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ABSTRACT: The entanglement length Ne is a key parameter for
all entangled polymer fluids for which no comprehensive scaling
theory yet exists. We have pieces of a theory; the Lin-Noolandi
(LN) argument predicts Ne scaling for flexible chains that agrees
with data on polymer melts. There are arguments for how Ne
should depend on polymer concentration, but which are not
obviously consistent with LN. Morse scaling describes entangle-
ment for solutions of stiff chains, consistent with data. Everaers
proposed an ansatz that Ne depends only on the arclength
concentration, as if chains were uncrossable threads of vanishing
thickness. This ansatz is consistent with simulations of bead-spring
chains, but not with LN, as it has no role for packing length, the central parameter in LN scaling. We propose a comprehensive
scaling theory that includes LN in one limit, thread ansatz in another, and reduces to Morse scaling for stiff chains. One new
ingredient is that the typical distance of closest approach between two chains is governed by the packing length or chain diameter,
whichever is larger. If a chain is sufficiently flexible and bulky, the packing length is relevant; but for stiffened bead-spring chains
without side groups, the packing length is smaller than the chain diameter, so thread scaling applies. Our approach presents a
consistent physical picture of entanglements in all regimes as close encounters between two chains. For solutions, we determine the
entanglement probability between chain segments, and consistently describe the crossover between the Edwards and semidilute
regimes.

■ INTRODUCTION

The entanglement lengthNe and entanglement strand relaxation
time τe are the two keymaterial parameters in themodern theory
of flow in entangled melts and solutions.1 This theory, built on
the tube concept as an approximate representation of
uncrossability constraints, has been quantitatively successful in
describing linear and nonlinear flow behavior of entangled melts
and solutions of linear and branched polymers.2−7

In tube-based theory, the many-chain problem of a melt or
solution of chains that cannot cross through each other is
replaced by an approximation, in the spirit of mean field theory,
of a single chain confined by neighboring chains in a tube
(Figure 1), which deforms with flow and relaxes as other chains
explore new conformations. The single confined chain under-
goes random thermal motions, which, for linear chains, cause
fluctuations in the contour length, and diffusivemotion back and
forth along the tube called reptation. By these motions, the chain
progressively explores new conformations, and stress held in the
entangled network after a step strain thus decays away.
The tube diameter a expresses the range of transverse motions

a chain can undergo at times short compared to the time
governing its escape from the tube, which for entangled melts or
solutions of linear chains is the reptation time. The
entanglement length Ne (or equivalently the mass Me) is the

length of a chain segment such that its transverse displacements
from the tube centerline are of order a. The chain in its tube may
be regarded as a sequence of entanglement strands of length Ne,
each one just long enough to “feel” the tube confinement.
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Figure 1. Cartoon of a single flexible chain confined to its tube.
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An entangled melt or solution responds like an elastic material
when it is sheared quickly. On timescales such that chains can
relax their contour lengths but not yet reptate (so between the
Rouse time τR and reptation time τd), the melt or solution
behaves like a rubber with a modulus G.8,9 (G is called the
plateau modulus because it describes the plateau in frequency-
dependent response between 1/τR and 1/τd.) Physically, the
elastic response derives from the reduction in entropy of chain
segments confined in the tube, which deforms approximately
affinely as the material is sheared. Hence, rubber elasticity
predicts the modulus G as kT per entanglement strand.
The tube diameter a and entanglement strand length Ne are

material constants, dependent on polymer type and concen-
tration. We would like to predict a and Ne from geometrical
properties of the polymer chains alone, rather than dynamical
measurements or simulations. Because there are many plausible
microscopic lengths in the problem, we cannot simply infer a
from dimensional analysis. Instead, we require at least a
physically motivated scaling theory, which we hope will shed
light on the nature of entanglements.
Ne and a are related by the requirement that a segment of

length Ne has transverse fluctuations from the tube centerline of
order a. This relation involves the chain stiffness, as expressed by
the Kuhn length LK. Roughly speaking, LK is such that a chain
segment of LK “forgets” its direction from one end to the other.
Stiff chains have longer Kuhn lengths, and have random-walk
conformations that are more expanded. Indeed, the Kuhn length
can be obtained from dimensions of sufficiently long chains as
the ratio R2/L, where R2 is the mean-square end-to-end distance
and L is the fully extended length.
The tube diameter quantifies the consequences of uncross-

ability and chain packing on the thermally accessible transverse
motions of chain segments. In melts, the density is essentially
fixed by the hard core volume of chain monomers, and chain
conformations are essentially ideal Gaussian random walks, with
dimensions governed by the Kuhn length. (This is because any
tendency for single-chain conformations to be self-avoiding is
effectively screened by the concentrated presence of other
chains. Figuratively speaking, a chain exploring random-walk
configurations gains nothing by avoiding itself, since it
constantly undergoes collisions with other chains.)10

Therefore, we may expect that a and Ne for melts should only
depend on the Kuhn length and the effective chain diameter d,
defined such that the volume per chain in the melt is π(d/2)2L.
For solutions, a and Ne depend in addition on the polymer
volume fraction ϕ, and may depend as well on solvent quality,
which determines whether individual chains are self-avoiding,
and thereby affects local chain packing.
However, except at low concentrations with good solvents,

chains are not all that self-avoiding. Indeed, we define the
“swelling length” Ns as the length of a chain segment in a given
solvent such that its self-interactions as a Gaussian coil are of
order kT. If solutions are concentrated enough that strands of
length Ns typically encounter other chains, self-avoidance is
suppressed by screening, just as in the melt.10−12 This sets an
upper limit onϕ for a given solvent, above which chains are ideal
random walks. Therefore, in most practical circumstances,
ignoring self-avoidance effects on entanglement is likely a good
approximation.
Because we expect entanglement properties to depend only

on chain conformations and packing (and as argued above only
on LK, d, andϕ), simulations of coarse-grainedmodels like bead-
spring chains should suffice to explore entanglement behavior,

without explicit representation of specific interactions or
microscopic details of monomer shape. Likewise, scaling
theories that focus on LK, d, and ϕ should suffice to make
useful predictions of a and Ne for real polymers.
Indeed, there exist three different scaling theories that

describe polymer entanglement in various regimes: one for
flexible chains, one for stiff chains, and one ansatz that asserts
entanglement properties depend on concentration ϕ only
through the arclength density of chains, described below.
These theories are incomplete (and in some ways mutually
inconsistent), in that no single approach consistently describes
melts and solutions of flexible and stiff chains. We now
summarize the underlying physical assumptions of these three
existing approaches, and their successes and limitations in
accounting for experimental and simulation results.
The first approach, introduced by Lin and Noolandi, applies

to melts of flexible polymers.13−15 It asserts that the volume
pervaded by an entanglement strand contains a fixed number of
other such strands, independent of the diameter or Kuhn length
of the polymer. In other words, when enough other strands
cohabit the same volume as a given strand, that strand will be
entangled. This leads to the prediction that the modulus G is
proportional to kT/p3, where p is the packing length. (We will
recapitulate this result in more detail in the following section.)
The packing length p is defined as the ratio V/R2 of the chain

displaced volume V and mean-square end-to-end distance R2.
Because both scale linearly with chain mass, the ratio is a
material constant with dimensions of length. It can be shown
that p is the typical distance over which monomers of a given
chain dominate the density. The packing length is short for stiff
skinny chains, and long for flexible chains with bulky sidegroups.
We can think of p as the typical distance of closest approach for
two polymer strands. For a semiflexible chain with Kuhn length
LK and diameter d, p scales as d2/LK.
Importantly, p only depends on chain dimensions, so the LN

result in that the modulusG scales as kT/p3 predicts a dynamical
consequence of entanglement from chain dimensions alone.
From G, we can infer Ne (since G is kT per entanglement
strand), and from chain dimensions we can infer a. This scaling
theory is consistent with the measured plateau modulus and
chain dimensions for a wide range of polymers (Figure 2).16,17

It is not immediately clear how to generalize the LN scaling
ansatz to solutions. The naive generalization is that each
polymer strand carries with it a certain quantity of solvent, such
that the polymer volume fraction in the cohabited volume

Figure 2. Plateau modulus G vs p−3 where p is the packing length.
Adapted from Fetters et al., refs 16 and 17.
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described by LN is ϕ. This leads to the incorrect prediction that
G is proportional to ϕ3. This prediction is definitely ruled out by
careful experiments on polymer solutions, which are consistent
with G scaling as ϕ2 (Figure 3).18,19

