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ABSTRACT: Multiple scaling arguments have been proposed to
describe how the entanglement molecular weight depends on
polymer architecture and concentration. The Lin−Noolandi (LN)
scaling argument, well supported by data for real polymers,
assumes that polymers are flexible within their tubes; it must fail at
some point as chains become stiffer. Everaers has made a different
scaling proposal, which crosses over from semiflexible chains to
stiff chains as described by Morse. This ansatz is consistent with
simulation data for a range of bead-spring melts but is not
consistent with LN. Here, we use simulations to explore a wide range of entangled bead-spring ring chains, to find out how
entanglement properties vary with chain stiffness and concentration. To vary the packing length over a wider range, we add side
groups to make chains bulkier. We quantify entanglement using three techniques: chain shrinking to find the primitive path,
measuring the tube diameter by the width of the “cloud” of monomer positions about the primitive path, and directly measuring the
plateau modulus. As chain stiffness and bulkiness vary, we observe three distinct scaling regimes, consistent with LN scaling,
semiflexible chains, and stiff chains.

■ INTRODUCTION

Viscoelastic properties of long entangled polymer liquids are
governed by topological interactions between molecules.
Entanglements in polymer melts and solutions arise from
constraints imposed by uncrossability of the chains. To
account for entanglement effects, Edwards and de Gennes
introduced the concept of a confining tube.1,2 The motion of
each polymer chain in a melt or solution is envisioned as
confined to a tube-like region. From this starting point, the
tube model has been widely used in polymer rheology, not just
for linear chains but also for branched polymers.3,4

In the tube model, the entanglement molecular weight and
tube diameter are material properties, presumed to depend on
chain properties and concentration but not predicted by the
tube ansatz itself. There have been several scaling arguments
proposed to account for dependence of entanglement on chain
properties and concentration. Each of these arguments makes
certain assumptions for the polymer chains, with correspond-
ingly limited domains of validity. There are three major
regimes based on polymer chain stiffness: flexible, semi-flexible,
and stiff regimes.
For flexible polymers, the Lin−Noolandi (LN) ansatz

successfully correlates the entanglement length Ne with other
material properties.5−7 In this scaling regime, entanglement
strands are assumed flexible enough that they are random
walks within the tube; that is, the tube diameter a is larger than
the Kuhn length LK. The tube diameter is the mean-squared

end-to-end distance of the entanglement strand, which for
flexible chains scales as
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where Ne is the number of monomers in an entanglement
strand, and NK is the number in a Kuhn segment.
In the LN ansatz, the packing length p governs the closest

approach of monomers on different chain segments. Physically,
p is the length scale at which monomers around a given
monomer predominantly come from nearby monomers along
the chain. The packing length scales as the ratio of displaced
volume Ω(R) to mean-squared end-to-end distance R2

∼ Ω ∼ Ωp R R L( )/ /2
K K

2
(2)

The LN ansatz asserts that the number of entanglement
strands cohabiting the volume pervaded by one such strand is a
constant for all flexible polymers. This leads to the prediction
that the entanglement length scales as
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Ω ∼N pe 0
3
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From rubber elasticity theory, the plateau modulus G scales
as kT per entanglement strand,

∼G
kT
p3

(4)

This argument is consistent with the modulus measured for
a wide range of polymers.8,9 Figure 1 plots the plateau modulus
versus p−3 on a linear scale for the full set of data reported in
ref 8 with evidently linear dependence throughout the entire
range of modulus values.

The LN ansatz is not valid when the chains are sufficiently
stiff inside the tube; that is, when the Kuhn length LK is larger
than the tube diameter a. In a complementary scaling
argument, Morse asserts that for stiff chains, the area swept
out by transverse fluctuations of a filament between two
entanglement points is on average traversed by one other
filament serving as an obstacle.10,11 This argument leads to the
following scaling relations:
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Here, Le is the entanglement arc length, d is the chain
diameter, and ϕ is the polymer volume fraction.
In a different approach, Everaers et al. introduce the idea

that entanglement in a polymer melt or solution can only
depend on the arc length density (chain arc length per unit
volume).12 The arc length or “thread” density can be shown to
scale as ϕ/d2. This ansatz envisions entanglements as binary
events between semi-flexible entangled threads. For entangled
threads of potentially vanishingly small diameter, the only
relevant microscopic length is the Kuhn length. The distance of
closest approach between two chains is set by the chain
diameter, and the packing length is irrelevant.
This ansatz is a more general assertion than a specific scaling

argument and is consistent with a variety of power-law
dependences of G on arc length density. Under this ansatz, the

plateau modulus G scales as kT/LK
3 times a function of the

dimensionless quantity (ϕ/d2)LK
2.
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The dimensionless function f(x) may be taken to be any
power law xα, or any crossover between power law regimes.
However, this ansatz is not consistent with LN scaling for
melts combined with the assumption that the plateau modulus
scales as ϕ2, as is well established experimentally for solutions
of flexible chains.7,13,14

Recent work in our group proposes a semiflexible regime
situated between the flexible (LN) and stiff (Morse) regimes.15

In this semiflexible regime, entanglements are binary events
between semiflexible threads. Choosing f(x) = xα with α = 2 in
eq 8 leads to G scaling as ϕ2, as observed for real polymers.
Thus in the semiflexible regime, the modulus scales as

ϕ∼G kT d L( / )2 2
K (9)

