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c© EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature,
2019

Abstract. In this paper, we apply the cooperative free volume (CFV) rate model for pressure-dependent
dynamics of glass-forming liquids and polymer melts. We analyze segmental relaxation times, τ , as a func-
tion of temperature (T ) and free volume (Vfree), and make substantive comparisons with the density scaling
approach. Vfree, the difference between the total volume (V ) and the volume at close-packing, is predicted
independently of the dynamics for any temperature and pressure using the locally correlated lattice (LCL)
equation-of-state (EOS) analysis of characteristic thermodynamic data. We discuss the underlying physical
motivation in the CFV and density scaling models, and show that their key, respective, material parame-
ters are connected, where the CFV b parameter and the density scaling γ parameter each characterize the
relative sensitivity of dynamics to changes in T , vs. changes in V . We find γ ≈ 1/[b(Vfree/V )@Tg ], where
(Vfree/V )@Tg is the value predicted by the LCL EOS at the ambient Tg. In comparing the predictive power
of the two models we highlight the CFV advantage in yielding a universal linear collapse of relaxation data
using a minimal set of parameters, compared to the same parameter space yielding a changing functional
form in the density scaling approach. Further, we demonstrate that in the low data limit, where there is not
enough data to characterize the density scaling model, the CFV model may still be successfully applied,
and we even use it to predict the correct γ parameter.

1 Introduction

In this article, we focus on modeling α-relaxation times (τ)
obtained via broadband dielectric spectroscopy (BDS) us-
ing the cooperative free volume (CFV) rate model [1–3].
In addition, we draw comparisons with the “density scal-
ing approach” [4–12], another model well known for appli-
cation to BDS data. CFV and density scaling each offer
physical explanations for interpreting and understanding
dynamics, and in this work we compare and discuss their
underlying physical frameworks, relate their key parame-
ters, and show how they are connected.

CFV and density scaling are models for “pressure-
dependent dynamics” [4,5], meaning that they describe
τ(T, V ), and thus account for the independent contribu-
tions from both temperature (T ) and volume (V ). This
allows a more detailed understanding of the underlying
physics than could be obtained by only characterizing the
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T -dependence under ambient pressure, where T and V are
both changing. In the density scaling approach, dynamics
are a function of the combined variable, TV γ , where γ
is a material specific parameter. An explanation for this
form (see sect. 2) is that the dynamics are being dictated
by each system’s characteristic short-ranged intermolecu-
lar repulsions. In CFV, intermolecular repulsions are also
important but they are addressed in a different way.

The CFV model approaches dynamics in terms of
an activated, volume-dependent, rate mechanism. Short-
range repulsions that are “thermally accessible” must be
overcome by thermal activation. Otherwise these repul-
sions contribute to the system’s limiting closely packed
hard-core volume which, when subtracted from the to-
tal volume, allows quantification of the remaining “free
space” (Vfree). The available free volume determines the
local need for cooperativity (i.e., how many segments must
be involved), which directly determines the total activa-
tion energy required for segments to rearrange.

Here it is critical to note explicitly that, while the
CFV model quantifies free volume and illustrates its role
as a natural variable in analyzing dynamics data, it also
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leads to a functional form that has explicit T -dependence.
The latter is essential in order to understand dynamic re-
laxation. In contrast, historical free volume models based
on the Doolittle equation [13–16], assume that dynamics
depends on free volume alone. This assumption is clearly
wrong (at least for any meaningful definition of free vol-
ume), as shown by P -dependent dynamics experiments
and comparisons with corresponding volumetric data [4,
5,17,18]. In addition to applying the CFV model to the
P -dependent dynamics of bulk material, we have recently
used it to predict the temperature and thickness depen-
dence of dynamic relaxation in polymer thin films [1,19],
which highlights the importance of accounting for density
changes in the dynamics of confinement.

In the remainder of this paper, background on the den-
sity scaling approach will be covered in sect. 2, and in
sect. 3 we turn to the CFV model. Modeling results for a
variety of polymer and small molecule glass-forming liq-
uids will be presented in sect. 4, where we will also dis-
cuss connections between the CFV and density scaling ap-
proaches, including comparisons of their predictive power.
A summary is given in sect. 5.

2 The density scaling approach

In its most basic interpretation, the density scaling ap-
proach can be described as the expectation that general
P -dependent dynamics data can be expressed (collapsed)
such that relaxation times are given by τ = F (TV γ),
where τ is a function of the single combined variable, TV γ ,
where γ is a material specific parameter, and where F is
some function of unspecified form. Examples of collapsed
plots of τ vs. TV γ are common in the literature, e.g., see
figs. 16 and 17 in the review by Roland et al. [4], and one
illustrative example is also given here for polyvinyl acetate
(PVAc) showing log τ vs. 1/(TV γ) in fig. 1 further below.
Clearly this expectation about the scaling behavior of the
dynamics is satisfied by a very large number of systems, so
it is important to have physical explanations that address
this behavior at the molecular level.

