SKEIN RELATIONS FOR TANGLE FLOER HOMOLOGY
INA PETKOVA AND C.-M. MICHAEL WONG

ABSTRACT. In a previous paper, Vértesi and the first author used grid-like Heegaard dia-
grams to dgfine tangle Floer homology, which associates to a tangle T a differential graded
bimodule CT(T'). If L is obtained by gluing together T1,...,T,,, then the knot Floer ho-

mology @((L} of L can be recovered from CT(T}),..., (ﬁ(Tm). In the present paper,
we prove combinatorially that tangle Floer homology satisfies unoriented and oriented skein
relations, which are analogues of the skein exact triangles for knot Floer homology.

1. INTRODUCTION

Heegaard Floer homology is an invariant of closed, oriented 3-manifolds introduced in [32]
that has found numerous applications in recent years, and is known to be equivalent [18-22] to
monopole Floer homology [17], and also equivalent [5] to embedded contact homology [8-10].
In [31,39], it is extended to give an invariant, knot Floer homology, of null-homologous knots
in closed, oriented 3-manifolds, which is further generalized to oriented links in [35]. Knot

Floer homology comes in many flavors; its simplest form, Iﬁ?{(l}) for an oriented link L,
is a bigraded module over Fy or Z. There is a combinatorial description of the knot Floer
homology of links L C S? called grid homology [29, 30, 36], defined using grid diagrams.
Because knot Floer homology, defined analytically, is known to categorify the Alexander
polynomial, it is often compared with Khovanov homology Kh(L) [14,15], a link invariant
from representation theory that categorifies the Jones polynomial. .

Ozsvath and Szabd [33] show that the Heegaard Floer homology HF(—X(L)) of the
branched double cover of a link L satisfies an unoriented skein exact triangle, from which
they derive a spectral sequence from Kh(L) to HF(—X(L)), thus relating the two theories.
Following this, Manolescu [27], by counting holomorphic polygons, shows that knot Floer
homology with IF/gioefﬁcients also satisfies an unoriented skein exact triangle, and uses it
to show that rk HFK(L; Fy) = 2t det(L) for a quasi-alternating link L with [ components.
Manolescu and Ozsvath [28] then use the skein exact sequence to show that quasi-alternating
links are Floer-homologically o-thin over Fs.

While the disc/us\sion above seems to suggest that there may be a spectral sequence relat-
ing Kh(L) and HFK(L) that comes from iterating Manolescu’s skein relation, Baldwin and
Levine [1] discover that the Fy page of the spectral sequence they so construct is not even
a link invariant. However, one may be able to relate the two theories with some modifica-
tions: Baldwin, Levine, and Sarkar [2] construct another spectral sequence that converges

to @(L) ® V™ for some module V of rank 2 and some integer n, where the differential D°
counts some of the holomorphic polygons in Manolescu’s unoriented skein sequence. They
conjecture that the E; page of this spectral sequence coincides with a variant of Khovanov
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homology for pointed links, the proof of which would imply a version of the following con-
jecture, first formulated by Rasmussen [38] for knots:

Conjecture 1. For any (-component link L C S3, we have
211k Kh(L) > rk HFK(L).

Remark. During the peer review process of this article, Dowlin [6] has announced the exis-

tence of a spectral sequence relating ﬁl(L) and @((L), and hence a proof of Conjecture 1.
How this spectral sequence compares with the candidate constructed by Baldwin, Levine,
and Sarkar [2] remains unknown.

To better understand Manolescu’s skein relation and the related conjectures, there are sev-
eral approaches. One idea involves computing the maps in the skein relation combinatorially:
The second author [41] gives a version of the skein sequence for grid homology, generalizing
the results on quasi-alternating links [27,28] to Z-coefficients and giving a spectral sequence
from a cube-of-resolutions complex with no diagonal maps. Lambert-Cole [23] exploits the
computability in [41] to show that d-graded knot Floer homology is invariant under Conway
mutation by a large class of tangles.

Another idea, suggested to the authors by Levine [24], is to understand the maps in the
skein relation on a local level, by slicing the links involved into tangles and studying a
tangle version of knot Floer homology. One such theory is tangle Floer homology, defined
by Vértesi and the first author [37]. In this theory, to a sequence of points one associates
a_differential graded algebra, and to a tangle T'" C I X R? one associates an As-module
CT(T) over the differential graded algebra(s) associated to its boundary. If a link L is
obtained by gluing together tangles 71, ...,7T,,, then @(L) can be recovered by taking a
suitable notion of tensor product, called the bozx tensor product, of CT(Ty),...,CT(T,,). The

Ao.-modules CT(T') are defined combinatorially using nice diagrams (in the sense of Sarkar
and Wang [40]) that are similar to grid diagrams. The tangle Floer package is inspired by
bordered Floer homology, an invariant of 3-manifolds with parametrized boundary that can
be used to recover the Heegaard Floer homology of a manifold obtained by gluing, defined
by Lipshitz, Ozsvath, and Thurston [25].

Similar to knot Floer homology, tangle Floer homology also comes in multiple flavors.

For example, C/D\TED“(T ,n) is an ungraded type DD structure, C/D\TED‘S(T, n) is a d-graded

type DD structure, and CDTD(T,n) is an (M, A)-bigraded type DD structure, where M
and A are the Maslov and Alexander gradings respectively. As the notation suggests, these
structures do not depend on the choice of Heegaard diagram H for T', but only on the number
of markers in ‘H, which we denote by n. There is also a richer bigraded version, CDTD™ (H),
which recovers the richer version of knot Floer homology HFK™ (L), and which is believed
but not yet proven to be an invariant of 7. We postpone the precise definitions of these, as
well as other type DA, type AD, and type AA structures, to Section 2.

The first part of this paper addresses the idea above; namely, we prove an unoriented skein
relation for tangle Floer homology. Suppose T, Ty, and T} are three unoriented tangles in
I x R? identical except near a point, as in Figure 1.1.

e~ ——~—

Theorem 2. There ezists a type DD homomorphism Fy: CDTD"(Ty,n) — CDTD"(11,n)
CDTDY(Tw, ) ~ Cone(Fy: CDTD*(Ty, n) — CDTD(T}, n))
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FiGURE 1.1. Top: Three tangles T, Ty, 71 form an unoriented skein triple
if they are identical except near a point, as displayed. Bottom: A specific
example of an unoriented skein triple.

as ungraded type DD structures. Analogous statements hold for type DA, AD, and AA
structures.

In fact, we prove a strengthened version of Theorem 2 for oriented tangles, taking into
account the d-grading. Suppose T, Ty, and 17 are three tangles as above, but oriented,
and choose corresponding oriented planar diagrams that are identical (after forgetting the
orientations) except near a point. Let neg(7}) denote the number of negative crossings in
the diagram for Ty, and let ey = neg(7}) — neg(7p) and e; = neg(7,) — neg(71).

Theorem 3. There exists a type DD homomorphism Fy: (3/]3\T/D6(To,n) — (3/]3\T/D6(T1,n)
of 6-degree (eg — 1)/2 such that

(%6(Too,n) ~ Cone(FO: @ﬁ)é(T07n) N @ﬁ)5(T17n>) |:€1 2— 1:|

as d-graded type DD structures. Analogous statements hold for type DA, AD, and AA
structures.

Remark. Following [36,37], our d-gradings differ from those in [28,41] by a factor of —1.

By taking the box tensor product, we immediately obtain a combinatorially computable
unoriented skein exact triangle for knot Floer homology analogous to those in [27,41]. Sup-
pose L, Lo, and L are three oriented links that are identical (after forgetting the orienta-
tions) except near a point, so that they form an unoriented skein triple. Let (., ¢y, and ¢,
be the number of components of L., Lo, and L; respectively, and define neg(Ly), o, and e;
in a fashion analogous to neg(7}), eg, and e; above.

Corollary 4. For sufficiently large m, there exists a d-graded exact triangle
oo = HFRK, (L Fo) @ V0 @ W — HFK,, o1 (Loo; Fo) @ V"= @ W
2
— HFK_ i1 (Lo; o) @ V"0 @ W — HFK, 1 (L1;Fo) @ VO @ W = -+ - |
2

where V' is a vector space of dimension 2 with grading 0, and W is a vector space of dimension
2 with grading —1.

Remark. Due to a difference in the orientation convention, the arrows in the exact triangle
point in the opposite direction from those in [27,28]. We follow the convention in [29-31,41],
where the Heegaard surface is the oriented boundary of the a-handlebody.
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Remark. Technically, we do not show that the exact triangle in Corollary 4 agrees with the
ones in [27] and [41], which themselves are not known to coincide. However, we do expect
all three to agree.

Parallel to the above, we also prove an oriented skein relation for tangle Floer homology in
the second part of this paper, which can be viewed as a local analogue of the oriented skein
relation for knot Floer homology proven by Ozsvath and Szabé [31,34]. While formally
similar to the unoriented skein relation, we pursue this direction for a slightly different
reason—we do so with a view towards the further development of knot Floer homology in
the framework of categorification.

Precisely, tangle Floer homology has been shown by Ellis, Vértesi, and the first author [7]
to categorify the Reshetikhin—Turaev invariant for the quantum group Uq(g[1|1). This puts
tangle Floer homology on a similar footing as the tangle formulation of Khovanov homology
[3,4,15], which categorifies the Reshetikhin—Turaev invariant for U, (sly). What is missing in
the work of Ellis, Vértesi, and the first author is a construction of 2-morphisms, corresponding
to tangle cobordisms. For knot Floer homology, cobordism maps are defined by Juhdasz [11]
using contact geometry, and independently by Zemke [42] using elementary cobordisms, and
together they [13] show that their definitions coincide. Juhdsz and Marengon [12] prove
that the cobordism maps in [11] fit into a skein exact triangle, providing evidence that
these cobordism maps are actually the maps in skein sequences. Thus, one approach to
constructing the 2-morphisms mentioned above is to study the skein relations of tangle
Floer homology further.

To state our results, suppose Tfl, T, and Tg! are three oriented elementary tangles
identical except near a point, with the strands at which the tangles differ oriented from right
to left, as in Figure 1.2. There are corresponding Heegaard diagrams H.,, H_, and H,,

= I —
= = ——

F1GURE 1.2. From left to right, the elementary tangles Tfl, T, TE.

which we describe explicitly in Section 5. Below, U; and U, are variables corresponding to
the strands at which the tangles differ.

Theorem 5. There ezists a type DD homomorphism P, _: CDTD™(H,) — CDTD™ (H_)
of (M, A)-degree (0,0) such that
1
Cone(P; ) =~ Cone(Idcprp-(34,) @(Uz — Up): CDTD™ (Ho) — CDTD™ (Hy)) [1] {5}
as (M, A)-bigraded type DD structures. Analogous statements hold for type DA, AD, and
AA structures.

Remark. Since CDTD™ is not yet known to be a tangle invariant [37], Theorem 5 is stated
for the type DD bimodules of Heegaard diagrams rather than for bimodules associated to a
tangle.

Remark. Tangle Floer homology is currently only defined over Fy, and so the negative
signs in Theorem 5 could be replaced by positive signs. However, the stated signs are what
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one would expect for a theory defined over Z. This remark applies also to Lemma 5.4 and
Lemma 5.10.

Restricting to CDTD, we also obtain a local oriented skein relation for that version. In this
case, we have a proven tangle invariant, so the relation holds for general tangles. Suppose
T,,T_, and Ty are three tangles that form an oriented skein triple, as in Figure 1.3.

\\\%__’ J ‘\\h__’\'l %\
T, T T
-—— <~ <

_ < <
OS> == R

FiGure 1.3. Top: Three tangles T'y, T, Ty form an oriented skein triple
if they are identical except near a point, as displayed. Bottom: A specific
example of an oriented skein triple.

Theorem 6. There ezists a type DD homomorphism ID;,_: C/D\r.ﬁD(TJF, n) — C/]-D\T/D(T_,n)
of (M, A)-degree (0,0) such that
- —~ 1] —~— 1
Cone(P; _) ~ CDTD(Tp,n) [0] {—5} ® CDTD(Ty, n) [1] {5}

as (M, A)-bigraded type DD structures. Analogous statements hold for type DA, AD, and
AA structures.

Again by taking the box tensor product, we obtain an oriented skein exact triangle for knot
Floer homology analogous to those in [31,34]. Suppose L., L_, and Ly are three oriented
links that are identical except near a point, so that they form an oriented skein triple.

Corollary 7. If the two strands of Ly belong to the same component, then there exists an
(M, A)-bigraded ezact triangle

o 5 HFK,(Ly,s) @ W — HFK, (L_,s) @ W
— (HFK ™ (L) ® V @ W)po1s — HFK, (L4, ) @ W — -+,

and if the two strands of Lo belong to different components, then there exists an (M, A)-
bigraded exact triangle

o 5 HFK(Ly,s) @ W — HFK.(L_, ) @ W
— Hyy ((CFK™ (Lo) /(Us — U1)) @ W, 8) — HFK., (Lo, 8) @ W — -+ ,

where m and s are the Maslov and Alexander gradings, respectively, V is a module of rank
2 with bigradings (0,0) and (1,1), and W is a module of rank 2 with bigradings (0,0) and
(—=1,0). Analogous statements hold for HFK.

Remark. Similar to the unoriented skein exact sequence, we expect but do not prove that
the sequence in Corollary 7 coincides with the ones in [31,34].
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To put Theorem 6 in the context of categorification discussed above, we briefly outline the
Reshetikhin—-Turaev construction, specializing to the case yielding the Alexander polynomial.
To the boundaries of an oriented tangle one associates a tensor product of copies of the
standard U, (gly; )-representation V' and its dual V*, and to the tangle a map between these
representations. The construction is combinatorial, decomposing a diagram D for a tangle
T into elementary pieces (cups, caps, and crossings), assigning morphisms to the elementary
pieces and defining Q(D) as the composition of these morphisms. The map Q(D) is an
isotopy invariant of the oriented tangle. Further, for the triple of oriented elementary tangles
T,, T, and Ty from Figure 1.2, () satisfies the skein relation

(1.1) Q(Ty) = Q(T-) = (¢ — ¢ HQ(Ty).
The ground ring here is C(q). If we present a link L as a (1,1)-tangle T, and set ¢* = t,
then it turns out that Q(77) = A(L)idy, where A(L) is the Alexander polynomial of L.

In [7], it is shown that tangle Floer homology categorifies the construction described
above—tensor products of copies V' and V* lift to categories of left type D modules over
the dg algebras associated to the boundaries of T', and the map Q(7) lifts to the functor

CDTA(T) ¥ —. In particular, Q(T'%)), Q(T!), and Q(Z¢') lift to CDTA(T), CDTA(T),
and CDTA(Tg), respectively. With this set-up, we have:

Corollary 8. The homotopy equivalence in Theorem 6 categorifies the skein relation in
FEquation 1.1.

Since tangle Floer homology shares some similarities with grid homology, our approach to
proving Theorems 2 and 3 is similar to that in [41], and our approach to proving Theorem 5
is similar to that in [36, Chapter 9]. In particular, all maps involved are combinatorially
computable.

Organization. We review the necessary algebraic background and the definition of tangle
Floer homology in Section 2. We prove the ungraded unoriented skein relation, Theorem 2,
in Section 3. We then determine the d-gradings in Section 4 to prove the graded skein
relation, Theorem 3. Theorems 5 and 6 are proven in Section 5.

Acknowledgments. The authors thank Robert Lipshitz and Vera Vértesi for useful con-
versations. The authors are also grateful to Robert Lipshitz and the anonymous referee for
many insightful comments and corrections on previous drafts. IP received support from an
AMS-Simons travel grant and NSF Grant DMS-1711100. Part of the research was conducted
while IP and MW were affiliated with Columbia University. IP thanks Louisiana State Uni-
versity, and MW thanks Rice University and Dartmouth College for their hospitality while
this research was undertaken.

2. BACKGROUND

2.1. Algebraic structures. We first review the underlying algebraic structures of tangle
Floer homology. We will only define the immediately relevant structures here, and refer the
interested reader to [26, Section 2].

Let A be a unital differential graded algebra (DGA) with differential d and multiplication p
over a base ring k of characteristic 2. In this paper, k will always be the ring of idempotents,
which is a direct sum of copies of Fy = Z/27Z. We will also write a - b to denote pu(a,b) for
algebra elements a,b € A, whenever no confusion can arise.
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A (left) type D structure over A is a graded k-module M equipped with a homogeneous
map

5 M — (A M)[1]
satisfying the compatibility condition
(d®idy) 06 4 (e ®idyy) o (idg @) 0 6 = 0.

It may be advantageous to represent this graphically:

! !

5t '
/ S ;51 = 0.
d o

The map 6 is called the structure map of M. Defining
5 M — (A% @ M)Ji]
inductively by
i ldM fOl" Z - O,
C(dy @6 ot fori>1

we say that M is bounded if for all x € M, there exists an integer n = n(x) such that
§'(x) = 0 for all i > n.

Let A and B be two unital differential graded algebras, with differentials d4 and dp,
and multiplications g4 and pp, over the base rings k and j respectively. (Recall that the

base rings have characteristic 2.) A (left-right) type DD structure over (A, B) is a graded
(k, j)-bimodule M equipped with a homogeneous structure map

& M — (A® M ® B)[1]
satisfying the compatibility condition
(da ®idy ®idg) 0 6 + (idy ®idy ®dp) 0 ' + (4 ® idy Rpup) o (idy ®F* ®idg) o §* = 0.

Graphically, this can be represented as:

/ N /\

Like for type D structures, we can define ¢° and the notion of boundedness analogously.
Type DD structures are the main objects of study in this paper. We will denote type DD
structures by calligraphic letters (e.g. M, N), and reserve M, N for the underlying (k, j)-
bimodules.

A morphism f: M — N of degree £ is simply a module homomorphism

fi M= (A® N B)[-(.
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(By abuse of notation, we use f to denote both maps above.) Given a morphism, we can
define its boundary 0f: M — (A® N ® B)[—{ + 1] by
Of =(pa ®@idy @ug) o (idy @y ®idp) o f + (4 ®idy @up) o (ids ®f ®@idp) o d3,
+ (dg ® idy ®idg) o f + (idy ®idy ®dp) o f,
or graphically,

/\,m //\BB AN

For convenience, although thls is not found in the literature, we w1ll use the notation
df : M — (A® N ® B)[—{ + 1] to represent the last two terms above:

Given two morphisms f: M — A of degree ¢; and g: N' — P of degree {5, where M, N,
P are type DD structures over (A, B), their composition g o f: M — P, of degree {1 + (s,
is defined as the map

gof: M —->ARP®B
given by
gof=(pa®idp®ugp)o (idas®g®idp)o f,

,UB

Note that the structure map 63,: M — (A ® M ® B)[1] can be thought of as a morphism
511 M — M, and so we can consider the morphisms fodl,: M — N and 6,0 f: M — N
also. In this notation, we can write

8f:5]1\,0f—|—f0511\4+df.