Identifying the modulus as kT per entanglement strand, Ne
and the tube diameter scale correspondingly as
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The domains of validity for these different scaling regimes
are determined by what keeps the chains apart and the length
scale at which they entangle. In other words, the domains of
validity depend on two characteristic ratios: packing length
versus chain diameter p/d and tube diameter versus Kuhn
length a/LK. Recently, we proposed a unified scaling theory
that reduces to LN, thread scaling, or Morse scaling, depending
on the length scale governing close approaches between
chains.15 This work emphasizes defining the entanglement
length in terms of intercept probabilities between two strands,
in which a strand is either a Kuhn segment or a sequence of
packing blobs, depending on the relevant length scale of closest
approach.
Here, we investigate entanglements using simulations

without assuming the validity of any particular scaling
arguments. To do this, we need a way to obtain the network
of primitive paths for a given melt or solution of polymers. The
concept of primitive paths was introduced by Edwards,16 who
considered a test chain embedded in an array of obstacles that
are infinitely thin, rigid, and spatially fixed. The obstacles
represent constraints imposed by other polymers on thermal
fluctuations of the test chain. Edwards identified the primitive
path as the shortest path between the end points of the original
chain into which its contour can be contracted without
crossing any of the obstacles.
Everaers et al.17 identified the primitive paths of simulated

entangled chains using a chain-shrinking algorithm. In this
algorithm, the chain ends are fixed in space, intramolecular
interactions are disabled, and the energy of the system is
minimized by slowly cooling to zero temperature. Without
thermal fluctuations and intrachain interactions, bonds
between successive monomers tend to reduce their lengths
to zero, which pulls the chains taut. The result is a mesh of
primitive paths, each consisting of a sequence of straight

Figure 1. Plateau modulus G vs p−3 for a wide range of flexible
polymers with single-bond backbones (data from ref 8).
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segments between interchain contacts. The average path length
between interchain contacts is identified as Ne. Results of this
algorithm are consistent with the plateau modulus measured
from simulations.17,18

Following this breakthrough, several related and alternative
methods were developed to obtain primitive paths,19,20

including the Z1 algorithm,21,22 the CReTA algorithm,23 and
isoconfigurational averaging.24 The Z1 algorithm differs from
the other approaches, as it employs purely geometrical
operations to minimize the path length without allowing
chains to cross. Primitive paths obtained from chain-shrinking
and Z1 are very comparable.25

Ring polymers offer several advantages over linear chains in
entanglement simulations. A system of long entangled rings in
periodic boundary conditions can be regarded as a proxy for a
system of infinitely long chains. All segments are statistically
equivalent, so quantities such as mean square displacement
(MSD) can be averaged across all the beads. Entanglements in
topologically equilibrated melt of rings are permanent. Also, for
rings there are no chain ends to hold fixed, when we obtain the
primitive path network by chain-shrinking.
Importantly, we expect properties of the entanglement

network, including the tube diameter and entanglement length,
to be the same for topologically equilibrated melts of long rings
and long linear chains. Entanglement arises from an interplay
between chain packing and uncrossability, both of which are
local phenomena. Intuitively, we may say the tube does not
“know” how long the chains are, or the architecture of long-
chain branching or crosslinking, so long as the chains are long
enough that end effects are small. Indeed, tube models
successfully describe dynamics of star, H, and other branched
chains with the same entanglement length and friction factor as
for long linear chains made from the same monomers.
Our group has exploited ring polymers to explore

entanglements in several ways. For example, Qin and Milner
used knot theory to analyze a single self-entangled ring, and
showed that the topological entropy of an entangled melt is
(3/2)kB per entanglement strand.26 Also, bead MSD versus
time in simulations of self-entangled ring melts displays all the
same dynamical regimes expected for linear melts except
terminal diffusion.27 Bisbee et al. studied an entangled melt of
long ring polymers in a system with periodic boundary
conditions, using isoconfigurational averaging to nondestruc-
tively image the tube and determine its properties.24

In principle, the entanglement length and tube diameter
could depend on any microscopic details of chain architecture
that govern chain conformations and how chains pack
together. However, on physical grounds, we expect that
entanglement depends mainly on a few key features of polymer
chains, rather than every detail of their chemical architecture.
We envision chains in a melt as semi-flexible paths with a
typical diameter and persistence length. In a solution, we
expect entanglement to depend on volume fraction as well as
solvent quality, which influences correlations between chain
segments. This justifies using bead-spring models to investigate
dynamical properties of polymer melts and solutions generally,
and in particular, how entanglement depends on chain
diameter, stiffness, volume fraction, and solvent quality.
In this work, we use molecular dynamics (MD) simulations

to explore entanglements in ring polymers with varying
bending stiffness and concentration. We aim to show three
distinct scaling regimes for flexible, semiflexible, and stiff
polymer chains, and identify the boundaries at which one

regime crosses over to the next, as chain stiffness and bulkiness
are varied. We first describe our simulation model, and the
chain-crossing technique we use to topologically equilibrate
systems of entangled rings. Next, we present a version of the
chain-shrinking method adapted to systems of entangled rings,
intended to retain self-entanglements of parts of the same ring
that are distant in arc length. To obtain piece-wise linear
primitive paths, which are especially convenient for counting
entanglement segments, we “polish” the paths resulting from
our chain-shrinking method by applying the Z1 algorithm. In
this way, we obtain the primitive path network of entangled
rings and measure the entanglement length as the average arc
length between entanglement points.
We use two additional methods to characterize entangle-

ment. First, we estimate the tube diameter from the transverse
displacement of monomers during chain-shrinking. Finally, we
use shearing simulations to measure the network modulus,
which corresponds directly to the plateau modulus measured
in dynamical rheology on entangled linear melts and solutions.
Taken together, these three methods give a robust picture of
entanglement behavior for our simulated systems.

