B 76
14 C 1 (i), (v)

15 C
(0,2)
−−→ C

(2,0)
−−→ L sd 66

16 C
(0,2)
−−→ C

(0,2)
−−→ C d None (iii)

17 C
(0,2)
−−→ C

(0,3)
−−→ R d None (iii)

18 R
(0,1)
−−→ C

(2,0)
−−→ L sd 69

19
R

(0,1)
−−→ C

(0,2)
−−→ C d

A 50
20 B 79

21 R
(0,1)
−−→ C

(0,3)
−−→ R d None (iii)

22
R

(0,2)
−−→ R

(0,1)
−−→ C d

A 50
23 B 79

24 R
(0,2)
−−→ R

(0,2)
−−→ R d None (iii)

25 R
(0,2)
−−→ R

(0,3)
−−→ L d None (iii)

26 R
(0,3)
−−→ L

(1,0)
−−→ L sd 45

27

δ1 ◦ Q

R
(0,0)
−−→ C

(1,0)
−−→ L s 5

28 R
(0,0)
−−→ C

(0,0)
−−→ C s 53

29 R
(0,0)
−−→ C

(0,2)
−−→ L d 9 (i), (ix)

30 R
(0,0)
−−→ C

(0,0)
−−→ C d 55

31 R
(0,0)
−−→ C

(0,1)
−−→ R d 8 (i), (viii)

32

δ1 ◦H
L

(2,0)
−−→ L

(0,0)
−−→ L s

A 35
33 B 73

34 L
(2,0)
−−→ L

(0,0)
−−→ L sd 74

(i) Special case. (ii)Depends on the position of certain components of x.
(iii)Does not exist because the d-height is larger than 3. (iv)Does not exist because any
such domain necessarily contains markers. (v) Figure 3.15. (vi) Figure 3.16.
(vii) Figure 3.17. (viii) Figure 3.18. (ix) Figure 3.19.
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No. Term in Path Type Shape Cancels with Notes

35

δ1 ◦H

L
(2,0)
−−→ L

NM
−−→ L s

A 10, 32, 56, or 72 (ii)
36 B 73

37 L
(2,0)
−−→ L

NM
−−→ L sd 65

38

C
(3,0)
−−→ L

(0,0)
−−→ L s

A 42
39 B 76
40 C 1 (i), (v)

41 C
(3,0)
−−→ L

(0,0)
−−→ L sd 77

42
C

(3,0)
−−→ L

NM
−−→ L s

A 12, 38, 58, 61, or 75 (ii)
43 B 76

44 C
(3,0)
−−→ L

NM
−−→ L sd 67

45 R
(0,3)
−−→ C

(1,0)
−−→ L sd 26

46 R
(0,3)
−−→ C

(0,0)
−−→ C sd None (iv)

47 R
(0,3)
−−→ C

(0,2)
−−→ L d None (iii)

48 R
(0,3)
−−→ C

(0,0)
−−→ C d None (iv)

49 R
(0,3)
−−→ C

(0,1)
−−→ R d None (iii)

50
R

(0,3)
−−→ C

NM
−−→ C d

A 19, 22, 70, or 78 (ii)
51 B 79

52 R
(0,3)
−−→ C

NM
−−→ C sd 64

53

Q ◦ δ1
R

(0,0)
−−→ R

(0,0)
−−→ C s 28

54 C
(0,1)
−−→ R

(0,0)
−−→ C d 2

55 R
(0,0)
−−→ R

(0,0)
−−→ C d 30

56

H ◦ δ1

L
(0,0)
−−→ L

(2,0)
−−→ L s

A 35
57 B 73
58

C
(1,0)
−−→ L

(2,0)
−−→ L s

A 42
59 B 76
60 C 1 (i), (v)
61

C
(0,0)
−−→ C

(3,0)
−−→ L s

A 42
62 B 76
63 C 1 (i), (v)

64 R
(0,0)
−−→ R

(0,3)
−−→ C sd 52

65 L
(0,0)
−−→ L

(2,0)
−−→ L sd 37

66 C
(0,2)
−−→ L

(2,0)
−−→ L sd 15

67 C
(0,0)
−−→ C

(3,0)
−−→ L sd 44

68 C
(0,1)
−−→ R

(0,3)
−−→ C d None (iii)

69 R
(0,1)
−−→ L

(2,0)
−−→ L sd 18

70 R
(0,0)
−−→ R

(0,3)
−−→ C d A 50

(i) Special case. (ii)Depends on the position of certain components of x.
(iii)Does not exist because the d-height is larger than 3. (iv)Does not exist because any
such domain necessarily contains markers. (v) Figure 3.15. (vi) Figure 3.16.
(vii) Figure 3.17. (viii) Figure 3.18. (ix) Figure 3.19.
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No. Term in Path Type Shape Cancels with Notes

71

H ◦ δ1

R
(0,0)
−−→ R

(0,3)
−−→ C d B 79

72
L

NM
−−→ L

(2,0)
−−→ L s

A 35
73 B 11, 33, 36, or 57 (ii)

74 L
NM
−−→ L

(2,0)
−−→ L sd 34

75
C

NM
−−→ C

(3,0)
−−→ L s

A 42
76 B 13, 39, 43, 59, or 62 (ii)

77 C
NM
−−→ C

(3,0)
−−→ L sd 41

78
R

NM
−−→ R

(0,3)
−−→ C d

A 50
79 B 20, 23, 51, or 71 (ii)

80 R
NM
−−→ R

(0,3)
−−→ C sd None (iv)

(i) Special case. (ii)Depends on the position of certain components of x.
(iii)Does not exist because the d-height is larger than 3. (iv)Does not exist because any
such domain necessarily contains markers. (v) Figure 3.15. (vi) Figure 3.16.
(vii) Figure 3.17. (viii) Figure 3.18. (ix) Figure 3.19.

Table 3.1. The cancelations of the terms in Lemma 3.8. The special cases
are shown in Figures 3.15–3.19. For convenience, we suppress all subscripts.

This concludes the proof of the lemma. �

Lemma 3.9. The morphism fk+2◦ϕk+ϕk+1◦fk is homotopic to the identity Idk via homotopy
ψk. In other words, the morphisms fk, ϕk and ψk satisfy Condition (3) of Lemma 2.1.

Proof. The strategy is as before. Table 3.2, displayed at the end of this proof, shows all
cancelations relevant to this lemma, including the special cases. The special cases are further
illustrated in Figures 3.20, 3.21, 3.22, and 3.23, and discussed in more detail below, along
with references to the corresponding rows of Table 3.2.

Figure 3.20 illustrates a term in Q0 ◦ P∞ canceling out a term in P1 ◦ Q∞. Depending on
the starting generator, some terms may output non-trivial algebra elements, corresponding
to a domain juxtaposition that is bordered. In an analogous special case, a term in Q∞ ◦P1

cancels a term in P0 ◦ Q1 (here only interior domains are possible). See Table 3.2, Rows 3
and 17.

Figure 3.21 illustrates a term in T1 ◦H∞ canceling out a term in P1 ◦ Q∞. See Table 3.2,
Rows 4 and 5.

Figure 3.22 illustrates a term in H∞ ◦ T1 canceling out a term in Q∞ ◦ P1. See Table 3.2,
Rows 14 and 16.

Figure 3.23 illustrates the terms that Id0 cancels with. If x ∈ C0, then Id0 cancels with
Q1 ◦ T0; if x ∈ R0, then Id0 cancels with T∞ ◦ Q0; if x ∈ L0, then Id0 cancels with δ10 ◦K0,
K0 ◦ δ10 , P∞ ◦H0, or H1 ◦ P0, depending on the position of the βi+1-component of x. There
is an analogous special case for Id1 and Id∞. See Table 3.2, Rows 1, 8, 13, 20, 29, 36, 44, 45,
and 46.
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Figure 3.20. A special case of a term in Q ◦ P canceling out a term in P ◦ Q.

Figure 3.21. A special case of a term in T ◦H canceling out a term in P ◦ Q.
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Figure 3.22. A special case of a term in H ◦ T canceling out a term in Q ◦ P.

Figure 3.23. A special case of a term in Id canceling out a term in δ1 ◦K,
δ1 ◦K, P ◦H, H ◦ P, T ◦ Q, or Q ◦ T.
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No. Term in Path Type Shape Cancels with Notes

1 T ◦ Q R
(0,0)
−−→ C

(0,0)
−−→ R o 46 (i), (viii)

2

P ◦ Q

R
(0,0)
−−→ C

(2,0)
−−→ L s 15

3 R
(0,0)
−−→ C

(0,2)
−−→ C d 17 (i), (v)

4 R
(0,0)
−−→ C

(0,3)
−−→ R d 5 (i), (vi)

5 T ◦H R
(0,3)
−−→ C

(0,0)
−−→ R d 4 (i), (vi)

6

P ◦H

L
(2,0)
−−→ L

(1,0)
−−→ L s

A 31
7 B 42
8 C 44 (i), (viii)

9 C
(3,0)
−−→ L

(1,0)
−−→ L s None (iii)

10 R
(0,3)
−−→ C

(2,0)
−−→ L sd 26

11 R
(0,3)
−−→ C

(0,2)
−−→ C d None (iv)

12 R
(0,3)
−−→ C

(0,3)
−−→ R d None (iv)

13 Q ◦ T C
(0,0)
−−→ R

(0,0)
−−→ C o 45 (i), (viii)

14
H ◦ T

C
(0,0)
−−→ R

(0,3)
−−→ C d 16 (i), (vii)

15 R
(0,0)
−−→ L

(2,0)
−−→ L s 2

16
Q ◦ P

C
(0,3)
−−→ R

(0,0)
−−→ C d 14 (i) (vii)