On reflection, this naive generalization amounts to the
assumption that every chain is effectively “coated” with solvent,
like insulation on a wire.20 This is an unrealistic assumption,
because chains in solutions where self-avoidance is minimal
adopt ideal random-walk configurations, and hence are
uncorrelated with the solvent concentration. Rather, we may
expect in solution that entanglements occur where the local
chain concentration happens to be high.
If we instead assert that entanglements somehow arise from

binary contacts, we can argue for a different concentration
dependence of Ne (and hence G) by a dilution argument.20

(Note that the idea of entanglements as arising from binary
contacts is not obviously consistent with the LN idea of
entanglement strands as defined by cohabiting the same volume.
In this paper, we shall reformulate LN scaling to make this
consistency clear.)
Starting with a melt, some fraction 1 − ϕ of the chains is

“deleted” without changing the conformations of the remaining
chains, to give a typical solution configuration. By this deletion,
only a fraction ϕ of binary contacts survive along a given
surviving chain. Hence Ne(ϕ), the chain length between
entanglements arising somehow from binary contacts, scales as
1/ϕ. The solution modulus still scales as kT per entanglement
strand; because only a fraction ϕ of strands survive to contribute
to the modulus, G then scales as ϕ2, consistent with experiment.
The LN argument assumes that chains are Gaussian random

walks within their tubes, which requires that the Kuhn length is
less than the tube diameter. If we stiffen chains, the Kuhn length
increases, the packing length decreases, the modulus increases,
Ne decreases, and the tube diameter drops. For sufficiently stiff
chains, we pass out of the regime where LN applies.
The opposite limit of stiff chains in a dilute solution, with the

persistence length much longer than the tube diameter, has been
considered by Morse.21,22 His physical picture is that the
entanglement length for stiff chains is the distance over which

transverse deflections under thermal fluctuations of a given
chain segment are sufficient to intercept a second chain segment
on an oblique path. In this regime, the tube diameter a,
entanglement arclength Le (physical length of an entanglement
strand), and Kuhn length LK satisfy the inequalities a<Le<LK.
The Morse scaling ansatz predicts power law scaling for G as a
function of concentration and chain stiffness, consistent with
experimental data on entangled solutions of biological filaments
such as F-actin.
A different approach to scaling predictions for both stiff and

flexible chains was introduced by Everaers.23−25 Rather than
constructing a scaling theory that predicts specific power law
dependence ofG on the volume fraction ϕ, Kuhn length LK, and
chain diameter d, Everaers asserted that the dependence of
entanglement properties on ϕ and d should come only through
the combination ϕ/d2, with LK then the only independent
microscopic length in the problem. This combinationϕ/d2 is the
arclength density, i.e., the total chain length per unit volume.
The essence of Everaers’ assertion is that the thickness of the
chain does not matter for uncrossability, which intuitively makes
sense if the chains are regarded as thin threads of some
irrelevantly small diameter d.
Everaers’ thread scaling ansatz implies that the plateau

modulus G should scale as kT L/ K
3 times a dimensionless

function of ϕ d L( / )2
K

2.25 This assertion can be tested by

plotting βGLK
3 versus ϕ d L( / )2

K
2 for chains of different

stiffness, diameter, and volume fraction; if the assertion holds,
a master curve should result. Remarkably, a wide range of
simulation data on entanglement properties of flexible and stiff
bead-spring chains and solutions as well as experimental data on
stiff chains do fall on such a master curve. The master curve
exhibits a crossover, from a power law characteristic of the stiff
chain regime at large values of ϕ d L( / )2

K
2 (i.e., stiff chains, not

too dilute) to a second power law regime at small ϕ d L( / )2
K

2.
However, the thread scaling ansatz is not consistent with LN

as generalized above to solutions, i.e., withG scaling as kT/p3ϕ2,
which describes a wide range of flexible polymer melts and
solutions. To see this, observe that LN as generalized to
solutions implies βGLK

3 scales as ϕ2(LK/d)
6. In contrast,

starting with G scaling as kT/p3 in the melt, the thread scaling
ansatz impliesGmust scale asϕ3, which is definitely ruled out by
experiments on solutions. Alternatively, starting with G
proportional to ϕ2, the thread scaling ansatz implies G scales
as kTϕ2/(p2LK), which is not consistent with the observed LN
scaling, G ∼ kT/p3 for flexible chain melts.
In short, the thread scaling ansatz is consistent with data on

stiff chains, and crosses over to describe simulation results for
more flexible bead-spring chains, but is not consistent with
experimental data on real flexible melts and solutions. Because
the thread scaling master curve already displays a crossover but
does not include the LN regime, it suggests we have missed a
scaling regime between LN for flexible chains andMorse for stiff
chains. Indeed, we shall argue below that the missing scaling
regime corresponds to thin flexible threadlike chains, for which
the packing length p is smaller than d. If p is less than d, p
becomes irrelevant to governing the typical distance of close
approach between chain segments, and the LN regime cannot
apply.
In the present work, we propose a consistent scaling

description that encompasses the LN, flexible threadlike, and
Morse stiff chain regimes, and describes two crossovers from

Figure 3. Fit of tube-based TMA (time-marching algorithm) model to
dynamic rheology for entangled polystyrene solutions, assuming G(ϕ)
scales as ϕ2 (from van Ruymbeke et al., ref 19).
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flexible chains all the way to stiff chains, as well as the volume
fraction dependence of each regime. Moreover, we present a
consistent physical picture of what constitutes an entanglement,
which reconciles the LN description of “cohabiting” entangled
strands as somehow giving rise to entanglements, with the
Morse description of “intercepting” chain segments as directly
resulting in binary entanglement interactions. We shall show
that the Morse physical description can be extended to the
flexible threadlike and LN regimes.
We shall describe in addition how solvent quality affects

entanglement. For sufficiently dilute solutions and good
solvents, individual chain segments exhibit self-avoidance within
a correlation volume or “blob”. This changes the probability that
two chain segments will encounter each other and entangle. A
crossover occurs at the swelling concentration ϕs between two
distinct regimes of entanglement scaling: the Edwards regime of
ideal random walk chains for ϕ above ϕs, and the semidilute
regime of locally self-avoiding chains for ϕ below ϕs. In these
two regimes, the modulus G depends on ϕ with different power
laws. By enforcing continuity across this boundary, we extend
our scaling theory and discover how likely binary contacts are to
occur in the semidilute regime.
In short, we present in this paper a comprehensive scaling

theory of entanglement in melts and solutions of flexible and stiff
polymer chains. The paper is organized as follows. First, we
summarize the assumptions and results of the Lin-Noolandi
scaling theory for flexible chains, followed by the Morse scaling
theory for stiff chains. Then, we present a regime plot as a
function of chain stiffness and concentration, in which the
boundaries of validity of the LN and Morse regimes are shown,
and additional scaling regimes indicated, anticipating results of
forthcoming sections. Next, we describe the semiflexible
threadlike regime, and present estimates of the numerical values
of scaling prefactors. Finally, we describe the crossover for
entanglement in good solvents from the Edwards regime to
semidilute solutions.

■ LIN-NOOLANDI SCALING
In the Lin-Noolandi regime of entangled flexible chains,
entanglement strands are assumed flexible enough that they
can be described by random walks within the tube:

≫a LK (1)

The basic scaling assumptions of the Lin-Noolandi ansatz are
as follows.13−15

(1) The entanglement modulus G scales as kT per
entanglement strand volume:

ϕ ϕ∼
Ω

∼
Ω

G
kT
N

kT
N N( / )e 0 e K K (2)

(We will find it convenient in what follows to measure chain
length in Kuhn segments; here Ω0 is the volume of a monomer,
and ΩK is the volume of a Kuhn segment.)
(2) The tube diameter a is the mean-square end-to-end

distance of an entanglement strand:

∼ ∼a N b
N
N

L2
e

2 e

K
K

2

(3)

(3) The packing length is a material parameter, defined as the
ratio of displaced volume to mean-square end-to-end distance,
both of which scale linearly with chain length.

∼ Ω =
Ω

p
R L2

K

K
2

(4)

Roughly speaking, the packing length is the scale at which
monomers near to a given monomer come predominately from
nearby monomers along the chain. Thus, p governs the closest
approach distance of monomers on two distinct chain segments
(Figure 4).