The power law form of density scaling can be ap-
preciated by considering the simple, purely repulsive, in-
verse power law (IPL) fluid. An IPL has a pair potential,
u(r) ∝ 1/rn, leading to a simple form for the excess parti-
tion function, which depends (in scaled coordinates) only
on the single variable TV n/3. This leads to dynamic prop-
erties that are also a function of TV n/3 [20,21], where we
now identify n/3 = γ.

The “isomorph theory” of Dyre and coworkers [8,9] has
done much to explain why many real systems, which are
of course not simple IPL’s, can also satisfy density scaling.
When a real system satisfies density scaling, it is a conse-
quence of that system having strong pressure-energy cor-
relations. Importantly, the IPL fluid has exact pressure-
energy correlations, where, instantaneous fluctuations in
the virial, ΔW , and in the corresponding potential energy,
ΔU , relate exactly as ΔW = (n/3)ΔU = γΔU . In more
realistic systems, the instantaneous pressure-energy cor-
relations are not exact, but, they are often still “strong”,

and thus, ΔW ≈ γΔU , and this is a metric defining the
“simple Roskilde system” [8].

The framework offers ways to understand dynamics, by
making connections with the underlying thermodynamic
properties. The simulation works of Pedersen et al. [22,
23] and Coslovich and Roland [24–26] have shown that the
averaged pressure-energy correlations for Lennard-Jones–
type systems can be mapped to a corresponding, simpler,
IPL fluid, specifically, the one that has the same pressure-
energy correlations. Here γ is thus identified as the average
(statistical) slope of W vs. U , i.e. γ ≈ 〈ΔWΔU〉/〈(ΔU)2〉,
which is based on thermodynamics, and this γ value suc-
cessfully collapses the (T, V )-dependent dynamics data.

In addition to this background relating the approach
to simulated model fluids, density scaling with the γ pa-
rameter has been widely applied in the analysis of P -
dependent dynamics data for real experimental systems
(e.g., studied by BDS). Here, due to the lack of detailed
thermodynamic information of the sort described above,
the value for γ must typically be determined by fitting
experimental dynamics data. Real experimental systems
have commonly been modeled using the analytic τ(T, V )
expression developed in Casalini et al. [11,12] where the
T , V density scaling form was derived using the Avramov
entropy model [27], and this is given by

ln τ =
(

A

TV γ

)φ

+ ln τ0 (1)

Equation (1) includes the γ parameter, along with three
other material specific parameters, φ, A, and τ0. In
Casalini and Roland [12] there are examples showing (lin-
earized) log τ vs. (1/TV γ)φ plots, along with tabulations
of the fitted parameters for a number of polymer and small
molecule systems.

Finally, we note that in density scaling the dynam-
ics properties should be written/analyzed in reduced vari-
ables [8–10,20,21,24]. For simplicity, this analytic cor-
rection can often be neglected, as it is here in analyz-
ing the experimental BDS results, because in this regime
the strong activation energies will dominate. However, us-
ing reduced variables does become important in the high
T regime, otherwise the data will not collapse. In fact,
the reduced variable analysis in density scaling is related
to the way in which the CFV rate model treats its pre-
exponential factor in order to capture properly the effects
of temperature in that regime.

3 The cooperative free volume rate model

As in density scaling, the CFV rate model [1–3] describes
segmental relaxation times as a function of temperature
and volume, τ(T, V ). A key ingredient in CFV is the sys-
tem’s thermodynamically characterized free volume. Vfree

is defined as the difference between a system’s overall vol-
ume, V , and its limiting, closely packed, hard-core value,
Vhc:

Vfree = V − Vhc; (2)
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Vhc is a constant for each system, independent of both T
and P , and quantifies the system’s minimum possible vol-
ume. It arises from the strong intermolecular repulsions
(the lingering molecular hard cores) that cannot be “rea-
sonably overcome” by thermal activation, and is deter-
mined via analysis of experimental PVT data using the
locally correlated lattice (LCL) model equation of state
(EOS) [17,28]; some details related to this are provided in
the appendix.

The physical basis of the CFV rate model involves a
cooperative process in which the total activation free en-
ergy for segmental relaxation, ΔAact, changes with the
number, n∗, of cooperating particles (segments); an anal-
ogy can be drawn to the well-known treatment of Adam
and Gibbs [29], a model based on entropic considerations.

In CFV the system is characterized by an average free
volume per particle, Vfree/N . For a segment to break out
of the cage of its surrounding neighbors and move, a char-
acteristic amount of free space (v∗) is needed. The to-
tal number of nearby segments required to cooperate and
open up this space is n∗ = v∗/(Vfree/N). Each cooperat-
ing segment pays an energetic cost, Δa, associated with
overcoming thermally accessible repulsions, as well as at-
tractions. This adds up to give the overall total activation
energy, ΔAact = n∗Δa. The CFV machinery explains the
volume dependence of the activation energy, and why sys-
tems follow a 1/Vfree form in their volume dependence.