17 R
(0,2)
−−→ R

(0,0)
−−→ C d 3 (i), (v)

18

H ◦ P

L
(1,0)
−−→ L

(2,0)
−−→ L s

A 31
19 B 42
20 C 44 (i), (viii)

21 C
(2,0)
−−→ L

(2,0)
−−→ L s None (iii)

22 C
(0,2)
−−→ C

(3,0)
−−→ L sd 39

23 C
(0,3)
−−→ R

(0,3)
−−→ C d None (iv)

24 R
(0,1)
−−→ C

(3,0)
−−→ L sd 40

25 R
(0,2)
−−→ R

(0,3)
−−→ C d None (iv)

26 R
(0,3)
−−→ L

(2,0)
−−→ L sd 10

27

δ1 ◦K

L
(3,0)
−−→ L

(0,0)
−−→ L s

A 31
28 B 42
29 C 44 (i), (viii)

30 L
(3,0)
−−→ L

(0,0)
−−→ L sd 43

31
L

(3,0)
−−→ L

NM
−−→ L s

A 6, 18, 27, 34, or 41 (ii)
32 B 42

33 L
(3,0)
−−→ L

NM
−−→ L sd 38

34 K ◦ δ1 L
(0,0)
−−→ L

(3,0)
−−→ L s A 31

(i) Special case. (ii)Depends on the position of certain components of x.
(iii)Does not exist because the s-height is larger than 3.
(iv)Does not exist because the d-height is larger than 3. (v) Figure 3.20. (vi) Figure 3.21.
(vii) Figure 3.22. (viii) Figure 3.23.



46 INA PETKOVA AND C.-M. MICHAEL WONG

No. Term in Path Type Shape Cancels with Notes

35

K ◦ δ1

L
(0,0)
−−→ L

(3,0)
−−→ L s

B 42
36 C 44 (i), (viii)

37 C
(1,0)
−−→ L

(3,0)
−−→ L s None (iii)

38 L
(0,0)
−−→ L

(3,0)
−−→ L sd 33

39 C
(0,2)
−−→ L

(3,0)
−−→ L sd 22

40 R
(0,1)
−−→ L

(3,0)
−−→ L sd 24

41
L

NM
−−→ L

(3,0)
−−→ L s

A 31
42 B 7, 19, 28, 32, or 35 (ii)

43 L
NM
−−→ L

(3,0)
−−→ L sd 30

44

Id

L
Id
−→ L 8, 20, 29, or 36 (i), (ii), (viii)

45 C
Id
−→ C 13 (i), (viii)

46 R
Id
−→ R 1 (i), (viii)

(i) Special case. (ii)Depends on the position of certain components of x.
(iii)Does not exist because the s-height is larger than 3.
(iv)Does not exist because the d-height is larger than 3. (v) Figure 3.20. (vi) Figure 3.21.
(vii) Figure 3.22. (viii) Figure 3.23.

Table 3.2. The cancelations of the terms in Lemma 3.9. The special cases
are shown in Figures 3.20–3.23. For convenience, we suppress all subscripts.

This concludes the proof of the lemma. �

Proof of Proposition 3.1. This is now a straightforward application of Lemma 2.1. The con-
ditions in Lemma 2.1 are satisfied according to Lemmas 3.5, 3.8 and 3.9. �

Proof of Theorem 2. We wish to prove that there exists a type DD homomorphism

F0 : C̃DTDu(T0, n) → C̃DTDu(T1, n)

such that
C̃DTDu(T∞, n) ≃ Cone(F0).

Write T∞, T0, T1 as

T∞ = T ′ ◦ T el

∞ ◦ T ′′, T0 = T ′ ◦ T el

0 ◦ T ′′, T1 = T ′ ◦ T el

1 ◦ T ′′,

where T el

∞, T
el

0 , T
el

1 are the elementary tangles in Proposition 3.1, and T ′ and T ′′ are two other
tangles. Then, for each k ∈ {∞, 0, 1}, we have

C̃DTDu(Tk, n) ≃ C̃DTAu(T ′, n1)⊠ C̃DTDu(T el

k , n2)⊠ C̃ATDu(T ′′, n3)

as type DD structures, where n = n1 + n2 + n3. For convenience, let

M′ = C̃DTAu(T ′, n1), M′′ = C̃ATDu(T ′′, n3).

Working in the homotopy category, we can now define the morphisms Fk,Φk,Ψk:

(1) The morphism Fk : C̃DTDu(Tk, n) → C̃DTDu(Tk+1, n) is defined by

Fk = IdM′ ⊠fk ⊠ IdM′′ .
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(2) The morphism Φk : C̃DTDu(Tk, n) → C̃DTDu(Tk+2, n) is defined by

Φk = IdM′ ⊠ϕk ⊠ IdM′′ .

(3) The morphism Ψk : C̃DTDu(Tk, n) → C̃DTDu(Tk, n) is defined by

Ψk = IdM′ ⊠ψk ⊠ IdM′′ .

(Here, IdM′ is a type DA isomorphism while IdM′′ is a type AD isomorphism.) By [26,
Lemma 2.3.13], homotopies are preserved under box-tensoring, and so Fk,Φk,Ψk also satisfy
the conditions in Lemma 2.1.

Taking the box tensor on either side with the left-right type AA bimodule for a tangle
consisting of only straight strands, we obtain the analogous statements for type DA, AD ,
and AA bimodules. �

Remark. In the proof of Theorem 2, we could have directly used Proposition 3.1 and made
no reference to Lemma 2.1. We chose to present the proof as it is now to streamline the
discussion in Section 4.

4. Gradings

In this section, we prove Theorem 3. Let T∞, T0, and T1 be three oriented tangles such that,
as unoriented tangles, they are identical except near a point p, as indicated in Figure 1.1.
The only difference between Theorems 2 and 3 is that Theorem 3 contains information
about the grading shifts (cf. Table 2.1). As such, Theorem 3 follows from Theorem 2 and
grading information. To begin, we modify the definitions of Fk, Φk and Ψk from the proof
of Theorem 2, as follows.

Write T∞, T0, T1 as

T∞ = T ′
∞ ◦ T el

∞ ◦ T ′′
∞, T0 = T ′

0 ◦ T
el

0 ◦ T ′′
0 , T1 = T ′

1 ◦ T
el

1 ◦ T ′′
1 ,

where, as before, T el

∞, T
el

0 , T
el

1 are the elementary tangles in Proposition 3.1 (now endowed
with orientations). This time, T ′

∞, T
′
0, T

′
1 are possibly different as oriented tangles, but are

the same as unoriented tangles. The same statement is true for T ′′
∞, T

′′
0 , T

′′
1 .

Fix oriented planar diagrams D∞, D0, and D1 for T∞, T0, and T1 respectively, such that
the diagrams, without their orientations, are identical except near p. If neg(D) denotes the
number of negative crossings in a diagram D, let

ek = neg(Dk+1)− neg(Dk)

for each k ∈ {∞, 0, 1}. Note that e∞, e0 and e1 are independent of the choice of diagrams,
and that

e∞ + e0 + e1 = 0.

Similarly, for each k ∈ {∞, 0, 1}, fix oriented planar diagrams D′
k and D′′

k for T ′
k and T ′′

k

respectively, and let e′k and e′′k be defined analogously. Define isomorphisms

ι′k : C̃DTAδ(T ′
k, n) → C̃DTAδ(T ′

k+1, n)

[
−
e′k
2

]

ι′′k : C̃ATD
δ(T ′′

k , n) → C̃ATDδ(T ′′
k+1, n)

[
−
e′′k
2

]

as follows. Let H′
k and H′

k+1 be Heegaard diagrams for T ′
k and T ′

k+1 that are identical if
we do not distinguish the X from the O markings. Define ι′k to be the map induced by
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the natural correspondence between generators and domains. Define ι′′k analogously. Indeed,
these isomorphisms shift gradings as claimed:

Lemma 4.1. Let To1 and To2 be two oriented tangles that are the same after forgetting the
orientation. Then

C̃T
δ
(To1 , n) ≃ C̃T

δ
(To2 , n)

[
−
e

2

]
,

where e = neg(Do2)− neg(Do1) is the difference in the number of negative crossings between

two diagrams for the two tangles that are the same without the orientation. Here, C̃T
δ
can

stand for any one of the fully blocked, δ-graded algebraic structures associated to the two
tangles (same one for both tangles).

Proof. Since concatenating corresponds to tensoring, and the grading is additive under taking
tensor product, it suffices to show this for elementary tangles.

Let Ho1 and Ho2 be genus-one Heegaard diagrams for elementary tangles To1 and To2
respectively, such as the ones in Figures 2.6 and 3.1, that are identical if we do not distinguish
the X from the O markings, i.e., for i = 1, 2 we can write Hoi = (Σ,α,β,Xoi,Ooi) with
Xo1 ⊔Oo1 = Xo2 ⊔Oo2 .

Let ι : C̃T
δ
(To1 , n) → C̃T

δ
(To2 , n) be the isomorphism induced by the natural correspon-

dence between generators and domains. We discuss the degree of ι below.
Let xo1 = xL

o1 ⊔ xR
o1 ∈ S(Ho1) and xo2 = xL

o2 ⊔ xR
o2 ∈ S(Ho2) be corresponding generators.

The δ-grading is given by

δ(xR
oi
) = inv(xR

oi
)−

1

2
inv(xR

oi
,XR

oi
⊔OR

oi
) +

1

2
inv(XR

oi
) +

1

2
inv(OR

oi
) +

1

2
|XR

oi
|,

δ(xL
oi
) = − inv(xL

oi
) +

1

2
inv(xL

oi
,XL

oi
⊔OL

oi
)−

1

2
inv(XL

oi
)−

1

2
inv(OL

oi
)−

1

2
|OL

oi
|.