We envision the chain as a continuous path with Kuhn length
LK and diameter d. We expect that LK/d must be larger than
unity, since we cannot easily bend a chain on a radius tighter
than its own space-filling diameter. With that limitation, we can
imagine a family of chains of increasing stiffness, measured by
the ratio LK/d.
For flexible bead-spring chains, the Kuhn length is about one

step, i.e., LK = d. For bead-spring chains with explicit bending
energy, represented by interactions between adjacent steps of
the form U(θ) = (1/2)κθ2, the persistence length is Lp = βκ and
Kuhn length is LK = 2Lp, with a smooth crossover to LK = d at
small βκ.
The Kuhn volume ΩK scales as ΩK ∼ d2LK. Correspondingly,

the packing length can be written as p = Cd2/LK, where C is a
coefficient of order unity. Hence, we have p/LK ∼ (d/LK)

2. As
usual in writing such scaling relations, we typically omit
coefficients of order unity. Later, we shall use results from
bead-spring simulations to estimate the coefficient C.
(4) The tube diameter is proportional to the packing length.

This is a consequence of the Lin-Noolandi ansatz, that a fixed
number of entanglement strands cohabit the pervaded volume
of an entanglement strand, which implies that ∼ ΩR Ne

3
e 0.

Since Re scales as a and ΩN R/e 0 e
2 scales as p, we have

∼a p (5)

(5) Entanglements are regarded as binary events, so that upon
dilution we have

ϕ ϕ=N N( ) /e e (6)

where Ne is the entanglement length in the corresponding melt.
As a consequence of these scaling assumptions, we can write

ϕ

ϕ

Ω ∼

∼

−N p

G
kT
p

e 0
3 1

3
2

(7)

Below, we shall give alternative physical arguments that lead to
the same scaling as Lin-Noolandi, but are more easily extended
to semiflexible chains and solutions.

Figure 4. Cartoon of chain as random walk of “packing blobs”, which
govern typical close-approach distance between chain segments.
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Note that the Kuhn length LK appears nowhere in these
scaling assumptions, except that implicitly LK<a because the
chain is assumed flexible within its tube.
It is useful to express the tube diameter, entanglement length,

and modulus in comparison to some characteristic microscopic
parameters. Because there are multiple microscopic lengths (d,
LK, p) in the problem, there are many ways to do this. One
appealing way is to compare a to LK, Ne to NK, and G to kT/ΩK.
For a and Ne, these comparisons directly assess whether the
scaling is valid (since we need a/LK>1 andNe/NK>1 to use these
results). We have

ϕ

ϕ

∼ ∼

∼ Ω

−a L N N d L

G kT L d

( / ) ( / ) ( / )

( / ) ( / )

K
2

e K K
4 1

K
2

K
4

(8)

■ MORSE SCALING
The complementary limit of entangled semiflexible chains is
described byMorse scaling, which assumes chains are stiffwithin
the tube (Figure 5), that is

≪a LK (9)

The scaling assumptions of the Morse ansatz are as
follows.21,22

(1) The tube diameter a is given by transverse displacements
of stiff entanglement strands of length Le, which bend slightly by
thermal fluctuations, on a radius of order LK (Figure 6):

∼a
L
L

2 e
3

K (10)

To see this, consider that the chain tangent makes a random
walk on the unit sphere (starting at n̂ = z,̂ say). The transverse
displacement t of the tangent vector over a short chain segment
of length L scales as t2∼ L/LK. In turn, the magnitude |t| scales as
Δ/L whereΔ is the transverse displacement of the far end of the
segment.
(2) Of order one “near miss” occurs between a given

entanglement strand and some other such strand. (Note that this
assumes entanglements are binary events.) We estimate the
probability of such an interaction as the product of an “intercept
area” of order aLe, times the arclength density ρ (chain arc length
per volume):

ρ ∼aL 1e (11)

(3) For a solution of semiflexible chains, the arclength density
scales as

ρ
ϕ ϕ∼
Ω

∼
L

d
K

K
2

(12)

in which d is the monomer diameter and hence the diameter of
the strand.
(4) The entanglement modulus is again kT per entanglement

strand

ρ ϕ∼ ∼
Ω

G
kT

L
kT

L L( / )e e K K (13)

Putting these assumptions together, we have the following
results: the entanglement arclength scales as

ϕ∼ −L
L

d L( / )e

K

2/5
K

4/5

(14)

The tube diameter scales as

ϕ∼ −a
L

d L( / )
K

3/5
K

6/5

(15)

Finally, the plateau modulus scales as

ϕ∼
Ω

G
kT

L d( / )
K

7/5
K

4/5

(16)

Note that in this scaling argument, two independent
microscopic lengths appear (d and LK), instead of just one (p)
as for flexible chains.
Because of the multiplicity of microscopic lengths, there are

many equivalent ways of expressing these scaling laws. In some
sense, it is natural to consider d and LK as the two fundamental
parameters describing the geometry of a semiflexible chain,
which in the simplest representation has a persistence length and
a diameter. (Therefore in the above, we have expressed stiffness
in terms of the ratio LK/d, which we expect should be greater
than unity.)
Implicit in the Morse scaling ansatz is that the chain diameter

is irrelevant in counting “near misses” between stiff chain
segments. For sufficiently concentrated stiff chains, this
assumption may break down, as suggested by the results and
arguments of Tassieri,26 who analyzed data from semiflexible
solutions in what he called the “tightly entangled concentration
regime”.

Nematic Phase. For sufficiently stiff and concentrated
chains, we expect to encounter a nematic phase, which preempts
a portion of the semiflexible regime. For completely rigid rods,
the Onsager prediction for the nematic phase boundary can be
obtained from a simple scaling argument, as follows.

Figure 5. Cartoon of a stiff chain confined to its tube.

Figure 6. Cartoon of the area swept out by a fluctuating stiff chain
segment, which may intercept a second obliquely oriented chain
segment.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.9b02684
Macromolecules 2020, 53, 1314−1325

1318

https://pubs.acs.org/doi/10.1021/acs.macromol.9b02684?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02684?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02684?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02684?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02684?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02684?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02684?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02684?fig=fig6&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.9b02684?ref=pdf


For isotropically oriented rods, the probability P that a given
randomly placed rod will collide with some other rod in some
other orientation scales as P ∼ L2dc, where the rods have length
L and diameter d, and the concentration of rods is c. (This
follows from the fact that for an arbitrary oblique angle between
the rods, the excluded region for placing a second rod center has
volume of order L2d.) This concentration c is related to the
volume fraction ϕ by ϕ ∼ cLd2. The collision probability
becomes entropically untenable when P becomes of order unity,
so that the nematic transition is predicted to occur when ϕ∼ d/
L.
The Khokhlov−Semenov model essentially represents the

semiflexible chain as a sequence of randomly oriented straight
segments of length LK.

27−30 Their prediction for the nematic
phase boundary scales as

ϕ ∼ d
LIN

K (17)

which is a line of slope −1 in the regime plot, extending from
some point along the melt line (ϕ = 1) downward and to the
right (see Figure 7).