The rate (∝ 1/τ) that a segment enters a new opening
is proportional to the rate it traverses a distance on the
order of its own size (∝ velocity ∝ T 1/2), multiplied by
the probability that a free space is available, given by the
Boltzmann factor, exp[−ΔAact/T ]. The general result is

1/τ = rate =[constant] × T 1/2 × exp
[
−n∗ ×

(
Δa(T )

T

)]

= [constant] × T 1/2 × exp
[
−

(
1

Vfree

)
× f(T )

]
. (3)

The activation free energy per cooperating segment,
Δa(T ), is some unknown function of temperature, but
not of volume. In fact, in our simulation results, which
cover a very wide range of the high T regime, a constant
value of Δa is sufficient in eq. (3). Given an a priori PVT
analysis for Vhc, one can then express all the system’s
high T regime τ(T, V ) dynamics behavior, including non-
Arrhenius behavior, with just two constant parameters,
Δa and the limiting τ . The fact that constant Δa works
at high T provides an especially clear demonstration of
how the total ΔAact depends on volume.

A key point to highlight is the importance of the gas
kinetic T 1/2 in the high-T regime, e.g. a regime commonly
accessed in simulation studies. As noted above, in density
scaling, using a reduced τ appropriately brings in the T 1/2

term. However, outside of the simulation works in the den-
sity scaling community, the gas kinetic correction has often
been neglected in the analysis of simulation data [2,3], and
the result may be activation energies that are incorrect.
These details are not a problem at lower T in glassy sys-
tems, where activation energies become high enough that
the gas kinetic term can be dropped for simplicity.

For the latter scenario, eq. (3) leads to the following
working form of the CFV equation, which is applicable for
BDS studies on experimental liquids:

ln τ =
(

Vhc

Vfree

) (
T ∗

T

)b

+ ln τref , (4)

where b, T ∗, τref , are material specific parameters. Here
we use the relative free volume, Vfree/Vhc, (e.g., rather
than Vfree/N) because it is convenient. The form of the T -
dependence, Δa(T )/T = f(T ) ∼ 1/T b, is empirical, but
it has been found to work very well. We apply eq. (4) to
a variety of experimental systems below. It turns out that
there is a strong connection between the b parameter and
the γ parameter. Indeed, they are analytically related, as
discussed further below.
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Fig. 1. (T, P )-dependent α-relaxation times (τ) for PVAc.
Main panel: log τ vs. inverse relative free volume (Vhc/Vfree),
plotted as isotherms. Symbols mark each experimental relax-
ation time at the corresponding Vhc/Vfree value, calculated in-
dependently via LCL EOS analysis of the PVT data. Refer-
ences for experimental data are available in table 1. Isotherms
range from T = 323 to 413 K in increments of 10K (lines are
the corresponding linear fits); pressure values range from 1 atm
up to as high as 400 MPa. Upper panels: collapsed plots of the
same (T, P )-dependent data. Density scaling, upper left: log τ
vs. 1/TV γ where γ = 2.55 (T in K, V in mL/g). CFV model,
upper right: log τ vs. (Vhc/Vfree)/T b where b = 3.90 (T in K).
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Fig. 2. (T, P )-dependent α-relaxation times (τ) plotted as log τ vs. Vhc/Vfree isotherms, for polymer and small molecule liquids:
PVME, PMTS, PMPS, PPMA, BMPC, BMMPC, BMP-BOB, and PDE. Acronyms and references for experimental data are
available in table 1. Symbols mark each experimental relaxation time at the corresponding Vhc/Vfree value, the latter calculated
independently via LCL EOS analysis of the PVT data, and lines are the corresponding linear fits.

4 Results and discussion

The CFV rate model eq. (3) predicts that log τ vs. 1/Vfree

will exhibit a linear relationship on isotherms, and that
the isotherm slopes (∝ Δa(T )/T ) will increase with de-
creasing T . Figures 1 and 2 clearly demonstrate that this
is indeed the case for a variety of experimental systems
ranging from small molecule glass-forming liquids to poly-
mer melts (references in table 1). Here the experimental
relaxation times (log τ) have been plotted as isotherms
against the corresponding inverse relative free volume val-
ues (Vhc/Vfree) that were determined, independently, from
an a priori analysis of each system’s PVT data using the
LCL EOS. For all these systems the isotherms are linear,
and the slopes increase with decreasing T .

Results using this analysis also serve to emphasize that
a single Vfree value will not correspond to a single τ value,
and that accounting for temperature is essential. In con-
trast, the Doolittle equation [13] assumes that dynamics
are a function of free volume alone.

The general log τ ∼ (1/Vfree) × Δa(T )/T form of the
CFV model appropriately predicts that the lower the
temperature, the more strongly the system will react to
(free) volume changes, and similarly, the lower the vol-
ume, the more strongly the system will react to tempera-
ture changes. This T -V coupling in real system dynamics
is thus explained by CFV as being a mechanistic con-
sequence of density-based cooperativity, where changing
inverse free volume acts multiplicatively, to scale up the
activation energy inside the Boltzmann factor (eq. (3)).
We have recently used these arguments to explain why, in

confined systems, the sensitivity to confinement increases
upon lowering of T [19], as changing degree of confinement
relates to changing average density.

Next we show the application of CFV eq. (4). The cor-
rect, material-dependent, value of b will collapse all T, V
data in a plot of log τ vs. 1/(T bVfree); in a sense this is
analogous to how the correct density-scaling γ value will
collapse a plot of log τ vs. 1/TV γ . However, while log τ
vs. 1/TV γ collapses data into a single curve, log τ vs.
1/(T bVfree) yields a single line. The upper panels of fig. 1
demonstrate this comparison for PVAc.