The above operations make type DD structures over (A, B) a differential graded category.
A type DD homomorphism (or simply a homomorphism) from M to N of degree ( is a
morphism satisfying 0 f =0. Graphically, this can be represented as

or graphically,

\Q< A

5M ‘
m e \
f | N / \ /
! ,uB MA !

For example, the zdentzty morphzsm Idy: ./\/ — ./\/ of a type DD structure A is the map that
sends x € N to [4®x® I, where 14 (resp. Ig) is the unit of the algebra A (resp. B). In the

context of tangle Floer homology, I, and I will be the sum of all primitive idempotents.
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Given a homomorphism f: M — N of degree ¢ between two type DD structures over
(A, B), the mapping cone Cone(f) of f is the type DD structure with underlying (k, j)-
bimodule M[¢ + 1] & N and structure map 511[ given by

dy(m,n) = (6),(m), f(m) + oy (n)).

Let f,g: M — N be two homomorphisms of degree I. A homotopy between f and g is a
morphism h: M — N of degree [ + 1 such that

Oh=f+g,
or graphically,

|
S5t
O
+

ArATYATOV

Note that h is a morphism, but not a homomorphism unless f = g. We write f ~ g if f and
g are homotopic. We say that two type DD structures M, N are homotopy equivalent, and
write M ~ N, if there exist grading-preserving type DD homomorphisms f: M — N and
g: N'— M such that go f is homotopic to Id, and fog is homotopic to Idy via homotopies
of degree 1. In the full subcategory of type DD structures that are homotopy equivalent to
bounded ones, the notion of homotopy equivalence coincides with an appropriate notion of
quasi-isomorphism [26, Corollary 2.4.4]. All algebraic structures in bordered Heegaard Floer
homology and tangle Floer homology are homotopy equivalent to bounded ones; this can be
seen by choosing an admissible Heegaard diagram that defines the same bordered 3-manifold
or tangle [26, Lemma 6.6].

Although we will only focus on type D—in fact, type DD structures—we should mention
that there are also type A structures over a differential graded algebra A, which (in the
present context) are just differential graded modules over A. By extension, there are also
type DA, AD, and AA structures. There is a bozx product (or box tensor) operation X between
a right (resp. left) type A structure M and a left (resp. right) type D structure N (at least
one of which is bounded), resulting in a chain complex M XN (resp. N'®I M) over Fy. The
box tensor is defined also for bimodules; for example, box-tensoring a type AD structure M
and a type AA structure N yields a type AA structure M X N. We refer the interested
reader to [26, §2.3.2].

We may treat A itself as a type AA structure; box-tensoring with A then turns a type DD
structure M into a type DA structure M X A. In fact, this defines a differential graded
functor from the full subcategory of type DD structures that are homotopy equivalent to
bounded ones to the full subcategory of type DA structures that are homotopy equivalent
to bounded ones. This functor is actually a quasi-equivalence [26, Proposition 2.3.18], im-
plying that it preserves quasi-isomorphisms. Corresponding statements hold for type AD
and type AA structures. Since the notions of quasi-isomorphism and homotopy equivalence
coincide for structures of any type given that they are homotopy equivalent to bounded
ones [26, Corollary 2.4.4], to prove Theorem 2, we need only prove it for type DD structures.

In our proof of Theorem 2, we will need to adapt to the setting of type DD structures a
lemma in homological algebra, whose version for chain complexes first appeared in [33].

AAZHeAb«——
e e
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Lemma 2.1. Let My, = {(Mg, 6}) trezysz be a collection of type DD structures over (A, B),
where A and B are both unital differential graded algebras over a base ring k of characteristic
2, and let fr: My — Mpiq, or: My — Mo, and Yy My — My be morphisms satisfying
the following conditions for each k:

(1) The morphism fi.: My — My.y1 is a type DD homomorphism, i.e.
fr. = 0;
(2) The morphism fry1 0 fir is homotopic to zero via the homotopy ¢y, i.e.
Jer10 fr + 0 = 0;

(8) The morphism fri20 @i+ @ri10 fr is homotopic to the identity Idy, via the homotopy

@Dk, i.€.
Jr+2 00 + @rr1 0 fi + Oy = 1dy, .
(A graphical representation of the conditions above is given in Figure 2.1.) Then for each k,
the type DD structure My, is homotopy equivalent to the mapping cone Cone( fy11).

M s fk\ ! \/

® / M\ {%\B / - /\ /

NB uA

/ﬂ / “*l\ é%k / ) /\ / ' /\

~ ¢ ~ ~

FIGURE 2.1. Graphical representations of the conditions in Lemma 2.1.

Proof. Observe that the mapping cone Cone(fy;1) is defined because fyy1 is a type DD
homomorphism, using Condition (1). It has underlying module Mj.1 & My, o, and structure
map
5}k+1(mk+1> Mpya) = (5li+l(mk+l)a Srerr(miga) + 51i+2(mk+2))-

Test width:

We may treat A itself as a type AA structure; box-tensoring with A then turns

To show that My, ~ Cone(frs1), we will define homomorphisms Gy : My — Cone(fri1)
and G}.: Cone(fr11) — My, and homotopies Hy: My — M, and H: Cone(fry1) —
Cone( fr41). For ease of reading, we provide a schematic diagram in Figure 2.2.



SKEIN RELATIONS FOR TANGLE FLOER HOMOLOGY 11

My — = Mg — = Mo k My — Miyo

Pk Ph+1 Pk

FIGURE 2.2. A diagram for the maps discussed in the proof of Lemma 2.1.
The mapping cone Cone(fr41) is boxed. The maps G, G}, Hg, and H, are
shown in red, blue, green, and orange, respectively.

We define Gj.: My, — Cone(fy4+1) and G}.: Cone(frr1) — My as follows:
Gr(my) = (fr(mu), ox(my)),
G(mes1, Mig2) = Orsr (M) + frro(Miya).
We first claim that Gy and Gj, are type DD homomorphisms. Indeed,
OGr(my) = 5}k+1 o Gr(my) + Gy o 6 (my,) + dGr(my,)
= (01 © fe(ma), frrr o fr(ma) + 10 0 0r (M)
+ (fi 0 0 (mu), ox © 0 (mue)) + (dfic(my), dipr.(my,))
= (Ofe(mu.), fre1 o fr(mr) + Opr(my))
= (0,0),
where the last equality follows from Conditions (1) and (2). Similarly,
OG (M1, Miy2) = 0 © Gy, Miy2) + G 0 85, (M1, Miy2) + dGh(Mgeyr, Miy2)
= 0 © Prt1(Mis1) + 0 © frga(Mipya)
+ Yk+10 511+1(mk+1) + fet2 0 fepr(Mig1) + frga 0 51i+2(mk+2)
+ dprs1(mi+1) + dfyr2(my42)
= (fi+2 © fer1(mit1) + 01 (Myer1)) + O fpra(mis2)
= (]7

where again the last equality follows from Conditions (1) and (2).
We next claim that G o Gy ~ Id;, and G}, 0 G}, >~ Idcone(f,,,)- To show this, we define the
homotopy morphisms Hy: My — Mj and H: Cone(fy11) — Cone(fr11) as follows:

Hy(my.) = ¢(my),
Hy (Mg, Miy2) = (Va1 (Mis1) + Qoo (Mir2), Yigo (Mi2)).-
Then
OHy(my,) + Gy, 0 Gr(my) = 0w (mi) + prgr © fr(mi) + frrz 0 pr(my)
= Idy(my),

where the last equality follows from Condition (3). The homotopy G}, o G}, = Idcone(f,.,) 18
a little more tedious.

aHllf(mkH, mk+2) + Gy o Gk(mkﬂ, mk+2)



12 INA PETKOVA AND C.-M. MICHAEL WONG

= 5}k+1 o Hy(Myq1, Mpya) + Hy 0 5}k+1(mk+1, Myer2) + dH (M1, Micyo)
+ G 0 G(Mir1, Mi12)
= (Op41 © Vrr1 (Mpei1) + Oy © Preva(Mia),
Fra1 © U1 (Mpgi1) + frrr © Prra(Mmir2) + 04y © Vi (Miy2))
+ (Vg1 © Oy (Mis1) + Prs2 © fra1 (Mig1) + Crg2 © g o (Mipya),
V2 © fr1(Mis1) + Vrgz © O o (Mis2))
+ (dpg1 (Mig1) + dpra(Mit2), dbro(Miy2))
+ (fk © @rg1(Mit1) + fr © fea2(Mrs2), Ok © Grg1(Mps1) + 0k © frra(Mpy2))
= ((fr 0 @rg1(Mps1) + @ri2 © fror1(Mpg1) + OV (Miygr))
+ (fr © frra(Mry2) + Oppra(mpga)),
(frs1 © Ora2(Mit2) + 0k © frepa(Miy2) + OVira(Mig2))
+ (0r © Prr1(Mis1) + fros1 © Vi1 (Mis1) + Vg2 © fror1(Mit1)))
= (Idgy1(mrs1), Idpra(mpra) + e (mas)),

where the last equality uses Conditions (2) and (3), and ny1: Myr1 — Myio is the mor-
phism

Ne+1 = Pk © Prt1 T fit1 © Vi1 + Ypep2 © frar.
Letting Ji: Cone(fxy1) — Cone(fry1) be the morphism

T (Mipeg1, Mpy2) = (Idggr (Mig1), Idgga(Mmig2) + M1 (M),
we see that Gy o G}, ~ Ji,. Observe also that Jj o Ji = Idcone(,,,)- But then

Jk =~ C¥]€OC¥;f = GkOIdk OG;C >~ GkO(G’;ﬂOGk)OCJ;f = (GkOG;)O(GkOG;) >~ JkOJk = IdCone(karl) .
This shows that G}, o G, ~ Idcone as desired. O

frt1)

Remark. In [33], a proof is given for the chain-complex version of this lemma. That proof
does not translate to the case of type DD structures, since it involves taking the homology
of the chain complexes. Instead, the proof we have presented here is the type DD version of
an alternative proof for the lemma in [16,27,33,41], which is known in the community but
not found in the literature.

In our proof of Theorem 5, we will also use another lemma in homological algebra, which
is the analogue of a well-known lemma for chain complexes.

Lemma 2.2. Let M, Ny, N, be type DD structures over (A, B), where A and B are both
unital differential graded algebras over a base ring k of characteristic 2. Let P: N7 — N5 be
a homotopy equivalence of type DD structures, and fori = 1,2, let f;: M — N; be type DD
homomorphisms such that

Pofi=rfa
Then Cone( f1) is homotopy equivalent to Cone( fs).

Proof. By definition, there is a type DD homomorphism P': N; — N such that P o P =
Idp, +0H; and P o P’ = Idy,, +0FH, for some morphisms H;: N; — N;. The mapping cone
Cone( f;) has underlying module M & N;, and structure map

03, (m, ) = (Spe(m), fi(m) + 63, (n2))
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We will define homomorphisms Fi: Cone(f;) — Cone(fy) and Fy: Cone(fy) — Cone(f;)
and homotopies ®;: Cone(f;) — Cone(f;); see Figure 2.3 for a schematic diagram.

Mo
i f2 S fa
Ny Q// NP

FiGURE 2.3. A diagram for the maps discussed in the proof of Lemma 2.2.
The vertical pieces form the mapping cones. The maps F}, Fy, ®;, and ®, are
shown in red, blue, green, and orange, respectively.

We define the morphisms F: Cone(f;) — Cone(fz) and Fy: Cone(fy) — Cone(f1) by
Fi(m,n1) = (Idp(m), P(n1)),
Fy(m, na) = (Idp(m), Hy o fi(m) + P'(n2)).
We first claim that F} and F5 are type DD homomorphisms. Indeed,
OFi(m,ny) = 6}, 0 Fi(m,ny) + Fy o 0j, (m,ny) + dFy(m,ny)
= (Om(m), fa(m) + G, 0 P(na)) + (O34 (m), P 0 fo(1m) + P 0 by, (1))
+ (d1da(m), dP(na))
= (0,0),
where the last equality follows from P o f; = f5, the fact that P is a homomorphism, and
daly = dglg = 0. Similarly,
OF3(m,ng) = 5}1 o Fy(m,ng) + Fy o 5}2 (m, ng) + dFy(m,ns)
= (Oj(m), fr(m) + 0, 0 Hyo fi(m) + dy, 0 P'(n2))
+ (Op(m), Hy o fr o dpy(m) + P o fo(m) + P 0 by, (n2))
+ (dIdp(m), d(FHy o f1)(m) + dP'(ns))
= (0, fi(m) + 8, o Hy o fi(m) + Hy o f1 08, (m) + P o fo(m)
+ dHy o fi(m) + Hy o dfi(m)).
= (0,%" o fo(m) + fi(m) + 0, 0 Hy o fi(m) + dH; o fi(m) + H; 0 dy, o f1(m))
= (0,P" o fo(m) +P o Po fi(m))
= (0,0),

where the last four equalities follow, respectively, from the fact P’ is a homomorphism, that
f1is a homomorphism, that H; is a homotopy between Idy, and P’ o P, and that Po f; = fs.
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We next claim that Fy o F1 =~ Idcene(s;) and Fy o Fy =~ Idcene(s,)- To show this, we define
the homotopy morphisms ®;: Cone(f;) — Cone(f;) for i = 1,2, as follows:

®1(m, n1) = (0, Hi (1)),
Py (m, o) = (0, Ha(ny)).
Then
OP1(m,ny) + Fy o Fy(m,ny)
= 0;, 0 ®1(m, ny) + @1 0 6y, (m, 1) + d®y(m,n1) + Fy 0 Fy(m,ny)
= (0,05, © H1(n1)) + (0, Hy o fr(m) + Hy 0 Oy, (n1)) + (0, dHy (n1))
+ (Idm(m), My o fi(m) + P o P(n1))
= (Idp(m), Idn; (1))
= IdCone(fl)(ma 711),

where the third equality follows from the fact that P’ o P is homotopic to Idy, via H;.
Similarly,

0Py (m, ny) + Fy o Fy(m,ny)
= 5}2 o &y(m,ng) + Py 0 512 (m, ng) + d®y(m,ng) + Fy o Fy(m, ny)
= (0,3, © Ha(n1)) + (0, 3z 0 fo(m) + Tz 0 6y, (na)) + (0, dHa(ns))
+ (Idp(m), P10 Hy o fri(m) + P o P (ny))
= (Idp(m), Idp, (n2) + Ha o fo(m) + Py o Hy o f1(m)),

where the last equality follows from the fact that P o P’ is homotopic to Idy, via Hy. An
argument similar to the last part of the proof of Lemma 2.1 finishes the proof. O

2.2. Tangle Floer homology. Tangle Floer homology is an invariant of tangles, which
takes the form of a (bi)module such as the ones discussed in Section 2.1; see [37]. In this
section, we review the combinatorial construction of tangle Floer homology for tangles in
I x R?, with special focus on those tangles that are relevant to our proof.

An (m,n)-tangle (or simply a tangle) T is a properly, smoothly embedded, oriented 1-
manifold in I x R?, with boundary T = 9LT U °T, where 0LT = {0} x {1,...,m} x {0}
and OFT = {1} x {1,...,n} x {0}, treated as oriented sequences of points. A planar diagram
of a tangle is a projection to the I x R subset of the (x, y)-plane, with no triple intersections,
self-tangencies, or cusps, and with over- and under-crossing data preserved (as viewed from
the positive z direction). The boundaries of T' can be thought of as sign sequences

_aLT € {_I_? _}m’ aRT € {+> _}n’
according to the orientation of each point (+ if the tangle is oriented left-to-right, — if the
tangle is oriented right-to-left at that point). Given two tangles T'and T" with 0%T = —9LT",
we can concatenate them to obtain a new tangle T o T”, by placing 7" to the right of 7" and
scaling in the x direction by 1/2. We also consider unoriented tangles, and think of their
boundaries as sequences of (unoriented) points.

In [37], to a sign sequence one associates a DGA, and to a tangle a left-right bimodule

over the DGAs for the respective boundaries. First, we recall the definition of the algebra.
For more details, see [37, Section 3].
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Let P = (p1,...,pn) € {+,—}" be a sign sequence and let [n] = {0,1,...,n}. One
associates to P a differential graded algebra A~ (P) over Fy[Uy,. .., U;], where the variables
Uy, ..., U; correspond to the positively oriented points in P. The algebra is generated over
Fy[Uy, ..., U] by partial bijections [n] — [n] (i.e. bijections s — t for s,t C [n]), which can
be drawn as strand diagrams (up to isotopy and Reidemeister III moves), as follows.

Represent each p; by a horizontal orange strand [0, 1] x {i — %} oriented left-to-right if
pi = + and right-to-left if p; = — (in [37], those are dashed green strands and double orange
strands, respectively). Represent a bijection ¢ : s — t by black strands connecting (0,7) to
(1, i) for i € s. We further require that there are no triple intersection points and there are
a minimal number of intersection points between strands.

Let a : s; — t1,b : s3 — to be generators. If t; # so, define the product ab to be 0. If
t; = s9, consider the concatenation of a diagram for a to the left and a diagram for b to the
right. If there is a black strand that crosses a left-oriented orange strand or another black
strand twice, define ab = 0. Otherwise define ab = ([[, U;"")b o a where n; is the number of
black strands that double cross the i*" right-oriented orange strand. See Figure 2.4.

For a generator a, define its differential da as the sum of all ways of smoothing one black-
black crossing in a diagram for a locally, subject to the following rules. Any resulting diagram
with a black-black double crossing, or a double crossing between a black strand and a left-
oriented orange strand, is discarded. If a resulting diagram has a double crossing between
the i'" right-oriented orange strand and a black strand, it represents U;b, where the diagram
for b is obtained from this diagram by performing a Reidemeister II move to remove the
aforementioned double crossing. (This process may have to be iterated a number of times
before we obtain a diagram without double crossings.) See Figure 2.4.

=5 FEFFESF

FIGURE 2.4. The algebra A~ (P) for P = (—,+,+,—). Left: an example of
the multiplication. Right: an example of the differential.

The subalgebra of idempotents Z~(P) is generated by the identity bijections eg : s — s.

The algebra has a differential grading M called the Maslov grading, and an internal grading
A called the Alexander grading. They are defined on generators by counting crossings, as
follows:

2A(a) = X(a) +X(a) — A(a) = X(a),
M(a) = X(a)— < (a) —X(a).
Further,
A(Us;a) = A(a) —1,
Setting all U; to zero, we get a bigraded quotient algebra A(P) = A~(P)/(U; = 0) over
Fs.
Further collapsing the bigrading on A(P) to a single grading 6 = M — A, we obtain the J-
graded algebra A?(P). Observe that the orientation of the orange strands is not seen by this
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algebra, since all types of double crossings are set to zero, and the d-grading on generators
is given by

/la) +X(a) + 4 (a) + X(a)
2
/(a) +X(a)
5 :

5a) = Xla) -
= X(a) -

i.e. it counts the number of black-black crossings minus one half the number of black-orange
crossings. So if n = |P|, we use the shorter notation A% for A°(P). See Figure 2.5. As
we just pointed out, this algebra already does not detect the orientation on the sequence of
points. However, when studying unoriented tangles, we will work with the ungraded version
of this algebra, .»Z“(P), also denoted A".