■ SIMULATION TOOLS AND ANALYSIS
TECHNIQUES

To simulate polymer melts, we use bead-spring polymers, with
purely repulsive interactions. The beads interact via the
truncated Lennard-Jones potential (eq 12) with cut-off
distance rc = 21/6σ. Although not representing any particular
polymer, we preserve “atomistic” length and energy scales in
our model by choosing σ to be 0.2 nm and ϵ to be 2.49 kJ/mol
(1 kT at 300 K). To study the effect of chain stiffness, we add
an angular potential of the form Ua = (1/2)κ(θ − θ0)

2, with the
preferred angle θ0 = 180°, corresponding to straight chains.
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We study a wide range of stiffness and concentrations. We
use bending stiffness ranging from βκ = 0−10, where β = 1/kT.
We generate initial chain configurations by constructing a
random walk of N steps, computing its end-to-end vector R
and adding −R/N to all N bond vectors so that the ring closes.
Our melts and solutions consist of 40 rings of 800−1600
repeat units each. The number density of beads to represent a
melt is taken as 0.7/σ3. We varied the chain volume fraction ϕ
down to ϕ = 0.2, that is, to one-fifth of the melt density.
To increase the bulkiness of our chains and thereby boost

the packing length, we add short side groups to our linear
bead-spring polymers. Side groups effectively increase the
diameter of the chains, increasing the packing length and
making the chains less entangled. The side groups are short
chains of beads with similar properties to the backbone beads.
We explore up to 2.5 side chain beads per backbone bead
(Figure 2).
Equilibrating systems of long polymer chains is challenging,

in general, because we must equilibrate for longer than the
longest relaxation time, which for entangled linear chains is the
reptation time, scaling as N3. Special tricks have been
developed to equilibrate long entangled chains. Auhl et al.
proposed a technique to introduce excluded volume in a
quasistatic manner to equilibrate melts of long chain
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polymers.28 Several others have used algorithms involving
Monte Carlo moves to obtain equilibrated polymer melts.29−32

Each of these techniques have restrictions that are either
model-dependent or work best for moderate chain lengths and
densities.
To simulate entangled rings as a proxy for entangled linear

melts, chains must be allowed to cross each other during
equilibration, so that different topological states can be
accessed. Qin and Milner include Monte Carlo moves that
allowed chains to cross each other, by reconnecting closely
approaching segments from different chains.26 This technique
relieves the entanglement constraint, which implies the longest
relaxation time during equilibration scales as the Rouse time
(N2) rather than the reptation time. However, as a Monte
Carlo technique, it is particular to the model being simulated
and requires custom coding and so is inconvenient for general
use.
In this work, we introduce a technique that allows chains to

cross during equilibration by weakening the repulsion between
beads. Weakening interactions to allow chains to cross is
convenient for MD simulations, as custom interactions are
easily introduced and applicable to essentially any system. To
control chain-crossing, we vary the overall strength of the
interaction with a multiplying factor f. With f being sufficiently
small, chains cross readily; as f increases toward unity, chain-
crossing ceases. To avoid problems associated with a weak but
singular repulsive potential, we smoothly round off the
repulsive Lennard-Jones interactions below a short-distance
cutoff to a parabolic dependence. The short-distance cutoff is
chosen as r = 0.1846 nm, which is small enough that the
properties of the system with f = 1 are essentially identical to a
system with WCA interactions. This cutoff corresponds to the
separation where the interaction potential is 5 kT.
We can estimate the energy barrier needed for the chains to

cross. The smallest barrier occurs when the two bonds of the
crossing chains are perpendicular. This configuration is shown
as a dotted line in Figure 3. In this geometry, the barrier is the
sum of interactions between the two pairs of bonded beads on
opposite chains, which totals U r4 ( 2 )0 .

Fluctuations in the radius of gyration (Rg) give a good
indication on how frequently the chains are crossing each
other. When f is small, and the potential is weak, chains cross
freely, and Rg fluctuates rapidly over the full distribution
accessible to topologically unhindered rings. At moderate
values of f, chains can still cross but do so infrequently. The
timescale for Rg to explore its full range becomes progressively
longer; fluctuations over a limited time range fail to explore the
full distribution. When f is sufficiently close to unity, the
potentials closely resemble WCA potentials, and the chains
cannot cross. Then, Rg for each chain is permanently restricted
by entanglement to fluctuate over a narrow range, reflecting its
particular primitive path.
This behavior is observed in Figure 4, which displays Rg

versus time for five different rings in a single system, as the

parameter f is steadily increased. When f is small, chains cross
freely, and Rg fluctuates rapidly; as f increases, Rg fluctuates
more slowly. When chain crossing is turned off, Rg for each
chain is essentially “frozen”, reflecting the particular entangle-
ment state of the ring melt.
Rg histograms provide a convenient way to determine when

rings are topologically equilibrated, and when chains stop
crossing. When chains can cross freely, given sufficient
simulation time, all chains will exhibit a common Rg histogram.
When chains are unable to cross, each chain will have a distinct
Rg histogram.
This behavior is evident in Figure 5, which displays

histograms for Rg for five different rings in a single system,
sampled from a simulation of fixed duration from a given initial
configuration. In Figure 5a, the crossing parameter f is small,
and chains can cross freely; thus regardless of their particular
initial configuration, each of the five rings can fully explore the
expected equilibrium distribution. In Figure 5b, f is larger and
chain-crossings less frequent, so that within the duration of the
simulation, the Rg histogram of a given chain reflects to some
extent its initial configuration. In Figure 5c, chain-crossing is
turned off, and the Rg histograms of different chains reflect
only those motions that occur within the tube.
To average over different topological arrangements of a

system of rings, we obtain a set of independent configurations
by sampling the simulation while the chains are still crossing.
Because we want the structure of these configurations to
resemble the system with a WCA potential, we perform this
sampling when f is reasonably large, and the crossing rate is
slow. Then to study entanglement properties, we turn off
chain-crossing entirely and equilibrate and analyze each
configuration separately (Figure 7).