The collapsed curve for the case of density scaling cor-
responds to γ = 2.55. For CFV, a linear collapse is ob-
tained where b = 3.90. (Here both γ and b were determined
by simple trial and error adjustment.) Because the CFV
collapse forms a single line, the remaining parameters, T ∗

and τref , then follow immediately from the slope (0.4343
T ∗b) and intercept (log τref) of the log τ vs. Vhc/(T bVfree)
plot, and this completely characterizes the model for the
given system. Figure 3 shows the collapsed linear plots of
log τ vs. (Vhc/Vfree)(T ∗/T )b for each system, along with
the corresponding system-specific b value.

Table 1 summarizes the system CFV and LCL EOS
parameters, along with the corresponding γ parameters
from density scaling, and system information and refer-
ences to the experimental dynamics and PVT data.

Next, we compare the key material specific parameters
from density scaling and CFV. As described in sects. 2
and 3, γ is the key parameter for density scaling, and
b is key in CFV. Some important identities for each are
covered in the following.
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Fig. 3. (T, P )-dependent relaxation times plotted according to CFV eq. (4), log τ vs. (Vhc/Vfree)(T
∗/T )b, where each system’s

material specific b value collapses the data, leading to full model characterization. (Lines demonstrate the model fit.) Systems
include polymer and small molecule liquids: PVAc, PVME, PMTS, PMPS, PPMA, OTP, BMPC, BMMPC, BMP-BOB, and
PDE. Acronyms and references for experimental data are available in table 1. Note OTP did not appear in fig. 2 because the
P -dependent data was not given in the form of isotherms, though the resulting collapsed data is demonstrated here.

In density scaling, given that τ is a function of the
single combined variable, TV γ , one can write for any
two states that have the same τ value (isochronic states),
(T2/T1) = (V1/V2)γ , and, when T1, T2, V1, V2 are known,
then it is possible to solve for the system’s γ value. It is
relevant to note that this can also provide a possible route
for obtaining γ when actual dynamics data are not avail-
able, for example, when the glass transition temperatures,
Tg, are known at two different pressures from PVT data
(assuming these to be isochronic points). This isochronic
relationship can be equivalently written for γ as

γ = −
(

∂ ln T

∂ ln V

)
τ

. (5)

Analogously, in CFV, inspection of eq. (4) shows that τ is
expected to be a function of the single combined variable,
T bVfree, and one can write (T2/T1)b = (Vfree,1/Vfree,2) for
any two isochronic points. Just as for γ, this yields a so-
lution for b from PVT -based Tg values (e.g., for P4ClS
in ref. [1]); the analogous derivative relationship for b is
given by

b = −
(

∂ ln Vfree

∂ ln T

)
τ

. (6)

Equations (5) and (6) illustrate that γ and b both serve
as a metric, characterizing a system’s relative sensitivity
to changes in temperature compared to changes in volume.
These metrics are important in P -dependent dynamics in-
vestigations for comparing different material systems. An-
other commonly used characteristic quantity is the value
of EV /EP , the ratio of activation energies, d ln τ/d(1/T ),
at constant V , and at constant P . Equation (5) shows
that a high γ value indicates a strong sensitivity to vol-
ume, i.e. upon a change in lnV , a relatively large change

in lnT would be required to balance it out to keep τ the
same. According to eq. (6), a strong sensitivity to volume,
based in terms of “free volume”, would correspond to a
low value of b.

Given the above, it is sensible to expect that when
we compare systems modeled by both density scaling and
CFV, that there should be a correlation where systems
with high γ will have low b values, and visa-versa, and
indeed this is true. This comparison, for 11 small molecule
and polymer systems, is presented in the upper panel of
fig. 4. The γ values are from independent analyses and no
connection to CFV has been assumed; most values were
taken directly from the literature. There is some scatter in
the correlation, but as expected, an approximate inverse
relationship between γ and b is fairly apparent.

In fact, an exact relationship between γ and b can be
derived. The expression for γ (eq. (5)) can be rewritten in
terms of a change in ln Vfree and this gives

γ = −
(

∂ ln T

∂ ln V

)
τ

= −
(

∂ ln T

∂ lnVfree

)
τ

d ln Vfree

d lnV

= −
(

∂ ln T

∂ ln Vfree

)
τ

V

Vfree
. (7)

In eq. (7), d lnVfree/d lnV = V/Vfree follows from the sim-
ple definition, Vfree = V −Vhc (eq. (2)), where dVfree/dV =
1. Substituting eq. (6) into eq. (7) we obtain the relation-
ship between γ and b:

γ =
1

b(Vfree/V )
≈ 1

b(Vfree/V )@Tg

. (8)

Equation (8) shows that the relationship between γ
and b technically carries a density dependence due to the
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Fig. 4. Relationship between the γ parameter and the CFV
b parameter for polymers and small molecule liquids. Upper
panel: scatter plot of system γ values vs. system b values. Lower
panel: γ vs. b(Vfree/V )@Tg (with smooth fit hyperbola). Lower
panel inset: γ vs. 1/(b(Vfree/V )@Tg ) (with corresponding linear
fit). System acronyms are marked in the figure. Acronyms def-
initions and references for γ values and experimental data are
available in table 1.