The first and second term in each formula do not depend on orientations, and neither does
the sum of the fifth terms. In other words, inv(xR

o1
) = inv(xR

o2
), |OL

o1
| − |XR

o1
| = |OL

o2
| − |XR

o2
|,

and so on.
The only points in Xoi ⊔Ooi that contribute to the third and fourth terms in each formula

are those that correspond to a strand that runs over or under another strand in the respective
half of the diagram. If there are no crossings, then corresponding generators have the same
δ-grading, e = 0, and we are done. If To1 and To2 are elementary tangles for a crossing, we
discuss the contribution of the two relevant basepoints below.

Suppose the strand with the higher slope crosses over the strand with the lower slope.
Then the crossing is encoded in the right grid of the diagram. There are four possible
orientations of the two relevant strands. If they point in the same horizontal direction, then
1
2
inv(XR

oi
) + 1

2
inv(OR

oi
) = 1

2
; if they point in opposite horizontal directions, then 1

2
inv(XR

oi
) +

1
2
inv(OR

oi
) = 0. Observe that in the former case the crossing is negative, whereas in the

latter case the crossing is positive.
Suppose the strand with the lower slope crosses over the strand with the higher slope, i.e.

the crossing is encoded in the left half of the diagram. If the two strands point in the same
horizontal direction, then −1

2
inv(XL

oi
)− 1

2
inv(OL

oi
) = −1

2
; if they point in opposite horizontal

directions, then −1
2
inv(XL

oi
) − 1

2
inv(OR

oi
) = 0. In the former case the crossing is positive,

whereas in the latter case the crossing is negative.
Thus, δ(xo2)− δ(xo1) = e/2, and so ι shifts degrees by e/2. �
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Working in the homotopy category, as we did in the proof of Theorem 2, we now define
the morphisms Fk,Φk,Ψk:

(1) The morphism Fk : C̃DTDδ(Tk, n) → C̃DTDδ(Tk+1, n) is defined by

Fk = ι′k ⊠ fk ⊠ ι′′k.

(2) The morphism Φk : C̃DTDδ(Tk, n) → C̃DTDδ(Tk+2, n) is defined by

Φk = (ι′k+1 ◦ ι
′
k)⊠ ϕk ⊠ (ι′′k+1 ◦ ι

′′
k).

(3) The morphism Ψk : C̃DTDδ(Tk, n) → C̃DTDδ(Tk, n) is defined by

Ψk = Id′
k ⊠ψk ⊠ Id′′

k .

where fk, ϕk, ψk are defined in the same way as in Section 3, except that the Heegaard
diagrams here contain both X and O markings. In the definitions above, we omit the degree
shifts, since they depend on k. We discuss these shifts below.

We first establish the following lemma.

Lemma 4.2. Suppose H is a genus 1 Heegaard diagram for a tangle such as the ones in
Figures 2.6 and 3.1, x and y are generators in S(H), and r is a (not necessarily empty)
rectangle from x to y of one of the first three types discussed in Section 2.2 such that Int r ∩
x = ∅. Then

δ(aL(r)) + δ(y) + δ(aR(r))− δ(x) = nO(r) + nX(r)− 1.

Proof. Cut the Heegaard diagram H open, and embed it on the plane as in Figure 3.3.
First we consider the case when r is an interior rectangle. Then aL(r) and aR(r) are

idempontents, hence in degree 0, and

δ(y)− δ(x) = inv(yR)− inv(xR)−
1

2
inv(yR,XR ⊔OR) +

1

2
inv(xR,XR ⊔OR)

− inv(yL) + inv(xL) +
1

2
inv(yL,XL ⊔OL)−

1

2
inv(xL,XL ⊔OL).

There are six sub-cases, depending on which parts of the diagram r occupies; see Figure 4.1.
In all cases, the two β-circles containing the vertical edges of r bound an annulus, and points
in x ∩ y, X, and O outside that annulus contribute the same amount to δ(y) and to δ(x).
The two horizontal edges of r, along with the top, middle (take any horizontal line between
αL
0 and αR

0 ), and bottom edges of H, divide the annulus into four rectangular regions, which
we denote A, B, C, and D, from top to bottom. Define

a = |x ∩ IntA|, a′ = |(X ⊔O) ∩ IntA|,
b = |x ∩ IntB|, b′ = |(X ⊔O) ∩ IntB|,
c = |x ∩ IntC|, c′ = |(X ⊔O) ∩ IntC|,
d = |x ∩ IntD|, d′ = |(X ⊔O) ∩ IntD|.

Let w be the width of the annulus, i.e. the number of components of Σ \ β contained in it.
Observe that a+ b+ c+ d = w − 1, and a′ + b′ + c′ + d′ = 2w.

Suppose r is entirely contained in the top half of the diagram; see Figure 4.1 (a). Then

δ(y)− δ(x) = inv(yR)− inv(xR)−
1

2
inv(yR,XR ⊔OR) +

1

2
inv(xR,XR ⊔OR).

Since the support of r coincide with B, we have b = 0, so inv(yR)− inv(xR) = −1. If a point
p ∈ XR ⊔ OR contributes different amounts to inv(yR,XR ⊔ OR) and to inv(xR,XR ⊔ OR),
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A

B

C

D

(a) (b) (c) (d) (e) (f)

Figure 4.1. The diagram H on the plane. There are six sub-cases of an
interior rectangle r (depicted in dark grey). In the first case, the vertical
annulus for r is also illustrated; it is divided by the top, middle, and bottom
edges of H, along with the horizontal edges of r, into four rectangles, denoted
A, B, C, and D from top to bottom.

it must be contained in the interior of r. Each such p contributes two more times to the
latter—when paired with the bottom-left and top-right corners of r—so −1

2
inv(yR,XR ⊔

OR) + 1
2
inv(xR,XR ⊔OR) = nO(r) + nX(r).

The computation when r is entirely contained in the bottom half of the diagram (see
Figure 4.1 (b)) is analogous.

Suppose r intersects both halves of the diagram, but not the top and bottom edges;
see Figure 4.1 (c). Note that in this case b = c = 0. A point in x ∩ IntA = y ∩ IntA
contributes one more time to inv(yR) than to inv(xR)—when paired with the top left corner
of r. Similarly, a point in (XR ⊔OR)∩ IntA contributes one more time to inv(yR,XR ⊔OR)
than to inv(xR,XR ⊔OR). Points inside B contribute in the opposite way. Counting in the
bottom half of the diagram is analogous. We see that

inv(yR)− inv(xR) = a− b = a,

− inv(yR,XR ⊔OR) + inv(xR,XR ⊔OR) = −a′ + b′,

− inv(yL) + inv(xL) = −c + d = d,

inv(yL,XL ⊔OL)− inv(xL,XL ⊔OL) = c′ − d′,

so

δ(y)−δ(x) = a+d+
1

2
(b′+c′−a′−d′) = w−1+

1

2
(2b′+2c′−2w) = b′+c′−1 = nO(r)+nX(r)−1.

The computation when r intersects both halves of the diagram but not the middle edge
(see Figure 4.1 (d)) is analogous. In that case a = d = 0, and we get

δ(y)−δ(x) = b+c+
1

2
(a′+d′−b′−c′) = w−1+

1

2
(2a′+2d′−2w) = a′+d′−1 = nO(r)+nX(r)−1.

Suppose r intersects both halves of the diagram and has all four corners in the bottom
half; see Figure 4.1 (e). In this case a = b = d = 0, so c = w − 1. If a point p ∈ x ∩ y

contributes different amounts to inv(yL) and to inv(xL), it must be contained in rectangle
C; each such p contributes two more times to inv(x)—when paired with the two points in
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x \ y. The pair formed by the two points in y \ x does not contribute to inv(y), and the
pair formed by the two points in x \ y contributes once to inv(x). Thus,

− inv(yL) + inv(xL) = 1 + 2c = 2w − 1.

Similarly,

inv(yL,XL ⊔OL)− inv(xL,XL ⊔OL) = −2c′ = 2(a′ + b′ + c′ − 2w).

Since yR = xR, we have

δ(y)− δ(x) = δ(yL)− δ(xL) = 2w − 1 + a′ + b′ + c′ − 2w = nO(r) + nX(r)− 1.

The computation when r intersects both halves of the diagram and has all four corners in
the top half (see Figure 4.1 (f)) is analogous.

There are two cases when r intersects ∂H, and they are similar to each other. We discuss
the case when r intersects ∂RH. Say that the boundary of r intersects αR

i and αR
j . Let t be

the number of arcs between αR
i and αR

j occupied by x ∩ y. Since r does not contains points

in x ∩ y, the t points in x ∩ y at heights between αR
i and αR

j are all outside r. Whether r
touches the left or the right edge of the diagram, these are exactly the points that contribute
differently to inv(yR) and to inv(xR). Thus,

inv(yR)− inv(xR) = t.

The |i− j| − t− 1 arcs between αR
i and αR

j that are unoccupied contribute to the horizontal

black strands in aR(r) that intersect the unique non-horizontal strand. There are also |i− j|
orange strands that intersect the non-horizontal strand. So

δ(aR(r)) = ��(aR(r))−
��(aR(r)) +��(aR(r))

2
= |i− j| − t− 1−

|i− j|

2
.

The nX(r)+nO(r) points in (XR⊔OR)∩r contribute one more time to inv(xR,XR⊔OR) than
to inv(yR,XR ⊔OR), and the remaning |i− j| − nX(r)− nO(r) points in XR ⊔OR at heights
between αR

i and αR
j contribute one more time to inv(yR,XR⊔OR) than to inv(xR,XR⊔OR).

