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This paper presents a new method to simulate the osmotic pressure of an ionic solution. Previous
simulation methods confine ions between walls, and the osmotic pressure is inferred from the force
required to maintain this confinement. In this work, we impose a harmonic potential on the ions to form
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a nonuniform concentration profile in the solution. As this profile arises from the force balance of the
harmonic potential with the osmotic pressure, it can be used to determine the osmotic pressure across
the entire concentration profile. This method can be performed without specialized programming,
making it accessible to the general user. Using our method, we find that standard potentials for Na* and
Cl™ ions need adjustments to be consistent with experimental osmotic pressure at high concentrations.
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1 Introduction

Understanding the behavior of ions and ionic solutions is
important across a wide range of topics, from biology to colloid
science to electrochemistry. Simulating ionic solutions as they
interact with biomolecules, colloidal particles, and electroche-
mical interactions provides an important source of physical
insight and complements experimental results.

In general, simulation potentials are tuned to reproduce
liquid state properties. Potentials such as the Optimized
Potential for Liquid Simulations (OPLS) have been tuned to
reproduce liquid densities, boiling points, and heats of
vaporization." The analogous quantity to validate potentials
for ions is the osmotic equation of state, ie., the osmotic
pressure as a function of concentration. Physically, osmotic
pressure is the force per area exerted by solutes confined by
semipermeable membranes, and varies with the concentration
of the solution.

Hamer and Wu have published a collection of osmotic and
activity coefficient for electrolyte solutions.> Experimental data
was collected using a variety of techniques based on colligative
properties, including freezing-point depression, vapor-pressure
lowering, and isopiestic equilibrium. Detailed descriptions of
the techniques can be found in their paper. This data collection
serves as an excellent source to validate simulation results,
allowing us to tune ion potential parameters.

For concentrated ionic solutions, the osmotic pressure
depends delicately on the apparent size of ions, represented
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in the potential by the short-range repulsion. Too much short-
range repulsion gives too high an osmotic pressure at high
concentrations, as ions increasingly repel each other; too little
short-range repulsion gives too low an osmotic pressure, as
ions of opposite signs tend to cluster under Coulomb attrac-
tion. Therefore, adjusting the apparent size of ions is a potent
way to adjust the osmotic equation of state.

Most published osmotic pressure simulation methods con-
fine ions in some way between repulsive walls and measure the
force on those barriers. The first such approach, developed by
Luo and Roux, uses two flat-bottom harmonic potentials to
confine ions.>* The potentials confine the ions by applying a
linear opposing force when the ions pass beyond the start of the
potential. The osmotic pressure is obtained as the time average
force from the potential divided by the area. Unfortunately, the
flat bottomed harmonic potential is not available in most
simulation software, and thus requires specialized coding
which makes this method inconvenient for general use.

The second approach simulates a confined system with no
explicit semi-permeable membrane, using Gibbs ensemble
Monte Carlo methods.’ In the simulation, solute particles are
exchanged between a pure solvent compartment and a mixture
compartment until equilibrium is obtained. The osmotic pres-
sure for the system is calculated from the chemical potential.
However, this approach also requires specialized software,
limiting its usefulness.

The third approach uses a physical membrane constructed
in the simulation. Raim and Srebnik used a polyamide
membrane that was impermeable to ions while impeding the
flow of solvent molecules.” The pressure difference across the
barrier at equilibrium gives the osmotic pressure. In a related
approach, Murad and Prowles used a molecular membrane that
was invisible to solvent molecules, while remaining completely

This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Atypical configuration of a 2.50 M NaCl solution confined between
graphene-like sheets invisible to water. The Na* (blue spheres) and Cl™
(cyan spheres) ions tend to order near the confining membranes.

impermeable to the solute.® This method did not require
additional coding outside general simulation software.

While measuring osmotic pressure by confining ions can be
effective, there are several inherent issues with this simulation
archetype. Each simulation gives osmotic pressure only at a
single concentration. Therefore, to measure the osmotic equa-
tion of state, separate simulations must be performed at a
series of concentrations.

Furthermore, the impenetrable barrier imposed on the ions
leads to ordering at the wall and non-uniform concentration
profiles. Fig. 1 is a rendering of a frame of a simulation using
confinement, in which ordering of the ions near the boundary
membranes is evident. The resulting ion distributions are shown
in Fig. 2. The nonuniform ion concentration raises complications
in determining the effective concentration of the bounded region.