■ REGIME PLOT
Now we consider the limits of validity for the Morse and LN
scaling. Morse assumes a≪ LK, so this scaling picture certainly
cannot hold beyond a ≈ LK, which from the scaling result for a,
implies ϕ ≥ (d/LK)

2. At this point, we likewise have Le
comparable to LK (whereas within the semiflexible regime of
validity, we have a≪ Le ≪ LK). Therefore, for a dilute solution
(with ϕ≪ 1), for Morse scaling to be applicable, we must have
chains sufficiently stiff and concentrated that (d/LK)

2 is less than
ϕ, so that a is then smaller than LK.
We can likewise inquire about the limit of validity of Lin-

Noolandi scaling, which assumes flexible chains inside the tube,
and thus LK ≪ a. Reviewing the scaling relations eq 8 for the

flexible tube, the limit of validity of the Lin-Noolandi regime
would appear to be ϕ ≤ (d/LK)

4. That is, the system must be
sufficiently dilute and flexible that ϕ is less than (d/LK)

4.
(Evidently, there is a coefficient of order unity in this inequality,
which we have not written explicitly in any of our scaling
relations.)
Note that this is a different power law relating the limiting

stiffness and dilution than we found for the semiflexible regime.
These two limiting boundaries do not coincide; the stiff regime
boundary ϕ = (d/LK)

2 lies distinctly to the right of the boundary
ϕ = (d/LK)

4 in the stiffness−dilution plane of values for log(LK/
d) and ϕ. This is a hint that we have missed a scaling regime
somewhere.
In fact, the Lin-Noolandi regime breaks down on increasing

LK/d even before the limit ϕ = (d/LK)
4 is reached. As the chains

become more semiflexible, the packing length p = Cd2/LK
decreases. Whatever the numerical coefficient C may be,
eventually p will become as small as d. However, the packing
length was meant to describe the distance of closest approach for
two chain strands, limited by the tendency of flexible chain
segments to fill nearby space with their own monomers. When
chains are sufficiently rigid, p is irrelevant, and the distance of
closest approach is set by d. Thus, the limit of the Lin-Noolandi
regime is some finite value of LK/d, independent of
concentration.
It is useful to represent the various scaling regimes in a “regime

plot”, log−log with the horizontal axis LK/d and the vertical axis
ϕ. The horizontal axis starts at LK/d = 1 (themost flexible chain)
and increases; the vertical axis starts at ϕ = 1 (the melt) and
decreases. (See Figure 7.) The faint lines in the plot are lines of
constant reduced modulus G̅ = βGΩK. In the flexible regime, the
reduced modulus is constant on lines of slope −2, while in the
stiff regime, lines of constant G̅ have slope −4/7.
Evidently, there is a previously unidentified regime between

the “flexible” Lin-Noolandi regime and the “stiff”Morse regime,
labeled “semiflexible” in the diagram. In the next section, we give
scaling arguments to describe entanglement in the semiflexible
regime.
One caveat about Figure 7: without knowing numerical

prefactors for scaling results in the various regimes, we cannot
know precisely where to draw the boundaries of the semifexible
regime, but only what their slopes should be. We have placed the
flexible−semiflexible and semiflexible−stiff boundaries to give a
visible range of the semiflexible regime in the melt limit (ϕ = 1).
Independent of prefactors, the figure shows the semiflexible
regime grows progressively wider in chain stiffness for more
dilute solutions.

■ SEMIFLEXIBLE REGIME

One important difference between the flexible (Lin-Noolandi)
and stiff (Morse) regimes is that in the stiff regime, the modulus
does not “know” the chain diameter, but only how much chain
arclength there is per unit volume. More precisely, G only
depends on the volume fraction ϕ and chain diameter d through
the combinationϕ/d2. This combination can be identified as the
arclength density, i.e., the chain arclength per unit volume (as
can be seen by writing it as ϕ times LK/ΩK, where ΩK ∼ d2LK is
the volume of a Kuhn segment). In the stiff chain regime, the
modulus can be written as

ϕ∼ −G kT d L( / )2 7/5
K

1/5
(18)

Figure 7. Regime plot of flexible (Lin-Noolandi), semidilute,
semiflexible, and stiff (Morse) scaling regions with the Khokhlov−
Semenov nematic phase boundary (dashed). Thin lines indicate
constant βΩKG.
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which evidently depends on ϕ and d only through the arclength
density ϕ/d2.
That is, the stiff chain regime is consistent with the “thread

scaling” ansatz introduced by Everaers, who posited that
entangled melts and solutions could be described only in
terms of the arclength density.25 This ansatz implies that starting
with one entangled melt or solution, we can reach another
equivalently entangled system by shrinking d by some factor of λ,
while holding LK and the arclength densityϕ/d

2
fixed. (Thus, we

shrink the volume fractionϕ by a factor of λ2, which accounts for
the reduced chain cross-sectional area at fixed arclength
density.) Note that the ansatz does not by itself imply a
particular power law dependence ofG onϕ. For any exponent α,

ϕ α α−kT d L( / )2
K

2 3 is a dimensionally consistent expression for
G, depending only on ϕ/d2 and LK.
In contrast, the flexible Lin-Noolandi regime is not consistent

with the thread scaling ansatz. In this regime, G depends on ϕ
and d separately, and cannot be written as a function only of ϕ/
d2. Physically, we may say that the flexible regime “knows” about
the packing length p, which governs the typical distance of
closest approach between chain segments. In short, if we choose
α = 2 to giveG scaling asϕ2, the resultingG does not scale as kT/
p3 in the melt. If instead we require that G scales as kT/p3 in the
melt, recalling that p scales as d2/LK, we find α = 3, which implies
G would scale as ϕ3. This result is not consistent with the
observed scaling G ∼ ϕ2 for real chains diluted by oligomeric
marginal solvent.
However, one can envision a regime of semiflexible entangled

threads, in which entanglements are still binary events (as in the
Morse scaling ansatz for stiff chains), but now between
semiflexible threads, for which the distance of closest approach
is not p but simply d. In such a regime, the modulus would scale
as

ϕ∼G kT d L( / )2 2
K (19)

This form would be required by dimensional analysis, since
we have asserted that ϕ and d should only enter in the
combination ϕ/d2, and the only microscopic length remaining
to give G the proper dimensions is LK.
We can recast the scaling form of eq 19 as

ϕ∼
Ω

i
k
jjj

y
{
zzzG

kT L
dK

2 K
2

(20)

Identifying G as kT per entanglement strand, the correspond-
ing scaling form for Ne would be

ϕ∼ −i
k
jjjjj

y
{
zzzzz

N
N

d
L

e

K K

2
1

(21)

Finally, the tube diameter in this regime would scale as

ϕ∼ −i
k
jjjjj

y
{
zzzzz

a
L

d
LK K

1/2

(22)

This putative scaling regime would end when Ne and NK are
the same order, that is, when ϕ ∼ (d/LK)

2, which is the
beginning of the stiff chain entanglement regime. This regime of
entanglement between semiflexible threadlike chains would
begin only when the packing length pwas of order d, which is the
end of the Lin-Noolandi flexible entanglement regime. Hence,
this semiflexible entanglement regime sits between the Lin-
Noolandi and Morse regimes, as required.

On the boundary between the stiff and semiflexible regimes,
both regimes predict the modulus to scale as ∼G kT L/ K

3, the
entanglement weight Ne to scale as NK, and the tube diameter a
to scale as LK. This is a very intuitive crossover between the stiff
and semiflexible entangled regime: every Kuhn segment is
marginally entangled.
On the boundary between the flexible and semiflexible

regimes, p is of order d, which means LK/d is some constant of
order unity, whereupon both regimes predict the modulus to
scale asG∼ kT/ΩKϕ

2, the entanglement weight to scale asNe∼
NKϕ

−1, and the tube diameter as a ∼ LKϕ
−1/2.

We can give a more physical picture of what is actually
entangling in this semiflexible threadlike regime: Kuhn seg-
ments. A Kuhn segment randomly placed and thermally bent
sweeps out an area of order LK

2 in the plane of its bend. If it
intercepts another strand passing through this area, a binary
entanglementmay result. The area concentration of such strands
scales as the thread arclength density ϕ/d2. Hence, the
probability per Kuhn length P of such an encounter scales as
ϕ(LK/d)

2.
Over an entanglement weight Ne, the probability of such an

encounter is PNe/NK, which should be of order unity. Hence, we
have

ϕ∼ −i
k
jjjjj

y
{
zzzzz

N
N

d
L

e

K K

2
1

(23)

which is the threadlike scaling result. Combined with the
assertion that the modulus G is kT per entanglement strand
(which occupy a fraction ϕ of the volume), the semiflexible
threadlike scaling for G follows.
The flexible Lin-Noolandi scaling regime can be described in

the same way, except that the binary encounters are between
packing blobs instead of Kuhn segments. The packing blobs
have an effective diameter p (because two such strands can
approach no closer) and an effective Kuhn length of p likewise
(because a strand of packing blobs cannot bend more sharply
than p). Thus, we expect to write

ϕ∼ −N
N

e

p

1

(24)

in whichNp here denotes the number of monomers in a packing
blob.
Since the packing blob is a Gaussian random walk, Np scales

according to

∼
i
k
jjjjj

y
{
zzzzzp

N

N
L2 p

K
K

2

(25)

which together with p ∼ d2/LK implies

∼
i
k
jjjjj

y
{
zzzzz

N

N
d

L
p

K K

4

(26)