=8 ¥E¥FE

FIGURE 2.5. The algebra AS. Left: an example of the multiplication. Right:
an example of the differential.

Given a tangle T', we can define various bigraded bimodules over (A~ (£9*T), A~ (£05T)),
where again the homological and internal gradings are denoted M and A, respectively. These
descend to d-graded bimodules over (A%Lﬂ, ‘Af{)RT\)’ for 6 = A — M, as well as to ungraded
bimodules over (.Af‘aLT‘, A%Rﬂ). The latter are also invariants of the underlying unoriented
tangles. In [37], an explicit description was given only of a type DA bimodule associated to
a multipointed bordered Heegaard diagram. However, one could similarly define a type AA,
AD, or DD bimodule. Here we explicitly define the type DD bimodule in the special cases
of interest; see [37, Section 4] for more details.

Let T be an (n,n)-tangle consisting of straight strands, or of one crossing, or of a cap
followed by a cup at the same height, possibly with straight strands on either side. Then
T can be represented by a genus-one multipointed Heegaard diagram H = (X, ¢, 3, X, Q)
such as the diagrams in Figure 2.6; see [37] for a complete definition. If we cut H through
the middle along a vertical plane, all relevant data is contained in the two resulting bordered
grids. We may occasionally refer to the two grids as the left grid and the right grid, based
on where they stand relative to each other when the diagram is drawn as in Figure 2.6.
Here, ¥ is a genus-one surface with two boundary components, 3 is a set of n + 1 circles
in ¥, a is a set of 2n + 2 arcs, and X and O are sets of n points labeled X;,..., X, and
O1,...,0,, respectively (we often omit the indices, both in figures and in writing). One
can see the tangle by connecting X to O markings in the complement of the g curves and
pushing the interior of the resulting arcs below the Heegaard surface, and connecting X and
O markings to the boundary of the diagram in the complement of the o curves so that the
X’s are endpoints and the O’s are starting points. The tangle is oriented so that the arcs in
the complement of the S curves flow into the O’s, and the arcs in the complement of the «
curves flow away from the O’s. See the first diagram in Figure 2.6.
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FIGURE 2.6. Examples of (n,n)-tangles that can be represented by genus-one
Heegaard diagrams, and their respective Heegaard diagrams.

Similarly, one can represent unoriented tangles by multipointed Heegaard diagrams with
only X markings (to get from a diagram for an oriented tangle to a diagram for the underlying
unoriented tangle, simply replace all O’s with X’s). See Figure 3.1 for example.

As seen in Figure 2.6, label the curves on H as follows. Label the « arcs touching the left

boundary by o, ..., al, and those touching the right boundary by of, ..., aZ, indexed by

their relative height, starting from the bottom. Label the  circles by 0y, ..., 5,, indexed
from the outermost to the innermost.

One defines a left-right type DD structure CDTD™ (H) over (A~ (—=0*T), A~ (—0%T)) as
follows. As a module, CDTD™(H) is freely generated over Fyo[Uy,...,Us,] (where each U;
either corresponds to an O; € O or is a variable in the ground ring for A~ (—=0'T) or
A~ (—08T)) by the set G(H) consisting of tuples of intersection points x in a N B such
that there is exactly one point on each § and at most one point on each «. For x € &(H),
let of(x) = {i } af is occupied by x}, of(x) = {i|af is occupied by x}, of(x) = [n] \
o"(x), and oF(x) = [n] \ of(x). Define an (Z~(—0*T),Z~(—0"T))-bimodule structure on
CDTD™ (H) by

x if s = ol(x) and t = oF(x),
esXey =
’ 0 otherwise.

Denote ez, and ez, by eb(x) and ef(x), respectively.
We next describe a structure map

§': CDTD™ (H) — A~ (=0"T) ®7-(—orr) CDTD™ (H) ®7-(—anT) A~ (=0T
by counting the following types of embedded 2-chains in H:

(1) A rectangle r with boundary on e U 8. Given generators x and y, r connects X to
y if the two corners where Or jumps from an arc in 8 to an arc in « are points in
X, the other two corners are points in y, and x and y coincide elsewhere. Define
ab(x,r) = eb(x) and afi(x,r) = ef(x).

(2) A rectangle r such that along its oriented boundary we see 0¥, followed by af,
followed by f,,, followed by af. We say that r connects x to y if af NBm=x\y

and o N B,, = y \ x. Define a*(x,7) as the bijection from oL (x) to o (y) that sends
i to j and is the identity elsewhere, and define af(x,7) = e£(x).
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(3) A rectangle r such that along its oriented boundary we see 9%, followed by af,
followed by 3,,, followed by aff. We say that r connects x to y if aff N f,, = x\'y

and oM B,, = y \ x. Define afi(x,7) as the bijection from of(y) to of(x) that sends
j to i and is the identity elsewhere, and define a”(x,r) = ek(x).

(4) A rectangle r with boundary two entire arcs o and o} and two arcs in 9"X. We say
that r connects x toy if x =y and i, j ¢ o”(x). Define a”(x,r) as the bijection with
domain o (x) that exchanges i and j and is the identity elsewhere, and a®(x,r) =
ef(x).

(5) Defined analogously to 4, but interchanging the superscripts L and R throughout.

For types 1-5, define U" as the product of all U, with corresponding O, in the interior of 7.

(6) For i < j and m < n, the union r of two rectangles of the second type, such that one

has boundary on o, B, af, 0%, and the other has boundary on of, £,, af, 9"%.

We say that r connects x to y if {a}NBy, afNG,} = x\y and {o/NBn, of, B} = y\x.

(7) Fori < j and m < n, the union r of two rectangles of the third type, such that one has

boundary on af, B, alt, OL'Y, and the other has boundary on o, 3,, af, oy, We

say that r connects x toy if {af'N B, afNB,} = x\y and {af NSy, off, 6.} = y\x.

For types 6 and 7, define a”(x,r) = ek(x) and a®(x,r) = efi(x). Also define U" as the

product of all U, with corresponding Oy in the interior of r, and all U; corresponding to

positively oriented points above the i** and below the j* point in —9*T (if type 6) or in
—ORT (if type 7).

A 2-chain of one of the first five types is empty if IntrNx = () and Int rNX = (). A 2-chain
of the sixth or seventh type is empty if, in addition to the requirement that Intr Nx = ()
and Intr N X = (), the interior of its complement in the strip bounded by a* and af, or aff
and af respectively, contains j —¢ — 1 points in X and j —¢ — 1 points in x. From now on,
we abuse notation and call each of the seven types of 2-chains “rectangles”, even though the
latter two are, strictly speaking, unions of such. Define

§(x) = Z Z a“(x,7) ® Uy ® a®(x,7).

YEG(H) T empty
r connects x to y

FIGURE 2.7. Left: Rectangles of types 2 (green) and 3 (grey). Center: Rect-
angles of types 4 (green) and 5 (grey). Right: Rectangles of types 6 (green)
and 7 (grey). All generators are omitted. Note the shading at the back of the
center and right diagrams.

The above types of 2-chains are the projections onto X of certain embedded curves in
Y x I xR that would appear in a holomorphic interpretation of (minus) tangle Floer homology.
In this perspective, the algebra elements a(x, r) and af(x, r) correspond to Reeb chords that
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arise as the intersection of the 2-chains with the left and right boundaries of H respectively.
Note that, as in bordered Floer homology [25], the Reeb chords on the left boundary get
the reverse orientation while those on the right boundary inherit the usual orientation; the
definitions of a’(x,r) and af(x, r) for types 2-7 above take into account the resulting subtle
asymmetry. For further details, we refer the reader to [37].

Next, we restate the definition of the bigrading on generators from [37, Section 3.4] in
terms of the Heegaard diagrams described above. Gradings will not be used until Section 4,
so the reader only interested in the ungraded version of the skein relation should feel free to
skip to the end of the proof of Lemma 2.4.

Let H = (3, a, 3,X,0) be a Heegaard diagram as above. Let X® and X be the subsets
of X that lie in the right or left grid, respectively. Define Of and QF similarly, and for
x € G(H) define x and x similarly. We say that af N B; has coordinates (i,7). For a
point p € X®UOF, we say that p has coordinates (i + 1, j + 1) if it lies between j3; and f;4
and between aff and of, ;. Given two finite sets S,T° C R?, let inv(S,T) be the number of
pairs (s1,s2) € S and (t1,t3) € T with s; < t; and sy > 5, or s1 > t1 and sy < t5. For a set
S C R?, define inv(S) = %inV(S, S). Thinking of points in the right grid in terms of their
coordinates, define

M) = inv(x®) — inv(x®, 0%) + inv(0QF),
2A(x") = inv(x®, X)) — inv(x®, 0F) + inv(0F) — inv(XF) — | X
Define coordinates for points in the left grid analogously, and define
M(x") = —inv(x*) + inv(x*, OF) — inv(OF) — |OF|,
2A(xH) = —inv(x", XP) +inv(x?, OF) — inv(QY) + inv(XE) — |OF).
The Maslov grading of x is given by M(x) = M(x®) + M(x"), and the Alezander grading
of x is given by A(x) = A(x®) + A(x*). By further defining
AUix) = A(x)—1,
MUx) = M(x)—2.
we get a bigrading compatible with the structure map on CDTD™ (H).

Lemma 2.3. For the left-right type DD structure CDTD™ (H) defined above, §* lowers the
Maslov grading by one, and preserves the Alexander grading.

Proof. Suppose x and y are connected by an empty rectangle r of the third type above
(such that along its oriented boundary we see 973, followed by alf, followed by 3,,, followed
by aff), let a be the corresponding algebra element a(x,r) € A~(=0"T), and let U" be
the corresponding power of U, variables. The rectangle r contributes to the map §*(x) =
eb(y) @ Uy ® a. We compute the bigradings of a, x, and y below.

Assume i < j; the proof when j > i is analogous. Let t be the number of a-arcs between
aff and off unoccupied by y, and let s be the number of O’s between o) and aff (so the
number of X’s between ol and af is j—i—s). Then s and j — i — s are the number of the
coordinates i + 1 through j in —9%T that are positive and negative, respectively, so

X(a) = t,
j—i—S,

Ala) +X(a) = s,

\\
—
Q
SN—
_|_
s
=
N—
I
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and we have

M(a) = t—j+i+s,

Ala) = A

2
Next, we compare the inversions used in the definition of the bigrading for x and for y.

For example, inv(y®) — inv(x%) is given by counting the points in x Ny that are in the
interior of the strip bounded by aff and a]R with negative sign if they are in r (there are no
such points, as r is empty) and with positive sign if they are not in r. So

inv(y®) —inv(x®) =j —i—t — 1.
Similarly, letting p be the number of O’s in r, we obtain
inv(y®, 0%) — inv(x®,0%) = (s—p)—p=s—2p,
inv(y®, X) —inv(x®, X) = j—i—s.
All other counts in the definition of the bigrading are the same for x and for y, therefore
Mx)-MU"y) = Mx)—-M(y)+2p=—j+i+t+1+s=M(a)+1,
1= J+2s—=2p

Ax) —AUY) = Alx)—Aly)+p= 5 +p = Aa).

This completes the proof of the lemma. O

As an immediate consequence, it follows that §' lowers the d-grading by one.

Similarly, one could define a type AA structure CATA™ (H) over (A~ (0LT), A=(97T)),
or a type AD structure CATD ™ (H) over (A~ (9T), A~(—0"T)), with the same underlying
bigraded module as for CDTD™(H) and CDTA™ (H).

Lemma 2.4. For the left-right type AA structure CATA™(H), the multiplication maps are
compatible with the Maslov grading, and they preserve the Alexander grading.

For the left-right type AD structure CATD™(H), the structure map &5 lowers the Maslov
grading by one and preserves the Alexzander grading, and the structure map 61 preserves the
bigrading.

Proof. The proof is analogous to that of Lemma 2.3. O

One can also define CDTD™(H), as well as CDTA™(H), CATA™ (#), and CATD ™ (H), for
a more general combinatorial bordered Heegaard diagram # for a tangle, see [37, Section 4].
Setting all U; variables to zero yields an (M, A)-bigraded type DD structure CDTD(H)

over (ﬁ(—aL T), .Z(—@RT)). This corresponds to only counting rectangles which do not con-
tain any O’s and are of the first three types above. Further collapsing the bigrading to a single

grading 6 = A — M yields a d-graded type DD structure CDTD? (H) over ('Afé)LT\’ A%RTQ'

Proposition 2.5. The structure C/I)ﬁ)é(ﬂ) 15 a type DD structure. Moreover, the structure
map lowers the d-grading of homogeneous generators by one.

Proof. By Lemma 2.3, C/D\T/D(H) is a type DD structure for which §' lowers the Maslov
grading by one, and preserves the Alexander grading. The claim now follows directly from

the definition of C/]-)\TED‘S(H). O
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Similarly, one can represent an unoriented tangle T" by a Heegaard diagram # that only
has X markings and no O markings. Given a Heegaard diagram 7 for an oriented or an

unoriented tangle, define an ungraded type DD structure CT)H“E)“(’H) over (Ajprr Algrr)

e~

by counting rectangles in the same way as in the definition of CDTD(H).

e~

Proposition 2.6. The structure CDTD"(H) is a type DD structure.

Proof. For any Heegaard diagram H for an oriented or an unoriented tangle 7', there is some
choice of replacing some X’s with O’s to obtain a Heegaard diagram H' for an oriented tangle

T’ that is the same as 7" as an unoriented manifold. By [37], C/]-D\T/D(H’ ) is a type DD struc-

ture. But (%“(H) and (%(H’) are clearly (ungraded) isomorphic, so CDTD*(H') is
a type DD structure too. 0

Proposition 2.7. Let H1 = (X1, a1, 81, X1,01) and He = (39, g, By, Xo, Qy) be Heegaard
diagrams for the same oriented tangle, with |X; U Q4| — [Xo U Qg =2k > 0. Then

CDTD®(H,) ~ CDTD®(Hs) g, VO

where V- = Fy @& Fy is supported in 6-grading 0.

Similarly, let H1 = (31, 1,81, X1,01) and He = (X2, g, 85, X5, 0y) be Heegaard dia-
grams for tangles Ty and Ty, where the tangles may be oriented or unoriented. Suppose that
T, and Ty are the same as unoriented tangles and |X; U Q1| — |Xo U Qy| =2k > 0. Then

CDTDY(H,) =~ CDTD"(Hs) ®x, (Fy @& Fy)®*.

Proof. The first case follows directly from the fact that by [37], CDTD(#;) ~ CDTD(H,) ®
(Fo.0) ® F(_1,-1))®*, where F; ; is the vector space F in (M, A)-grading (i, j).

For the second case, replace some X'’s with O’s, or O’s with X'’s, if necessary, to obtain
diagrams H; for tangles 7, from #,, so that 7] and T} are the same as oriented tangles. Then

CDTD(H}) ~ CDTD(H})® (F(p.0) ©F(_1._1,)®*, so CDTD(H}) ~ CDTD*(H}) ® VE*, since
CDTD(H]) and CDTD%(#.) are ungraded isomorphic. Since CDTD’(H;) = CDTD?(H}),
the statement follows. O

Proposition 2.7 implies that if H; and H, are two diagrams for 7" with the same number
of markers n, then CDTD?(#H,;) ~ CDTD?(H3) and CDTD%(H;) ~ CDTD"(Hz). In view of

this, here and afterwards we use CDTD’(T,n) and CDTD%(T,n) to denote the homotopy
types of the structures arising from a diagram with n markers associated to a tangle T
We end this section by stating a version of the gluing theorem for tangle Floer homology:

Proposition 2.8. If T =T'oT", then
CDTD*(T, 7 +n") ~ CDTA’(T", ') & CDTD*(T", n"),
CDTDY(T,n’ + n") ~ CDTA(T", n’) ® CDTD*(T", n").

An analogous equivalence holds for any other pair of bimodules for which the box tensor
product is defined (e.g. a type AA and a type DA bimodule).

Proof. This is essentially [37, Corollary 12.5]. O
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Descrinti Type DD Associated Gradings
eserption Bimodule Algebras Endowed
Unblocked!, bigraded tangle Floer _ A= (=0T
bimodule of an oriented tangle T' CDTD™(T) A (=08T) M, 4
Fully blocked, bigraded tangle Floer e A(=0-T)
bimodule of an oriented tangle T’ CDTD(T, n) ﬁ(_aRT) M, 4

Fully blocked, d-graded tangle Floer —
bimodule of an oriented tangle T’ CDTD(T, n) A (—08T) = A%Rﬂ 0
o A\u aLT — Au
Fully blocked, ungraded tangle Floer EDTDY(T, n) ( ) 62| None

bimodule of an unoriented tangle T

AU(ORT) = Al

TABLE 2.1. A summary of the notation relevant to the four flavors of tangle
Floer homology discussed in this section.

Table 2.1 summarizes the notation from this section.

3. THE UNORIENTED SKEIN RELATION

Our strategy for proving Theorem 2 is to prove it first for the simplest case, where the
skein triple has one crossing, and then to apply a gluing theorem.

More precisely, fix integers n and ¢ with n > 2 and 1 < i < n. Let T¥ be the (unoriented)
elementary (n,n)-tangle that consists of one crossing where the strand with the higher slope
crosses over the strand with the lower slope, and there are ¢ — 1 horizontal strands running
below the crossing and n — i — 1 horizontal strands running above the crossing; let T! be
the resolution of T/ that results in only horizontal strands, and let T be the resolution of
T¢ that results in a cup and a cap, as in Figure 3.1. Up until the very end of this section,
we will be working with the type DD structures associated to these three tangles.

We draw three Heegaard diagrams Ho,, Ho, H1 associated to T, T, T respectively, with
all marked points being X'’s (since these are unoriented tangles); see Figure 3.1. In Section 4,
when we endow these tangles with orientations, we will be working with the same kind of
diagrams, but with both O’s and X’s. We label the a and [ curves for each diagram as in
Section 2.2. The number of a arcs is 2n + 2 and the number of § circles is n 4+ 1 in each
diagram. Next, we combine all three diagrams into one diagram to obtain Figure 3.2. Note
that Hoo, Ho, H1 share the same « arcs (2n + 2 in total) and marked points (i.e. the X’s),
and also all 3 circles but one. We label by §;  (dark blue), 8;o (green), £;1 (purple) the
three different circles corresponding to Hoo, Ho, H1 respectively.