In this work, we present a new method, in which we measure
the osmotic equation of state over a wide range of concen-
tration in a single simulation. In brief, the method works by
placing the ions in a harmonic potential. This potential leads to
an nonuniform equilibrium concentration profile, as sketched
in Fig. 3. In equilibrium, each slice of the concentration profile
can be regarded as stationary under the sum of three forces: the
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Fig. 2 A plot of the concentration profiles of Na* (blue) and Cl~ (cyan)
ions compared to the target concentration (black) in a simulation of 2.50 M
NaCl between confining sheets.
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Fig. 3 Sketch of the new method. Potential (green) results in nonuniform
ion concentration (blue). Each slice of solution (red) is acted on by
harmonic force Fy, and osmotic pressure II from left and right.

gradient of the external potential, and the osmotic pressure on
the two sides of the slice, which differ slightly because of the
nonuniform concentration. By analyzing this balance of forces,
we can infer the osmotic pressure everywhere in the system
from the measured concentration profile.

2 II(¢) by harmonic confinement

Ions in a harmonic potential exhibit a nonuniform concen-
tration profile at equilibrium. This nonuniform profile arises
from the balances of forces exerted on the solution by the
external harmonic potential and internal forces. Consider the
balance of forces on a thin slice from z to z + Az (see Fig. 3). The
force exerted on the slice by the potential U is:

Fo = 9220 a: 1)
where ¢(z) is the total ion concentration at height z. (By design,
the imposed potential acts equally on both species of ions.)

The force exerted on each slice by the osmotic pressure
depends on the concentration of each neighboring slice.
A solution with higher concentration exerts a higher osmotic
pressure onto its surroundings than one with a lower concen-
tration. The difference in concentration from the two adjacent
slices produces a net force on a given slice:

_dII(z)
T odz

FH Az (2)
When the system is in equilibrium, the sum of the osmotic
and gravitational forces on each slice must vanish. The same
conclusion can be reached by the device of inserting massless,
semipermeable membranes between each successive slice of
the concentration profile. Inserting the membranes changes
nothing about the equilibrium configuration, but allows us to
identify the forces acting throughout the fluid. Each membrane
supports the weight of the suspension in the slice immediately
above, and is acted on by the slightly different osmotic
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pressures in the slices above and below. The sum of the forces
acting on each membrane must evidently vanish.

By the above arguments, the change in the osmotic pressure
across a thin slice is then proportional to the change in the
harmonic potential multiplied by the concentration of the slice.

dri(z) dU(z)
4 *‘f’(z)T 3)

This allows the osmotic pressure of the simulation to be
inferred from the concentration profile and the imposed har-
monic potential.

2.1 Simulation setup

We chose NaCl for the first salt to simulate. Sodium cations
and chlorine anions are ubiquitous; high quality data on
NaCl osmotic pressure is readily available; and both cation
and anion are single atoms, so that the simulation potentials
describing ion interactions are particularly simple.

Our all-atom molecular simulations were performed with the
simulation package GROMACS, using the OPLS potentials.” "
GROMACS has a wide range of options for imposing forces on
atoms in solutions, referred to as “pull code” options. One such
option imposes a force onto a target atom or molecule that
depends linearly on the distance from a chosen origin. By choos-
ing the origin at the center of the simulation, we create an external
harmonic potential centered in the system.

While there is no hard limit on the number of pulls that can be
enabled, each ion pull option must be individually defined in two
places. Each ion needs its own individual group defined in the
system index (.ndx) file, and pull options for each group must be
defined in the molecular dynamics parameters (.mdp) file. The
pull code options have the form shown in Table 1. (To produce
these long and repetitive files, we used two bash shell scripts.)

When building a new simulation, a balance must be struck
between processing time and data quality. Increasing the size or
length of a simulation increases the quality of the data collected at
the cost of additional computational power and time required. To
achieve this balance, there are four parameters to be considered:
the size of the system, the strength of the harmonic potential, the
number of ions, and the length of the simulation.

The size of the system determines the number of ions and
water molecules that can be placed in the solution. More ions
means better statistics for the concentration profile. However, a

Table 1 Pull code options for a harmonic potential

pull = yes

pull-ngroups = 160

pull-ncoords = 160
pull-group1-name = ion1
pull-coord1-type = umbrella
pull-coord1-geometry = direction-periodic
pull-coord1-vec = 001
pull-coord1-groups = 01
pull-coord1-origin = 2.491 2.491 2.491
pull-coord1-dim = NNY
pull-coord1-k = 3.250
pull-group2-name = ion2
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simulation with twice the number of atoms takes twice as long
to run with the same computational resources.