presence of the multiplicative factor, Vfree/V , the frac-
tional free volume. However, we can still accurately con-
vert between the two parameters. Over the “operating
range” of the P -dependent analysis, Vfree/V may vary by
about a factor of two, so in what follows we choose a single
Vfree/V value that is representative of the average Vfree/V
of this range. It is sensible to expect that this should work
because we know that a constant b and a constant γ each
work well describing data within their respective model
frameworks. The Vfree/V value at the ambient Tg is a good
single choice. This is because, being at a low T , but also,
low P , gives it an intermediate density, putting it roughly
in the middle of the range of the Vfree/V values over a
typical P -dependent data set.

We denote the Vfree/V value at the system ambient Tg

as (Vfree/V )@Tg , and this gives the operating relationship
connecting each system’s γ and b, γ ≈ 1/[b(Vfree/V )@Tg ],
which is the right-hand form in eq. (8). The lower panel
of fig. 4 shows this is a very accurate description; all sys-

tems fall neatly onto the γ vs. b(Vfree/V )@Tg hyperbola.
(A corresponding linearized plot of γ vs. 1/[b(Vfree/V )@Tg ]
is shown in the inset.)

Being able to obtain b from a density scaling analy-
sis, or, γ from a CFV analysis, is a powerful new con-
nection, leading to more insight, and allowing conver-
sion between literature results. For example, Casalini and
Roland [30] presented and tested an approximate relation-
ship for obtaining the γ parameter from ambient data
only, γ = V ΔαP /(ΔcP κT − TV αP ΔαP ). This requires
knowing the liquid’s coefficients of thermal expansion (αP )
and compressibility (κT ), and some information on the
glass, including the differences (liquid relative to glass)
in heat capacity (ΔcP ), and in coefficient of thermal ex-
pansion (ΔαP ). The relationship assumes that, at Tg, τ
is a constant, i.e. the glass transition point is defined
as a kinetic event, and, that the Erhenfest equation for
entropy continuity holds at this point. Though the lat-
ter is an expectation that cannot be guaranteed, tests in
ref. [30] do show good performance in predicting γ for
a number of systems. (The Erhenfest equation based on
entropy continuity has been verified to hold for many sys-
tems (though not always), while the equation based on
volume continuity often does not hold [30–32].) Given the
new relationship provided by eq. (8), this route can now
be applied to obtain the CFV b parameter as well, i.e.
b ≈ (ΔcP κT − TV αP ΔαP )/(V ΔαP (Vfree/V )@Tg).

Next we compare the density scaling and CFV models
in terms of predictive power, an indication of how well a
model anticipates the behaviour reflecting the underlying
physics. In order to fit the dynamics data, the density
scaling equation (eq. (1)) requires the specification of
four parameters (γ, φ,A, τ0). By comparison the CFV
equation (eq. (4)) only requires the specification of three
parameters (b, T ∗, τref). This is because CFV brings
thermodynamic information through the prediction of Vhc

(thus all Vfree values) via the a priori analysis of PVT
data. (Note PVT data are required by both models,
being needed to express V (T, P ), which means that the
separate thermodynamic characterization for Vhc and
Vfree represents no added data burden.)

In density scaling one starts the parameterization not
knowing the form of either the volume or temperature
dependence, since values for the scaling exponents γ and
φ are unknown. In CFV, we start by not knowing the
T -dependence (b), however, the form of the volume con-
tribution has been specified: all systems follow the 1/Vfree

form. Vfree can be determined without information on dy-
namics, and this is a key advantage of the approach.

To demonstrate, we show the application of the CFV
model in two cases where the application of density scal-
ing is not possible. These examples, shown in fig. 5, make
use of the pressure-dependent dynamics data for PVAc,
plotted as log τ vs. 1/T isobars. Density scaling requires
four data points in order to fit its four parameters, and
here, fewer than four points are allowed for model fitting.
While a difference in the availability of just one data
point may not be important in many scenarios, when
comparing models in the hypothetical low data limit,
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Fig. 5. (T, P )-dependent α-relaxation times (τ) for PVAc,
plotted in the form of log τ vs. 1/T isobars. Plots show the re-
sults of fitting the CFV model to only the data at the marked
points (large hollow symbols); the model curves are predictions
to be compared with the remaining experimental data (smaller
blue points). Using only the marked data points, alone, den-
sity scaling cannot be applied. Upper panel: CFV model fit to
only three data points, giving fitted b, T ∗, log τref values of 3.58,
427 K, −10.3, respectively. Lower panel: CFV model fit to only
two data points that are both restricted to ambient pressure,
along with a PVT -based Tg value at P > 1 atm (here, 50 MPa),
giving fitted b, T ∗, log τref values of 3.67, 421 K, −10.1, respec-
tively. Experimental references are available in table 1.

a difference of one data point is indeed very significant
from a physical standpoint.