The remaining points in XR ⊔OR) contribute the same to both counts. Thus,

− inv(yR,XR ⊔OR) + inv(xR,XR ⊔OR) = 2nX(r) + 2nO(r)− |i− j|.

We see that

δ(aL(r)) + δ(y) + δ(aR(r))− δ(x) = nO(r) + nX(r)− 1. �

Next, we set up some notation.
Let H∞,H0,H1 be the Heegaard diagrams for T el

∞, T
el

0 , T
el

1 from Section 3. We can think
of these three diagrams as the same diagram (Σ,α,β′), but with three different choices of
X and O markings, by identifying each of βi,∞, βi,0, βi,1 with a curve βi ∈ β′; see Figure 4.2.
Denote the sets of X and O markings by Xk and Ok respectively, for k ∈ {∞, 0, 1}; Denote
the four points of Xk⊔Ok in regions borderding βi by X1,k, X2,k, X3,k, X4,k ∈ Xk⊔Ok, indexed
by relative height as seen in Figure 4.2.

Given a set of intersection points x ∈ α ∩ β′ with exactly one point on each β ∈ β′

and at most one point on each α ∈ α, there are corresponding generators x∞ ∈ S(H∞),
x0 ∈ S(H0), and x1 ∈ S(H1). For {k, l} ⊂ {∞, 0, 1}, this induces a correspondence between
generators of S(Hk) and generators of S(Hl), and we will use the notation xk,xl, or yk,yl,
etc., to denote corresponding generators on different diagrams. To say this differently, we will
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X1,∞ X1,0 X1,1

X2,∞ X2,0 X2,1

X3,∞ X3,1

X4,0 X4,1

X3,0

X4,∞

βi βi−1βi+1

αL
n

αL
i

αL
0

αR
0

αR
i

αR
n

Figure 4.2. The three diagrams H∞,H0,H1 seen as the same union of bor-
dered grids, but with different markings.

think of a generator in any of the three sets S(Hk) as a set of intersection points x ∈ α∩β′,
and use the subscript k to stress which generating set we are thinking of.

In the following lemma, we compute the degree of any of fk, ϕk, and ψk when the two
elementary tangles associated to the given map have compatible orientations, i.e. when they
are identical as oriented tangles, except near a point; see Figure 4.3. Note that since they
are elementary tangles, T el

k and T el

l have compatible orientations exactly when they have the
same oriented boundaries, so in particular the respective algebras are the same.

Figure 4.3. The six pairs of elementary tangles with compatible orientations.

Lemma 4.3. If T el

k and T el

k+1 have compatible orientations, then degδ(fk) = −1/2. Similarly,
if T el

k and T el

k+2 have compatible orientations, then degδ(ϕk) = 1/2. For any orientation on
T el

k , degδ(ψk) = 1.

Proof. Suppose T el

k and T el

l have compatible orientations. Recall our maps are defined by
counting polygons. For a polygon p from xk to yl, define

δ(p) = δ(aL(p)) + δ(yl) + δ(aR(p))− δ(xk).
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Observe that triangle-like polygons always connect pairs of corresponding generators, so
if p is a triangle-like polygon from xk to yl, then yl = xl, and we have

δ(p) = δ(xl)− δ(xk).

Computing the degrees of rectangle-like polygons will require more work. Given a rectangle-
like polygon p from xk ∈ S(Hk) to yl ∈ S(Hl), define the straightening of p to be the unique
rectangle rp in Hl from xl to yl, and observe that

δ(p) = [δ(aL(p)) + δ(yl) + δ(aR(p))− δ(xl)] + [δ(xl)− δ(xk)].

Note that aL(p) = aL(rp) and a
R(p) = aR(rp), so the sum in the first set of brackets on the

right hand side is δ(rp), which by Lemma 4.2 equals nO(rp)+nX(rp)−1. The difference in the
second set of brackets compares the degrees of corresponding generators, and can be reduced
to comparing how the different X and O markings for Hl and for Hk affect the degree. In
summary,

δ(p) =

{
δ(xl)− δ(xk) if p is triangle-like,

δ(rp) + δ(xl)− δ(xk) if p is rectangle-like.

For each point q ∈ α ∩ β′, define the relative height ht(q) as follows. We say that

(1) ht(q) = 1 if q is below αL
i as seen in Figure 4.2;

(2) ht(q) = 2 if q ∈ αL
i ;

(3) ht(q) = 3 if q is above αL
i and in the bottom grid as seen in Figure 4.2 (this is what

we called the left grid in Section 2.2);
(4) ht(q) = 4 if q is below αR

i and in the top grid as seen in Figure 4.2 (this is what we
called the right grid in Section 2.2);

(5) ht(q) = 5 if q ∈ αR
i ; and

(6) ht(q) = 6 if q is above αR
i as seen in Figure 4.2.

Below, we provide a simple formula for δ(xl)−δ(xk) based on the relative height of the point
of x that lies on βi. Recall that

δ(xl)− δ(xk) = inv(xR
l )−

1

2
inv(xR

l ,X
R
l ⊔OR

l ) +
1

2
inv(XR

l ) +
1

2
inv(OR

l ) +
1

2
|XR

l |

− inv(xL
l ) +

1

2
inv(xL

l ,X
L
l ⊔OL

l )−
1

2
inv(XL

l )−
1

2
inv(OL

l )−
1

2
|OL

l |

− inv(xR
k ) +

1

2
inv(xR

k ,X
R
k ⊔OR

k )−
1

2
inv(XR

k )−
1

2
inv(OR

k )−
1

2
|XR

k |

+ inv(xL
k )−

1

2
inv(xL

k ,X
L
k ⊔OL

k ) +
1

2
inv(XL

k ) +
1

2
inv(OL

k ) +
1

2
|OL

k |.

We will group up some terms on the right hand side to simplify. Since xk and xl are the
same set x ∈ α ∩ β′, then

inv(xR
l ) = inv(xR

k ) = inv(xR),

inv(xL
l ) = inv(xL

k ) = inv(xL),

and since the two tangles have compatible orientations, |XR
l | = |XR

k | and |OL
l | = |OL

k |. Since
the sets of basepoints for the two diagrams only differ in their subsets {X1,k, X2,k, X3,k, X4,k}
and {X1,l, X2,l, X3,l, X4,l}, and further Xt,k and Xt,l are both Xs or both Os for 1 ≤ t ≤ 4,
comparing inv(XR

l ) to inv(XR
k ) reduces to comparing inv(XR

l ∩ {X3,l, X4,l}) to inv(XR
k ∩
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{X3,k, X4,k}). Each of the latter counts is nonzero exactly when the corresponding tangle is
a negative crossing with both strands at the crossing oriented to the left. So

inv(XR
l )− inv(XR

k ) =





1 if T el

l is a crossing, X3,l, X4,l are both Xs, and k 6= l,

−1 if T el

k is a crossing, X3,k, X4,k are both Xs, and k 6= l,

0 otherwise.

Similarly,

inv(OR
l )− inv(OR

k ) =





1 if T el

l is a crossing, X3,l, X4,l are both Os, and k 6= l,

−1 if T el

k is a crossing, X3,k, X4,k are both Os, and k 6= l,

0 otherwise.

Note that since we are assuming compatible orientations, the non-zero counts in the displayed
equations above occur exactly when {k, l} = {∞, 0}. More precisely,

inv(XR
l ) + inv(OR

l )− inv(XR
k )− inv(OR

k ) =





1 if (k, l) = (0,∞),

−1 if (k, l) = (∞, 0),

0 otherwise.

In the elementary tangles that we consider, crossings only appear in the right grid, so it
follows that inv(XL

l )− inv(XL
k ) = 0 and inv(OL

l )− inv(OL
k ) = 0.

Now we look at the four terms that count inversions between generators and basepoints.
Since xk and xl are the same set of points on the common diagram, and Xk ⊔Ok and Xl⊔Ol

only differ in their subsets {X1,k, X2,k, X3,k, X4,k} and {X1,l, X2,l, X3,l, X4,l}, we get

1

2
inv(xR

k ,X
R
k ⊔OR

k )−
1

2
inv(xR

l ,X
R
l ⊔OR

l ) =
1

2
inv(xR

k , {X3,k, X4,k})−
1

2
inv(xR

l , {X3,l, X4,l})),

and

1

2
inv(xL

l ,X
L
l ⊔OL

l )−
1

2
inv(xL

k ,X
L
k ⊔OL

k ) =
1

2
inv(xL

l , {X1,l, X2,l})−
1

2
inv(xL

k , {X1,k, X2,k})).

Note that Xj,k and Xj,l are either in the same region, or lie in adjacent regions separated by
βi, so for p ∈ x, the pairs (p,Xj,k) and (p,Xj,l) may only contribute differently to the above
counts if p lies on βi. Let x be the point in x that lies on βi. If ht(x) ≤ 3, then x is in the
left grid, and the sum of the four terms reduces to

1

2
inv(x, {X1,l, X2,l})−

1

2
inv(x, {X1,k, X2,k})),

By inspection of Figure 4.2, we see that this count is zero if {k, l} = {∞, 0} or if k = l, it is
1
2
if k = 1, l ∈ {∞, 0}, and ht(x) = 1, or if l = 1, k ∈ {∞, 0}, and ht(x) ∈ {2, 3}, and it is

−1
2
in the remaining cases. If ht(x) ≥ 4, then x is in the right grid, and the formula reduces

to

−
1

2
inv(x, {X3,l, X4,l}) +

1

2
inv(x, {X3,k, X4,k}),

and one can compute this number by direct inspection of Figure 4.2 again.
To sum up, we reduced the grading difference to

δ(xl)− δ(xk) =
1

2
(inv(XR

l ) + inv(OR
l )− inv(XR

k )− inv(OR
k ))
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+

{
1
2
inv(x, {X1,l, X2,l})−

1
2
inv(x, {X1,k, X2,k})) if ht(x) ≤ 3,

−1
2
inv(x, {X3,l, X4,l}) +

1
2
inv(x, {X3,k, X4,k}) if ht(x) ≥ 4,

and computed the right hand side, depending on k and l. The final result is summarized in
Table 4.1.