IThe unblocked version of tangle Floer homology is not yet proven to be an invariant, as remarked in [37,
Section 1].
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= - -

FIGURE 3.1. Top: From left to right, the three elementary tangles T¢, T,
and T'. Bottom: The corresponding Heegaard diagrams H.., Ho, and H;.

\

FR

ati i

o ..égL_s “" ]

FIGURE 3.2. The diagram obtained by “combining” H.,, Ho, and H; so that
they share the same « arcs, marked points, and all 3 circles but one. Choosing
the dark blue, green, or purple circle, and forgetting the other two, gives Ho,
Ho, or Hq, respectively.

For ease of visualization, we cut open the Heegaard diagram along the indicated grey circle
in Figure 3.2, and also delete the non-combinatorial regions (“the forbidden regions” with
the light green arcs) to obtain Figure 3.3. What we call the “right grids” in Section 2.2
combine to give the right half of the diagram as drawn in Figure 3.2, or equivalently the top
half of the diagram as drawn in Figure 3.3. The “left grids” combine to give the left half of
Figure 3.2, or equivalently the bottom half of Figure 3.3.

We denote the underlying surface for the combined diagram by >, and let the common
a and [ curves inherit their labels from H.,, Ho, and H;. Recall, for example, that the
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BR FR
( cn . Cn )
U
Vo
BR FR
aBRZ < cz- Ci > aFRE
Uoo
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Br| * R P
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¢ Co . 1 % )

> aFLZ
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;L‘377 S /6)1"1 6,'700 337'_0 C 30

FI1GURE 3.3. The combined diagram for the three elementary tangles, ob-
tained by cutting open the diagram in Figure 3.2 along the indicated grey
circle and deleting the non-combinatorial regions.

af’s are the a arcs that intersect the left boundary in Figure 3.2, and the af’s the right
boundary. Note also the positions of o, aff and 3 ; in particular, 3; «, Bi0, 8i1 are between
Bi—1 and Bi11. We write al = {af}?zo,aR = {af}?zo, and o = ol U a®. Likewise, for
k - {OO, 0, 1}, we Write Bk = {50, Ce ,52‘_1, 51'7]“ 51'_,_1, Ce ,ﬁn}, and ﬁ = /Boo U ,60 U Bl-

We introduce a couple of more labels that we will use later. The front half and back half
of 0%, as seen on Figure 3.2, are denoted 97%Y and 9P%Y respectively, and translate to
the top right edge and top left edge of the diagram in Figure 3.3, respectively. Similarly, we
denote the front and back sides of 9% by 97LY and 9PLY, respectively. We let

it =alnoty, it =alfNorry,
Pl =alnoPly, PR = o noPRy,

Last let u; and v;, be the two intersection points in ;5 N f5; x+1, so that wy is to the left of
vk as seen in Figure 3.3; in other words, uy lies on the boundary of the unique annulus in
¥\ B with no X’s in it.
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We let CDTD"(Hy) be the type DD structure associated to Hy, for each k € {o0,0,1};
these are type DD structures over (.»Z“(@LT,SZ), .Z“(@RT,SZ)) = (A¥, A%). We also endow the
set {00,0,1} with an action by Z/3Z by identifying oo with 2, so that co +1 = 0 and
14+1=o00.

In this setting, Theorem 2 will follow from the following proposition:

Proposition 3.1. There exists a type DD homomorphism fy: C/D'\F/D“(’Ho) — Cf)ﬁ)“(ﬂl)
such that o o o

CDTD"(Ho) ~ Cone(fo: CDTD(Hy) — CDTD"(H,))
as type DD structures.

From now on, we will write M, = (j/b\T/D“(Hk) To prove Proposition 3.1, we will use
Lemma 2.1. We shall define the morphisms to which we will apply Lemma 2.1, fi: My —
Mii1, 050 My — Mo, 0 My — My, by counting polygons.

Definition 3.2. Given x € S(Hy) and y € S(H,) (where k, ¢ € {00,0,1}), a polygon p
from x to y is an embedded disk in the surface ¥, which we also call p by abuse of notation,
satisfying the following conditions:

(1) The boundary of p lies on the « curves, [ curves and the boundary of ¥: dp C
alUBUoy;

(2) The interior angles of p are all acute;

(3) If we write 9°p = dp N B, then

9(9p) =x —y,
where the orientation of p, and hence that of dp, is inherited from X;

(4) Traversing each connected component of d°p in the inherited orientation, §;}, is
always followed by 3; r—1. In other words, if u is a vertex of p, then the “east-west”
multiplicity of p is greater than its “north-south” multiplicity; similarly, if v, is a
vertex of p, then the “north-south” multiplicity of p is greater than its “east-west”
multiplicity.

A polygon p from x and y is empty if the interior of the embedded disk does not intersect
any components of x (or equivalently y), and also does not intersect X.

It may be helpful to note here that in the proofs that follow in this section, wu; and vy
cannot arise as the shared corner of two polygons.

In Heegaard Floer homology, there is a more general notion of a domain, which is a more
general 2-chain together with the initial and terminal generators. In this paper, the domains
that we investigate are always juxtapositions of multiple polygons: Given a polygon p from
X to y, and a polygon p’ from y to z, we can form the juxtaposition pp’, which is a domain

from x to z. The underlying 2-chain of p % p’ is the sum of the underlying 2-chains of p and
/

p.
To clarify (following [36]), when we speak of a domain, we always think of it as the

underlying 2-chain together with the initial and terminal generators x and y. So if (x,y) #
(x',y), a domain from x to y is viewed as different from a domain from x’ to y’, even if
the underlying 2-chains are the same. The underlying 2-chain is called the support of the
domain.

Fix a domain p. Like 8°p, we can similarly define 0“p = dp N a, 0%p = Op N OFY, and
0fp = Op N OFY. Then 0%p, 0°p, 0Fp, OFp inherit an orientation from dp so that dp =
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0% + 9%p + 0Fp + 0fp. We say that p is a left-bordered domain if 0Fp # 0, right-bordered
domain if 0fp # 0, two-bordered domain if it is both left-bordered and right-bordered, and
interior domain if O¥p = 0ftp = 0. (In [25,26, 37], interior domains are called provincial
domains instead.)

As a warm-up example, we express the rectangles in the definition of §; (for CDTD" (Hi))
as defined in Section 2 in the present language. For CDTD™ as in Section 2, the structure

e~

map counts rectangles of seven types; however, since we are only dealing with CDTD",
only rectangles of the first three types are counted. In fact, in our present context, for
x,y € 6(Hy), a rectangle from x to y is just a polygon from x to y whose boundary
consists of four oriented segments. The structure map d; then counts empty rectangles.
Specifically, for x,y € &(H;.), denote the space of empty interior rectangles from x to y by
Reth’Int (x,y), the space of empty left-bordered rectangles from x to y by Reth’L (x,y), and
the space of empty right-bordered rectangles from x to y by Reth’R(x, y). Denote the union
of these three spaces, the space of empty rectangles from x to y, by Rect;(x,y). Now

(1) if r € Recty™ (x,y), define a®(r) = ef(x) and a®*(r) = e} (x);
(2) if r € Rect)™(x,y), then the oriented arc @%r is either an arc on &% or an arc on

9PF%. In the former case, it goes from cf* to ci’, for some j; > jo; in the latter

1
CszL, for some j; < jo. In either case, define a”(r) to

be the bijection from of(x) to oL (y) that sends j, to j; and is the identity elsewhere.
Define a'(r) = et (x);
(3) if r € Recty™(x,y), then the oriented arc O%r is either an arc on 7FY or an arc on
OPEY.. In the former case, it goes from chl 7 to ch2R, for some j; < js; in the latter
case, the arc goes from chlR to cﬁR, for some j; > jo. In either case, define af*(r) to
be the bijection from of(y) to of(x) that sends 7; to j, and is the identity elsewhere.
Define a”(r) = ek (x).

Then we can write 6} : My — A* @ M, @ A" as
G =Y Y d(reyed().

yES(Hy) reRecty (x,y)

case, the arc goes from chlL to

We now turn to defining the polygons to be counted in our maps fi, px and V.

Definition 3.3. Let x € &(Hy).

(1) For y € S(Hg11), a triangle from x to y is a polygon from x to y whose boundary
consists of three oriented segments. Note that triangles are always interior domains.

(2) Fory € 6(Hy11), a pentagon from x toy is a polygon from x to y whose boundary
consists of five oriented segments. Note that a pentagon can be a left-bordered,
right-bordered, or interior domain.

(3) For y € &(Hgrio), a quadrilateral from x to y is a polygon from x to y whose
boundary consists of four oriented segments. Note that quadrilaterals are always
interior domains, and always empty.

(4) For y € &(Hy42), a hexagon from x to y is a polygon from x to y whose boundary
consists of six oriented segments. Note that a hexagon can only be a right-bordered
or interior domain.
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(5) Fory € &(Hy), a heptagon from x to y is a polygon from x to y whose boundary
consists of seven oriented segments. Note that a heptagon can only be an interior
domain.

We denote the respective spaces of each type of polygons by Trix(x,y), Penty(x,y), Quad,(x,y),
Hexy(x,y), and Hept,(x,y). We also write, for example, Pent} (x,y) for the space of empty
pentagons from x to y, and PentZ’L(x, y) and HeXZ’R(X, y) for the obvious spaces of left-
bordered and right-bordered domains. Triangles and quadrilaterals are called triangle-like
polygons; rectangles, pentagons, hexagons and heptagons are called rectangle-like polygons.

We emphasize here that x and y must be generators of the appropriate diagrams for these
spaces to make sense; for example, to mention HeXZ’Im(x, y), x must be in &(Hy) and y
must be in &(Hyyo).

Like rectangles, other polygons have algebra elements associated to them.

Definition 3.4. Let p be a polygon from x to y, where x and y are generators in their

respective type DD bimodules; then a”(p) and a(p) are defined as follows.
(1) Ipr is interior, then define al(p) = ef(x) and a’(p) = e&(x). (Recall that ek (x) =
ep(y) and efj(x) = ef5(y).)
(2) If p is left-bordered, then the oriented arc 9*p is either an arc on 9**Y or an arc on
OPLY.. In the former case, it goes from cflL to cf;L, for some j; > jo; in the latter

case, the arc goes from chlL to ch2L, for some j; < jp. In either case, define a”(p) to

be the bijection from o (x) to o*(y) that sends js to j; and is the identity elsewhere.
Define af(p) = ef¥(x).

(3) If p is right-bordered, then the oriented arc 9fp is either an arc on 9% or an arc
on 0PFY. In the former case, it goes from cflR to cjl“;R, for some j; < jo; in the latter

BR BR
case, the arc goes from ¢;™ to ¢,

be the bijection from of(y) to of(x) that sends j; to j, and is the identity elsewhere.
Define a”(p) = ek (x).

for some j; > jo. In either case, define af*(p) to

With these definitions, we can now define the following polygon counts, which are mor-
phisms of type DD bimodules:

(1) The triangle count Ty: M — My is defined by
T(x)= Y > dmeyedp.
YES(Hy41) pETrif (x,y)
(2) The pentagon count Pj: My — M. is defined by
Pe(x) = Y > dp)eyedip).
yES(Hi41) pEPent} (x,y)
(3) The quadrilateral count Qy: Mj — My o is defined by
Q(x) = Y, > dp)eyedip).
YES(Hy42) pEQuady (x,y)
(4) The hexagon count Hy: My — Mo is defined by
Hex)= Y., > dpeyedip)

YEGS(Hp42) pEHex) (x,y)
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(5) The heptagon count Ky : M — My is defined by
Yo Y, dmeyedi()
yE€G(Hy) pHepty, (x,y)

We can finally define the morphisms f, ¢, and :
(1) The morphism f: M) — My is defined by

Je =Tk + P
(2) The morphism ¢y : My — M. is defined by
or = U + H.
(3) The morphism )y : My — My is defined by
VY = Ky

Lemma 3.5. The morphisms fy are type DD homomorphisms, i.e. they satisfy Condition (1)
of Lemma 2.1. In fact, Ty, and Py are both type DD homomorphisms.

Proof. The proof is similar to that of Lemma 3.3 of [41], which is in turn inspired by
Lemma 3.1 of [30]. In fact, we shall see that

Tk

Vl
| k
(3.6) / k+1\ / \ =0.
MAu MAg MAu MA“
P, 51 : :
. . P P
(3.7) 5,1“\ + P + / | + | \ -
N\ VERERN 3 3
HaAw o pay HAy i KA dag o day
Lo Lo [ ol

We first prove Equation 3.6. Fix a domain that can be written as a juxtaposition p * r
(resp. 7*p), where p is a triangle and r is a rectangle. Recall that triangles are always interior
polygons; this means that al(p) = ef(x) and a?(p) = ef(x), and so the algebra elements
that a juxtaposition p * r (resp. r * p) outputs are always a”(r) and a®(r). At least one of
these is an idempotent element, since the rectangle r cannot be two-bordered. Focusing on
p*r (resp. r x p), there are three cases; the polygons may be disjoint, their interiors may
overlap, or they may share a common corner.

If the polygons are disjoint or if their interiors overlap, the domain can be alternatively
decomposed as 1’ p' (resp. p’' * r’), where r and 7’ have the same support, and so do p and
p. Thus, the domain contributes twice to the sum in the first equation above. Since the
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base rings are of characteristic 2, the total contribution is 0. The output algebra elements
are obviously the same for both juxtapositions, since the underlying rectangles are the same
in the two canceling juxtapositions. All possibilities of p * r and r % p, where p and r have
overlapping interiors, are listed in Figure 3.4. In this and following figures, all possibilities
of composite domains are to be understood up to rotation by w. The reader may verify that
these lists are complete by examining Figure 3.3 and using basic planar geometry.

A A A
[ |

*&—O *a—3 *&—J

FiGURE 3.4. All possibilities of p x r and r * p, where p and r are a triangle
and a rectangle that have overlapping interiors, along with the alternate de-
composition. In each figure, the black dots represent a generator x, the brown
squares a generator y, the teal triangles a generator t, and the white dots a
generator z; the domain can be decomposed as p*r, where p € Tri’(x,y) and
p € Rect®™(y, z), or as r’ x p/, where 1" € Rect®™(x,t) and p’ € Tri°(t, z).

If, instead, the polygons p and r share a common corner, p % r (resp. r % p) always has
exactly one alternative decomposition as 7’ x p’ (resp. p’ % r’), where p and p’ are triangles
with distinct supports, and r and r’ are rectangles with distinct supports. See Figure 3.5.
Again, this domain does not contribute to the sum. It is also apparent from the same figure
that the intersections of the domain in question with both 9*% and 9% (which may or
may not be empty) are the same in both decompositions, and so again the output algebra
elements are the same. All possibilities where p and r share a common corner are listed in

=, LA

F1GURE 3.5. The two figures on the left show the two decompositions of the
same interior domain; the first figure decomposes the domain into r * p, where
r € Rect>™(x,y) and p € Tri°(y, z), while the second figure decomposes the
domain into p’ * 7/, where ' € Tri°(x,t) and p’ € Rect>™(t,z). The two
figures on the right show a similar decomposition for a bordered domain.

We now turn to proving Equation 3.7. Fix a domain that can be written as a juxtaposition
p*r (resp. r * p), where p is a pentagon and r is a rectangle. There are four cases this time:
The two polygons may be disjoint, their interiors may overlap, they may share exactly one
common corner, or they may share exactly one edge and two corners. The first three cases
are similar to the cases with triangles. Note, however, that there is an additional possibility
in the case where p and r share exactly one common corner: the alternative decomposition
is not necessarily r’ * p’ (resp. p’ * '), but is sometimes p’ * 7’ (resp. 7’ x p’); see the fourth
figure from the left in the top row of Figure 3.8. All possibilities for the second case and the
third case are listed in Figures 3.7 and 3.8 respectively.
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b o [ & it X

FI1GURE 3.6. All possibilities of pxr or rxp, where p and r are a triangle and a
rectangle that share a common corner, along with the alternate decomposition.
In each example, the teal cut gives one decomposition of the domain, and the
brown cut gives the canceling decomposition.

T

FiGURE 3.7. All possibilities of p x r and r * p, where p and r are a penta-
gon and a rectangle that have overlapping interiors, along with the alternate
decomposition.

o T LT T
il M R
W] Y

FiGURE 3.8. All possibilities of pxr and r * p, where p and r are a pentagon
and a rectangle that share exactly one common corner, along with the alternate
decomposition.

The last case, where the two polygons share exactly one edge and two corners, can only
occur if both p and r are right-bordered (or left-bordered). Let us illustrate this case more
closely by the following example.
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R _ R o———
Yjg T / / Y /
R R
% Qb fremes
" . = j2< Y day
—
p
aff ol &——
a®(r) a(p) a”'(r)-a®(p) a(pf)  daga(p)

FIGURE 3.9. Left: The domain p x r. The two algebra elements a'(r) and
a®(p) in A* multiply to a non-zero algebra element. Right: The same domain,
considered as a single pentagon p’. The differential of the algebra element
a®(p') is the same algebra element as a(r) - af(p). The generator x is repre-
sented by a black dot, y by a teal triangle, and z by a white dot.

Consider the left of Figure 3.9. Here, the generators are x € S(Hy) and y,z € &(Hii1),
and the relevant components of x,y, z lie on aﬁ, ag, aﬁ respectively. There is a pentagon p
from x to y, and a rectangle r from y to z. This gives us a term in 9P (x) that is illustrated
in Figure 3.10a. At first glance, the domain p % r seems to contribute no other terms in
0Pk (x); however, upon closer inspection, we notice that the domain p’ = p * r is itself a
pentagon! This means that el (x) ® z ® af(p') is a term in Py (x). Furthermore, note that

since there is a pentagon p from x to y, ag must be unoccupied by x, and so we must have
J2 € O_R(X). For simplicity, let us assume that there are no other j with j; < 7 < j3 such that
j € ofi(x). Then the algebra element a’*(p) is exactly as shown in the right hand side of
Figure 3.9, and we can take its differential to obtain d A%aR(p’ ). This gives us another term
in 9P,(x), as in Figure 3.10b. Note that d.a®(p’) = a®(r) - af(p), and so we see that the
two terms above cancel out in this simple case.

X
chx) Y af(p) x
O | Py
a SN
ep(x) 1 a(r) i a®(p')
/ | \ | .
HAy | HAu | d Au
! : ! U
ep(x) z  af(r)-a®(p) ep(x) z d gua™(p')

(A) The term in 0Py (x) arising from pxr.  (B) The term in 9Py (x) arising from p'.