Figure 2. Ring polymers with no side groups (top) and ring polymers
with n = 0.5, 1, and 2 side group beads per back bone bead. We
explore side groups with n = 0.5−2.5 with increments of 0.5.

Figure 3. Graphic of how polymer segments cross each other. Here,
the solid lines are a representative of the bonds between the
monomers. The crossing barrier is the sum of interactions along the
dotted lines.

Figure 4. Behavior of radius of gyration (Rg) as we increase the
strength of interaction potential. We see three different stages of
behavior for Rg: rapidly fluctuating (0−400 ns), moderately
fluctuating (400−800 ns), and restricted (800−900 ns) Rg for five
chains from a solution of entangled rings.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.9b02681
Macromolecules 2020, 53, 3861−3872

3864

https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig4&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.9b02681?ref=pdf


To verify that these configurations are representative of
entangled melts of linear chains, we measure the tangent
correlation function and extract the persistence length.
Persistence length is the decay length for the tangent−tangent
correlation function ⟨t0·tn⟩. This function measures the
alignment of a tangent (bond direction vector) t0 to a tangent
tn that is n monomers farther along the chain. Np is extracted as
the number of bonds for ⟨t0·tn⟩ to decay to 1/e. Figure 6 shows
the decay of the tangent correlation function with a slope Np
on the semi-log plot. The persistence length of ring melts
equilibrated by chain-crossing matches exactly with that of
linear polymer melts equilibrated conventionally.33 In fact, the
persistence length just before the crossing stops is also same as
that for an equilibrated melt. This is another indicator that the
local structure obtained from this chain-crossing technique is
equivalent to that of an equilibrated melt of long polymers.
We determine the Kuhn length of our ring polymers from

the persistence length, using the relation NK = 2Np, as for semi-
flexible chains. For linear chains, we may alternately obtain the
Kuhn length by measuring the mean-squared end-to-end
distance, whereupon LK is given by LK = ⟨R2⟩/L, where L is the
length of the fully extended chain.
Once we have an equilibrated melt of long entangled rings,

we find the network of primitive paths using chain-shrinking.
Because we use ring polymers, we do not have to fix any chain
ends during shrinking; entanglements between rings are
permanent, and the entangled network itself prevents chains

from collapsing to points. Because our rings are very long in a
system with periodic boundary conditions, entanglement of
different parts of the same ring contributes significantly.
However, in the established chain-shrinking method, all
interactions between monomers of a given chain are turned
off, which releases any entanglement between different parts of
the same chain. For this reason, we modify the chain-shrinking
method to preserve self-entanglements in rings as far as
possible.
To accomplish this, we increase the number of “exclusions”

nexcl up to nexcl = 12, that is, interactions are turned off between
beads separated by up to 12 bonds along the chain. (This is
conveniently done in Gromacs with a standard parameter).
Then, as usual in chain-shrinking, we set the equilibrium bond
length to zero and minimize the energy. The choice of nexcl =
12 represents a compromise between removing enough self-
interactions so the chains shrink effectively to straight paths
and retaining most of the self-entanglement. (We verified that
measures of the primitive path such as the average length
between entanglement points are insensitive to nexcl near nexcl =
12).
After this modified chain-shrinking operation, the chain

conformations are close to piece-wise linear paths but with an
inconvenient tendency to be curved in the vicinity of
entanglement points. We find it helpful to use the Z1
algorithm after chain-shrinking to “polish” the configuration,
resulting in primitive paths that are rigorously sequences of
straight segments. Figure 8c displays a typical chain
configuration and resulting primitive path obtained after
chain-shrinking and polishing with Z1. This combined method
makes counting entanglements easier. We estimate Ne as the
average length of straight segments of the primitive path
between entanglement points.
During chain-shrinking, beads on polymer chains are moved

from their original positions to points along the primitive path.
To observe the tube diameter directly, we can measure the
distance each bead moves transverse to the primitive path to
reach its respective position on the primitive path. For flexible

Figure 5. Histograms for the three stages of Rg behavior from Figure 4. (a) Freely crossing chains have common histograms, (b) moderately
crossing chains have partially common (in some range) histograms, and (c) chains that cannot cross have distinct histograms.

Figure 6. Decay of the tangent−tangent correlation function over six
repeat units is shown here. The function decays to 1/e after Np
monomers. This can be measured as a slope on the semi-log plot.

Figure 7. Snapshots of the same chain from distinct frames. We extract frames while the chains are allowed to cross and then equilibrate them
independently.
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polymers with relatively large tube diameters, beads move a
considerable distance during chain-shrinking, as can be seen in
Figure 11. For stiffer chains, beads on a given chain are not
very far away from the corresponding primitive path. We can
thus estimate the tube diameter from the mean-square
transverse displacements of monomers to the primitive path,
which evidently changes as chains become stiffer.
Tubes, primitive paths, and entanglement points cannot be

observed experimentally except in very special situations.34 In
contrast, the plateau modulus is a directly observable
consequence of entanglement. We can measure the entangle-
ment modulus G in simulations by shearing the system.
We induce shear by shearing the periodic simulation box at a

constant rate of 0.143 nm per nanosecond to 20 percent shear
strain, after which we hold the deformation fixed and
equilibrate. Figure 9 shows representative before and after
configurations, for a system of typical size (linear dimension
7.15 nm). With this protocol, we observe essentially no stress
relaxation after the shearing stops. Figure 10 shows how the

magnitude of stress increases with strain and does not relax
after shearing.