P
P
P
P
P
P
P
PP

ht(x)
(k, l)

(∞, 0) (0, 1) (1,∞)

1 −1/2 −1/2 1/2
2 −1/2 1/2 −1/2
3 −1/2 1/2 −1/2
4 −1/2 1/2 −1/2
5 1/2 −1/2 −1/2
6 −1/2 −1/2 1/2

Table 4.1. The difference δ(xl)− δ(xk), depending on k, l, and ht(x), where
x is the component of x in βi.

We have now done enough preliminary work to allow for a quick and simple computation
of the degree of any polygon.

We compute the change in the δ-grading under f∞ : C̃DTDδ(H∞) → C̃DTDδ(H0) as
follows. Recall that f∞ = T∞+P∞, and let p be a triangle or a pentagon from x∞ ∈ S(H∞)
to y0 ∈ S(H0). We are to determine the value of δ(p). If p is a triangle, this is already given
by δ(xl)− δ(xk), see Table 4.1. If p is a pentagon, we need to understand δ(rp).

As above, if x is the set of intersection points in α ∩ β′ that corresponds to x∞ and x0,
then let x be the component of x in βi. Similarly, if y is the set of intersection points in
α ∩ β′ that corresponds to y0, then let y be the component of y in βi.

By Lemma 4.2, δ(rp) = nO(rp)+nX(rp)−1. Since p is empty, and clearly p and rp contain
the same basepoints in regions not bordering βi, then rp maybe only contain basepoints in
{X1,0, X2,0, X3,0, X4,0}. So nO(rp)+nX(rp) only depends on ht(x) and ht(y), and on the type
of p. For example, if ht(x) = 4 and ht(y) = 6, then the pentagon p must be of type d,
and hence its straightening only contains X3,0; see Figure 4.4. One computes the value of
rp for all the other possibilities of heights of generators and types of pentagons similarly, by
inspecting the Heegaard diagrams directly. We summarize the computation in Table 4.2.

By Table 4.2, we see that f∞ is homogeneous with respect to the δ-grading, and shifts it
by −1/2.

Calculations for f0, f1, and also for ϕk and ψk, are completely analogous. We see that
degδ(fk) = −1/2, degδ(ψk) = 1/2, and degδ(ψk) = 1. �

For each k ∈ {∞, 0, 1}, we now define eelk by

eelk = ek − e′k − e′′k.

This definition is consistent with our definitions of ek, e
′
k, and e

′′
k. Note that if T el

∞ contains
a positive crossing, then (eel∞, e

el

0 , e
el

1 ) = (0, 0, 0), and if T el

∞ contains a negative crossing, then
(eel∞, e

el

0 , e
el

1 ) = (−1, 0, 1). In the following, we say that T el

∞ is positive if it contains a positive
crossing, and negative otherwise.



56 INA PETKOVA AND C.-M. MICHAEL WONG

X1,∞

X2,∞

X3,∞

X4,∞

X1,0

X2,0

X3,0

X4,0

αL
n

αL
i

αL
0

αR
0

αR
i

αR
n

H∞ H0

Figure 4.4. Left: The diagram H∞; Right: The diagram H0. The black dot,
white dot, and grey rectangle are an example of of a triple x, y, rp, where p is
a pentagon from a generator x∞ to y0.

ht(x) δ(x0)− δ(x∞) p in Type ht(y) (O0 ∪ X0) ∩ rp δ(rp) δ(p)

1 −1
2

Tri◦∞ o 1
−1

2
Pent◦∞ s 2, 3, or 4 X4,0 1− 1 = 0

2 −1
2

Tri◦∞ o 2
Pent◦∞ Does not exist

3 −1
2

Tri◦∞ o 3

−1
2

Pent◦∞ d 5, 6, 1, or 2 X3,0 1− 1 = 0

4 −1
2

Tri◦∞ o 4
Pent◦∞ d 5, 6, 1, or 2 X3,0 1− 1 = 0

5 1
2

Tri◦∞ Does not exist
Pent◦∞ s 2, 3, or 4 ∅ 0− 1 = −1

−1
26 −1

2

Tri◦∞ o 6
Pent◦∞ s 2, 3, or 4 X4,0 1− 1 = 0

Table 4.2. The computation of degδ(f∞), based on the relative height of the
initial generator. We get −1/2 in all cases.

Proposition 4.4. The morphisms fk, ϕk, and ψk are homogeneous with respect to the δ-
grading, and their δ-degrees are as follows:

degδ(f∞) =
eel∞
2
, degδ(f0) = −

1

2
, degδ(f1) =

eel1 − 1

2
;

degδ(ϕ∞) =
−eel1 + 1

2
, degδ(ϕ0) =

−eel∞
2

, degδ(ϕ1) =
1

2
;

degδ(ψ∞) = 1, degδ(ψ0) = 1, degδ(ψ1) = 1.
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Proof. Consider fk : C̃DTDδ(T el

k , n) → C̃DTDδ(T el

k+1, n). Let T el

k,fk
and T el

k+1,fk
be oriented

tangles such that

(1) T el

k and T el

k,fk
are the same tangle after forgetting orientations;

(2) T el

k+1 and T el

k+1,fk
are the same tangle after forgetting orientations; and

(3) T el

k,fk
and T el

k+1,fk
have compatible orientations.

Then it is evident that we can factorize fk into fk = ιelk+1,fk
◦ f or

k ◦ ιelk,fk , where

(1) ιelk,fk : C̃DTDδ(T el

k , n) → C̃DTDδ(T el

k,fk
, n) is the map induced by the natural corre-

spondence between generators and domains;

(2) f or

k : C̃DTDδ(T el

k,fk
, n) → C̃DTDδ(T el

k+1,fk
, n) is the map fk described in Section 3; and

(3) ιelk+1,fk
: C̃DTDδ(T el

k+1,fk
, n) → C̃DTDδ(T el

k+1, n) is the map induced by the natural
correspondence between generators and domains.

Since T el

k,fk
and T el

k+1,fk
by definition have compatible orientations, by Lemma 4.3, we imme-

diately see that degδ(f
or

k ) = −1/2.
Observe now that T el

k , T el

k,fk
, and T el

k,fk−1
all have no crossings when k ∈ {0, 1}. Therefore,

by Lemma 4.1, we also know the δ-degrees of ιelk,fk and ιelk,fk−1
:

degδ(ι
el

k,fk
) = degδ(ι

el

k,fk−1
) = 0 if k ∈ {0, 1} .

Consider now the case k = ∞. Observe that T el

∞,f∞
must be negative, while T el

∞,f1
must

be positive. Thus, Lemma 4.1 now implies that

degδ(ι
el

∞,f∞) =

{
1/2 if T el

∞ is positive;

0 if T el

∞ is negative,
degδ(ι

el

∞,f1
) =

{
0 if T el

∞ is positive;

1/2 if T el

∞ is negative.

Adding the δ-degrees of ιelk,fk , f
or

k , and ιelk+1,fk
together, we obtain

(degδ(f∞), degδ(f0), degδ(f1)) =

{
(0,−1/2,−1/2) if T el

∞ is positive;

(−1/2,−1/2, 0) if T el

∞ is negative.

Comparing this with the values of eelk indicated above the current proposition confirms the
δ-degrees of fk.

A similar analysis ascertains the δ-degrees of ϕk and ψk. �

Proposition 4.5. The morphisms Fk, Φk, and Ψk are homogeneous with respect to the
δ-grading, and their δ-degrees are as follows:

degδ(F∞) =
e∞
2
, degδ(F0) =

e0 − 1

2
, degδ(F1) =

e1 − 1

2
;

degδ(Φ∞) =
−e1 + 1

2
, degδ(Φ0) =

−e∞
2

, degδ(Φ1) =
−e0 + 1

2
;

degδ(Ψ∞) = 1, degδ(Ψ0) = 1, degδ(Ψ1) = 1.

Proof. We have that

degδ(Fk) = degδ(ι
′
k) + degδ(fk) + degδ(ι

′′
k) =

e′k
2

+ degδ(fk) +
e′′k
2
.

Proposition 4.4, together with the equations eel0 = 0 and e′k + eelk + e′′k = ek, yield degδ(Fk).
Recall that e∞+e0+e1 = 0, and similar equations hold for e′k, e

′′
k, and e

el

k . The computation
of degδ(Φk) follows similarly, using these equations. The δ-degree of Ψk is obvious. �
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Proof of Theorem 3. In the proof of Theorem 2, we applied Lemma 2.1 to the morphisms
Fk, Φk, and Ψk. In this section, we modified the definitions of Fk, Φk, and Ψk, to adapt
to the δ-graded picture. The proof will be complete if we can compute the δ-degrees of the
relevant maps in Lemma 2.1, when applied to our modified Fk, Φk, and Ψk.

With Mk = C̃DTDδ(Tk, n), recall that the desired homotopy equivalence is given by the
type DD homomorphisms Gk : Mk → Cone(Fk+1) and G

′
k : Cone(Fk+1) → Mk, where

Gk(mk) = (Fk(mk),Φk(mk)),

G′
k(mk+1, mk+2) = Φk+1(mk+1) + Fk+2(mk+2),

and the homotopy morphisms Hk : Mk → Mk and H ′
k : Cone(Fk+1) → Cone(Fk+1), where

Hk(mk) = Ψk(mk),

H ′
k(mk+1, mk+2) = (Ψk+1(mk+1) + Φk+2(mk+2),Ψk+2(mk+2)).