FIGURE 3.10. Two terms in 0P, (x) that cancel each other.
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In general, there may be other j’s with j; < j < js such that j € of(x). If there are
m such j’s, then dua®(p’) is a sum of m terms, one for each j. See Figure 3.11 for an
illustration. This means that Figure 3.10b now represents m terms in 0P(x). Each of
these terms corresponds to a decomposition of the domain p’ into some p * r or r * p, as in
Figure 3.9, and consequently cancels with a term as in Figure 3.10a. The situation when p’

is left-bordered is completely analogous.
Z by i i
. + / + |
_+_
-

— :
va |
/S

FIGURE 3.11. Left: A pentagon p’ from the black dot x to the white dot z.
The algebra element af'(p’) is displayed below. Right: Decompositions of p’
into p * r or 7 x p, with the corresponding algebra elements a(p) - af*(r) or
afi(r) - a®(p). Note that d4xa”(p) is equal to the sum of these elements.

We have thus proven Equations 3.6 and 3.7. Since Equation 3.7 immediately shows that
0P = 0, we see that Py is a type DD homomorphism. The left-hand side of 3.6 differs from
9Tk by two terms involving d 4». However, since all triangles p are interior, a*(p) and a®(p)
are both idempotents, and so d aua’(p) and d 4ua®(p) are necessarily zero. Therefore, we see
that 0P, = 0, and T} is also a type DD homomorphism. O

In the proofs of the following lemmas, in which we prove that our maps satisfy the remain-
ing conditions of Lemma 2.1, we will again be considering domains of the form p * p’, where
p and p’ are different polygons, showing that such juxtapositions cancel each other. Often,
as in the previous proof, p and p’ may be disjoint, or they may have overlapping interiors.
In these cases, the domain can also be decomposed as p’ * p, and so does not contribute a
term to the morphisms.

The case where p and p’ share an edge and two corners also arises frequently. In this case,
p and p’ are both bordered polygons. We can always handle such domains as in the proof of
the previous lemma, canceling terms as in Figures 3.10 and 3.11.

Therefore, from now on, we shall omit all domains described in the previous two para-
graphs, and only focus on the case where p and p’ share exactly one common corner.

Most of the time, as before, a domain that can be written as a juxtaposition pxp’ can always
be written as exactly one alternative juxtaposition p” x p”’, and the two terms cancel out.
However, a new situation arises in the proofs of the following lemmas that was not present in
the proof of Lemma 3.5. There are now some special cases, in which a juxtaposition resulting
in one domain may cancel a juxtaposition resulting in a different domain! We shall discuss
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all special cases and provide figures in each lemma. We shall also provide a table in each
lemma that shows all cancelations, including the special cases. For the expert reader, the
existence of such special cases is not uncommon in multipointed Heegaard Floer theory.

In each upcoming proof, we will enumerate all relevant juxtapositions of polygons. To
facilitate the enumeration, we now set up some notation to help us categorize polygons.

b e

X
~
X

XX

<

FIGURE 3.12. Left: The annuli s and d are lightly shaded. The s-height (resp.
d-height) of a domain p is the sum of the multiplicities of the dark pentagonal

regions on the left (resp. right) in the support of p. Center: An sd-domain of
s-height 2 and d-height 1. It admits two decompositions as pxp’ € P, 0P, with

path R; o, Coo 20, Lo (as reflected in the shading), and as 7 p” € H; 0]

with path R @) Ly @) Ly. Right: The light domain is a rectangle of

type o, and the dark one is a rectangle of type sd. Both rectangles have path
Cy LN Cy, and their s- and d-heights are both 0.

We define s (resp. d) to be the unique annulus in 3\ 3 whose boundary contains the points
ug (resp. vy). See the left of Figure 3.12. Observe that s\ (s N «) has 2n + 2 connected
components, three of which are pentagonal regions. Given a domain p, we define the s-height
of p to be the sum of the multiplicities of each of these pentagonal regions in the support of
p. Likewise, d \ (d N «) has three connected components that are pentagonal regions, and
we define the d-height of a domain p to be the sum of the multiplicities of each of these
pentagons in the support of p.

For a fixed k € {00,0, 1}, the module M}, splits as a direct sum of modules M}, = Ly @®
C ® Ry, where Ly, is spanned by those generators in &(Hy) whose 3; x-component lies on the
boundary of the annulus s, R is spanned by the generators whose f3; ;-component lies on
the boundary of the annulus d, and C} is spanned by the remaining generators. Visually, the
points in @M (00U BioUPi1) lie on three distinct vertical lines, as seen in Figure 3.13; then
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FIGURE 3.13. Suppose we have a generator x € &(Hy). If x has a component
on one of the black dots, then x € L;. The brown squares correspond to C},
and the teal triangles to Rx. Note that x has exactly one component on
Bioo U Bio U Bin, so these three cases are mutually exclusive.

the modules L, C, and Ry are spanned by the generators that intersect the left, central,
and right line, respectively.
Furthermore, we say that a domain p is of

(1) type o if pN(sUQd) = 0;

(2) type sif pNs# P and pNd =0

(3) typedif pNs =10 and pNd+#P; and

(4) type sd if pNs # (0 and pNd # 0.
We will also use the words s-domains, d-domains, etc. to describe domains as appropriate.

If p is a polygon from x € M} toy € M;,,, we define its path to be the following
information:

(1) whether x belongs to Ly, Cy, or Ry;
(2) whether y belongs to Li s, Ckix, or Riis; and
(3) the s- and d-heights of p.

For example, in the central figure of Figure 3.12, the light pentagon p from x € R; (the black
dots) to y € C. (the brown squares) has s-height 0 and d-height 1. We use the notation

R, O, Cw to denote the path of p. Likewise, the dark pentagon p’ from y € C to z € Ly

(the white dots) has s-height 2 and d-height 0, so its path is C @0, L.

We can extend this to composite domains p x p’, where p and p’ are both polygons. In the

example above, the path of the composite domain p * p’ from X to z is Ry @) Cso @) L.
The s-height of the domain is 2, and the d-height is 1. Note that s- and d-heights are
additive under composition of domains.

It is also useful to note whether the support of a polygon p has any corners on 3; .cUS; 0UB; 1
or not. The latter case is possible only if p is a rectangle. See the right figure of Figure 3.12
for two examples. The support of the light rectangle r from x € Cy to y € Cj does not
have any corners on f3; . U 3,0 U B;1. Note that this implies that the components of x and

y on Bis U BioU B are exactly the same, i.e. the component of x on 3, U B0 U 31 is



SKEIN RELATIONS FOR TANGLE FLOER HOMOLOGY 35

(0,0)

not moved by p. In this case, instead of writing Cy —— Cj for the path of r, we will write

Co BLIN Co (where NM stands for “not moving”). No information is lost by doing so, since
the s- and d-heights of such rectangles are always 0.

Figure 3.12 also highlights the following fact. It may seem at first glance that the type of a
domain p is a redundant piece of information because it seems to be available from the s- and
d-heights of p; however, this is not true. In the right figure, the light rectangle is of type o,
while the dark rectangle is of type sd, even though both rectangles have s and d-heights 0,
because they both have the label NM. In fact, rectangles with the label NM are the only
polygons that can have different types, and they are always o-domains or sd-domains. This
little piece of information eases our enumerations greatly.

We can now give a complete list of all possible paths and types for the defined polygons,
simply by inspecting Figure 3.3. For convenience, we suppress all subscripts.

e Rectangles:
(0,0)

— type s: L—>L C' L, C—=C, R R.
—typed: L% 1, ¢ &2 L,C(OO C,C“” R, RE% L RS R
— labelled NM: L 2 L (type o), L =5 L (type sd), C 25 C (type o),

c X o (type sd), R MR (type o), R MR (type sd).
e Triangles:

(0,0)

(0,1) (0,0)

—typeo:CMR, RM

e Pentagons:

L.

—types:LﬂL, C —

— type d: C%C’, C —
e Quadrilaterals:

— type o: R 09, C.
e Hexagons:

—types:L%L, C — L.

— type d: R ©3, C.
e Heptagons:

— type s: L%L.

Using this list, we will obtain a complete list of all possible paths and types for the relevant
juxtapositions p x p’ in each lemma. In general, given the path and type of a given domain
p*p/, we can almost always recover the general shape of the support of p * p’ on Figure 3.3,
which will help us determine the canceling juxtaposition. The only ambiguity arises when
px*p is of type s or type d (and not type sd), and p and p’ are both rectangle-like polygons;
we eliminate this ambiguity in the following paragraph.

Fix a domain p * p’ of type s or type d from x to z, where p and p’ are rectangle-like
polygons that share exactly one common corner. Suppose that the support of p*p’ is not an
annulus. This implies that the support of p * p’ has exactly one distinguished corner whose
internal angle is reflex (i.e. larger than 7). We say that p % p’ has shape A if x does not
contain the distinguished corner as one of its components, and shape B otherwise. In the
former case, z must contain the distinguished corner as a component. If instead the support
of pxp' is an annulus, we say that p* p’ has shape C. Since there is a marker on the annulus
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FIGURE 3.14. Left: A domain of shape A. The black dots represent the rel-
evant components of the initial generator x. Center: A domain of shape B.
Right: A domain of shape C. Note that, in each case, the domain is either of
type s or of type d, and is a juxtaposition of two rectangle-like polygons.

d, this is possible only if p % p’ is of type s, with s-height 3; also, neither p nor p’ can have
label NM. See Figure 3.14 for examples of each of the three shapes.
We remark here the notion of shapes is unnecessary for sd-domains p * p'.

Lemma 3.8. The composition fry1 o fr s homotopic to zero via homotopy ¢i. In other
words, the morphisms fi, and ¢y satisfy Condition (2) of Lemma 2.1.

Proof. The strategy of the proof is to enumerate all possible paths, types, and shapes for a
domain appearing in fyy1 0 fr + 05 0 pp + @i 00y, and find a cancelation for each case. We
do so in Table 3.1, displayed at the end of this proof. The domains p % p’ in Table 3.1 are
ordered by

(1) the polygons that p and p’ belong to (Column 2);

(2) the path of p, following the order in the list of paths on p. 35 (Column 3);
(3) the path of p’ (Column 3); and

(4) the shape of p * p’ (Column 5), if applicable.

As mentioned before, there are special cases, in which a juxtaposition resulting in one
domain cancels a juxtaposition resulting in a different domain. Table 3.1 includes all special
cases. The special cases are further illustrated in Figures 3.15, 3.16, 3.17, 3.18, and 3.19, and
discussed in more detail below, along with references to the corresponding rows of Table 3.1.

Let us look at Figure 3.15, for example. If x € &(H;) occupies oy N B 1, for a; €
{af,.. . alYU{ad,... al' |}, then T o T;(x) cancels out with a term in H; o 6} (x), Py ©
P1(x), or 83 o H;(x), depending on the position of the S;41-component x;,; of x, as seen on
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FIGURE 3.15. A special case of a term in T o7 canceling out a term in H o d?,
PoP, or o

Figure 3.3. If ;4 is below a; or above af, the canceling term is in H; o 6} (x); if z;4 is
on OéZR, the canceling term is in P, o Py(x); if 2,41 is below aZR and above ay, the canceling
term is in 03 o H; (x). Analogous special cases occur when x € &(H,) occupies ot N fB; o, and
when x € &(Ho) occupies ay N B o for ap € {ak,...,akU{al,, ... aff}. See Table 3.1,
Rows 14, 40, 60, and 63.

The remaining special cases go as follows.

Figure 3.16 illustrates a term in P, o T; canceling out a term in T, o P;. Depending on
the starting generator, some terms may output non-trivial algebra elements, corresponding
to a domain juxtaposition that is bordered. In an analogous special case, a term in P; o Ty
cancels out a term in J; o Py. See Table 3.1, Rows 3 and 6.

Figure 3.17 illustrates another term in P, 07} canceling out a term in T, o Py, with paths
different from those of the terms in Figure 3.16. See Table 3.1, Rows 4 and 7.

Figure 3.18 illustrates a term in Ty o P, canceling out a term in d; o Q.. Depending on
the starting generator, some terms may output non-trivial algebra elements, corresponding
to a domain juxtaposition that is bordered. See Table 3.1, Rows 8 and 31.

Figure 3.19 illustrates another term in Ty 0P, canceling out a term in §] o Q.,, with paths
different from those of the terms in Figure 3.18. Depending on the starting generator, some
terms may output non-trivial algebra elements, corresponding to a domain juxtaposition
that is bordered.

Table 3.1 summarizes the cancelations of domains in this lemma. The reader is reminded
that it only shows composite domains p * p’ such that p and p’ share exactly one common
corner.
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FIGURE 3.17. Another special case of a term in P o T canceling out a term in
JoP.
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X X X X
" @i =
X X X X

FIGURE 3.19. Another special case of a term in 6 o Q canceling out a term
in ToP.

39
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| No. | Term in | Path | Type [ Shape || Cancels with | Notes |
1| To7 |2 R Ll o 14, 40, 60, or 63 | (i), (ii), (v)
2 SNy R CNY G 54
3 c L9 g ©2, R d (i), (vi)
PoT (0,0)
4 c % RO 1 g 7 (i), (vii)
5 R OO B9 | s 27
6 o 02, C R d (i), (vi)
7 TP o 09, - R L| d 4 (i), (vii)
8 R — C R| d 31 (1), (viii)
9 RUD RO 1| 4 29 (i), (ix)
10 A 35
i1 LE%LE% L s 3 73
2 A 12
13 N S CUN S B 76
7 C i NG
15 c c CO | sa 66
16 c 02, C' C’ None (iii)
17 o 02, o O3, R None (iii)
18 g) o g) R —= D C L sd 69
19 A 50
20 RE% 850l a B 79
21 R o @ pl g None (iii)
22 A 50
73 RE%RE% | a B 79
24 R %2 R R None (i)
25 R %2, R RNy None (iii)
26 R JARGLR L sd 45
27 R C' L s 5
28 R 2, o 0, C s 53
29 | §'0Q R 00 C L| 4 9 (1), (ix)
30 R o W ol g 55
31 RO o Ol g 8 (i), (viii)
32 Lo oo A 35
S

33 | 5109 - B 73
34 L &% @9 | sq 74

() Special case.

(i) Depends on the position of certain components of x.
(i) Does not exist because the d-height is larger than 3.
such domain necessarily contains markers.
(vii) Figure 3.17.

(viii) Figure 3.18.

. ) Figure 3.15.
(%) Figure 3.19.

(iv) Does not exist because any
) Figure 3.16.
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| No. | Term in | Path | Type [ Shape || Cancels with | Notes |

35 (20) . NM A 10, 32, 56, or 72 (ii)
37 LN LN 65

38 A )

39 RN LN B 76

10 C ] D, )
41 JoRR NGNS 77

) 50) A |12, 38, 58, 61, or 75 )
13 C==L=51L| s B 76

| o 22 L L sd 67

oK E)

45 R c L| sd 26

46 R C C sd None (iv)
A7 R C’ L| d None (iii)
48 R o W ol g None (iv)
49 R o O Rl g None (iii)
50 A 19, 22, 70, or 78 )
51 rRE% e a B 79

52 RO o MM o | gq 64

53 R ©0) R ©0) C s 28

54 | Qodt | O R OO o P

55 [Ny A CUNYS 30

56 A 35

57 LS L% s B 73

58 A )

59 N SN S B 76

60 C ] D, )
61 A 12

62 o 0O~ BO g B 76

63 C T D, )
64 | oo | RO R N 52

65 L9, L L| sd 37

7 20

66 C 20| sd 15

67 C C SN 44

68 o O, R cC| d None (iii)
69 ROY L BO s 18

70 R R % cl a | A 50

() Special case.

(i) Does not exist because the d-height is larger than 3.
such domain necessarily contains markers.

(vii) Figure 3.17.

(i) Depends on the position of certain components of x.

(viii) Figure 3.18.

. \ Figure 3.15.
(%) Figure 3.19.

(iv) Do_es not exist because any
) Figure 3.16.

41
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| No. | Term in | Path | Type [ Shape || Cancels with | Notes |
71 RUN el g4 | B 79
72 NM (2 ()) A 35
73 L—L—1L | s B 11, 33, 36, or 57 )
74 JALEN S Ny I 34
75 NM (370) A 42
6 | Hodt | C—C— L] s B |[13, 39, 43, 59, or 62 )
77 o NN 41
78 NM (0’3) A 50
79 R—R—C| d B 20, 23, 51, or 71 )
80 R RO o) sq None (iv)

() Special case. () Depends on the position of certain components of x.

(i) Does not exist because the d-height is larger than 3. (V) Does not exist because any
such domain necessarily contains markers. ) Figure 3.15. (")) Figure 3.16.

Vi) Figure 3.17. i) Pigure 3.18. (%) Figure 3.19.

TABLE 3.1. The cancelations of the terms in Lemma 3.8. The special cases
are shown in Figures 3.15-3.19. For convenience, we suppress all subscripts.

This concludes the proof of the lemma. O

Lemma 3.9. The morphism frio200p+pri10fr is homotopic to the identity 1dy via homotopy
y. In other words, the morphisms fi, pr and 1y satisfy Condition (3) of Lemma 2.1.

Proof. The strategy is as before. Table 3.2, displayed at the end of this proof, shows all
cancelations relevant to this lemma, including the special cases. The special cases are further
illustrated in Figures 3.20, 3.21, 3.22, and 3.23, and discussed in more detail below, along
with references to the corresponding rows of Table 3.2.

Figure 3.20 illustrates a term in Qg o P, canceling out a term in P; o Q. Depending on
the starting generator, some terms may output non-trivial algebra elements, corresponding
to a domain juxtaposition that is bordered. In an analogous special case, a term in Q. o P,
cancels a term in Py o Q; (here only interior domains are possible). See Table 3.2, Rows 3
and 17.

Figure 3.21 illustrates a term in J7 o H,, canceling out a term in P; o Q.. See Table 3.2,
Rows 4 and 5.

Figure 3.22 illustrates a term in H,, o J; canceling out a term in Q. o P;. See Table 3.2,
Rows 14 and 16.

Figure 3.23 illustrates the terms that Id, cancels with. If x € Cp, then Idy cancels with
Q; o Jp; if x € Ry, then Idy cancels with T, o Qp; if x € Ly, then Idy cancels with & o Ko,
Koo L, Po 0 Hp, or H; o Py, depending on the position of the S;,;-component of x. There
is an analogous special case for Id; and Id.,. See Table 3.2, Rows 1, 8, 13, 20, 29, 36, 44, 45,
and 46.
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FIGURE 3.21. A special case of a term in T o H canceling out a term in P o Q.
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X X
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X X
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H REE
1L X , u
X X

FIGURE 3.22. A special case of a term in H o T canceling out a term in Q o P.

8

X X X

XX

s SO RO RO O O

FIGURE 3.23. A special case of a term in Id canceling out a term in 6% o XK,
oKX, PoH, HoP, ToQ, orQoT.
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| No. | Term in | Path | Type | Shape || Cancels with Notes
1| 700 | R R| o 46 (1), (viii)
2 R C CO L s 15
3 P00 | R o Yo g 17 (i), (v)
4 RUY o @ gl g 5 (i), (vi)

(0,3) (0,0) .
5 | JoH |R—C—-R | d 4 (i), (vi)
6 A 31
7 JA=iNy S CEUNG S RS B 2
g C 11 @), (vii)
9 o B9 p Lo, L s None (iii)
PoXH 0,3)
10 R C' L sd 26
11 R, C C None (iv)
12 R, C R None (iv)
13 | Qo7 | 2% R Y & 45 (i), (viii)
14 o T o 29, R — Lol a 16 (1), (vii)
15 R L — L s 2
16 c 9, g 09 o 14 (i) (vii)
Qo 0,2) (0,0) .