■ RESULTS AND DISCUSSION

Tube properties can be obtained from primitive paths of melts
and solutions in several ways. We can measure bead
displacements during chain-shrinking, tube contour length,
average segment length, tube persistence length, and bending
angles between tube segments. By characterizing entangle-
ments with multiple measurements, we get a more complete
picture and a stronger check on scaling theories. In this way,
we can more convincingly determine what entanglement
regime we are in.
In this work, we have carried out a comprehensive

investigation of entanglement as a function of chain stiffness
and concentration. We have varied the chain-bending constant
κ from zero to 5 kT, in 10 steps of 0.5 kT, with additional
values added where necessary to clarify the behavior. For each

Figure 8. (a) Equilibrated melts of entangled polymers, (b) primitive path network obtained by chain−shrinking, and (c) comparison of polymer
chain configurations and their primitive paths obtained using the Z1 algorithm (Kröger method) after chain-shrinking. Chain configuration is in
red, and the primitive path from Z1 is in orange.

Figure 9. Shear can be induced in simulations by deforming the simulation box. During such deformation, one set of parallel faces of the box moves
in opposite directions. This is represented by the figure on the right.

Figure 10. Although the system deforms, stress increases linearly with strain (left). There is no relaxation in stress after the deformation is stopped
(right). Green line is a linear fit, and red line is a constant fit.
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of these stiffness values, we have independently varied the
volume fraction ϕ from the melt down to ϕ = 0.2, over the set
of values 1, 0.8, 0.6, 0.4, 0.33, 0.25, 0.2. We dilute the system
without adding explicit solvent beads; because the interaction
between polymer beads is repulsive Lennard-Jones, this
corresponds to using a good solvent, although swelling effects
are likely to be weak at such modest dilutions. For each chain
stiffness and concentration, each entanglement property is
averaged over 40 independent configurations, obtained as
described in the previous section.
Configurations of Chains and Primitive Paths. Direct

visualization of chains and their primitive paths in Figure 11
clearly shows that stiffer chains have trajectories that more
closely follow the primitive path. Figure 11 displays typical
chains and their primitive paths, ranging from a flexible chain
in its relatively fat tube (a) to a stiffer chain in its relatively
skinny tube (d). Just by looking at these primitive paths, it is
evident that Ne and the tube diameter decrease as we stiffen
the chains.

Impact of Stiffness and Concentration on Entangle-
ments. As chains stiffen, melts and solutions become more
entangled, and Ne decreases. As we dilute a solution, chains
become less entangled, and Ne rises. This behavior is clearly
evident in Figure 12a. In addition, we observe two regimes as a
function of chain stiffness. An abrupt change in slope for both
Ne and tube diameter indicates the boundary between two
regimes.
In the same way, stiffening the chains makes tube diameter

smaller and diluting makes it larger. We again see two distinct
regimes with increasing stiffness in Figure 12b, with breaks in
slope at around the same values of NK for corresponding values
of ϕ, which strengthens our observation of two distinct scaling
regimes. Having observed this qualitative behavior, we now
compare trends in the different regimes with scaling
predictions to identify which regimes we are seeing.
The smallest values of NK in Figure 12 correspond to flexible

chains, with no added stiffness. One might expect data in this
regime to be consistent with LN scaling, which successfully

Figure 11. Chain configuration (red) is closer to the primitive path (orange) as we increase bending stiffness in steps of (a) κβ = 0, (b) κβ = 1, (c)
κβ = 2, and (d) κβ = 3, implying a decrease in tube diameter from the monomer cloud around the primitive path.

Figure 12. (a) Entanglement length and (b) tube diameter obtained after the primitive path analysis. Both show a break in their slopes for all
concentrations we have used, indicating a change in regime.

Figure 13. Checking collapse of plateau modulus on to a master plot for (a) LN scaling and (b) thread-like scaling indicates the regimes we are
exploring.
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describes experimental data on a wide range of real polymers.
We write eqs 1 and 3 for LN scaling in melts in terms of Kuhn
length as follows

∼ ∼a L N N d L( / ) ( / ) ( / )K
2

e K K
4

(13)

If data in Figure 12 were consistent with LN scaling, we
should observe for the more flexible chains (smaller NK
values), a slope of −3 in Figure 12a, and a slope of −1 in
Figure 12b. Instead, we observe a slope of −1.3 instead of −3
and −0.5 instead of −1.
So what scaling regimes describe this data? One hint is that

the breaks in slope in Figure 12a occur when Ne is about twice
NK, suggesting this change in regime may correspond to the
onset of chains that are no longer flexible in their tubes. This
observation suggests that the two regimes we are observing are
the “semi-flexible” and “stiff” regimes.15 Both of these regimes
are predicted to be consistent with Everaers’ thread scaling. To
test whether we are observing the semi-flexible and stiff
regimes, we replot the data in the next section so that if thread
scaling holds, a master plot results.
Thread Scaling. We now check whether our data are

consistent with Everaers’ thread scaling. LN scaling, which is
observed for several commercial melts, is not consistent with
thread scaling. We observe in Figure 13a that the dependence
of modulus on Kuhn length is too weak to agree with LN
scaling. LN scaling predicts the modulus to scale with packing
length as eq 4. The modulus for flexible polymers scales with
concentration as ϕ2.7 Combining these two relations leads to
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If the data were to obey LN scaling, we should see a strong
collapse for eq 14 at different values of ϕ. We observe in Figure
13a that data at different ϕ do not collapse well. Furthermore,
the power law is not consistent with LN scaling, even for our
results for the melt; we observe a slope of 4.1 instead of 6, as
expected from eq 14.
In contrast, Figure 13b, which tests Everaers’ thread scaling

shows an excellent collapse for plateau modulus at different ϕ.
Thus, for our linear bead-spring chains, as we vary the stiffness,
the modulus depends on Kuhn length and concentration as
described by eq 8. In the semi-flexible regime, the modulus
depends on concentration as G ∼ ϕ2. Thus, the slope on the
left side of Figure 13b should be 4; we observe a slope of 4.33,
reasonably consistent with expectations. In the Morse regime,
the modulus depends on concentration as G ∼ ϕ7/5. Therefore,
the slope in the right half of Figure 13b should be 14/5 = 2.8