We will now use Proposition 4.5 to compute the δ-degrees of G∞, G′
∞, H∞, and H ′

∞.
First, observe that since degδ(F0) = (e0 − 1)/2, Cone(F0) has underlying module

M0

[
e0 + 1

2

]
⊕M1,

and so, in Cone(F0),

δ(F∞(m∞), 0) =
(
δ(m∞) +

e∞
2

)
+
e0 + 1

2
= δ(m∞) +

−e1 + 1

2
,

δ(0, F∞(m∞)) = δ(m∞) +
−e1 + 1

2
.

This shows that G∞ is homogeneous and degδ(G∞) = (−e1 + 1)/2. Next, if δ(m0, m1) = d,
then

δ(Φ0(m0)) =

(
d−

e0 + 1

2

)
+

−e∞
2

= d+
e1 − 1

2
, δ(F1(m1)) = d+

e1 − 1

2
,

and so degδ(G
′
∞) = (e1 − 1)/2.

Now clearly degδ(H0) = 1. Finally, if δ(m0, m1) = d, then

δ(Ψ0(m0), 0) = d+ 1,

δ(Φ1(m1), 0) =

(
d+

−e0 + 1

2

)
+
e0 + 1

2
= d+ 1,

δ(0,Ψ1(m1)) = d+ 1,

and so degδ(H
′
0) = 1.

Since G∞ and G′
∞ are homotopy equivalences of homogeneous degree (−e1 + 1)/2 and

(e1 − 1)/2 respectively, and H∞ and H ′
∞ are homotopy morphisms of homogeneous degree

1, our proof is complete. �

Proof of Corollary 4. Theorem 3 and the Gluing Theorem for tangle Floer homology [37,

Theorem 12.4] together imply that there exists a chain map F0 : ĈFK(L0)⊗ V m−ℓ0 ⊗W →

ĈFK(L1)⊗ V m−ℓ1 ⊗W of δ-degree (e0 − 1)/2 such that

ĈFK(L∞;F2)⊗ V m−ℓ∞ ⊗W ≃ Cone(F0)

[
e1 − 1

2

]
.
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The claimed exact triangle now follows from the exact triangle on homology associated to a
mapping cone of chain complexes. �

5. The oriented skein relation

In this section, we give the proof of Theorem 5, which is similar to that of [36, Theo-
rem 9.2.1].

Let (T el

+ , T
el

− , T
el

0 ) be an oriented skein triple of elementary (n, n)-tangles, with the strands
at which the tangles differ oriented from right to left, as in Figure 5.1.

Figure 5.1. From left to right, the elementary tangles T el

+ , T el

− , T el

0 .

We will now describe a common diagram from which we can obtain corresponding Hee-
gaard diagrams for these tangles. Consider Figure 5.2. Letting

β+ = {β1, . . . , βi−1, βi,+, βi+1, . . . , βn} ,

β− = {β1, . . . , βi−1, βi,−, βi+1, . . . , βn} ,

and
X = {X1, . . . , Xn} , X′ = {X ′

1, X2, . . . , Xn} , Y = {Y1, Y2, X3, . . . , Xn} ,

we define

H+ = (Σ,α,β+,X,O), H− = (Σ,α,β−,X
′,O),

H0 = (Σ,α,β+,Y,O), H′
0 = (Σ,α,β−,Y,O).

Then H+ is a Heegaard diagram for T el

+ , H− is a diagram for T el

− , and both H0 and H′
0,

which are related by a commutation move [37, Section 5.3.1], are diagrams for T el

0 .
We denote the variables in CDTD− corresponding to O3 and O4 by U3 and U4, respectively.

Observe that T el

+ , T
el

− , and T el

0 all have the same left and the same right oriented boundaries,
which we may denote by ∂LT and ∂RT respectively. Denote the variables in A−(−∂RT )
corresponding to the ith and (i+ 1)st point in −∂RT by U2 and U1, respectively.

As before, we cut open the Heegaard diagram along the indicated grey circle in Figure 5.2
and also delete the non-combinatorial regions, to obtain Figure 5.3.

We denote by c the intersection point in αR
i ∩ βi,+; note, then, that the two squares

containing X1 and X2 in H+ meet at c, and so do the squares containing Y1 and Y2 in H0.
Similarly, we denote by c′ the intersection point in αR

i ∩βi,−; then the two squares containing
X ′

1 and X2 in H′
0 meet at c′, and so do the squares containing Y1 and Y2 in H′

0.
We now partition the set of generators

S(H+) = I(H+) ∪N(H+), S(H0) = I(H0) ∪N(H0)

according to whether or not a given generator contains the point c, and similarly partition

S(H−) = I′(H−) ∪N′(H−), S(H′
0) = I′(H′

0) ∪N′(H′
0)

according to whether or not a generator contains the point c′.
There is a natural identification between I(H+) and I(H0), and one between N(H+) and

N(H0), as sets. Similarly, there is a natural identification between I′(H−) and I′(H′
0), and
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X1
Y1 X

′
1

X2

Y2

O3

O4

c c′

cFR0

cFRn

cFL0

cFLn

cBL

0

cBL

n
..
.

..
.

..
.

βn

βi,+

βi,−

β0

. .
.

Figure 5.2. The diagram that combines H+,H−,H0,H′
0.

one between N′(H−) and N′(H′
0). However, note that, for example, N(H+) and N(H0) have

different (M,A)-bigradings that depend on H+ and H0. We will think of the Maslov grading
M as given by functions M+, M−, M0, and M

′
0, and similarly for the Alexander grading A.

Further, let T : I′(H′
0) → I(H+) be the unique one-to-one correspondence for which x∩βi,−

and T (x) ∩ βi,+ lie on the same α curve, and x \ βi,− = T (x) \ βi,+. Note that T can also be
written as a function T : I′(H−) → I(H0). We can think of T as a map counting the small
triangle that contains X2.

Lemma 5.1. For x ∈ I(H+) = I(H0),

M+(x) =M0(x), A+(x) = A0(x)−
1

2
;

for x ∈ N(H+) = N(H0),

M+(x) =M0(x), A+(x) = A0(x) +
1

2
;

for x ∈ I′(H−) = I′(H′
0),

M−(x) =M ′
0(x) A−(x) = A′

0(x) +
1

2
;

for x ∈ N′(H−) = N′(H′
0),

M−(x) =M ′
0(x) A−(x) = A′

0(x)−
1

2
.

Furthermore, for x ∈ I′(H′
0) and T(x) ∈ I(H+),

M ′
0(x) =M+(T(x)) + 1 A′

0(x) = A+(T(x)) +
1

2
,
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X1 Y1 X ′
1

X2

Y2

O3

O4

c c′

cFR0

cFRi

cFRn

cFL0

cFLi

cFLn

cBR

0

cBR

i

cBR

n

cBL

0

cBL

i

cBL

n

︸
︷︷

︸

∂FLΣ

︸
︷︷

︸

∂FRΣ

︷
︸︸

︷

∂BLΣ

︷
︸︸

︷

∂BRΣ

βn . . . βi,+ βi,− . . . β0

Figure 5.3. The combined diagram for the four elementary tangles, obtained
by cutting open the diagram in Figure 5.2 along the indicated grey circle and
deleting the non-combinatorial regions.

and for x ∈ I′(H−) and T(x) ∈ I(H0),

M−(x) =M0(T(x)) + 1 A−(x) = A0(T(x)) +
1

2
.

Proof. Let x ∈ I(H+) = I(H0). Both H+ and H0 use β+, with respect to which we have
inv(xR,XR) = inv(xR,YR) − 2, and inv(XR) = inv(YR) − 1, whereas all other counts in
the definition of the bigrading agree for the two diagrams. Thus, M+(x) = M0(x) and
A+(x) = A0(x) −

1
2
. One obtains the second, third, and fourth statements of the lemma

similarly.
Let x ∈ I′(H′

0). We will denote inversions counted with respect to β+ or β− by invβ+

or invβ−
, respectively. Note that invβ−

(YL) = invβ+
(XL) − 1. Since βi,− ∩ αL

i /∈ x and

βi,+ ∩ αL
i /∈ T(x), we have invβ−

(xL,YL) = inv(xL,XL). All other terms in the definition
of the bigrading agree for the two diagrams. Thus, M ′

0(x) = M+(T(x)) + 1 and A′
0(x) =

A+(T(x)) +
1
2
. One obtains the sixth statement of the lemma similarly. �

We define bigraded type DD structures (I, δ1I,I) and (N, δ1N,N) over (A
−(−∂LT ),A−(−∂RT ))

as follows. As a module, I is freely generated over F2[U1, . . . , Un] by the set I(H+) = I(H0),
and N by N(H+) = N(H0). The structure map δ1I,I counts rectangles not crossing Y1 or Y2,
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and δ1N,N counts rectangles not crossing X1 or X2. The bigradings on I and N are given by

MI(x) =M+(x) + 1 =M0(x) + 1, AI(x) = A+(x) + 1 = A0(x) +
1

2
,

MN(x) =M+(x) + 1 =M0(x) + 1, AN(x) = A+(x) = A0(x) +
1

2
,

which are well defined in light of Lemma 5.1. We may think of CDTD−(H+) as the mapping
cone of a type DD homomorphism δ1I,N : (I, δ1I,I) → (N, δ1N,N) that counts rectangles crossing

exactly one of Y1 and Y2, and think of CDTD−(H0) as the mapping cone of δ1N,I : (N, δ
1
N,N) →

(I, δ1I,I) that counts rectangles crossing exactly one of X1 and X2. In other words,

CDTD−(H+) = Cone(δ1I,N)[−1] {0} , deg(δ1I,N) = (−1,−1),

CDTD−(H0) = Cone(δ1N,I)[−1]

{
−
1

2

}
, deg(δ1N,I) = (−1, 0).