For this work, we used two different system sizes, one a
2.5 nm cube, the other a 5 nm cube. By carefully choosing
the system parameters, with the same concentration profile as a
function of scaled position. If the profiles produced are not
the same, this would indicate the presence of finite-size effects.

The spring constant of the harmonic potential controls how
rapidly the potential varies along the z axis. If the harmonic
potential is too strong, then the ions will predominately gather
in the center. This would waste computational power, as the
edges of the system would consist only of water. If the harmo-
nic potential is too weak, the resulting concentration profile
will not cover a large enough range, and will not become dilute at
the boundary, preventing the simulation from achieving its goal.

Therefore, we want to choose a spring constant to produce a
concentration profile that approaches zero only at the boundary
of the system. This ensures that the space is fully utilized, while
maintaining the ability to measure osmotic pressure across the
full concentration profile. We chose the spring constant such
that the energy difference between the maximum of the har-
monic potential and the boundary of the potential is equal to
4kT, where k is the Boltzmann constant and T is the absolute
temperature. This makes the concentration at the boundary
approximately e * times the maximum concentration, giving us
a large range for the concentration profile.

For the small system, this gives a spring constant K of
13 kJ mol ™' nm™?. Since the large system is twice as large in
each direction, the equivalent spring constant for the large
system is four times smaller, or 3.25 k] mol ' nm™ 2 This
produces the same harmonic potential curve in each system
when measured on a scaled z axis.

The number of ions in the solution determines the max-
imum concentration that the solution can reach for a given
simulation size. After initial testing, the small system was taken
to contain 10 of each ion. The large system contained 80 of each
ion, as the volume is eight times that of the small system.

When the three parameters are chosen in this manner, the
concentration profile for the large and small systems plotted on
a scaled z axis are indeed the same, as shown in Fig. 4. The
concentration profiles were averaged with their mirror images,
taking advantage of symmetry to improve the accuracy of the
measurements. Note that the concentration nicely approaches
zero far away from the center of the box.

By comparing the concentration profiles of the small and large
systems, with correspondingly stronger and weaker harmonic
potentials (with K equal to 13 and 3.25 k] mol ' nm > respec-
tively), we can assess the extent of finite-size effects on our
simulation protocol. We may expect that if our system were too
small, and the concentration profile varied too rapidly
with respect to molecular scales, our analysis of the osmotic
pressure balance would begin to fail. Because the two profiles in
Fig. 4 are nearly identical, we have confidence that our simulation
system, though small, is large enough for our purposes.

Our simulations were performed with periodic boundary
conditions in all three directions. The imposed harmonic

This journal is © The Royal Society of Chemistry 2020
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Fig. 4 lon concentration verses scaled z position for small (red) and large
(blue) systems.

potential is defined with respect to the nearest distance along z
to the center of the box, so that the potential is continuous at
the system boundary in z. The periodic boundary conditions
allow us to dispense with any vacuum interfaces or walls that
would tend to collect ions, as was observed for the ionic
solutions confined between semipermeable membranes.

The simulation run time must be chosen large enough to give
good statistics for the concentration profile, from which the
osmotic pressure is calculated. After initial experimentation, we
simulated the small system for 80 ns and the large system for
10 ns. With this choice, simulations with large and small systems
produced concentration profiles with comparable accuracy, as the
eightfold increase in the ions in the larger system is compensated
by the eightfold increase in run time for the smaller system.
Indeed, both runs then use comparable computational resources,
so there is little reason to prefer one over the other.

2.2 Analysis

The osmotic pressure of the simulation is calculated from the
force balance:

dim  dU(z)
dz ~ 7 dz )

The harmonic potential takes the form:

Uz) = %Kzz (5)

where z is centered in the system, and K is the spring constant.

Substituting the harmonic potential into the force
balance gives:
dIt
—— = ¢k 6
L (©)

We measure the concentration profile as a sequence of
equally spaced z values, so we discretize the force balance as
ATT

A —¢Kz (7

Solving for the increment in osmotic pressure across a given
slice Az gives
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I, = IT; + ¢Kz(Az) (8

where IT, is the osmotic pressure closer to the boundary of the
system.

Since ¢ and z are given at the endpoints of each interval Az,
their average value is taken to give the final form of the
equation as:

¢+ ¢ 2242

I, =11
2 1+ ) 5

KAz 9)

This equation allows for the stepwise calculation of the
osmotic pressure given an initial value. This value is calculated
at the edge of the system, where the ion concentration
approaches zero and ideal behavior can be assumed, with an
osmotic pressure given by IT = RMT.