Hence, this argument indeed implies the Lin-Noolandi
scaling,

ϕ∼ −i
k
jjjjj

y
{
zzzzz

N
N

d
L

e

K K

4
1

(27)

LN by Renormalization. A final argument for the Lin-
Noolandi scaling regime is based on the idea that we can
transform one melt into another with the same “topological
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complexity”, by a renormalization procedure of stiffening,
shrinking, and fattening the chain at fixed p and fixed (melt)
concentration (Figure 8). That is, we increase the Kuhn length

by some factor λ, remove some arclength from along the chains
to fix the mean-square end-to-end distance R2, and increase the
monomer diameter to maintain constant p and melt
concentration.
To implement this, we write R2 = LLK, from which we see that

to maintain fixed R2, the chain arclength L must decrease by a
factor of λ. The chain displaced volume is Ld2, so to maintain
melt conditions, d2 must increase by a factor of λ. Hence, we
have LK′ = λLK, L′ = L/λ, and d′2 = λd2, which implies that p = d2/
LK remains constant under the renormalization.
Under this rescaling, d and LK both grow, but LK grows faster

and started out larger than d in any case. Therefore, whatever the
coefficient C in the scaling relation for pmay be, LK will become
equal to p for some value of λ, which implies

′
′

∼
L
d

1K
2

2 (28)

When this happens, we exit the Lin-Noolandi regime because
the packing blob is no longer a flexible chain segment.
At the same time, the entanglement criterion begins to be met

for each renormalized Kuhn segment: passing through the
“interception area” of order L′K2 of each renormalized Kuhn
segment is some other strand (the renormalized arclength
density being 1/d′2). Hence, each renormalized Kuhn segment
is an entanglement strand in the renormalized melt. From the
above relation, the value of λ for which this happens scales as

λ ∼
i
k
jjjjj

y
{
zzzzz

d
LK

2

(29)

Now, we work backwards, to find the number of original
monomers that correspond to a renormalized Kuhn segment.
Suppose L = Le originally, then L′ = LK′ . Using the

renormalization relations above, we have Le = λ2LK, or

∼
i
k
jjjjj

y
{
zzzzz

N
N

d
L

e

K K

4

(30)

which is the Lin-Noolandi scaling for a melt, equivalent to G ≈
kT/p3.

■ ESTIMATE OF PREFACTORS
To this point, we have neglected numerical prefactors in all
scaling relations, except for our assertion that the coefficientC in
the relation p = Cd2/LK must be significantly larger than unity
(so that p is numerically larger than d for flexible chains).

Now we use results on the entanglement length for flexible
bead-spring chains to estimate the coefficient C. From chain-
shrinking methods, analysis of monomer mean-square displace-
ment for entangled ring melts, and topological analysis, Ne for
flexible bead-spring chains lies in the range of 60−70.
These flexible bead-spring chains have repulsive Lennard-

Jones interactions,

σ σ= ϵ − +U r r r( ) (4(( / ) ( / ) ) 1)12 6 (31)

for r<21/6σ and zero beyond. Bonded beads along the chain
interact with a stiff harmonic potential, with a spring of rest
length 21/6σ. These chains are observed to be flexible enough
that NK = 1, i.e., LK = 21/6σ, a single step along the chain. The
bead concentration under “melt conditions”, corresponding toϕ
= 1, has been taken as c = 0.7/σ3.
The effective hard-core diameter of the beads, at which the

repulsive energy is 2kT, is σ* = 0.969σ. We take σ* as the
effective diameter d of the chain. The corresponding effective
volume per monomer is

π σΩ = *(4 /3)( /2)0
3

(32)

To identify the prefactor in the scaling relation for p, we enforce
NeΩ0 = p3/ϕ with Ne = 65, ϕ = 1,Ω0 as above, and d = σ*. This
leads to p = 3.24d. For this flexible bead-spring chain, from the
above, we have LK/d = 1.16 so that finally we have

=p d L3.75 /2
K (33)

The flexible Lin-Noolandi regime ends when p = d, which
implies that LK = 3.75d. Since for chains with significant bending
modulus we have the number of monomers per Kuhn lengthNK
equal to 2βκ, the Lin-Noolandi regime ends when βκ ≈ 1.9.

Intercept Probability. Another way to estimate numerical
prefactors in our scaling relations is to bravely formulate a
specific geometrical model for the probability per Kuhn length of
an entanglement. This is most readily done in the threadlike
semiflexible regime.
We model the strand that may hook around or “intercept”

another oblique strand as a wormlike chain and approximate its
trajectory as a circular arc with a radius governed by a Boltzmann
factor of the bending energy. The intercepted area is taken to be
bounded by the circular arc and its chord. We then determine
the average number of strands that intersect this area, assuming
these strands to be straight paths, randomly placed with
isotropically distributed directions. We compute the average
number of paths intercepted by averaging the intercept area over
the bending angle of the circular arc, weighted by the Boltzmann
factor. If the expected number of intercepted segments is well
less than unity, we can interpret this number as the intercept
probability.
The bending energy per segment in a discretized semiflexible

chain is given by (κ/2)θ2, where κ is the bending stiffness of the
angular spring. The tangent−tangent correlation function of this
model can be computed in the limit of stiff springs as ⟨tn · t0⟩ =
e−2na/LK. Here n is the number of segments in the path, the
segment length is a, and LK is the Kuhn length, given by LK =
2βκa. The mean-square end-to-end distance of this semiflexible
chain is ⟨R2(n)⟩ = naLK.
When a semiflexible path of length L is bent in a circular arc

through an angle θ, we have L = Rθ, which allows us to convert
back and forth between angle and radius. The total bending
energy for such a circular arc is then U = (κ/2)(a/R)2L/a
(regarding the arc as L/a segments each bent by a small angle θ =

Figure 8.Cartoon of renormalization procedure by which onemelt may
be mapped onto another with fixed “topological complexity”. The red
circles correspond to packing blobs of size p.
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a/R). We can write this in terms of the Kuhn length, replacing K
= kTLK/(2a) as U = (kT/4)LK(1/R)

2L.
From the geometry of the intercept area, we can write the

intercept area as the difference between the area of a “wedge” cut
from a disk and the area of two right triangles:

θ θ θ= −A
R

R R
2

2((1/2)( cos /2))( sin /2))
2

(34)

Replacing R using L = Rθ and using the double-angle formula,
we obtain

θ
θ

θ
= −i

k
jjj

y
{
zzzA

L
2

1 sin2

2 (35)

For sufficiently stiff chains such that the deflection angle is
small, we can expand sinθ to obtain

θ≈A
L
12

2

(36)

The Boltzmann factor governing the fluctuating area is

θ ∝ =θ θ− −P e e( ) L R L L L(1/4) (1/ ( )) (1/4)( / )K
2

K
2

(37)

From this, we can compute the average intercept area as

π
⟨ ⟩ =

i
k
jjjjj

y
{
zzzzzA

L L
L6

2

K

1/2

(38)

Now we compute the number of chain segments per unit area
that cross the intercept area. We represent the other chain
segments as straight paths of length L (the result will turn out to
be independent of L). The concentration of these segments is

ρ ϕ
π

=
d( /2)2 (39)

which is the “arclength concentration” (chain arclength per unit
volume) we introduced previously.
For a straight segment at an angle θ with respect to the

intercept area normal, the segment will pass through the plane if
the far end of the segment is within a distance h = Lcosθ of the
plane. Therefore, the number of intersections per unit area is

∫ π
ϕ

π
θ= Ω

N A
d

d
L/

4 ( /2)
cos2

(40)

in which the integral over solid angle averages over the
orientation of the intercepted segments. Performing the integral,
we obtain

ϕ
π

=N A
d

/
2

2 (41)

The number of intercepted segments ni for a fluctuating
segment of length LK is then

π
ϕ= i

k
jjj

y
{
zzzn

L
d

1
3i 3/2

K
2

(42)

If ni is small compared to unity, we can interpret this number as
the intercept probability per Kuhn segment. Its inverse is then
the number of Kuhn segments per entanglement length,

ϕ= −i
k
jjjjj

y
{
zzzzz

N
N

d
L

16.7e

K K

2
1

(43)

which scales like the threadlike semiflexible result, but now with
an explicit value for the coefficient.
This result, combined with the numerical coefficient from the

previous section, enables us to be more quantitative about the
crossover from the Lin-Noolandi regime. The resultsNeΩ0 = p

3/
ϕ with p = 3.75d2/LK and Ω0 = (4π/3)(d/2)3 can be written as

ϕ= −i
k
jjjjj

y
{
zzzzz

N
N

d
L

27.6e

K K

4
1

(44)

The crossover between the two regimes would then occur at LK/
d = 1.28, somewhat earlier than the previous estimate based on p
= d. Evidently, simulation results in the threadlike semiflexible
regime would be preferable to establish the value of the prefactor
above and hence the crossover.