17 R— R—C 3 (i), (v)
18 A 31
19 Ny GRS B 12
20 C 11 @), (vil)
21 C CUNJIICUN L s None (iii)
22 HoP C C L sd 39
23 o 09 g 9, C d None (iv)
24 R O C L| sd 40
25 R %2, R Lol a None (iv)
2 RUL LY 1| sa 10
27 A 31
2 ANy SCLNG S B 2
79 C 1 O, Vi)
30 | floK | L L L sd 43
31 (30) . NM A 6, 18, 27, 34, or 41 (ii)
33 AN RN 38
34 | Koo' | LY L C% s | A 31

() Special case.
(i) Does not exist because the s-height is larger than 3.
(V) Does not exist because the d-height is larger than 3.
(Vi) Figure 3.22.

(i) Depends on the position of certain components of x.

(vViil) Figure 3.23.

) Figure 3.20.

(vi) Figure 3.21.

45
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| No. | Term in | Path | Type | Shape ||  Cancels with | Notes

35 (0,0) (3,0) B 42
36 L—L-—L | = C 11 ), (viil)
37 C L GONY S None (iii)
38 L L L | sd 33
39 | %o st C L N ) 92
40 [N CIONY S 24
T 50) A 31
12 LESL==1L | s B |7, 19, 28, 32, or 35 (i)
43 LN NGNS 30
44 L% 8,20, 29, or 36 | (1), (i), (viii)
45 | 1d cc 13 (i), (viii)
46 R R 1 (i), (viii)

(1) Special case. () Depends on the position of certain components of x.
(?“) Does not exist because the s-height is larger than 3.
(V) Does not exist because the d-height is larger than 3.
(

Vi) Figure 3.22. (Vi) Figure 3.23.

™ Figure 3.20. ) Figure 3.21.

TABLE 3.2. The cancelations of the terms in Lemma 3.9. The special cases
are shown in Figures 3.20-3.23. For convenience, we suppress all subscripts.

This concludes the proof of the lemma. O

Proof of Proposition 3.1. This is now a straightforward application of Lemma 2.1. The con-
ditions in Lemma 2.1 are satisfied according to Lemmas 3.5, 3.8 and 3.9. U

Proof of Theorem 2. We wish to prove that there exists a type DD homomorphism
Fy: CDTD(Ty, n) — CDTDY(T}, n)

such that o
CDTD*(T, n) ~ Cone(Fp).
Write T, Ty, T as
Too :T/OT;OZOT//, TO :T/OT(;EIOT//’ ]71 :T/OTlelOT//7

where T, T, T¢! are the elementary tangles in Proposition 3.1, and 7" and T" are two other
tangles. Then, for each k € {c0,0,1}, we have

CDTD"(T}, n) ~ CDTAY(T",n;) ® CDTD*(T¢, ny) & CATD"(T", n3)
as type DD structures, where n = n; + ny + nz. For convenience, let
M’ = CDTAYT,n;), M" = CATD(T",ny).
Working in the homotopy category, we can now define the morphisms Fj,, ®y, U,
(1) The morphism Fy: (%“(Tk, n) — (%“(THb n) is defined by
F, = Idye K X Id e
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(2) The morphism ®;: CDTD*(T,n) — CDTD*(T}42,n) is defined by
&y, = Iy Kooy B Td pgr .

(3) The morphism Wy: (]/b\fﬁD“(Tk, n) — (%“(Tk, n) is defined by
U, = Ty Ry ) Td g

(Here, Idpy is a type DA isomorphism while Idny is a type AD isomorphism.) By [26,
Lemma 2.3.13], homotopies are preserved under box-tensoring, and so Fy, ®y, ¥, also satisfy
the conditions in Lemma 2.1.

Taking the box tensor on either side with the left-right type AA bimodule for a tangle
consisting of only straight strands, we obtain the analogous statements for type DA, AD,
and AA bimodules. O

Remark. In the proof of Theorem 2, we could have directly used Proposition 3.1 and made
no reference to Lemma 2.1. We chose to present the proof as it is now to streamline the
discussion in Section 4.

4. GRADINGS

In this section, we prove Theorem 3. Let T,., Ty, and 17 be three oriented tangles such that,
as unoriented tangles, they are identical except near a point p, as indicated in Figure 1.1.
The only difference between Theorems 2 and 3 is that Theorem 3 contains information
about the grading shifts (cf. Table 2.1). As such, Theorem 3 follows from Theorem 2 and
grading information. To begin, we modify the definitions of F}, ®, and ¥, from the proof
of Theorem 2, as follows.

Write T, Ty, T as

Tw=T oT%oT!, Toy=T)oToT), Ti=T oT T/,
where, as before, T, Ti¢!, T¢! are the elementary tangles in Proposition 3.1 (now endowed
with orientations). This time, 77, T}, T| are possibly different as oriented tangles, but are
the same as unoriented tangles. The same statement is true for 77, Ty, 17
Fix oriented planar diagrams D, Dy, and D for T, Ty, and T} respectively, such that

the diagrams, without their orientations, are identical except near p. If neg(D) denotes the
number of negative crossings in a diagram D, let

e, = neg(Dy41) — neg(Dy)
for each k € {00,0,1}. Note that e, ey and e; are independent of the choice of diagrams,
and that
€oo T+ €0+ €1 = 0.
Similarly, for each k € {00,0, 1}, fix oriented planar diagrams D) and Dy for T} and T
respectively, and let €} and e} be defined analogously. Define isomorphisms

t: CDTAY(T}, n) — CDTAY(T}, ;. n) [‘z]

e~ e~ "
i+ CATDY(T],n) — CATD (T}, . n) {—%’f}

as follows. Let H) and H}_ , be Heegaard diagrams for 7} and T, that are identical if
we do not distinguish the X from the O markings. Define ¢} to be the map induced by
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the natural correspondence between generators and domains. Define ¢} analogously. Indeed,
these isomorphisms shift gradings as claimed:

Lemma 4.1. Let T, and T,, be two oriented tangles that are the same after forgetting the
orientation. Then

(?Té(Tol,n) ~ (?TS(TOZ,H) [—g] ;

where e = neg(D,,) —neg(D,,) is the difference in the number of negative crossings between
—~ 5
two diagrams for the two tangles that are the same without the orientation. Here, CT can

stand for any one of the fully blocked, 6-graded algebraic structures associated to the two
tangles (same one for both tangles).

Proof. Since concatenating corresponds to tensoring, and the grading is additive under taking
tensor product, it suffices to show this for elementary tangles.

Let H,, and H,, be genus-one Heegaard diagrams for elementary tangles 7, and 7,
respectively, such as the ones in Figures 2.6 and 3.1, that are identical if we do not distinguish
the X from the O markings, i.e., for i = 1,2 we can write H,, = (¥, o, 8,X,,, 0,,) with
Xo, U0, =X, UQO,,.

Let ¢ : CTé(T o1y M) — CT5(TO2, n) be the isomorphism induced by the natural correspon-
dence between generators and domains. We discuss the degree of ¢ below.

Let x,, = x5 UxE € 6(H,,) and x,, = x5 LUxE € &(H,,) be corresponding generators.
The é-grading is given by

1 1 1 1
(5(Xfi) = inv(xfi) ~3 inv(xi,Xi U @i) + 3 inv(Xi) + 3 inv(@i) + §\XOR\,
1 1 1 1
§(xh) = —inv(xl)+ 5 inv(x) , X LOY) - 3 inv(X%) — 3 inv(O%) — §|@é|
The first and second term in each formula do not depend on orientations, and neither does
the sum of the fifth terms. In other words, inv(x% ) = inv(x), |0} | — [XE | = |0Of | — [XE],

and so on.

The only points in X, LIQ,, that contribute to the third and fourth terms in each formula
are those that correspond to a strand that runs over or under another strand in the respective
half of the diagram. If there are no crossings, then corresponding generators have the same
)-grading, e = 0, and we are done. If T, and T,, are elementary tangles for a crossing, we
discuss the contribution of the two relevant basepoints below.

Suppose the strand with the higher slope crosses over the strand with the lower slope.
Then the crossing is encoded in the right grid of the diagram. There are four possible
orientations of the two relevant strands. If they point in the same horizontal direction, then
2inv(XE) + £ inv(Of) = 1; if they point in opposite horizontal directions, then 3 inv(XZ%) +
%inv(@fi) = 0. Observe that in the former case the crossing is negative, whereas in the
latter case the crossing is positive.

Suppose the strand with the lower slope crosses over the strand with the higher slope, i.e.
the crossing is encoded in the left half of the diagram. If the two strands point in the same
horizontal direction, then —% inv(Xfi )— % inv(@fi ) = —%; if they point in opposite horizontal
directions, then —2inv(X%) — 2inv(0O%) = 0. In the former case the crossing is positive,
whereas in the latter case the crossing is negative.

Thus, §(X,,) — 0(X,,) = €/2, and so ¢ shifts degrees by e/2. O
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Working in the homotopy category, as we did in the proof of Theorem 2, we now define
the morphisms Fy, ®p, Uy:

(1) The morphism Fy: (3/]3\T/D5(Tk, n) — (3/]3\T/D5(Tk+1, n) is defined by
Fr =0, X fi K.
(2) The morphism ®y: C/D\r_ﬁD‘s(Tk, n) — C/]-D\T/D‘S(THQ, n) is defined by
O = (141 © 1) B B (104 © )
(3) The morphism Wy : (%5(Tk,n) — C/D\TED‘S(Tk, n) is defined by
Uy, = Id), Ky, X 1d) .

where fi, ¢r, ¥r are defined in the same way as in Section 3, except that the Heegaard
diagrams here contain both X and O markings. In the definitions above, we omit the degree
shifts, since they depend on k. We discuss these shifts below.

We first establish the following lemma.

Lemma 4.2. Suppose H is a genus 1 Heegaard diagram for a tangle such as the ones in
Figures 2.6 and 3.1, x and y are generators in &(H), and r is a (not necessarily empty)
rectangle from x to 'y of one of the first three types discussed in Section 2.2 such that Int r N
x=10. Then

8(a(r)) +6(y) + 8(a’(r)) — d(x) = no(r) + nx(r) — 1.

Proof. Cut the Heegaard diagram H open, and embed it on the plane as in Figure 3.3.
First we consider the case when r is an interior rectangle. Then a’(r) and af¥(r) are
idempontents, hence in degree 0, and

§(y) — 6(x) = inv(y") — inv(x®) — % inv(y”®, X 1 Of) + % inv(x®, X U OF)
1 1
— inv(y?) + inv(x*) + 3 inv(y*, Xt uOh) - 3 inv(x®, X* LU O").

There are six sub-cases, depending on which parts of the diagram r occupies; see Figure 4.1.
In all cases, the two [-circles containing the vertical edges of » bound an annulus, and points
in x Ny, X, and O outside that annulus contribute the same amount to d(y) and to §(x).
The two horizontal edges of r, along with the top, middle (take any horizontal line between
al and oft), and bottom edges of H, divide the annulus into four rectangular regions, which
we denote A, B, C', and D, from top to bottom. Define

a=|xNIntA|l, o =[(XUO)NIntA|,
b=|xNIntB|, V¥ =[(XUO)NIntB|,
c=xNIntC|, ¢=[XuO)NIntC|,
d=|xNIntD|, d =[(XUO)NIntD].
Let w be the width of the annulus, i.e. the number of components of ¥\ 8 contained in it.

Observe that a +b+c+d=w—1,and ' +V + + d = 2w.
Suppose 7 is entirely contained in the top half of the diagram; see Figure 4.1 (a). Then

5y) — 6(x) = inv(y®) — inv(xF) % v (y ", XP L OF) + % inv(x”, X7 1 OF).

Since the support of r coincide with B, we have b = 0, so inv(y®) —inv(x®) = —1. If a point
p € X2 OF contributes different amounts to inv(y?, X% 1 OF) and to inv(x?, X U QF),
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| 1l

_B

g - 1 |
(a) (b) (c) (d) () (f)

Fi1GURE 4.1. The diagram H on the plane. There are six sub-cases of an
interior rectangle r (depicted in dark grey). In the first case, the vertical
annulus for r is also illustrated; it is divided by the top, middle, and bottom
edges of H, along with the horizontal edges of r, into four rectangles, denoted
A, B, C, and D from top to bottom.

it must be contained in the interior of r. Each such p contributes two more times to the
latter—when paired with the bottom-left and top-right corners of r—so —% inv(yt, X% |
Of) + L inv(x®, XP U OF) = ng(r) + nx(r).

The computation when r is entirely contained in the bottom half of the diagram (see
Figure 4.1 (b)) is analogous.

Suppose r intersects both halves of the diagram, but not the top and bottom edges;
see Figure 4.1 (¢). Note that in this case b = ¢ = 0. A point in x NInt A = yNintA
contributes one more time to inv(y’) than to inv(x")—when paired with the top left corner
of r. Similarly, a point in (X® UOQ®)N1Int A contributes one more time to inv(y”, X U OF)
than to inv(x®, X% U QF). Points inside B contribute in the opposite way. Counting in the
bottom half of the diagram is analogous. We see that

inv(y®™) —inv(x®) =a - b =aq,
—inv(y®, X* U Q) + inv(x®, XFLUOR) = —d + ¥,
—inv(y") +inv(x") = —c +d =d,
inv(y*, Xt uOb) — inv(xt, XFUOh) = —d,

S0
d(y)—d(x) = a+d+%(b'+c’—a'—d’) = w—1+%(2b’+2c’—2w) =V 4 —1 = ngo(r)+ng(r)—1.

The computation when r intersects both halves of the diagram but not the middle edge
(see Figure 4.1 (d)) is analogous. In that case a = d = 0, and we get

d(y)—d(x) = b+c+%(a'+d'—b’—c’) = w—l+%(2a’—|—2d’—2w) =d'+d' -1 = ng(r)+nx(r)—1.

Suppose 7 intersects both halves of the diagram and has all four corners in the bottom
half; see Figure 4.1 (e). In this case a =b=d =0,s0c =w—1. If a point p € xNy
contributes different amounts to inv(y) and to inv(x%), it must be contained in rectangle
C'; each such p contributes two more times to inv(x)—when paired with the two points in



SKEIN RELATIONS FOR TANGLE FLOER HOMOLOGY 51

x \'y. The pair formed by the two points in y \ x does not contribute to inv(y), and the
pair formed by the two points in x \ y contributes once to inv(x). Thus,

—inv(y") +inv(x?) = 1+ 2¢ = 2w — 1.
Similarly,
inv(y”, X* UOY) —inv(x*, XFUOF) = —2¢ = 2(d/ + V' + ¢ — 2w).

R

Since yf = x#, we have

Sy) —o6(x) =6(y") —o(x") =2w —1+d +0 + — 2w =ng(r) +nx(r) — 1.

The computation when r intersects both halves of the diagram and has all four corners in
the top half (see Figure 4.1 (f)) is analogous.

There are two cases when r intersects 0H, and they are similar to each other. We discuss
the case when 7 intersects 0"#. Say that the boundary of r intersects o* and af'. Let t be
the number of arcs between off and ozf occupied by x N'y. Since r does not contains points
in x Ny, the ¢ points in x Ny at heights between aff and a]R are all outside r. Whether r
touches the left or the right edge of the diagram, these are exactly the points that contribute
differently to inv(y’) and to inv(x%). Thus,

inv(y®) — inv(x®) = t.

The |i — j| —t — 1 arcs between aff and ozf that are unoccupied contribute to the horizontal
black strands in a®(r) that intersect the unique non-horizontal strand. There are also |i — j|
orange strands that intersect the non-horizontal strand. So

R N R
5(am(r)) = X (a(r)) - LLLDINGON ;g ]
The nx(r) +ngo(r) points in (XELOM)Nr contribute one more time to inv(x®, X¥UO®) than
to inv(y®, X2 L OR), and the remaning |i — j| — nx(r) — no(r) points in X2 1 OF at heights
between o and o contribute one more time to inv(y®, X®LIO") than to inv(x®, XFLIO").
The remaining points in X U Q) contribute the same to both counts. Thus,
—inv(y®, XF U OF) + inv(x®, XF U OF) = 2nx(r) + 2no(r) — |i — j|.

We see that

i —J

d(a”(r)) +d(y) + 8(a"(r)) — 0(x) = ng(r) + nx(r) — 1. U

Next, we set up some notation.

Let Hoo, Ho, H1 be the Heegaard diagrams for T2 T¢, T from Section 3. We can think
of these three diagrams as the same diagram (X, o, 3'), but with three different choices of
X and O markings, by identifying each of ;. «, B0, 5i1 With a curve §3; € 3'; see Figure 4.2.
Denote the sets of X and @ markings by X, and Oy respectively, for k € {c0,0,1}; Denote
the four points of X;UQy, in regions borderding 3; by Xy 1, Xok, X3k, X4k € XpUOy, indexed
by relative height as seen in Figure 4.2.

Given a set of intersection points x € o N B with exactly one point on each 8 € &
and at most one point on each o € a, there are corresponding generators X, € S(Ho),
xg € 6(Hyp), and x; € S(H;). For {k,1} C {00,0,1}, this induces a correspondence between
generators of &(Hy) and generators of G(H,;), and we will use the notation xy, x;, or y, yi,
etc., to denote corresponding generators on different diagrams. To say this differently, we will
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FIGURE 4.2. The three diagrams H.., Ho, H1 seen as the same union of bor-
dered grids, but with different markings.

think of a generator in any of the three sets &(H},) as a set of intersection points x € aN 3,
and use the subscript k to stress which generating set we are thinking of.

In the following lemma, we compute the degree of any of fi, @i, and 1, when the two
elementary tangles associated to the given map have compatible orientations, i.e. when they
are identical as oriented tangles, except near a point; see Figure 4.3. Note that since they
are elementary tangles, T} and T have compatible orientations exactly when they have the
same oriented boundaries, so in particular the respective algebras are the same.

— = —— —— 5 c ~ =5 c

?z: i_ i.i_)ﬂ; == 2 &

FIGURE 4.3. The six pairs of elementary tangles with compatible orientations.

Lemma 4.3. If T and Ti¢. | have compatible orientations, then degs(fi,) = —1/2. Similarly,
if T¢ and T, have compatible orientations, then degs(¢r) = 1/2. For any orientation on

T', degs(n) = 1.