2.3 Results

To test the potential parameters for Na‘ and CI~ ions, the
osmotic equation of state for NaCl solutions was determined
using the new method, and compared to experimental data.>

In Fig. 5, the simulation results for the small (red) and large
(blue) systems lie well below experimental data (black) for
concentrations above 0.5 M. This indicates that the simulated
ions are too much attracted to each other, tending to cluster at
higher concentrations, thus reducing the osmotic pressure.

2.3.1 Tuning the simulation potentials. To counteract the
deviation of the simulated osmotic pressure from the data, we
need to prevent the ions from clustering so much. Of course, we
should not change the ionic charge. Rather, we strengthen
the repulsive part of the Lennard-Jones interaction between
Na' and Cl™~ ions. The Lennard-Jones potential is the sum of
repulsive and attractive terms:

v =va ve=4|(2) ()] (10)

/4

To increase the repulsive force while maintaining the same
attractive force, we find new ¢ and ¢ values such that

Vr(o',e') = (1 + X)Vi(a,¢) (11)

Osmotic pressure (MPa)

G L L I L L
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Concentation (M)

Fig. 5 Experimental data (black) vs. simulation data for small (red) and
large (blue) systems using default OPLS parameters for Na* and CL™.
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Fig. 6 Simulated osmotic pressure vs. solution concentration solution
with modified potential parameters (blue) compared to experimental data
(black).

Va(o',6') = Va(0,¢) (12)

where X is the fractional increase in the repulsive potential.
This gives:

d=v(1+X)o (13)

™

g = (14)

A 20 percent increase in repulsive potential between Na* and
Cl™ ions above the standard OPLS value for their Lennard-Jones
interactions gives osmotic pressure results that closely match
the experimental data, as shown in Fig. 6. The corresponding
increase in repulsive radius ¢ is very modest (3 percent). Note
that we only adjusted the interactions between Na' and CI~,
overriding the default mixing rule that determines all cross-
interactions from the L] parameters for each species. We have
not changed the ion-water interactions in any way. As a result,
in our simulations both species of ions have hydration shells of
reasonable size, before and after the adjustment.

N

/
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Concentration (M)

Osmotic pressure (MPa)
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[

Fig. 7 Simulation results for osmotic pressure vs. concentration for
sodium acetate (orange) compared to experimental data (black).
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As a second example, a particularly important ionic group
for biomolecules is the carboxylic acid anion, COO™. To study
the potential for this ion, we investigate sodium acetate,
Na'CH,;COO™. If we correctly capture the osmotic pressure of
this salt, we may be confident that we properly model the
carboxylic acid groups in charged polymers and biomolecules.

Fig. 7 presents osmotic pressure results for sodium acetate
compared to experimental data, using the same system size, ion
count, and spring constant as the large NaCl simulations. In
this case, the unmodified OPLS force field for these ions, without
any adjustments, produced results close enough to experiment to
be usable in simulation even at high concentrations.

3 Conclusions

In this paper, we presented a new method to simulate the
osmotic pressure of ionic solutions. The method works by
placing the ions in a harmonic potential, which induces a
nonuniform concentration profile. By analyzing the equili-
brium balance of osmotic and external forces, we can measure
the osmotic pressure across a wide concentration range.

The method exploits the ability to impose external potentials
available in leading simulation platforms such as GROMACS,
and so requires no specialized coding.

Previous simulation approaches effectively confine ions
between walls, and measure the force on the walls. This works,
but provides only one value of osmotic pressure at one ion
concentration. To measure one point accurately by such
method takes about as much computer time as our method
takes to obtain the entire osmotic pressure curve from 20 mM
to 2 M. To generate such a curve with previous confinement
methods would require 10-20 simulations, and thus take
10-20 times as long.

Additionally, for previous confinement simulations, it is
problematic to determine the appropriate concentration of
the confined solution. Boundary effects of the confining wall
lead to strong local perturbations of the concentration near the
wall. In contrast, harmonic confinement eliminates boundaries
from the system, ensuring that there is no wall effect on the ion
distribution.

One important application of reliable and convenient simu-
lations of the osmotic equation of state is in validating simula-
tion potentials for ionic solutions. Simulations of aqueous ions
are important for biomolecules, colloidal particles, and electro-
chemical interfaces. In all these instances, charged surfaces
may attract counterions, leading to local concentrations well in
excess of average solution concentrations, possibly as high as
several molar in a thin nanoscale layer. If the simulation
potential is not accurate for such concentrated ions, ions will
cluster too much or too little onto charged surfaces, leading to
qualitatively incorrect results and predictions.
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