Similarly, we may define type DD structures (I′, δ1I′,I′) and (N′, δ1N′,N′) over the same algebras:
As a module, I′ is freely generated by the set I′(H−) = I′(H′

0), and N′ by N′(H−) = N′(H′
0).

The structure map δ1I′,I′ counts rectangles not crossing X
′
1 or X2, and δ

1
N′,N′ counts rectangles

not crossing Y1 or Y2. The bigradings on I′ and N′ are given by

MI′(x) =M−(x) =M ′
0(x), AI′(x) = A−(x)− 1 = A′

0(x)−
1

2
,

MN′(x) =M−(x) =M ′
0(x), AN′(x) = A−(x) = A′

0(x)−
1

2
,

which are well defined by Lemma 5.1. We may think of CDTD−(H−) as the mapping cone
of a type DD homomorphism δ1N′,I′ : (N

′, δ1N′,N′) → (I′, δ1I′,I′) that counts rectangles crossing

exactly one of Y1 and Y2, and think of CDTD−(H′
0) as the mapping cone of δ1I′,N′ : (I′, δ1I′,I′) →

(N′, δ1N′,N′) that counts rectangles crossing exactly one of X ′
1 and X2. In other words,

CDTD−(H−) = Cone(δ1N′,I′)[0] {1} , deg(δ1N′,I′) = (−1,−1),

CDTD−(H′
0) = Cone(δ1I′,N′)[0]

{
1

2

}
, deg(δ1I′,N′) = (−1, 0).

Remark. Our notation for grading shifts (for modules) differs from that in [36] by a negative
sign.

Lemma 5.2. The correspondence T : I′(H′
0) → I(H+) extends to a type DD isomorphism

T : (I′, δ1I′,I′) → (I, δ1I,I) of (M,A)-degree (0, 1).

Proof. Refer to Figure 5.3. Recall that the structure map δ1I,I counts rectangles (of which
there are seven types), introduced in Section 2.2, that do not cross Y1 or Y2. Since generators
in I all have a component on c, this means that the rectangles counted in δ1I,I do not have
an edge on βi,+. Note that if such a rectangle were to cross X1, then it would necessarily
cross Y1 (and hence X ′

1) also; and if it were to cross X2, then it would cross Y2 also. This
implies that the rectangles counted in δ1I,I do not intersect {X1, X

′
1, X2, Y1, Y2}. Similarly,

rectangles counted in δ1I′,I′ do not intersect this set. In other words, δ1I,I and δ
1
I′,I′ both count

empty rectangles that do not intersect the 2-chain whose boundary is formed by an arc in
αR
i−1, an arc in βi−1, an arc in αR

i+1, and an arc in βi+1, in the induced orientation. We can
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now conclude that for x′,y′ ∈ I′, there is a one-to-one correspondence between rectangles
connecting x′ to y′ and rectangles connecting T(x′) to T(y′).

The fact that these rectangles do not have an edge on βi,+ or βi,− also implies that, for
x′,y′ ∈ I′, an empty rectangle r′ connecting x′ to y′ crosses O3 (resp. O4) if and only if the
corresponding rectangle r connecting T(x′) to T(y′) crosses O3 (resp. O4). This shows that
the algebra elements U r′ and U r are equal. Since obviously aL(x′, r′) = aL(T(x′), r) and
aR(x′, r′) = aR(T(x′), r), the term

aL(x′, r′)⊗ U r′y′ ⊗ aR(x′, r)

appears in δ1I′,I′(x
′) if and only if

aL(T(x′), r)⊗ U r
T(y′)⊗ aR(T(x′), r) = aL(x′, r′)⊗ U r′

T(y′)⊗ aR(x′, r′)

appears in δ1I,I(T(x
′)). This shows that T is a type DD isomorphism.

The (M,A)-degree of T follows from Lemma 5.1 and from the definitions of I and I′. �

We now consider the following diagram of type DD homomorphisms:

(5.3)

(I′, δ1I′,I′)
δ1I′,N′

//

δI,N ◦ T

��

(N′, δ1N′,N′)

T ◦ δN′,I′

��

(N, δ1N,N)
δ1N,I

// (I, δ1I,I)

Lemma 5.2 and the discussion immediately preceding it imply that:

• Each edge map in (5.3) has (M,A)-degree (−1, 0).
• The left column in (5.3) is identified with CDTD−(H+)[1] {0}.
• The right column in (5.3) is identified with CDTD−(H−)[0] {0}.
• The top row in (5.3) is identified with CDTD−(H′

0)[0] {−1/2}.
• The bottom row in (5.3) is identified with CDTD−(H0)[1] {1/2}.

Lemma 5.4. The type DD homomorphisms

δ1N,I ◦ δ
1
I,N : (I, δ1I,I) → (I, δ1I,I), δ1N′,I′ ◦ δ

1
I′,N′ : (I′, δ1I′,I′) → (I′, δ1I′,I′)

are given by

δ1N,I ◦ δ
1
I,N = IdI⊗(U1 + U2 − U3 − U4),

δ1N′,I′ ◦ δ
1
I′,N′ = IdI′ ⊗(U1 + U2 − U3 − U4).

As a consequence, (5.3) commutes.

Proof. Consider the homomorphism δ1N,I ◦ δ
1
I,N. This counts domains that can be written

as a juxtaposition of two empty rectangles, the first of which connects some x ∈ I to some
y ∈ N, while the second connects y to some z ∈ I. Inspecting Figure 5.3, we see that for a
given x ∈ I, there are exactly four such domains: the vertical annulus bounded by βi−1 and
βi,+, the vertical annulus bounded by βi,+ and βi+1, the horizontal strip bounded by αi−1

and αi, and the horizontal strip bounded by αi and αi+1. These four domains contribute the
algebra elements U4, U3, U2, and U1 respectively.

The homomorphism δ1N′,I′ ◦ δ
1
I′,N′ can be computed in the same way. �
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The commutativity of (5.3) implies the existence of a type DD homomorphism

(δ1I,N ◦ T,T ◦ δ1N′,I′) : Cone(δ1I′,N′) → Cone(δ1N,I),

which we may think of as

(δ1I,N ◦ T,T ◦ δ1N′,I′) : CDTD−(H′
0)[0]

{
−
1

2

}
→ CDTD−(H0)[1]

{
1

2

}
,

with (M,A)-degree (−1, 0). We now work to compute this type DD homomorphism.
Let hX2

: CDTD−(H′
0) → CDTD−(H′

0) be the morphism defined by

hX2
(x) =

∑

y∈(H′
0
)

∑

r∈Rect◦(x,y)
r∩(X∪Y)={X2}

aL(r)⊗ U ry ⊗ aR(r),

and for i = 1, 2, let hYi
: CDTD−(H′

0) → CDTD−(H′
0) be the morphism defined by

hYi
(x) =

∑

y∈(H′
0
)

∑

r∈Rect◦(x,y)
r∩Y={Yi}

aL(r)⊗ U ry ⊗ aR(r).

Let hY = hY1
+ hY2

.

Lemma 5.5. The morphism hX2
is homogeneous of (M,A)-degree (−1, 0), while the mor-

phisms hY1
and hY2

are both homogeneous of (M,A)-degree (−1,−1). Moreover, identifying
CDTD−(H′

0) with Cone(δ1I′,N′)[0] {1/2} using (5.3), hX2
sends I′[0] {1/2} to N′[0] {1/2} and

vanishes on N′[0] {1/2}, while hYi
vanishes on I′[0] {1/2}.

Proof. The (M,A)-degree of hX2
follows from the fact that the rectangles counted in hX2

all
contribute to δ1H′

0

, since H′
0 = (Σ,α,β−,Y,O). The (M,A)-degree of hYi

can be computed

by adapting the proof of Lemma 2.3 to the case when the rectangle r contains exactly one
basepoint of type X (in the present context, Yi). The images of the morphisms (when
restricted to I′[0] {1/2} or N′[0] {1/2}) are clear from the local picture near c′. �

Lemma 5.5 implies that hX2
◦ hY + hY ◦ hX2

: CDTD−(H′
0) → CDTD−(H′

0) has (M,A)-
degree (−2,−1). To align with the degree shifts of other morphisms defined above, and to
simplify notation, we define the morphism

h : CDTD−(H′
0)[0]

{
−
1

2

}
→ CDTD−(H′

0)[1]

{
1

2

}

by

hX2
◦ hY + hY ◦ hX2

,

with degrees appropriately shifted, so that h has (M,A)-degree (−1, 0).

Lemma 5.6. There is a homotopy equivalence P : CDTD−(H0) → CDTD−(H′
0) such that

(5.7) P[1]

{
1

2

}
◦ (δ1I,N ◦ T,T ◦ δ1N′,I′) = h,

so h, and consequently hX2
◦ hY + hY ◦hX2

, are type DD homomorphisms. Furthermore, the
homotopy equivalence P[1] {1/2} induces a homotopy equivalence

Cone(δ1I,N ◦ T,T ◦ δ1N′,I′) → Cone(h) = Cone(hX2
◦ hY + hY ◦ hX2

)[1]

{
1

2

}
.
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Proof. This proof is analogous to the proof of [36, Lemma 9.2.7].
The homotopy equivalence P is obtained in a manner analogous to that in [37, Lemma 5.7].

It is defined by counting pentagons, with the only difference being that here we are modifying
β-circles rather than α-circles, and there is interaction with the algebra, as in the proof of
Equation 3.7. (However, note that, contrary to the homomorphisms Pk in Section 3, P here
counts pentagons that possibly contain two components, as in rectangles of type (6) in the
definition of δ1

CDTD−(H)
. All pentagons counted in P are either interior or right-bordered.)