(eq 7); we observe a significantly larger slope of 3.85. We will
comment on this discrepancy later in this section.
Our results for Ne and tube diameter in linear bead-spring

chain melts and solutions are like-wise consistent with thread
scaling. Figure 14 collapses data for different concentrations
and chain stiffnesses as a function of the thread scaling variable
(LK/d)ϕ

1/2 (i.e., the square root of (ϕ/d2)LK
2 used in eq 8).

The results for entanglement length Ne and tube diameter a of
Figure 14a,b, despite being obtained by independent measure-
ments, nonetheless show a consistent collapse to a master
curve with two regimes.
As argued above, we surmise that semiflexible scaling

describes the region to the left of the breaks in slope while
Morse stiff chain scaling describes the region to the right. We
check this surmise by comparing the observed power laws to
scaling predictions. In the semi-flexible regime, the entangle-
ment length is predicted to scale as Ne ∼ 1/ϕ (eq 10).
Therefore, the slope on the left side of Figure 14a should be
−2; we observe a slope of −2.3, reasonably consistent with our
expectation. In the Morse regime, the entanglement length
should scale as Le/LK ∼ ϕ−2/5 (eq 5). Therefore, the slope on
the right side of Figure 14a should be −4/5 = −0.8. However,
we observe a much steeper slope of −1.35. Here again we find
a discrepancy in the stiff regime power law, as we did for the
corresponding regime of the plateau modulus.
The observed power law scalings for the tube diameter

(Figure 14b), when compared to scaling predictions, display
similar trends to those found for the entanglement length, with
apparent exponents comparable to but distinct from the
predicted values. In the semi-flexible regime, the tube diameter
is predicted to scale as a2 ∼ Ne. Thus, the slope on the left side
of Figure 14b should be −1 (eq 11); we observe a somewhat
larger slope of about −1.5. In the stiff chain regime, the tube
diameter should scale as a/LK ∼ ϕ−3/5 (eq 6), so the slope on
the right side of Figure 14b should be −6/5. Whereas, we
observe a slope of −1.04 for this regime. Given the narrowness
of the two scaling regions, it is perhaps not surprising that the
predicted exponent values are not observed.
More disturbing is the absence of the regime of flexible

chains described by LN scaling, which describes a wide range
of data on real polymers with flexible single-bond backbones
(see Figure 1).8 How can we access the flexible regime for our
bead-spring chain model of polymer melts? If the two regimes
we are observing correspond to semi-flexible and stiff chain
scaling, then to move in the direction of flexible chain scaling,
we should, in principle, make our chains more flexible to
increase the packing length and make the chains less entangled.

Figure 14. For our linear bead-spring chains, thread scaling holds for (a) entanglement length Ne from primitive paths and (b) tube diameter using
cloud of monomer displacements during chain-shrinking.
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However, our most flexible chains have no angular spring at
all. For such “fully flexible” linear bead-spring chains, steric
hindrance between successive bonded monomers gives rise to
a Kuhn length of about one monomer diameter.33 But there
are two ways to increase the packing length; if we cannot make
chains more flexible, we can make them more bulky. We
increase the volume displaced by monomers by adding side
chains, as described in the following section.
Impact of Adding Side Groups. Adding side groups

increases the monomer volume and therefore the packing
length. In simulations, we add side chains by bonding
additional beads to the linear backbones of our rings. We
vary the side chain length from one extra bead every other
monomer, up to 2.5 side beads per backbone bead (alternating
side chains of two and three beads).
After the addition of side chains, we observe a third scaling

regime in Figure 15. We see two distinct bends in slope,
corresponding to three regimes. As the packing length
increases, we provisionally identify the stiff regime (red
slope), semi-flexible regime (blue slope), and flexible LN
regime (green slope). The changes in slope for Ne and G,
which are obtained from independent measurements (chain-
shrinking and direct shearing), occur at the same value of
packing length.
Encouragingly, the boundaries between regimes in Figure 15

(indicated by dashed lines) appear where they are expected to
appear, corresponding to the breakdown of LN and Morse
scaling arguments. The transition between flexible and semi-
flexible scaling occurs when the packing length p is about equal
to the chain diameter d. Likewise, the transition between semi-
flexible and stiff scaling occurs when tube diameter a is about
equal to the Kuhn length LK.
We emphasize that to produce Figure 15, we vary the

packing length in two different ways. On the left, where the
packing length is smaller than the chain diameter, LK is
changing, and d is fixed. We traverse the stiff and semi-flexible
regimes by varying LK, that is, by varying the stiffness of linear
bead-spring chains with fixed bead diameter. On the right,
where the packing length is larger than the chain diameter,
stiffness is fixed, and the effective monomer diameter is
changing. We explore entanglements in flexible polymers by
making the monomers more bulky, that is, by adding side
groups of the same kind of beads of diameter d.
We measure packing length using eq 2, which can be written

as p ∼ Ωk/LK
2 = (π/4)dchain

2/LK. This definition reduces p
approximately to d when the chain has no side groups and no
stiffness. In Figure 15, we present results for the entanglement
length in terms of NeΩ0,n. Here, Ω0,n is the number of beads in
a monomer, that is, Ω0,n = nsidegroups + 1. Hence, NeΩ0,n is the

displaced volume of an entanglement strand in units of beads.
Using NeΩ0,n is appropriate to compare results for chains with
and without side groups because the plateau modulus is
expected to scale as kT per entanglement strand.
To further investigate whether we are seeing the expected

three scaling regimes, we compare the observed power laws in
Figure 15 to scaling predictions. In the stiff chain regime, the
entanglement length Ne scales as (Le/d) ∼ (LK/d)