Proof. Suppose T¢! and T have compatible orientations. Recall our maps are defined by
counting polygons. For a polygon p from x;, to y;, define

d(p) = d(a"(p)) + d(y1) + d(a"(p)) — d(xy)-
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Observe that triangle-like polygons always connect pairs of corresponding generators, so
if p is a triangle-like polygon from x; to y;, then y; = x;, and we have

d(p) = 6(x1) — d(x).

Computing the degrees of rectangle-like polygons will require more work. Given a rectangle-
like polygon p from x;, € S(Hy) toy; € &(H,), define the straightening of p to be the unique
rectangle 7, in ‘H,; from x; to y;, and observe that

3(p) = [0(a”™(p)) + 6(y1) + 8(a"(p)) — (x0)] + (1) — 3(xx)]-

Note that a”(p) = a*(r,) and af*(p) = a’¥(r,), so the sum in the first set of brackets on the
right hand side is §(r,), which by Lemma 4.2 equals ng(r,) +nx(r,) —1. The difference in the
second set of brackets compares the degrees of corresponding generators, and can be reduced
to comparing how the different X and Q@ markings for H; and for H, affect the degree. In
summary,

5(p) = d(x;) — 0(xx) if p is triangle-like,
1 8(r,) +0(x;) — 6(xz) if p is rectangle-like.

For each point ¢ € a N @', define the relative height ht(q) as follows. We say that

(1) ht(q) = 1 if ¢ is below aF as seen in Figure 4.2;
(2) ht(q) = 2if g € af;
(3) ht(q) = 3 if ¢ is above o and in the bottom grid as seen in Figure 4.2 (this is what
we called the left grid in Section 2.2);
(4) ht(q) = 4 if ¢ is below af and in the top grid as seen in Figure 4.2 (this is what we
called the right grid in Section 2.2);
(5) ht(q) = 5 if ¢ € aff; and
(6) ht(q) = 6 if ¢ is above af as seen in Figure 4.2.
Below, we provide a simple formula for §(x;) — d(xj) based on the relative height of the point
of x that lies on ;. Recall that

1 1 1 1
d(x;) — d(xx) = inv(le) ~3 inv(xﬁ, XF L @lR) + = inv(XF) + = inv(@ﬁ) + §|XIR|

2 2
1 1 1 1
— inv(x}F) + 3 inv(x;, XF L OF) — 3 inv(X}) — 5 inv(OF) — 5\@%\
1 1 1 1
—inv(xf) + 3 inv(xy, X7 U QF) — 5 inv(XF) — 5 inv(Qff) — §|Xf|

1 1 1 1
+ inv(xr) — 3 inv(xg, XEUOF) + 5 inv(X§) + 5 inv(OF) + 5\@£|

We will group up some terms on the right hand side to simplify. Since x; and x; are the
same set x € a N @3, then

inv(x)?) = inv(x)) = inv(x

inv(x}) = inv(xz) = inv(x"),

)

)

and since the two tangles have compatible orientations, |Xf| = |[X£| and |OF| = |Of|. Since
the sets of basepoints for the two diagrams only differ in their subsets { X i, Xa, X35, X4k}
and {X1;, Xoy, X3, X4, }, and further X, and X,; are both Xs or both Os for 1 <t < 4,
comparing inv(Xf) to inv(X%) reduces to comparing inv(X? N {X3;, X4,;}) to inv(XE N
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{ X5k, Xuar}). Each of the latter counts is nonzero exactly when the corresponding tangle is
a negative crossing with both strands at the crossing oriented to the left. So

1 if T is a crossing, X3, X4; are both Xs, and k # [,
inv(X/") —inv(X7) = { =1 if T¢ is a crossing, X3, X4 are both Xs, and & # [,

0  otherwise.

(

Similarly,
1 if T is a crossing, X3, X4; are both Os, and k # [,
inv(QfY) —inv(0F) = { =1 if T¢ is a crossing, X3, X4 are both Os, and k # I,
0  otherwise.

Note that since we are assuming compatible orientations, the non-zero counts in the displayed
equations above occur exactly when {k,l} = {o0,0}. More precisely,

1 if (k,1) = (0,00),
inv (X[ +inv(OF) — inv(Xf) — inv(Qf) = { =1 if (k,1) = (c0,0),
0 otherwise.

In the elementary tangles that we consider, crossings only appear in the right grid, so it
follows that inv(XF) — inv(XE) = 0 and inv(0F) — inv(0f) = 0.

Now we look at the four terms that count inversions between generators and basepoints.
Since x;, and x; are the same set of points on the common diagram, and X, O, and X; U0y,
only differ in their subsets {Xj x, Xox, Xsx, Xax} and { Xy, Xoy, X34, X4}, we get

1. 1. 1. 1.
3 1nv(xf, Xf I_I@f) ~3 1nv(xﬁ, Xﬁu@ﬁ) =3 an(XkR, { X5k, Xag})— 5 1nv(xﬁ, { X510, Xa1})),

and
1. L ~L L L. L ~L L L. L L. L
3 inv(x;, X uQy) — 5 inv(x,, Xp UOy) = 5 inv(x;, { X1, Xog}) — 5 inv(x;, { X1k, Xog}))-

Note that X, and Xj,; are either in the same region, or lie in adjacent regions separated by
Bi, so for p € x, the pairs (p, X, x) and (p, X;;) may only contribute differently to the above
counts if p lies on f3;. Let x be the point in x that lies on f;. If ht(z) < 3, then z is in the
left grid, and the sum of the four terms reduces to

1. 1.
3 inv(x, {X1,, Xa,}) — 3 inv(z, { X1, Xok})),

By inspection of Figure 4.2, we see that this count is zero if {k,(} = {oc0,0} or if k =1, it is
: if k=1,1¢€ {o0,0}, and ht(z) =1, orif [ = 1, k € {00,0}, and ht(z) € {2,3}, and it is

—5 in the remaining cases. If ht(x) > 4, then z is in the right grid, and the formula reduces

to
1. 1.
—5 IHV(LL’, {Xg’l, X4,l}) —+ 5 ll’lV(SL’, {X37k, X4’k}),

and one can compute this number by direct inspection of Figure 4.2 again.
To sum up, we reduced the grading difference to

5(30) — 6(06k) =5 (mv(F) + inv(OF) — inv(XF) — inv(Of))
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{—mv( X1 Xou}) — —1nv( AXik Xoxd))  if ht(z) < 3,
—3 lllV( {Xg 1 X4l}) 5 ll’lV( x, {X37k, X4’k}) lf ht(:(f) Z 4,

and computed the right hand side, depending on k£ and [. The final result is summarized in
Table 4.1.

" D1 (00,0 | (0,1) | (1, 00)
1 12 | -12] 12
3 12 1/2 | —12
3 112 [ —12
4 12 | —1)2
5 /2 [ —1/2] —1/2
6 13 —12] 1/2

TABLE 4.1. The difference §(x;) — §(xy), depending on k, [, and ht(z), where
x is the component of x in ;.

We have now done enough preliminary work to allow for a quick and simple computation
of the degree of any polygon.

We compute the change in the J-grading under f,.: CDTD?(H,) — CDTD?(Hy) as
follows. Recall that fo, = T + P, and let p be a triangle or a pentagon from x., € &(Ho)
to yo € &(Ho). We are to determine the value of d(p). If p is a triangle, this is already given
by d(x;) — 0(xx), see Table 4.1. If p is a pentagon, we need to understand 6(r,).

As above, if x is the set of intersection points in e N @3 that corresponds to x., and xq,
then let x be the component of x in ;. Similarly, if y is the set of intersection points in
a N @' that corresponds to yo, then let y be the component of y in f3;.

By Lemma 4.2, 6(r,) = no(ry) +nx(r,) — 1. Since p is empty, and clearly p and r, contain
the same basepoints in regions not bordering 3;, then r, maybe only contain basepoints in
{X1.0, X20, X350, X40}. So ng(ry)+mnx(ry) only depends on ht(x) and ht(y), and on the type
of p. For example, if ht(z) = 4 and ht(y) = 6, then the pentagon p must be of type 4q,
and hence its straightening only contains X3 ; see Figure 4.4. One computes the value of
r, for all the other possibilities of heights of generators and types of pentagons similarly, by
inspecting the Heegaard diagrams directly. We summarize the computation in Table 4.2.

By Table 4.2, we see that f., is homogeneous with respect to the d-grading, and shifts it

by —1/2.
Calculations for fy, f1, and also for ¢, and vy, are completely analogous. We see that
degs(fr) = —1/2, degs(vy) = 1/2, and degg(¢y) = 1. O

For each k € {00, 0,1}, we now define ef’ by
el =ep — e}, — el
This definition is consistent with our definitions of ey, €}, and e}. Note that if T¢ contains
a positive crossing, then (e2, eg', es!) = (0,0,0), and if T contains a negative crossing, then
(e el esh) = (—1,0,1). In the following, we say that T is positive if it contains a positive
crossing, and negatwe otherwise.
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FIGURE 4.4. Left: The diagram H..; Right: The diagram #,. The black dot,
white dot, and grey rectangle are an example of of a triple x,y, r,, where p is
a pentagon from a generator X, to yo.
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TABLE 4.2. The computation of degs(f,), based on the relative height of the
initial generator. We get —1/2 in all cases.

Proposition 4.4. The morphisms fi, pr, and ¥y are homogeneous with respect to

grading, and their 0-degrees are as follows:

degé(foo) =

degs(poo) =
deg; (%& =

el

e

o0

2 Y

2

L,

—efl +1

Y

degs (o)
deg(to)

I
—_

deg&(f()) = _%>

et — 1
degy(f1) = - 5
1
) deg&(gol) = 5;
degs(t1) = 1.

the 6-
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Proof. Consider f: C/D\r.ﬁD‘s(T,fl,n) — C/D\TED‘S(T,fil,n). Let Ty, and Tj, , be oriented
tangles such that

(1) T¢ and T,f’lfk are the same tangle after forgetting orientations;

(2) Tty and T, ; are the same tangle after forgetting orientations; and

(3) T, and T, ; have compatible orientations.

. . . . . o l l
Then it is evident that we can factorize fi into fr = i 4, © f" o ti, , where

(1) ey, : CDTD5(T61 n) — C/]-D\T/Dé(Tlflf ,n) is the map induced by the natural corre-
spondence between generators and domains;

(2) for: C/]-D\T/Dé(Tlflf ,n) — C/]-D\T/D‘;(Tlfiwk, n) is the map f, described in Section 3; and
(3) til1 g, CDTD5(T,§i1f ,n) — CDTD’(T}¢. |, n) is the map induced by the natural
correspondence between generators and domains.

Since T, ,fffk and T,fil’ 7. by definition have compatible orientations, by Lemma 4.3, we imme-
diately see that degs(f2") = —1/2.
Observe now that T, T,flf , and T,j,lfkfl all have no crossings when k € {0,1}. Therefore,

by Lemma 4.1, we also know the d-degrees of ¢f', and tf', -

degé(L,ilfk) = deg(;(bzlfk )=0 if k€ {0,1}.

Consider now the case k = oo. Observe that 7% .. must be negative, while T’ el _, must
be positive. Thus, Lemma 4.1 now implies that

() {1/2 if T is positive;
L =

0  if T is negative,

(9 ) 0 if T¢ is positive;
L g
’ 1/2 if T is negative.

Adding the 0-degrees of f', | f", and ¢f! | . together, we obtain

(0,-1/2,—1/2) if T is positive;

(degs(foo), dogs( o), degs(f1)) = {(—1/2, ~1/2,0) if T¢ is negative.

Comparing this with the values of ef indicated above the current proposition confirms the
0-degrees of f;.
A similar analysis ascertains the d-degrees of 5 and 1. O

Proposition 4.5. The morphisms Fy, ®r, and W, are homogeneous with respect to the
0-grading, and their d-degrees are as follows:

€oo eg— 1 er —1
degs(Fo) = 5 deg;(Fp) = — 5 degs(Fy) = — 5

—e+1 —€0 —eg+1
degs (Do) = 12 , degs(Pg) = 5 degs(®,) = 02 :
degs(Voo) = 1, degs(Wo) = 1, degs(¥y) = 1.

Proof. We have that

/ 2

! 1 €
deg;(F) = degs(vy,) + degs(fi) + degs(ey,) = —k + degs(fr) + Ek

Proposition 4.4, together with the equations ef = 0 and €}, + ef’ + e} = €k, yield degs(Fy).
Recall that e, +ep+e; = 0, and similar equatlons hold for e}, €}, and ef’. The computation
of degs(®y) follows similarly, using these equations. The §-degree of U is obvious. O

™
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Proof of Theorem 3. In the proof of Theorem 2, we applied Lemma 2.1 to the morphisms
Fy, @, and ¥,. In this section, we modified the definitions of Fj, ®;, and ¥y, to adapt
to the d-graded picture. The proof will be complete if we can compute the d-degrees of the
relevant maps in Lemma 2.1, when applied to our modified Fj, ®;, and V.

With M, = C/D\T/D‘s(Tk, n), recall that the desired homotopy equivalence is given by the
type DD homomorphisms Gj: My — Cone(Fy41) and G).: Cone(Fy41) — My, where

Gr(my) = (Fi(mi), Pr(my)),
Gle(Mig1, Miyy) = Pppr (i) + Frpa(myra),
and the homotopy morphisms Hy: My — M, and H}: Cone(Fj41) — Cone(Fj1), where
Hi(my) = Wi (my),
Hy (M1, Miga) = (Prgr (mig1) + Prpo(Miga), Yiro(miyo)).-

We will now use Proposition 4.5 to compute the J-degrees of G, G-, H, and H._.
First, observe that since degs(Fy) = (eg — 1)/2, Cone(Fp) has underlying module

Aﬂg{eog_l} @ M,
and so, in Cone(Fy),
_ €oo €o —|— 1 - —e1 + 1
O(Fao(meo),0) = (0(moo) + 5 ) + 5 = d(meo) 5
— 1
6(0, Foo(meo)) = d(meo) + 612+

This shows that G is homogeneous and degs(Go) = (—e1 + 1)/2. Next, if §(mg, my) = d,
then

61—1
2 Y

eo+1 —€s e1 —1
5@@m»:@—°2)+ o =dt =5,

and so degs(GL) = (e; — 1)/2.
Now clearly degs(Hy) = 1. Finally, if d(mg, m;) = d, then

6(Wo(mo),0) =d +1,

—d+1,

5(0, Wy (my)) = d+ 1,

and so degs(H{j) = 1.

Since G, and G’ are homotopy equivalences of homogeneous degree (—e; + 1)/2 and
(e1 — 1)/2 respectively, and H,, and H._  are homotopy morphisms of homogeneous degree
1, our proof is complete. O

—ep+1 ep+ 1
0 )+0

Proof of Corollary 4. Theorem 3 and the Gluing Theorem for tangle Floer homology [37,
Theorem 12.4] together imply that there exists a chain map Fy: CFK(Lo) @ V™% @ W —
CFK(L,) ® VM=t @ W of é-degree (eq — 1)/2 such that

(TFT{(LOO; Fy) @ V™ @ W ~ Cone(F) {61 2_ 1] :
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The claimed exact triangle now follows from the exact triangle on homology associated to a
mapping cone of chain complexes. [l

5. THE ORIENTED SKEIN RELATION

In this section, we give the proof of Theorem 5, which is similar to that of [36, Theo-
rem 9.2.1].

Let (T fl, T, T¢) be an oriented skein triple of elementary (n, n)-tangles, with the strands
at which the tangles differ oriented from right to left, as in Figure 5.1.

= I —
= =

F1GURE 5.1. From left to right, the elementary tangles Tfl, T, TE.

We will now describe a common diagram from which we can obtain corresponding Hee-
gaard diagrams for these tangles. Consider Figure 5.2. Letting

5+ = {517---aﬁi—laﬁi,—l—aﬁi—l—la---aﬁn}u
B_ = {517 .- ->5i—1aﬁi,—aﬁi+1> e ,ﬁn},
and
X={Xy,..., X}, X ={X],Xy,....X,,}, Y={V,Y5, X;5,..., X,,},
we define
He =2, a,0,,X,0), H o= a B ,X,0),
Ho= (3, a,8,,Y,0), Hy= (2, a,8_,Y,0).

Then . is a Heegaard diagram for T'¢, H_ is a diagram for 7%, and both H, and Hj,
which are related by a commutation move [37, Section 5.3.1], are diagrams for T

We denote the variables in CDTD™ corresponding to O3 and O, by Uz and Uy, respectively.
Observe that T' fl, T¢ and Tg all have the same left and the same right oriented boundaries,
which we may denote by dLT and 9%T respectively. Denote the variables in A~ (—0%T)
corresponding to the i*® and (i + 1)** point in —0%T by U, and U,, respectively.

As before, we cut open the Heegaard diagram along the indicated grey circle in Figure 5.2
and also delete the non-combinatorial regions, to obtain Figure 5.3.

We denote by ¢ the intersection point in af* N 3; ; note, then, that the two squares
containing X; and X5 in H, meet at ¢, and so do the squares containing Y; and Y5 in H.
Similarly, we denote by ¢ the intersection point in of*N3; _; then the two squares containing
X1 and X5 in Hj meet at ¢/, and so do the squares containing Y7 and Y3 in Hj,.

We now partition the set of generators

S(Hy) = I(H4) UN(HL),  S(Ho) = I(Ho) UN(Ho)
according to whether or not a given generator contains the point ¢, and similarly partition
S(H-)=T(H-)UN'(H-), ©&(Hp) =T(H) UN'(Hp)

according to whether or not a generator contains the point ¢'.
There is a natural identification between I(H) and I(H,), and one between N(#H ) and
N(Ho), as sets. Similarly, there is a natural identification between I'(H_) and I'(Hj), and
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FIGURE 5.2. The diagram that combines H, H_, Ho, H,.

one between N'(H_) and N'(H(). However, note that, for example, N(#H ) and N(H,) have
different (M, A)-bigradings that depend on ‘H, and Hy. We will think of the Maslov grading
M as given by functions M., M_, My, and M/, and similarly for the Alexander grading A.

Further, let T: I'(#H{,) — I(H4) be the unique one-to-one correspondence for which xNg; —
and T'(x) N B, + lie on the same « curve, and x \ §; - = T'(x) \ f;+. Note that T can also be
written as a function T: I'(H_) — I(Hy). We can think of T as a map counting the small
triangle that contains Xs.