The upper panel of fig. 5 shows the result of fitting
the CFV model (b, T ∗, τref in eq. (4)) to just three dy-
namics data points (marked by the large hollow symbols);
the resulting model predictions are shown as the set of
blue curves. The CFV predictions (curves) are in excellent
agreement with the remaining P -dependent data (smaller
blue points), which were unknown to the model before
the fit. As noted above, density scaling cannot be applied
here, and furthermore, it is not possible to determine even
just the γ parameter alone; this is because, even though
the three data points give information at varied pressure
values, none of the points are isochronal, so one cannot
apply the eq. (5) relationship. Furthermore, it is also im-
possible to uniquely identify γ by “collapsing” the data,

because, with three points, any γ value would give a con-
necting “curve”. By contrast, in CFV, b is chosen so that
the three points collapse and form a unique straight line.

Though there is not enough information to apply den-
sity scaling to obtain γ, the CFV model can in fact deliver
the γ value. The small amount of data was enough to de-
termine b (as well as T ∗ and τref), and so γ can be obtained
from γ ≈ 1/[b× (Vfree/V )@Tg ]. Specifically, the 3-point fit
in fig. 5 gives b = 3.583, and the (Vfree/V )@Tg value calcu-
lated via the LCL EOS is 0.104. This gives (using eq. (8))
a CFV prediction of γ = 2.68, which is in excellent agree-
ment with the PVAc γ value of 2.6 from Roland et al. [4,
33] and 2.55 shown in the data collapse of fig. 1.

The lower panel of fig. 5 shows another situation in
which the data are sparse. In this case the CFV model
is characterized by fitting only two {τ, T} BDS dynamics
data points at ambient pressure (which means there is no
information on data curvature), and the only pressure-
related information given for fitting is from PVT data,
where we used the PVT -based ambient Tg, coupled with
a single Tg value at elevated pressure. All the remaining
curves in fig. 5 are the CFV predictions for P > 1 atm,
and the agreement with experimental data (blue symbols)
is clearly excellent.

In this latter example, we utilized the PVT -based Tg

information at elevated pressure to first obtain the CFV b
parameter, and this same information can also be used
to obtain the γ parameter. As described above, a pri-
ori estimates for both γ and b can be obtained from
the isochronic relationships of (T2/T1) = (V1/V2)γ and
(T2/T1)b = (Vfree,1/Vfree,2), respectively. Inputting the T ,
V values and T , Vfree values for the PVAc Tg point “1” at
ambient P , and its Tg point “2” at P = 50MPa (details in
ref. [1]), we obtain an estimate of γ = 2.87 and b = 3.67.

The CFV parameterization of eq. (4) in the lower panel
of fig. 5 was successful because, with the b value known,
only two parameters remain (T ∗ and τref), and so the two
given ambient pressure dynamics data points are sufficient
to fit them, thereby fully characterizing the model and
allowing the predictions to be generated. This is not the
case for density scaling because, even though we were able
to obtain the γ value, three parameters in eq. (1) still
remain unspecified and the two data points available for
fitting are not enough to fully parameterize the model.
(Perhaps somewhat ironically, the VFT equation, just for
the ambient dynamics, also cannot be fit with only those
two ambient points.)

Application of the CFV model is thus possible in cases
where limitations of data preclude using density scaling.
However, even the CFV approach is stymied if only am-
bient data are available - both relaxation times and glass
transition temperature. A 3-parameter CFV fit of b, (along
with T ∗, and τref) to ambient dynamics data, alone, is
likely to fit the curvature reflecting ambient response too
closely. On the other hand, there is still some information
that can be extracted using the basic eq. (3) framework
of CFV, e.g. to make some rough approximate predictions
(e.g., set bounds) for a system’s pressure-dependent dy-
namics. We will address this topic in future work.
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Table 1. System dynamics parameters (b, T ∗, and τref are system-dependent parameters for the CFV model; most were ob-
tained by simultaneous 3-parameter fitting of the τ(T, P ) data to eq. (4); as noted, first collapsing data for b, followed by a
linear fit for T ∗ and τref gives similar results. γ is a system-dependent parameter for the density scaling approach. Most of
the γ values come from table 2 of Roland et al. review [4]. For the remaining values: γ for BMB-BOB is from ref. [34]; γ
for PPMA was obtained in this work by collapsing the log τ vs. 1/TV γ data, and also for OTP (because γ = 4.35 gives a
somewhat better collapse of the dielectric data [35] than the commonly reported γ = 4.00); the γ for P4ClS is via PVT -based
Tg(P ) [1,36] and eq. (38) of ref. [4]), EOS parameters (the LCL equation-of-state molecular parameters are: r, the number
of segments (occupied lattice sites) per molecule, v, the volume per lattice site, and ε, the segment-segment nonbonded in-
teraction energy. Mw is molecular weight. The hard-core volume, Vhc, per molecule, is obtained from the product, rv, and
Vfree is thus defined as V − Vhc. See the appendix for more information on LCL EOS implementation) and experimental ref-
erences. System acronyms and info: PVAc: polyvinylacetate, PVME: polyvinylmethylether, PMPS: poly methylphenylsiloxane,
PMTS: poly methyltolylsiloxane, PPMA: polypropylmethacrylate, OTP: orthoterphenyl, PDE: phenolphthalein-dimethyl-ether
BMPS: (1,1’-bis(p-methoxyphenyl)cyclohexane, BMMPC: 1,1’-di(4-methoxy-5-methylphenyl)cyclohexane, BMP-BOB: (1-butyl-
1-methylpyrrolidinium bis[oxalate]borate). Typically for most systems, the dynamics data points shown in the figures cover
pressure ranges from P = 1atm (0.1 MPa) to roughly around 200MPa, and in some cases up to 400 or 500 MPa. Temperature
values varied with system and are available in the experimental references. PVAc has been used as an example system to test
different parameterization routes and data availability scenarios, so there are several slightly different parameters sets. The set
listed in this table (b ≈ 3.9), is from fitting to a very large P -dependent dynamics data set including pressures all the way up to
400 MPa. The fits of b discussed in the examples at fig. 5 were centered around somewhat lower pressures (e.g., 0 to 200 MPa)
and so b was closer to ≈ 3.6 to 3.7. All these values are effectively close, and in general we observe that anywhere in this range
of b gives a very good data collapse in plots of ln τ vs. Vhc/(VfreeT