■ GOOD SOLVENT REGIME
Implicit in all the above scaling arguments is that the chain
trajectories are uncorrelated, ideal random walks as they are in a
melt or sufficiently concentrated solution. However, long chains
in a good solvent at sufficiently low concentrations are described
by the scaling theory of semidilute solutions.31−33 A semidilute
solution consists of a dense packing of “correlation blobs” of size
ξ, each of which consists of a portion of a single chain, with a self-
avoiding random walk configuration. The trajectory of an entire
chain in the semidilute solution is an ideal random walk of blobs
(Figure 9).

The swelling of a single chain segment in good solvent begins
to matter when the self-interaction energy of an unswollen, ideal
random coil configuration becomes of order kT. This defines the
swelling length Ns. An ideal random walk of Ns segments is a
“thermal blob”, of size Ls. As a semidilute solution becomes
more concentrated, the correlation blob size ξ decreases. When
ξ reaches Ls, a chain segment short enough to be isolated from
neighboring segments is not long enough to swell. (Informally
speaking, why should a chain in concentrated solution avoid
itself, when it will run into other chains anyway?)
The above description can be cast as a set of scaling relations,

as follows. The correlation length ξ is a self-avoiding walk of
thermal blobs:

ξ ∼
νi

k
jjjjj

y
{
zzzzz

g
N

L
s

s
(45)

in which g is the number of monomers in a blob, and ν = 0.588≈
3/5 is the scaling exponent for self-avoiding walks.
The solution volume fraction ϕ is given by

Figure 9. Cartoon of a chain in semidilute solution as a Gaussian
random walk of correlation blobs, each of which is a self-avoiding walk
of swelling blobs, each of which are Gaussian random walks of Kuhn
segments.
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ϕ
ξ

∼
Ωg 0

3 (46)

Inside the thermal blob, the chain is an ideal random walk of
Kuhn steps

∼
i
k
jjjjj

y
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zzzzz
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s
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2
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K (47)

The condition for the swelling length is

∼
N N w

L
( / )

1s K
2

K

s
3

(48)

Here wK is the excluded volume per Kuhn segment. The
excluded volume characterizes the solvent quality, and hence the
strength of self-avoidance. For a good solvent, wK takes on a
value characteristic of monomers that do not overlap. As a
solvent becomes marginal, attractions between monomers
decrease wK. For semiflexible chains in good solvents, the
expected value of wK is of order dLK

2, which is the excluded
volume for a pair of Kuhn segments at a random oblique angle.
Therefore, we may write wK as

∼w fdLK K
2

(49)

in which the factor f<1 characterizes the solvent quality ( f→0 is a
marginal solvent).
We can solve the pair of scaling relations involving ξ and g to

obtain

ξ ϕ
∼

Ω

ν ν− ≈−i
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(50)

The swelling criterion can be rewritten as

∼ −L
L

L
d

fs

K

K 1

(51)

(The swelling length is always larger than the Kuhn length,
because LK is greater than d and f is less than unity.) With this
result, we can rewrite the ratio ΩL /s

3
s as

Ω
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(52)

Using these results in the expression above for ξ/Ls, we obtain

ξ ϕ∼ − −i
k
jjjjj

y
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zzzzzL
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3/4
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5/4
1/4

(53)

The crossover to the marginal solvent regime in which chain
trajectories are uncorrelated random walks happens when ξ is
comparable to Ls. From the above expression for ξ/Ls, this
occurs when the volume fraction satisfies

ϕ ϕ= ∼
i
k
jjjjj
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{
zzzzzf

d
Lm

K

3

(54)

It is often said that in semidilute solutions there is only one
length scale, namely the correlation length ξ. One might then
naively suppose that the entanglement modulus for a semidilute
solution should scale as kT per blob,

ξ
∼G

kT
3 (55)

in that the tube diameter a should scale as ξ itself, and the
entanglement arclength Ne as g.
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However, this is clearly inconsistent with the scaling result in
the flexible Lin-Noolandi regime on the marginal solvent
boundary. To see this, note that kT per blob on this boundary
would imply

∼
Ω

i
k
jjjjj

y
{
zzzzzG

kT d
L

f
K K

5
3

(56)

which is not consistent with the flexible regime on this boundary,

∼
Ω

i
k
jjjjj

y
{
zzzzzG

kT d
L

f
K K

2
2

(57)

The inconsistency arises from the fact that there is not just of
order one entanglement per correlation blob. Correlation blobs
do not interact like impenetrable hard spheres; indeed, the free
energy cost to overlay two blobs is only of order kT. What
correlation blobs do is reduce the likelihood of contact between
chain segments. To quantify this effect, we argue as follows.
The interaction free energy per unit volume Fs in the

semidilute regime really does scale as kT per blob; with the
above scaling relations, this leads to

ϕ∼ ΩF kT L d f( / ) ( / )s K
9/4

K
7/4 3/4

(58)

In the marginal solvent regime where chain segments are
uncorrelated, the interaction free energy per unit volume Fm
scales as the sum of random pairwise interactions between Kuhn
segments,

ϕ ϕ∼ Ω ∼ ΩF kTw kT L d f( / ) ( / ) ( / )m K K
2

K
2

K (59)

On the marginal solvent boundary, Fs equals Fm. Below the
boundary, in the semidilute regime, Fs is smaller than Fm by a
factor of

ϕ∼ −F
F

L d f( / )s

m

1/4
K

3/4 1/4

(60)

This factor may be interpreted as the decreased likelihood of
binary contacts relative to random mixing.
We assert that the number of binary contacts between packing

blobs in semidilute solution should be estimated with the same
decreased likelihood, relative to the flexible chain regime in
which marginal solvent conditions prevail. Thus, the semidilute
entanglement arclength Ne should increase relative to the
flexible regime by a factor of Fm/Fs:

ϕ∼ −N
N

d L f( / )e

K

5/4
K

19/4 1/4

(61)

The entanglement modulus is then once again kT per
entanglement strand,

ϕ ϕ∼
Ω

∼ Ω −G
kT
N

kT L d f( / ) ( / )
e 0

K
9/4

K
19/4 1/4

(62)

By construction, this scaling form for G in the semidilute
region agrees with the Lin-Noolandi scaling form along the
marginal solvent boundary. It also scales with volume fraction as
ϕ9/4, the same way as the interaction free energy per volume Fs.
However, it is not the same as Fs; the ratio is
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ϕ∼ =−G
F

L d f( / ) 1/
s

K
1

m
(63)

which is evidently larger than unity. This reflects the fact that
there are many entanglement points per correlation blob, not
just one.
In this regime, lines of constant βΩKG satisfy the scaling

relation

ϕ ∼
−i

k
jjj

y
{
zzz

L
d

K
19/9

(64)

which in the regime plot are lines of slope −19/9 (nearly equal
to 2).
Finally, there must be also a “semidilute semiflexible” regime

at very low concentrations of semiflexible chains, in which chains
are threadlike and the packing length is irrelevant, but chains are
still swollen by a good solvent. (See Figure 1.) The boundary of
the semidilute regime extends beyond the vertical boundary
separating the flexible and semiflexible regimes. Along this
boundary, the “semidilute semiflexible” and “marginal solvent
semiflexible” regimes must be continuous. At the vertical
boundary, the “semidilute flexible” and “semidilute semiflexible”
regimes must be continuous.
By enforcing continuity at the vertical boundary, we must

have the entanglement modulus in this region scaling as ϕ9/4.
Assuming this and enforcing continuity at the semidilute-
marginal boundary, we obtain

ϕ∼ Ω −G kT L d f( / ) ( / )K
9/4

K
11/4 1/4

(65)

This form is also consistent with the semidilute scaling form for
G on the vertical boundary between the flexible and semiflexible
regimes, along which LK/d is some constant of order unity.
The corresponding scaling for the entanglement arclength is