It can easily be checked that the (M,A)-degrees of the maps involved are correct. Thus,
to streamline our discussion, we will ignore all gradings for the rest of this proof; doing so,
in order to prove Equation 5.7, it will be sufficient to verify the identities

P ◦ T ◦ δ1N′,I′ = hX2
◦ hY ,(5.8)

P ◦ δ1I,N ◦ T = hY ◦ hX2
,(5.9)

considered as morphisms of ungraded type DD modules, by exhibiting a one-to-one corre-
spondence between domains contributing to both sides. All cases of the correspondences
are analogous to those in the proof of [36, Lemma 9.2.7]; in our context, however, each case
contains a number of subcases, as the domain under consideration may be bordered and
interact non-trivially with the algebras.

We provide a sample proof of Equation 5.8. Consider a domain contributing to P◦T◦δ1N′,I′ ;

let r1, p1, and p2 respectively be the rectangle contributing to δ1N′,I′, the triangle contributing
to T, and the pentagon contributing to P. Then p1 ∗ p2 is a rectangle r2 that contains X2

but not Y1 or Y2. The juxtaposition r1 ∗ r2 then represents a term in hX2
◦hY . Conversely, if

r1 ∗ r2 contributes to hX2
◦hY , we may remove the small triangle p1 containing X2 from r2 to

obtain a pentagon p2. Since r1 ∗ r2 = r1 ∗p1 ∗p2, we see that aR(r1 ∗ r2) = aR(r1 ∗p2 ∗p2). All
subcases are exhibited in Figures 5.4, 5.5, 5.6, and 5.7, each corresponding to a row in the
left of [36, Figure 9.4]. In these four figures, each pair of domains is organized as follows: The
left represents a domain contributing to hX2

◦ hY , and the right the corresponding domain
contributing to P ◦ T ◦ δ1N′,I′ ; the shading of the polygons, from dark to light, indicates the
order of composition.

The proof of Equation 5.9 follows similarly, as in the proof of [36, Lemma 9.2.7]. All
subcases are exhibited in Figures 5.8, 5.9, 5.10, and 5.11, each corresponding to a row in the
right of [36, Figure 9.4]. In these four figures, each pair of domains is organized as follows:
The left represents a domain contributing to hY ◦ hX2

, and the right the corresponding
domain contributing to P ◦ δ1I,N ◦ T; the shading is as before.

In all subcases except one, the domain contributing to the left of Equation 5.8 or Equa-
tion 5.9 is the same one contributing to the right. The only exception is shown in Figure 5.11,
where the domains contributing to the two sides are both annuli of width one, but one ap-
pears to the left and one to the right of the local picture; the intersection of either domain
with O is {O4}, and so their contributions are the same.

Lemma 2.2 applied to Equation 5.7 implies that Cone(f1) ≃ Cone(f2). �

Lemma 5.10. The type DD homomorphisms hX2
◦hY +hY ◦hX2

and IdCDTD−(H′
0
)⊗(U2−U1)

are homotopic, and so there is a homotopy equivalence

Cone(hX2
◦ hY + hY ◦ hX2

) ≃ Cone(IdCDTD−(H′
0
) ⊗(U2 − U1))
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Figure 5.4. Corresponding domains that contribute to the two sides of Equa-
tion 5.8, analogous to the first row, left, of [36, Figure 9.4].

Proof. For i = 1, 2, let hX2,Yi
: CDTD−(H′

0) → CDTD−(H′
0) be the morphism defined by

hX2,Yi
(x) =

∑

y∈(H′
0
)

∑

r∈Rect◦(x,y)
r∩Y={Yi}

X2∈r

aL(r)⊗ U ry ⊗ aR(r).

Let hX2,Y = hX2,Y1
+ hX2,Y2

. One can check that hX2,Y has degree (−1,−1); further, hX2,Y

sends N′ to N′ and vanishes on I′.
Observe that on N′ the moprhism hX2

◦ hY decomposes as

hX2
◦ hY = δ1N′,N′ ◦ hX2,Y + hX2,Y ◦ δ1N′,N′ + dhX2,Y + IdN′ ⊗U2 + IdN′ ⊗U4.

The map IdN′ ⊗U2 (resp. IdN′ ⊗U4) comes from juxtapositions of rectangles such that the
support of the resulting domain is the component of Σ \α containing X2 (resp. the annular
component of Σ \ β− containing X2).

Similarly, on I′ the morphism hY ◦ hX2
decomposes as

hY ◦ hX2
= hX2,Y ◦ δ1I′,N′ + IdI′ ⊗U2 + IdI′ ⊗U4.
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Figure 5.5. Corresponding domains that contribute to the two sides of Equa-
tion 5.8, analogous to the second row, left, of [36, Figure 9.4].

Figure 5.6. Corresponding domains that contribute to the two sides of Equa-
tion 5.8, analogous to the third row, left, of [36, Figure 9.4].
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Figure 5.7. Corresponding domains that contribute to the two sides of Equa-
tion 5.8, analogous to the last row, left, of [36, Figure 9.4].

Figure 5.8. Corresponding domains that contribute to the two sides of Equa-
tion 5.9, analogous to the first row, right, of [36, Figure 9.4].

Figure 5.9. Corresponding domains that contribute to the two sides of Equa-
tion 5.9, analogous to the second row, right, of [36, Figure 9.4].

Adding up the two identities, we obtain

hX2
◦ hY + hY ◦ hX2

= ∂hX2,Y + IdCDTD−(H′
0
)⊗(U2 + U4),
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Figure 5.10. Corresponding domains that contribute to the two sides of
Equation 5.9, analogous to the third row, right, of [36, Figure 9.4].

Figure 5.11. Corresponding domains that contribute to the two sides of
Equation 5.9, analogous to the last row, right, of [36, Figure 9.4].

i.e. hX2,Y is a homotopy between hX2
◦ hY + hY ◦ hX2

and IdCDTD−(H′
0
)⊗(U2 + U4). By [37,

Lemma 3.35], the actions of U1 and U4 are homotopic, and so the statement of the lemma
follows. �

Proof of Theorem 5. Define the bigraded type DD homomorphism P+,− : CDTD−(H+) →
CDTD−(H−) by the two horizontal maps in (5.3); then by definition, Cone(P+,−) is identified
with the cone of the commutative diagram (5.3) itself, without degree shifts. On the other
hand, the cone of (5.3) is also identified with Cone(δ1I,N ◦ T,T ◦ δ1N′,I′). Combining this fact
with Lemmas 5.6 and 5.10, we have

Cone(P+,−) = Cone(δ1I,N ◦ T,T ◦ δ1N′,I′) ≃ Cone(IdCDTD−(H′
0
)⊗(U2 − U1))[1]

{
1

2

}
.

Finally, there is an obvious homotopy equivalence

Cone(IdCDTD−(H′
0
)⊗(U2 − U1)) ≃ Cone(IdCDTD−(H0) ⊗(U2 − U1))

induced by P and P′, which completes the proof. �

Proof of Theorem 6. Note that IdCDTD−(H0)⊗(U2 − U1) has (M,A)-degree (−2,−1), and

so its mapping cone has underlying module CDTD−(H0)[−1] {−1} ⊕ CDTD−(H0)[0] {0}.

Setting all Ui to zero in Theorem 5, we obtain a homomorphism P̃+,− such that

Cone(P̃+,−) ≃ Cone(Id
C̃DTD(H0)

⊗0)[1]

{
1

2

}
,

but the latter mapping cone is simply

C̃DTD(H0)[0]

{
−
1

2

}
⊕ C̃DTD(H0)[1]

{
1

2

}
.
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A gluing argument as in the proof of Theorem 2 extends this result to any oriented skein
triple. �

One immediately recovers the closed case. We outline the proof below.

Proof of Corollary 7. The proof is analogous to that of Corollary 4. Theorems 5 and 6 to-
gether with the gluing property of tangle Floer homology (see [37, Theorem 6.1] for “minus”)
imply the existence of a chain map F+,− : CFK−(L+) → CFK−(L−) whose mapping cone
corresponds to CFK−(L0), so that the exact triangles on homology follow. �

Finally, we prove Corollary 8.

Proof of Corollary 8. By the type DA version of Theorem 6, we have a type DA homomor-

phism P̃+,− : C̃DTA(T el

+ ) → C̃DTA(T el

− ) of (M,A)-degree (0, 0) and a homotopy equivalence

Cone(P̃+,−) ≃ C̃DTA(T el

0 ) [0]

{
−
1

2

}
⊕ C̃DTA(T el

0 ) [1]

{
1

2

}
.

By [7], we have homomorphisms on Grothendieck groups
[
Cone(P̃+,−)

]
=

[
C̃DTA(T el

+ ) [1]⊕ C̃DTA(T el

− )
]
= −Q(T el

+ ) +Q(T el

− )

and[
C̃DTA(T el

0 ) [0]

{
−
1

2

}
⊕ C̃DTA(T el

0 ) [1]

{
1

2

}]
= q−1

[
C̃DTA(T el

0 )
]
− q

[
C̃DTA(T el

0 )
]

= q−1Q(T el

0 )− qQ(T el

0 ),

where we have used the fact that the Maslov grading descends to powers of −1, and twice
the Alexander grading descends to powers of q in the Grothendieck group. This completes
the proof. �
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[25] Robert Lipshitz, Peter Ozsváth, and Dylan Thurston, Slicing planar grid diagrams: a gentle introduction

to bordered Heegaard Floer homology, Proceedings of Gökova Geometry-Topology Conference 2008,
Gökova Geometry/Topology Conference (GGT), Gökova, 2009, pp. 91–119.
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