b). Only ambient pressure dynamics data were available for
P4ClS, so it was characterized using this data combined with information on Tg(P ) from PVT data. See ref. [1].

CFV Parameters LCL EOS Characterization References

System Tg γ b T ∗ log τref Vhc r/Mw v −ε τ(T, P ) PVT

(K) (K) (s) (mL/g) (mol/g) (mL/mol) (J/mol) data data

PVAc 305 2.6 3.90 421 −10.2 0.7583 0.1379 5.499 1805 [37,33] [36]

PVME 242 2.5 5.89 272 −8.28 0.8665 0.1306 6.635 1782 [38] [39]

PMPS 246 5.6 2.70 356 −16.4 0.8138 0.1147 7.095 1901 [40] [41]

PMTS 261 5.0 2.22 465 −16.5 0.7177 0.1078 6.658 1717 [42] [41]

PPMA 323 1.75 6.40 351 −6.25 0.8505 0.09904 8.587 1988 [43] [36]

P4ClS 391 3.0 2.93 634 −12.3 0.7401 0.09678 7.647 2187 [44] [36]

BMPC 241 7.0 1.77 536 −17.7 0.8179 0.2242 3.648 1677 [45] [46]

BMMPC 261 8.5 1.61 568 −15.4 0.8338 0.1961 4.252 1858 [47] [46]

PDE 295 4.75 2.15 548 −14.9 0.6587 0.1293 5.095 1906 [48] [49]

OTP 244 4.35 2.71 380 −14.7 0.8202 0.1410 5.817 1720 [35] [50]

BMPBOB 231 3.7 3.70 266 −10.6 0.7105 0.1655 4.293 1807 [51] [34]

5 Summary

In this paper we have compared the cooperative free vol-
ume (CFV) rate model and the density scaling approach.
Both models describe pressure-dependent segmental dy-
namics, τ(T, V ), and connect a system’s dynamics with its
underlying thermodynamic properties. At the same time,
they offer different perspectives for interpreting the be-
havior at the molecular level.

In density scaling, dynamics depend on the combined
variable, TV γ , where γ is the model’s key parameter. This
framework reflects how short-range intermolecular repul-
sions can dictate the dynamics by taking the behaviour of
a simple repulsive (IPL) fluid as the underlying physical
model, a system with key dynamic and thermodynamic
properties that only depend on TV γ .

In CFV, the dynamics of local segmental relaxation
proceeds via a thermally activated, density-dependent, co-
operative rate mechanism. The CFV model predicts the
general form of log τ ∼ (1/Vfree) × Δa(T )/T . In this

approach the repulsions that are “thermally accessible”
contribute to the activation energy, and they must be
overcome by thermal activation. Because repulsive inter-
actions are steep, those at smaller separations are con-
sidered “thermally inaccessible” and contribute to the
limiting close-packed volume, Vhc. The temperature- and
pressure-independent hard-core volume is used to define
Vfree = V − Vhc. The segmental relaxation process thus
requires a degree of cooperativity (∝ 1/Vfree), which ul-
timately controls the volume dependence of the overall
activation energy.

From the density scaling and the IPL fluid perspective,
temperature and volume can be viewed as a single (com-
bined) control parameter. In CFV, T and V are viewed
as separate, in the sense that T controls the domain of
thermal activation, and V determines spatial/structural
limitations that then affect the mechanism.

A key result of this work is the analytical relation-
ship that relates the models and connects the γ parame-
ter to the CFV b parameter: γ ≈ 1/[b(Vfree/V )@Tg ], where
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(Vfree/V )@Tg is the fractional free volume predicted at the
ambient Tg. γ and b are key to each model because they
describe the relative sensitivity of a system’s dynamics to
changes in T vs. changes in V . This formula proves accu-
rate over all the systems we have characterized. The fact
that CFV and density scaling both work well is the reason
why such a clear connection can be made.