ϕ∼ −N
N

d L f( / )e

K

5/4
K

11/4 1/4

(66)

Lines of constant βΩKG in this regime satisfy

ϕ ∼ −L d( / )K
11/9

(67)

■ CONCLUSIONS
In this paper, we have presented a comprehensive scaling theory
of entanglement for melts and solutions of flexible, semiflexible,
and stiff chains. We propose that there are five distinct scaling
regimes for entanglement, distinguished by the answers to three
questions: (a) are chains flexible in their tubes; (b) are chains
flexible and bulky enough that the packing length p is larger than
the chain diameter d; and (c) are solutions dilute enough that
the swelling length Ls is smaller than the correlation length ξ?
Our approach reconciles three prior theoretical efforts, which

describe entanglement of (1) melts and concentrated solutions
of chains sufficiently flexible and bulky that the packing length is
relevant (Lin-Noolandi);12−15 (2) melts and concentrated
solutions of chains that are flexible but threadlike, such that
the packing length is irrelevant (Everaers);25 and (3) solutions
of stiff chains, such that the Kuhn length is larger than the tube
diameter (Morse).21,22

The Lin-Noolandi ansatz for entanglement of flexible chains
as originally formulated focuses on the number of chain
segments cohabiting the pervaded volume of an entanglement.
This appears quite different from the Morse approach to
entanglement for stiff chains, which identifies an entanglement

as a binary event in which a transversely fluctuating chain
segment intercepts a second, obliquely oriented segment. We
reconcile these apparently disparate approaches by recasting the
LN scaling argument in terms of the probability that two chain
segments, each consisting of a sequence of “packing blobs”, will
intercept each other. Thus, in our formulation, the LN regime
and its scaling are consistent with a picture of entanglements as
binary events.
Throughout our scaling approach, in all five regimes, the

entanglement length can be defined in terms of intercept
probabilities between two strands; the regimes differ in the
details of the strands. When the packing length is relevant (when
p>d), the entangling strands are sequences of packing blobs;
when the chain is threadlike and flexible in its tube, the
entangling strands are Kuhn segments.
In solutions, the concentration dependence of the entangle-

ment length and plateau modulus arise from estimating the
probability that two entangling strands come close together. The
entangling strands may be either sequences of packing blobs or
Kuhn segments, depending on whether the packing length is
larger than the chain diameter and thus relevant to typical close
approaches between chains. In “mean-field” solutions of flexible
chains, where the solvent is marginal enough and the
concentration high enough that the correlation length is less
than the swelling length, chains are Gaussian random walks on
all scales above the Kuhn length. (This is the situation for
dilution of polymer melts by unentangled oligomers, for
example.) In this case, intercept probabilities for a given strand
are reduced by a factor ϕ relative to the melt, by a simple
deletion of a fraction 1 − ϕ of material with no change in chain
configurations. The plateau modulus G then scales as ϕ2,
consistent with careful experiments. For semidilute solutions,
the scaling result for G is a slightly stronger dependence on ϕ,
because self-avoidance within the correlation blobs tends to
keep chains apart, and so reduces the chance for an
entanglement to form.
One important limitation of the present approach is that we

only describe asymptotic scaling in each regime, as if that regime
were far removed from others to which it crosses over. In other
words, we predict scaling of G and Ne in the flexible (Lin-
Noolandi) regime assuming that p is much larger than d and
hence governs close approaches between chain segments. In
practice of course, p and d are both microscopic lengths, and the
semiflexible regime is never terribly far away. There will be
crossover effects between these two regimes (and likewise, at the
boundaries between mean-field and semidilute flexible sol-
utions, and between semiflexible and stiff chain solutions). If we
are lucky, the crossovers will be localized, and reasonable power-
law behaviors will be observed in each regime, with exponents
close to the asymptotic predictions.
We have emphasized that threadlike scaling as proposed by

Everaers is not compatible with the scaling found by Fetters for a
wide range of real polymers (G proportional to p−3), combined
with the observed concentration dependence for entangled
polymers diluted with oligomers (G proportional to ϕ2).
However, threadlike scaling seems to be satisfied by all published
simulation results on linear bead-spring chain melts and
solutions, including chains with and without explicit angular
springs.
Taken together, these two observations invite the question:

where is polyethylene (PE), the “most entangled” polymer with
the smallest value of p/d among the Fetters compilation of
entanglement data for real polymers with single-bond back-

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.9b02684
Macromolecules 2020, 53, 1314−1325

1324

pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.9b02684?ref=pdf


bones, with respect to the crossover to the threadlike
semiflexible scaling regime? Likewise, where is the most flexible
linear bead-spring chain with respect to the crossover to the
flexible Lin-Noolandi scaling regime?
In principle, we would like to plot data for real polymer melts

and bead-spring simulations together, as βGLK
3 versus LK/d

(dimensionless modulus versus dimensionless measure of
stiffness). However, for a fair comparison it is crucial to use
the same definitions for real and simulated polymers of G, LK,
and d; otherwise, factors of order unity will creep in and spoil the
comparison. If the present scaling theory is valid, real polymers
should fall on one side of the LN-threadlike crossover and linear
bead-spring polymers on the other. It should be possible to
identify polymers slightly stiffer than PE but equally skinny,
which would enter the threadlike regime, for which Lin-
Noolandi scaling would fail. Correspondingly, we can design and
simulate bead-spring polymers with larger values of p/d, which
should show the expected but as-yet unseen Lin-Noolandi
scaling; indeed, results of such simulations will be reported in a
forthcoming paper.

■ AUTHOR INFORMATION

Corresponding Author
Scott T. Milner − Department of Chemical Engineering, The
Pennsylvania State University, University Park, Pennsylvania
16802, United States; orcid.org/0000-0002-9774-3307;
Email: stm9@psu.edu

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.macromol.9b02684

Notes
The author declares no competing financial interest.

■ ACKNOWLEDGMENTS

The author thanks Ralph Colby, Enrique Gomez, Daniel Read,
and Jian Qin for helpful conversations and NSF for support
under DMR-1507980 and DMR-1629006.

■ REFERENCES
(1) Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics;
Clarendon Press: Oxford, 1986.
(2) Graham, R. S.; Likhtman, A. E.; McLeish, T. C. B.; Milner, S. T.
Microscopic theory of linear, entangled polymer chains under rapid
deformation including chain stretch and convective constraint release. J.
Rheol. 2003, 47, 1171−1200.
(3) Likhtman, A. E.; McLeish, T. C. B. Quantitative theory for linear
dynamics of linear entangled polymers. Macromolecules 2002, 35,
6332−6343.
(4)McLeish, T. C. B.; Milner, S. T. Entangled dynamics and melt flow
of branched polymers. Adv. Polym. Sci. 1999, 143, 195−256.
(5) van Ruymbeke, E.; Bailly, C.; Keunings, R.; Vlassopoulos, D. A
General Methodology to Predict the Linear Rheology of Branched
Polymers. Macromolecules 2006, 39, 6248−6259.
(6) Shchetnikava, V.; Slot, J. J. M.; van Ruymbeke, E. A Comparison of
Tube Model Predictions of the Linear Viscoelastic Behavior of
Symmetric Star Polymer Melts. Macromolecules 2014, 47, 3350−3361.
(7) van Ruymbeke, E.; Nielsen, J.; Hassager, O. Linear and nonlinear
viscoelastic properties of bidisperse linear polymers: Mixing law and
tube pressure effect. J. Rheol. 2010, 54, 1155−1172.
(8) Edwards, S. F. The statistical mechanics of polymerized material.
Proc. Phys. Soc. 1967, 92, 9−16.
(9) Edwards, S. F. The theory of rubber elasticity. Br. Polym. J. 1977, 9,
140−143.