1/5, so that
we predict Ne ∼ (p/d)−1/5, corresponding to Ne decreasing
with packing length (and increasing with stiffness). Thus, in
Figure 15a, stiff chain scaling predicts a small negative slope of
−1/5, whereas we observe a small positive slope of 0.35.
In the semi-flexible regime, the entanglement length Ne

scales as d/LK, or equivalently Ne ∼ p/d, corresponding to a
slope of 1 in Figure 15a. We observe a slope of 1.3 in the
middle regime, reasonably consistent with expectations.
Finally, LN scaling predicts that the entanglement length Ne
should vary as NeΩ0 ∼ p3, corresponding to a slope of 3 in
Figure 15a. We observe a slope of 2.66, again reasonably
consistent with the predicted value given the narrow range of
the regime.
We find similar behavior in Figure 15b with regard to

predicted and observed power laws, governing the plateau
modulus. Stiff chain scaling predicts that the modulus should
scale as Gd3 ∼ (d/LK)

1/5 (eq 7), which we can recast using p ∼
d2/LK as Gd3 ∼ (p/d)1/5. Because we are varying the Kuhn
length at fixed d for linear bead-spring chains, for stiff chains,
we expect a small positive power law in Figure 15b of 1/5; in
fact, we observe a significant negative slope of about −0.85.
In the semi-flexible regime, the modulus should scale as Gd3

∼ LK/d (eq 9) or equivalently Gd3 ∼ (p/d)−1, corresponding
to a slope of −1 in Figure 15b. In fact, we observe a slope of
−1.33, reasonably consistent with expectations. Finally, LN
scaling predicts that the modulus should scale as G ∼ p−3, and
we observe a slope of −2.6.
To summarize, the observed power law scalings for the

entanglement strand volume (from chain-shrinking) and the
plateau modulus (from direct shearing) is in decent agreement
with predictions for the semi-flexible and flexible regimes.
However, for the stiff chain regime, the observed exponent for
the entanglement strand volume has the wrong sign. Note that,
because we expect G to scale for melts as kT per entanglement
strand volume, the corresponding exponents in the two data
sets should be the negatives of each other. This is well satisfied
for the semi-flexible and flexible regimes. For the stiff chain
regime, this expectation is only qualitatively satisfied.
Stiff chain scaling for the tube diameter a can be written as

(a/d) ∼ ϕ−3/5(d/LK)
1/5. This implies that as we stiffen the

chains, the tube diameter progressively decreases and must

Figure 15. Three regimes of stiffness are observed using independent techniques: (a) Ne primitive paths and (b) plateau modulus by shearing.
NeΩ0,n is the total number of beads per entanglement strand, which quantifies the volume per strand when side groups are present.

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.9b02681
Macromolecules 2020, 53, 3861−3872

3869

https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig15&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.9b02681?fig=fig15&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.9b02681?ref=pdf


eventually become smaller than d. In fact, our results in Figure
12b show that in the stiff chain regime, a becomes essentially
independent of LK, suggesting perhaps that the decrease in a is
limited by the bead diameter. [Correspondingly, in the thread
scaling plot (Figure 14b), the quantity a/LK versus (LK/d)ϕ

1/2

for stiff chains has a slope of about −1, consistent with a/LK
scaling as d/LK, or a of order d].
Whereas, the stiff chain scaling implicitly describes stiff

chains as thin threads, with no role for the chain diameter in
describing entanglement between strands. As a result, stiff
chain scaling may not be valid for melts of stiff bead-spring
chains. To explore this idea, we investigate a different system
that is guaranteed to satisfy the assumption of thread-like
scaling: “phantom” semi-flexible chains with noninteracting
beads, which represent zero-diameter chains.
We create systems of such chains by generating semi-flexible

random walks and closing them into rings as described in the
earlier section. These systems consist of 40−1000 chains and
of 800−2000 beads. Zero diameter chains have no interactions
except uncrossability; the bending Hamiltonian is the entire
Hamiltonian. No MD simulations are necessary to equilibrate
such melts, as the random walks we initially generate are
already equilibrium configurations in a topologically equili-
brated ensemble. We varied the chain bending constant κ from
1 to 30 kT. We used longer chains for higher stiffness, so that
each chain would have a sufficiently large number of Kuhn
segments. We used the Z1 method to measure the
entanglement length Ne.
Sufficiently stiff phantom chains behave precisely as

predicted by Morse stiff chain scaling. Equation 5 predicts a
slope of −0.8 for Ne/NK vs NK, which we observe for NK
greater than 10 in Figure 16. Also, shown in the figure (blue

circles) are our data for stiff bead-spring linear chain melts.
The break point for the end of the semi-flexible regime,
corresponding to the break points in Figure 12, is indicated by
the dashed line; for melts real bead-spring chains more flexible
than this, semi-flexible scaling applies. The comparison with
the phantom chain results makes clear that the effect of finite
bead diameter is to increase Ne/NK and thereby steepen the
dependence of Ne/NK on NK, which affects all the other power
laws for stiff chain melts of “real” bead-spring chains.
Although we exhibit all three scaling regimes in Figure 15

only for melts, we can investigate this scaling behavior for
solutions as well. We show two of these regimes, semi-flexible
and stiff, for solutions in Figures 12−14. Note that, the
entanglement length for flexible chains is already rather large,

with Ne = 50 repeat units for flexible chains without side
groups and up to 130 repeat units when side groups are
present. For solutions, we expect Ne will increase with dilution
as 1/ϕ. If we dilute even by a factor of two, Ne increases to 260
repeat units. Thus, investigating dilution effects on flexible
chains with bulky side groups will be computationally
expensive.
In this paper, when investigating concentration effects on

entanglement, we have diluted the chains with vacuum.
Because the interactions between beads are repulsive
Lennard-Jones, this corresponds to a rather good solvent. In
future work, we may explore solvent quality effects by tuning
the interaction cutoff distance between polymer beads to set
the effective solvent quality near the theta point, as introduced
by Hayward et al.35