Lemma 5.1. Forx € I(Hy) = I(H,),
M, (x) = My(x), A, (x) = Ag(x) — %;

for x € N(H) = N(Ho),

forx e I'(H_) =T(Hy),

M) = M) A = Ay(x) +
forx e N'(H_) = N'(Hj),

M%) = My(x)  A_(x) = A(x) — 1.
Furthermore, for x € I'(H{) and T(x) € I(H4),

M) = Mo(TO) 1 Ayl = A-(T() + 5,
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BR FR
( cn . Cn 3
X, || Xy
BR FR FR
8BRZ < ci / Ci > 8 2
C é(% C
Y
\ _BR ’ FR
& o
BL FL
¢ CO FO \
O
BL FL
oBly § ¢ ¢ > Oy
O,
\ BL FL
C, Cn
“‘8,7 C 62'74_ “87‘_, C ;“30

FIGURE 5.3. The combined diagram for the four elementary tangles, obtained
by cutting open the diagram in Figure 5.2 along the indicated grey circle and
deleting the non-combinatorial regions.

and for x € I'(H_) and T(x) € I(H,),

M) = My(T0) +1 A () = A(T() + 3.
Proof. Let x € I(H4) = I(Hy). Both 1, and H, use B, with respect to which we have
inv(x? X)) = inv(x® Y#) — 2, and inv(X?) = inv(Y®) — 1, whereas all other counts in
the definition of the bigrading agree for the two diagrams. Thus, M, (x) = My(x) and
A4 (x) = Ao(x) — 5. One obtains the second, third, and fourth statements of the lemma
similarly.

Let x € I'(H{). We will denote inversions counted with respect to B, or B_ by invg,
or invg , respectively. Note that invg (YL) = invg, (X) — 1. Since ;- Nal ¢ x and
Bix NaF ¢ T(x), we have invg (x, YF) = inv(x”, XF). All other terms in the definition
of the bigrading agree for the two diagrams. Thus, M|(x) = M, (T(x)) + 1 and A{(x) =
A4 (T(x)) + . One obtains the sixth statement of the lemma similarly. O

We define bigraded type DD structures (I, o1 ;) and (N, 6§ ) over (A~ (=0*T), A= (=9"T))
as follows. As a module, I is freely generated over Fo[Uy, ..., U,] by the set I(H) = I(H,),
and N by N(H,) = N(Ho). The structure map dj ; counts rectangles not crossing ¥ or Y3,
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and 511\I7N counts rectangles not crossing X; or X,. The bigradings on I and N are given by

Mi(x) = M, (x) + 1= My(x)+ 1, Ai(x) = A (x) +1 = Ap(x) + %,
Min(x) = Mo(x) +1= Myl +1, An(x) = Au(x) = Ao(x) + 5.

which are well defined in light of Lemma 5.1. We may think of CDTD™ () as the mapping
cone of a type DD homomorphism dj n: (I,d1y) = (N, dy ) that counts rectangles crossing
exactly one of ¥ and Y3, and think of CDTD™ (H,) as the mapping cone of oy y: (N, oy n) —
(I,0yy) that counts rectangles crossing exactly one of X; and X5. In other words,

CDTD™ () = Cone(dy n)[—1] {0}, deg(drn) = (=1, -1),

1
CDTD" (o) = Coneldo)l-11{ =3 }. deg(Br) = (~1,0).
Similarly, we may define type DD structures (I, oy 1) and (N', o3, /) over the same algebras:
As a module, I’ is freely generated by the set I'(H_) = I'(Hj,), and N’ by N'(H_) = N'(H,).
The structure map 511,71, counts rectangles not crossing X or X5, and 511\I,,N, counts rectangles
not crossing Y7 or Y. The bigradings on I' and N’ are given by

My () = M-(x) = My(x), Au(x) = A_(x) ~ 1= Ay —
Mo () = M_(x) = My(x), Ane() = A () = A00) 3.

which are well defined by Lemma 5.1. We may think of CDTD™(#H_) as the mapping cone
of a type DD homomorphism dx, p: (N, 0py ) — (I, 0 /) that counts rectangles crossing
exactly one of ¥ and Y5, and think of CDTD™ () as the mapping cone of dj, n: (I, 0y /) —
(N, 511\1,7N,) that counts rectangles crossing exactly one of X and Xs. In other words,

CDTD™ () = Cone(sk 1 )10] {1} deg(Ghy ) = (~1.-1),
CDTD™ () = Cone(d} n)[0] {%} : deg(dp nv) = (—1,0).

Remark. Our notation for grading shifts (for modules) differs from that in [36] by a negative
sign.

Lemma 5.2. The correspondence T: I'(H{) — I(H4) extends to a type DD isomorphism
T: (I, 04 y) — (I,d1y) of (M, A)-degree (0,1).

Proof. Refer to Figure 5.3. Recall that the structure map 51171 counts rectangles (of which
there are seven types), introduced in Section 2.2, that do not cross Y; or Y5. Since generators
in I all have a component on ¢, this means that the rectangles counted in 51171 do not have
an edge on f3; ;. Note that if such a rectangle were to cross X, then it would necessarily
cross Y7 (and hence X7) also; and if it were to cross X, then it would cross Y, also. This
implies that the rectangles counted in 51171 do not intersect {Xi, X7, Xo,Y1,Ys}. Similarly,
rectangles counted in dy 1, do not intersect this set. In other words, djy and dy, , both count
empty rectangles that do not intersect the 2-chain whose boundary is formed by an arc in

af | an arc in B;_, an arc in aﬁl, and an arc in (3;,1, in the induced orientation. We can
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now conclude that for x’,y’ € I, there is a one-to-one correspondence between rectangles
connecting x’ to y’ and rectangles connecting T(x’) to T(y’).

The fact that these rectangles do not have an edge on 3; y or §;_ also implies that, for
x',y’ € I, an empty rectangle 7’ connecting x’ to y’ crosses O3 (resp. O4) if and only if the
corresponding rectangle r connecting T(x’) to T(y’) crosses O3 (resp. O4). This shows that

the algebra elements U” and U” are equal. Since obviously a*(x’,7") = a(T(x),r) and
a*(x',r') = a®(T(x'),r), the term

a“(x',r') ® U'y' ® af(x',r)
appears in oy, y,(x) if and only if
d“(T(X),r) U™ T(y) ® o™ (T(X),r) = " (X', 7") ® UT’/‘T(y') ® a®(x', 1)

appears in 0f ;(T(x’)). This shows that T is a type DD isomorphism.
The (M, A)-degree of T follows from Lemma 5.1 and from the definitions of I and I'. [

We now consider the following diagram of type DD homomorphisms:

O N
(U, 6} 1) — (N, 64 1)
(5.3) sinoT T odn v
N1
(N> 611\I,N) (L 611,1)

Lemma 5.2 and the discussion immediately preceding it imply that:
e Each edge map in (5.3) has (M, A)-degree (—1,0).
e The left column in (5.3) is identified with CDTD™(H, )[1]{0}.
e The right column in (5.3) is identified with CDTD™(#H_)[0] {0}.
e The top row in (5.3) is identified with CDTD™(H;)[0] {—1/2}.
e The bottom row in (5.3) is identified with CDTD™(H,)[1] {1/2}.

Lemma 5.4. The type DD homomorphisms
511\1,1 © 511,N3 (I, 511,1) — (L 511,1)7 On ' © 511',N'1 (T, 511',1/) — (T, 51/,1/)
are given by
100N = ldi®(U; + Uy — Us — Uy),
o © 0y = ldy @(Uy + Uy — Us — Uy).
As a consequence, (5.3) commutes.

Proof. Consider the homomorphism dyy o 0j 5. This counts domains that can be written
as a juxtaposition of two empty rectangles, the first of which connects some x € I to some
y € N, while the second connects y to some z € I. Inspecting Figure 5.3, we see that for a
given x € I, there are exactly four such domains: the vertical annulus bounded by g;_; and
Bi+, the vertical annulus bounded by f; 1 and f;1;, the horizontal strip bounded by «;_4
and «;, and the horizontal strip bounded by «; and «;,1. These four domains contribute the
algebra elements Uy, Uz, Us, and U; respectively.

The homomorphism dpy, 0 dp v can be computed in the same way. O
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The commutativity of (5.3) implies the existence of a type DD homomorphism
(6in©T,T 0bp 1) Cone(dy ) — Cone(dy ),
which we may think of as

(615 0T, T 06k y): CDTD™ (H))[0] {—%} s CDTD~ (Hy)[1] {%} |

with (M, A)-degree (—1,0). We now work to compute this type DD homomorphism.
Let hx,: CDTD™ (Hy) — CDTD_(’H{)) be the morphism defined by

hxa(x) = ) > a"(r) @ Uy ® a®(r),
ye(My) reRect®(x,y)
rA(XUY)={ X2}

and for ¢ = 1,2, let hy,: CDTD™(H;) — CDTD™(#,,) be the morphism defined by

=3 > d)eUyed()

ye(Hy) r€Rect®(x,y)
rAY=(¥;)

Let hy = hy1 + hyz.

Lemma 5.5. The morphism hx, is homogeneous of (M, A)-degree (—1,0), while the mor-
phisms hy, and hy, are both homogeneous of (M, A)-degree (—1,—1). Moreover, identifying
CDTD™ (Hg) with Cone(dq n)[0] {1/2} using (5.3), hx, sends I'[0] {1/2} to N'[0] {1/2} and
vanishes on N'[0] {1/2}, while hy, vanishes on I'[0]{1/2}.

Proof. The (M, A)-degree of hy, follows from the fact that the rectangles counted in hy, all
contribute to 5;%, since Hy = (X, a, 8_,Y,0). The (M, A)-degree of hy, can be computed
by adapting the proof of Lemma 2.3 to the case when the rectangle r contains exactly one

basepoint of type X (in the present context, Y;). The images of the morphisms (when
restricted to I'[0] {1/2} or IN'[0] {1/2}) are clear from the local picture near ¢'. O

Lemma 5.5 implies that hx, o hy + hy o hx,: CDTD™(H;) — CDTD™(H}) has (M, A)-
degree (—2,—1). To align with the degree shifts of other morphisms defined above, and to
simplify notation, we define the morphism

1 1
h: CDTD™(Hg)[0] {—5} — CDTD™ (Hy)[1] {5}
by
th (6] hy + hy (6] th,
with degrees appropriately shifted, so that h has (M, A)-degree (—1,0).

Lemma 5.6. There is a homotopy equivalence P: CDTD™ (Hy) — CDTD™ (Hy) such that

(5.7) P[1] {%} o (B1x 0T, T 0 6ky) =

so h, and consequently hx, o hy + hy o hx,, are type DD homomorphisms. Furthermore, the
homotopy equivalence P[1]{1/2} induces a homotopy equivalence

Cone(éll’N 0T, T o b ,’I,) — Cone(h) = Cone(hx, o hy + hy o hx,)[1] {%} )
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Proof. This proof is analogous to the proof of [36, Lemma 9.2.7].

The homotopy equivalence P is obtained in a manner analogous to that in [37, Lemma 5.7].
It is defined by counting pentagons, with the only difference being that here we are modifying
B-circles rather than a-circles, and there is interaction with the algebra, as in the proof of
Equation 3.7. (However, note that, contrary to the homomorphisms P, in Section 3, P here
counts pentagons that possibly contain two components, as in rectangles of type (6) in the
definition of c%DTD,(H). All pentagons counted in P are either interior or right-bordered.)

It can easily be checked that the (M, A)-degrees of the maps involved are correct. Thus,
to streamline our discussion, we will ignore all gradings for the rest of this proof; doing so,
in order to prove Equation 5.7, it will be sufficient to verify the identities

?OTO 511\T/,I' — hX2 o hy,
’PodIl’No‘J':hyth27

considered as morphisms of ungraded type DD modules, by exhibiting a one-to-one corre-
spondence between domains contributing to both sides. All cases of the correspondences
are analogous to those in the proof of [36, Lemma 9.2.7]; in our context, however, each case
contains a number of subcases, as the domain under consideration may be bordered and
interact non-trivially with the algebras.

We provide a sample proof of Equation 5.8. Consider a domain contributing to PoTJo 511\1',1'9
let 71, p1, and psy respectively be the rectangle contributing to ', the triangle contributing
to 7, and the pentagon contributing to P. Then p; % ps is a rectangle ro that contains Xy
but not Y; or Y5. The juxtaposition r; * ro then represents a term in hx, o hy. Conversely, if
r1 %9 contributes to hx, o hy, we may remove the small triangle p; containing Xs from 75 to
obtain a pentagon py. Since ry * 7y = 11 * Py * po, We see that aft(r;xry) = af'(ri *py*ps). All
subcases are exhibited in Figures 5.4, 5.5, 5.6, and 5.7, each corresponding to a row in the
left of [36, Figure 9.4]. In these four figures, each pair of domains is organized as follows: The
left represents a domain contributing to hx, o hy, and the right the corresponding domain
contributing to P o T o 4} ,; the shading of the polygons, from dark to light, indicates the
order of composition.

The proof of Equation 5.9 follows similarly, as in the proof of [36, Lemma 9.2.7]. All
subcases are exhibited in Figures 5.8, 5.9, 5.10, and 5.11, each corresponding to a row in the
right of [36, Figure 9.4]. In these four figures, each pair of domains is organized as follows:
The left represents a domain contributing to hy o hy,, and the right the corresponding
domain contributing to P o dj 5 o T; the shading is as before.

In all subcases except one, the domain contributing to the left of Equation 5.8 or Equa-
tion 5.9 is the same one contributing to the right. The only exception is shown in Figure 5.11,
where the domains contributing to the two sides are both annuli of width one, but one ap-
pears to the left and one to the right of the local picture; the intersection of either domain
with O is {O4}, and so their contributions are the same.

Lemma 2.2 applied to Equation 5.7 implies that Cone(f;) ~ Cone(f2). O

Lemma 5.10. The type DD homomorphisms hx,ohy +hyohx, and IdCDTDf(%) ®(Uy—Uh)
are homotopic, and so there is a homotopy equivalence

Cone(hx, o hy + hy o hy,) = Cone(Idcprp- (1) ®(Uz — Uh))
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FI1GURE 5.4. Corresponding domains that contribute to the two sides of Equa-
tion 5.8, analogous to the first row, left, of [36, Figure 9.4].

Proof. For i = 1,2, let hx,y,: CDTD‘(?—L’) — CDTD™ (H;) be the morphism defined by
thy Z Z CLL(T)(X)UTY@CLR(T).

ye(HM) reRect®(x,y)
rnY={Y;}
Xo€r
Let hx,y = hx,v, + hx,y,. One can check that hx,y has degree (—1,—1); further, hx, y
sends N’ to N’ and vanishes on I’
Observe that on N’ the moprhism hy, o hy decomposes as

hX2 ohy = 511\1/,N/ o th,y + hXQ,Y o 511\1/,1\1/ + dth,y + Idne QU, + Idn ®U4.

The map Idn ®Us (resp. Idny ®Uy) comes from juxtapositions of rectangles such that the
support of the resulting domain is the component of ¥\ e containing X, (resp. the annular
component of ¥\ B_ containing X5).

Similarly, on I' the morphism hy o hx, decomposes as

hy o hX2 = hX27y o 511’,N’ + IdI/ ®U2 + IdI/ ®U4
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FI1GURE 5.5. Corresponding domains that contribute to the two sides of Equa-
tion 5.8, analogous to the second row, left, of [36, Figure 9.4].
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FI1GURE 5.6. Corresponding domains that contribute to the two sides of Equa-
tion 5.8, analogous to the third row, left, of [36, Figure 9.4].
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F1GURE 5.7. Corresponding domains that contribute to the two sides of Equa-
tion 5.8, analogous to the last row, left, of [36, Figure 9.4].
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F1GURE 5.8. Corresponding domains that contribute to the two sides of Equa-
tion 5.9, analogous to the first row, right, of [36, Figure 9.4].
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FI1GURE 5.9. Corresponding domains that contribute to the two sides of Equa-
tion 5.9, analogous to the second row, right, of [36, Figure 9.4].
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Adding up the two identities, we obtain
hx, o hy + hy o hx, = Ohx, y + ldcprp- ) ®(Uz + Us),
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Ficure 5.10. Corresponding domains that contribute to the two sides of
Equation 5.9, analogous to the third row, right, of [36, Figure 9.4].

£ i

Ficure 5.11. Corresponding domains that contribute to the two sides of
Equation 5.9, analogous to the last row, right, of [36, Figure 9.4].

i.e. hx,y is a homotopy between hy, o hy + hy o hx, and IdCDTD*(H()) ®(Uy + Uy). By [37,
Lemma 3.35], the actions of U; and Uy are homotopic, and so the statement of the lemma
follows. O

Proof of Theorem 5. Define the bigraded type DD homomorphism P, _: CDTD™ (H;) —
CDTD™ (H_) by the two horizontal maps in (5.3); then by definition, Cone(P; _) is identified
with the cone of the commutative diagram (5.3) itself, without degree shifts. On the other
hand, the cone of (5.3) is also identified with Cone(dfx © T, T 0 dpy ). Combining this fact
with Lemmas 5.6 and 5.10, we have

1
Cone(Py ) = Cone(dj 5y 0 T, T 0 Oy 1) = Cone(Idcprp-(3) @(Uz — Uh))[1] {5} :
Finally, there is an obvious homotopy equivalence
Cone(ldeprp- () ®(U2 — Ut)) 2= Cone(Idcprp-(3,) ©(Uz2 — Uh))

induced by P and P, which completes the proof. O
Proof of Theorem 6. Note that Idcprp- (3, ®@(Ua — Uy) has (M, A)-degree (—2,—1), and
5o its mapping cone has underlying module CDTD™ (H,)[—1] {—1} & CDTD™ (#,)[0] {0}.
Setting all U; to zero in Theorem 5, we obtain a homomorphism P, _ such that

~ 1
Cone(Py ) ~ Cone(IdCTﬁ:D(HO) ®0)[1] {5} :

but the latter mapping cone is simply

CDTD (Hy)[0] {—%} & CDTD (Ho)[1] {%} |



70 INA PETKOVA AND C.-M. MICHAEL WONG

A gluing argument as in the proof of Theorem 2 extends this result to any oriented skein
triple. 0

One immediately recovers the closed case. We outline the proof below.

Proof of Corollary 7. The proof is analogous to that of Corollary 4. Theorems 5 and 6 to-
gether with the gluing property of tangle Floer homology (see [37, Theorem 6.1] for “minus”)
imply the existence of a chain map F, _: CFK™(L;) — CFK™(L_) whose mapping cone
corresponds to CFK™ (L), so that the exact triangles on homology follow. U

Finally, we prove Corollary 8.

Proof of Comllary 8. By the type DA version of Theorem 6, we have a type DA homomor-
phism P, _ CDTA(Tel) — CDTA(Tel) of (M, A)-degree (0,0) and a homotopy equivalence

Cone(P, ) ~ CDTA(T) [0] {—%} & CDTA(TS) [1] {%} |
By [7], we have homomorphisms on Grothendieck groups
|Cone(P,,)| = |CDTA(T{) [1] & CDTA(T™)| = ~Q(T¢)) + Q(T*)

and

COTA) (0 {~3 | & COTAT 1) {5 }| = o~ [ODTA(T] - o [ODTA(T)

= Q(T") — ¢T3,
where we have used the fact that the Maslov grading descends to powers of —1, and twice

the Alexander grading descends to powers of ¢ in the Grothendieck group. This completes
the proof. O
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