(10) Edwards, S. F. The theory of polymer solutions at intermediate
concentration. Proc. Phys. Soc. 1966, 88, 265−280.
(11) Graessley, W. W.; Hayward, R. C.; Grest, G. S. Excluded-volume
effects in polymer solutions. 2. Comparison of experimental results with
numerical simulation data. Macromolecules 1999, 32, 3510−3517.
(12) Milner, S. T.; Lacasse, M.-D.; Graessley, W. W. Why χ Is Seldom
Zero for Polymer SolventMixtures.Macromolecules 2009, 42, 876−886.
(13) Kavassalis, T. A.; Noolandi, J. New view of entanglements in
dense polymer systems. Phys. Rev. Lett. 1987, 59, 2674−2677.
(14) Kavassalis, T. A.; Noolandi, J. A New Theory of Entanglements
and Dynamics in Dense Polymer Systems. Macromolecules 1988, 21,
2869−2879.
(15) Lin, Y. H. Number of entanglement strands per cubed tube
diameter, a fundamental aspect of topological universality in polymer
viscoelasticity. Macromolecules 1987, 20, 3080−3083.
(16) Fetters, L. J.; Lohse, D. J.; Richter, D.; Witten, T. A.; Zirkel, A.
Connection between Polymer Molecular Weight, Density, Chain
Dimensions, and Melt Viscoelastic Properties. Macromolecules 1994,
27, 4639−4647.
(17) Fetters, L. J.; Lohse, D. J.; Graessley, W. W. Chain dimensions
and entanglement spacings in dense macromolecular systems. J. Polym.
Sci., Part B: Polym. Phys. 1999, 37, 1023−1033.
(18) Auhl, D.; Chambon, P.; McLeish, T. C. B.; Read, D. J.
Elongational Flow of Blends of Long and Short Polymers: Effective
Stretch Relaxation Time. Phys. Rev. Lett. 2009, 103, 136001−136004.
(19) Shahid, T.; Huang, Q.; Oosterlinck, F.; Clasen, C.; van
Ruymbeke, E. Dynamic dilution exponent in monodisperse entangled
polymer solutions. Soft Matter 2017, 13, 269−282.
(20) Milner, S. T. Predicting the tube diameter in melts and solutions.
Macromolecules 2005, 38, 4929−4939.
(21) Morse, D. C. Viscoelasticity of tightly entangled solutions of
semiflexible polymers. Phys. Rev. E 1998, 58, R1237−R1240.
(22) Morse, D. C. Tube diameter in tightly entangled solutions of
semiflexible polymers. Phys. Rev. E 2001, 63, No. 031502.
(23) Everaers, R.; Sukumaran, S. K.; Grest, G. S.; Svaneborg, C.;
Sivasubramanian, A.; Kremer, K. Rheology and Microscopic Topology
of Entangled Polymeric Liquids. Science 2004, 303, 823−826.
(24) Sukumaran, S. K.; Grest, G. S.; Kremer, K.; Everaers, R.
Identifying the primitive path mesh in entangled polymer liquids. J.
Polym. Sci., Part B: Polym. Phys. 2005, 43, 917−933.
(25)Uchida, N.; Grest, G. S.; Everaers, R. Viscoelasticity and primitive
path analysis of entangled polymer liquids: From F-actin to poly-
ethylene. J. Chem. Phys. 2008, 128, No. 044902.
(26) Tassieri, M. Dynamics of Semiflexible Polymer Solutions in the
Tightly Entangled Concentration Regime. Macromolecules 2017, 50,
5611−5618.
(27) Khokhlov, A. R.; Semenov, A. N. Liquid-Crystalline Ordering in
the Solution of Long Persistent Chains. Phys. A 1981, 108, 546−556.
(28) Khokhlov, A. R.; Semenov, A. N. Liquid-crystalline ordering in
the solution of partially flexible macromolecules. Phys. A 1982, 112,
605−614.
(29) Khokhlov, A. R.; Semenov, A. N. Liquid-crystalline ordering in
solutions of semiflexible macromolecules with rotational-isomeric
flexibility. Macromolecules 1984, 17, 2678−2685.
(30) Khokhlov, A. R.; Semenov, A. N. On the theory of liquid-
crystalline ordering of polymer chains with limited flexibility. J. Stat.
Phys. 1985, 38, 161−182.
(31) de Gennes, P.-G.; Scaling concepts in polymer physics; Cornell
Univ. Press: Ithaca, New York, 1979.
(32) de Gennes, P. G. Dynamics of Entangled Polymer Solutions. I.
The Rouse Model. Macromolecules 1976, 9, 587−593.
(33) de Gennes, P. G. Dynamics of Entangled Polymer Solutions. II.
Inclusion of Hydrodynamic Interactions.Macromolecules 1976, 9, 594−
598.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.9b02684
Macromolecules 2020, 53, 1314−1325

1325

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Scott+T.+Milner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-9774-3307
mailto:stm9@psu.edu
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02684?ref=pdf
https://dx.doi.org/10.1122/1.1595099
https://dx.doi.org/10.1122/1.1595099
https://dx.doi.org/10.1021/ma0200219
https://dx.doi.org/10.1021/ma0200219
https://dx.doi.org/10.1007/3-540-49780-3_4
https://dx.doi.org/10.1007/3-540-49780-3_4
https://dx.doi.org/10.1021/ma0604385
https://dx.doi.org/10.1021/ma0604385
https://dx.doi.org/10.1021/ma0604385
https://dx.doi.org/10.1021/ma500275t
https://dx.doi.org/10.1021/ma500275t
https://dx.doi.org/10.1021/ma500275t
https://dx.doi.org/10.1122/1.3478316
https://dx.doi.org/10.1122/1.3478316
https://dx.doi.org/10.1122/1.3478316
https://dx.doi.org/10.1088/0370-1328/92/1/303
https://dx.doi.org/10.1002/pi.4980090209
https://dx.doi.org/10.1088/0370-1328/88/2/301
https://dx.doi.org/10.1088/0370-1328/88/2/301
https://dx.doi.org/10.1021/ma981915p
https://dx.doi.org/10.1021/ma981915p
https://dx.doi.org/10.1021/ma981915p
https://dx.doi.org/10.1021/ma801091b
https://dx.doi.org/10.1021/ma801091b
https://dx.doi.org/10.1103/PhysRevLett.59.2674
https://dx.doi.org/10.1103/PhysRevLett.59.2674
https://dx.doi.org/10.1021/ma00187a037
https://dx.doi.org/10.1021/ma00187a037
https://dx.doi.org/10.1021/ma00178a024
https://dx.doi.org/10.1021/ma00178a024
https://dx.doi.org/10.1021/ma00178a024
https://dx.doi.org/10.1021/ma00095a001
https://dx.doi.org/10.1021/ma00095a001
https://dx.doi.org/10.1002/(SICI)1099-0488(19990515)37:10<1023::AID-POLB7>3.0.CO;2-T
https://dx.doi.org/10.1002/(SICI)1099-0488(19990515)37:10<1023::AID-POLB7>3.0.CO;2-T
https://dx.doi.org/10.1103/PhysRevLett.103.136001
https://dx.doi.org/10.1103/PhysRevLett.103.136001
https://dx.doi.org/10.1039/C6SM01083K
https://dx.doi.org/10.1039/C6SM01083K
https://dx.doi.org/10.1021/ma0355507
https://dx.doi.org/10.1103/PhysRevE.58.R1237
https://dx.doi.org/10.1103/PhysRevE.58.R1237
https://dx.doi.org/10.1103/PhysRevE.63.031502
https://dx.doi.org/10.1103/PhysRevE.63.031502
https://dx.doi.org/10.1126/science.1091215
https://dx.doi.org/10.1126/science.1091215
https://dx.doi.org/10.1002/polb.20384
https://dx.doi.org/10.1063/1.2825597
https://dx.doi.org/10.1063/1.2825597
https://dx.doi.org/10.1063/1.2825597
https://dx.doi.org/10.1021/acs.macromol.7b01024
https://dx.doi.org/10.1021/acs.macromol.7b01024
https://dx.doi.org/10.1016/0378-4371(81)90148-5
https://dx.doi.org/10.1016/0378-4371(81)90148-5
https://dx.doi.org/10.1016/0378-4371(82)90199-6
https://dx.doi.org/10.1016/0378-4371(82)90199-6
https://dx.doi.org/10.1021/ma00142a040
https://dx.doi.org/10.1021/ma00142a040
https://dx.doi.org/10.1021/ma00142a040
https://dx.doi.org/10.1007/BF01017855
https://dx.doi.org/10.1007/BF01017855
https://dx.doi.org/10.1021/ma60052a011
https://dx.doi.org/10.1021/ma60052a011
https://dx.doi.org/10.1021/ma60052a012
https://dx.doi.org/10.1021/ma60052a012
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.9b02684?ref=pdf