■ CONCLUSIONS
We used MD simulations of melts and solutions of long
entangled ring polymers to explore entanglement over a wide
range of chain stiffness and concentration. Long entangled
rings serve as a proxy for very long linear chains, in which end
effects are absent. We topologically equilibrate systems of ring
polymers by softening the short-range interactions, which
allows the chains to cross.
Entanglement constraints in polymer melts and solutions are

described by tube theory, which posits a tube that limits
transverse motion of a given chain on intermediate timescales.
The entanglement length Ne and corresponding tube diameter
a are material properties, depending on chain architecture and
concentration. Multiple scaling theories have been proposed to
describe how Ne depends on chain architecture and
concentration. Lin-Noolandi scaling, which assumes chains
are flexible within their tubes, predicts the tube diameter a
scales with the packing length p and accounts well for plateau
modulus data for a wide range of real polymers. Morse scaling
describes stiff chains, such that the Kuhn length LK is larger
than a.
Everaers proposed a thread-like scaling ansatz, in which

entanglement properties depend on the arc length density and
Kuhn length but not on the chain diameter, as if chains were
arbitrarily thin threads. Recent work in our group proposes a
comprehensive scaling theory that encompasses these regimes
and identifies a new semi-flexible regime, in which the chain
diameter d rather than the packing length p governs close
approaches between chains. The thread-like scaling ansatz is
consistent with the Morse and semi-flexible regimes but not
the LN regime.
We measure entanglement properties in three independent

ways. First, we determine the primitive paths, by using a
variation of existing chain-shrinking techniques. Visual
comparison of tube path and chain configurations reveal
qualitatively how the tube diameter decreases with chain
stiffness and increases with dilution. From the primitive paths,
we measure Ne quantitatively as the average number of
monomers between entanglement points. The tube diameter a
can be measured as twice the square root of the mean-square
transverse displacement between a monomer bead and its
corresponding point on the primitive path. Finally, we measure
the plateau modulus by shearing the system and measuring the
stress. Each of these measurements can be made and
interpreted without making any assumptions about the
flexibility of the chain within its tube, and thus without
assuming any particular scaling theory of entanglement.

Figure 16. Entanglement length Ne in units of NK obtained by the Z1
algorithm, for bead-spring chains (blue circles) and zero diameter
chains (green squares). Inset: Ne vs NK.
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For linear bead-spring melts and solutions, over a wide range
of stiffness and concentrations, we observe two scaling regimes,
which we identify as corresponding to the semiflexible and stiff
chain regimes. These data are consistent with thread-like
scaling and thus inconsistent with LN scaling that describes
real polymer melts. It appears that all previous simulations of
linear bead-spring chains were like-wise confined to these two
regimes.
To observe the LN scaling regime, we found that we needed

to increase the packing length, which we achieved by adding
side groups to the linear backbones of our bead-spring chains.
In this way, we exhibit three distinct entanglement regimes,
corresponding to stiff, semiflexible, and flexible scaling,
consistently observed in the entanglement length, tube
diameter, and plateau modulus. The boundaries of these
three regimes appear as expected; stiff chains cross over to
semiflexible when the tube diameter exceeds the Kuhn length,
and semiflexible chains cross over to flexible when the packing
length exceeds the bead diameter.
The observed power laws in the semiflexible and flexible

regimes correspond reasonably well to scaling theory
predictions, given the relatively narrow width of the scaling
regimes, which can lead to “effective exponents” different from
the asymptotic values. The observed power laws for our stiff
bead-spring chains differ more substantially from scaling
predictions. We attribute this to the importance of the finite
bead diameter for “real” bead-spring chains, which is not
accounted for in the stiff chain scaling arguments.
To investigate this further, we obtained entanglement length

versus chain stiffness for systems of “phantom” stiff chains that
interact only topologically, fulfilling the implicit assumption of
the stiff chain scaling theory. Our results for Ne versus Kuhn
length for phantom stiff chains confirm that the effects of finite
bead diameter in stiff bead-spring chains perturb the observed
entanglement properties away from the phantom-chain limit.
We emphasize that our quantitative definition of p is

heuristic, in its reliance on the “volume of a Kuhn segment” Ωk
(or equivalently on the “volume of a monomer” Ω0). This
definition can be applied to real chains as well as simulated
bead spring chains; however, no account is taken of differences
in shape of the short-range repulsive potential between
monomers. Suppose we add material to a chain by attaching
short side chains; we can add the same amount of material per
unit length by adding twice as many side chains of half the
length. The monomer volume increases by the same amount in
each case; however, more numerous shorter side chains clearly
give a stiffer repulsive potential, and are more effective at
keeping other chains away. As a consequence, we are hesitant
to compare chains of distinctly different architecture, and in
particular real chains versus simulated bead-spring chains, by
applying the heuristic definition of p to both. In future work,
we will develop ways to measure p in simulations, by observing
close approaches between chain segments.
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