Having connected the two models, we have also com-
pared and discussed their relative predictive power: In or-
der to characterize experimental systems, the CFV equa-
tion, ln τ = (Vhc/Vfree)(T ∗/T )b + ln τref , fits only three
parameters to the dynamics data, while the density scal-
ing equation, ln τ = [A/(TV γ)]φ + ln τ0, must fit four. In
density scaling, neither the form of the T -dependence, or
the V -dependence, is known before characterizing the data
(unknown φ and γ). For CFV, the T -dependence is also
not known beforehand (unknown b), however, the form
of the V -dependence is known, because all systems fol-
low 1/Vfree, and importantly, Vhc and the Vfree values are
determined via the LCL EOS beforehand, from the ther-
modynamics, without the need for dynamics data. This
leads to a CFV model advantage, as it remains applica-
ble in scenarios that push the boundaries of the low data
limit. In cases where there are not enough experimental
data available to characterize the density scaling model,
the CFV model can still be applied, and furthermore, this
means it can also predict the γ parameter when it would
have otherwise been unobtainable.

In this paper we have quantitatively connected the
widely used density scaling approach for analyzing exper-
imental segmental dynamics with our Cooperative Free
Volume (CFV) model approach. While both routes pro-
vide physical insight to the relaxation process, the CFV
model leverages analysis of thermodynamic data, which
means that a minimal amount of experimental dynamics
data are needed in order to achieve not only full charac-
terization, but also significant predictive power.
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Appendix A. Details on applying LCL
equation of state

In the following we describe the locally correlated lattice
(LCL) theory equation of state (EOS) which we use to an-
alyze pressure-volume-temperature data and then predict

a system’s Vfree values. The LCL EOS for a compressible
one-component system is given by

P

kBT
=

(
1
v

)
ln

[
V

V − Nmrv

]

+
(

3
v

)
ln

[
V − (Nmv/3)(r − 1)

V

]

−
(

3
v

) (
(2r + 1)2

(V/Nmv) − (1/3)(r − 1)

)

×
(

exp[−ε/kBT ] − 1
(1/3)(2r + 1) exp[−ε/kBT ] + (V/Nmv) − r

)
;

(A.1)

Nm is the number of molecules and kB is the Boltzmann
constant. The molecular parameters are r, the number
of segments (occupied lattice sites) per molecule, v, the
volume per lattice site, and ε, the segment-segment non-
bonded interaction energy. We determine the LCL charac-
terization parameters (r, v, ε) by fitting the EOS to PVT
data and from this we can thus calculate Vfree = V −Vhc =
V −Nmrv. The product of the molecular parameters, rv,
describes the volume occupied per molecule at close pack-
ing, so Vhc = Nmrv. In practice, it is convenient to report
Vhc per gram, and the free volume values as either relative
free volume, Vfree/Vhc, or fractional free volume, Vfree/V .
Note when we evaluate Vfree at any chosen T , P point,
we use the V (T, P ) value from the LCL EOS, i.e. solving
eq. (A.1) at that T , P . Using the actual experimental V
value (if available) would give essentially the same Vfree

value whenever the chosen T , P point is inside the PVT
data fitting range (because the theoretical and experimen-
tal V ’s are very close). When extending outside the fitting
range, however, is where we have found it better to stay
consistently within the theory, i.e. using the theoretical V
together with the theoretical Vhc = Nmrv, as any errors
will compensate/cancel.

We try to fit the EOS over a range of PVT data that
is close to the desired range of application to dynamics.
Of course, how well the data ranges can be matched, will
depend on data availability. The LCL parameters do shift
to a degree with the fitting range, but our testing shows
it will not strongly affect the analysis in most practi-
cal scenarios; it is important just to be consistent and
work with a single parameterization set and its corre-
sponding predicted properties throughout. For complete-
ness we give the average temperature, 〈Tfit〉, describing
the fitting range of the PVT data for each of the sys-
tems listed in table 1; the values did not appear there
to avoid crowding. 〈Tfit〉 = 369, 341, 338, 338, 378, 433,
328, 328, 346, 325, 326K respectively for PVAc, PVME,
PMPS, PMTS, PPMA, P4ClS, BMPC, BMMPC, PDE,
OTP, BMB-BOB.

We note that the LCL model parameters do corre-
spond to very typical molecular level quantities. For ex-
ample, a typical value for the segmental volume, v, is
8mL/mol, which matches well with the molecular scale,
corresponding to 13.3 cubic Angstroms and a segmen-
tal length of 2.37 Angstroms. rv, the hard-core molecu-
lar volume, a quantity relied on throughout this paper,
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is always on the order of, but somewhat less than, the
experimental total volume per molecule in a liquid, as
expected. The nonbonded energetic parameter, ε, is on
the order of a typical nonbonded intermolecular interac-
tion energy. Table 1 shows ε values that range around
−1700 to −2200 J/mol, which are on the same scale as
typical Lennard-Jones parameters, e.g. εLJ = 996 J/mol
for argon, 1230 J/mol for methane, etc. It can further be
verified for small molecules that the cohesive energy per
molecule at close packing, (1/2)(4r + 2)ε, will be close
to the corresponding experimental heat of vaporization.
Furthermore, PVT -fitted parameters are transferable for
predicting mixture properties, and in the case of small
molecules, for predicting liquid-vapor equilibria (see ex-
amples in ref. [28]).
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