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Link prediction is a paradigmatic problem in network science with a variety of applications. In latent space
network models this problem boils down to ranking pairs of nodes in the order of increasing latent distances
between them. The network model with hyperbolic latent spaces has a number of attractive properties suggesting
it must be a powerful tool to predict links, but the past work in this direction reported mixed results. Here we
perform a systematic investigation of the utility of latent hyperbolic geometry for link prediction in networks. We
first show that some measures of link prediction accuracy are extremely sensitive with respect to inaccuracies
in the inference of latent hyperbolic coordinates of nodes. This observation leads us to the development of a
hyperbolic network embedding method, the HYPERLINK embedder, which we show maximizes the accuracy of
such inference, compared to existing hyperbolic embedding methods. Applying this method to synthetic and real
networks, we then find that when it comes to predicting obvious missing links hyperbolic link prediction—for
short, HYPERLINK—is rarely the best but often competitive, compared to a multitude of other methods. However,
HYPERLINK appears to be at its best, maximizing its competitive power, when the task is to predict less obvious
missing links that are really hard to predict. These links include missing links in incomplete networks with large
fractions of missing links, missing links between nodes that do not have any common neighbors, and missing
links between dissimilar nodes at large latent distances. Overall these results suggest that the harder a specific
link prediction task the more seriously one should consider using hyperbolic geometry.
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I. INTRODUCTION

Link prediction is a paradigmatic example of forecasting
network dynamics [1–4], with diverse applications including
the reconstruction of networks based on partial data [5–7]
and prediction of future social ties [1,8,9], protein interactions
[10–12], and user ratings in recommender systems [13–16].

Latent space network models [17–21] offer an intuitive
and simple approach to link prediction. In these models, net-
work nodes are points in a latent space, while connections
are established with probabilities that decrease with latent
distances between nodes. Latent distances model similarity
between nodes, and the main idea behind these models is to
model homophily: more similar nodes are more likely to be
linked. Link prediction then reduces to ranking unconnected
node pairs in the order of increasing latent distances between
them: the closer the two unlinked nodes in the latent space,
the higher the probability of a missing link [4,22–24].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Among many latent space models considered in literature,
only the one that assumes that the latent space is hyper-
bolic reproduces sparsity, self-similarity, scale-free degree
distribution, strong clustering, the small-world property, and
community structure [20,25–27]. All these properties are of-
ten observed in many real networks [28–30], and hyperbolic
geometry captures them all. In addition, the hyperbolic net-
work model is likely to be the simplest or parsimonious with
respect to these properties, as in some of its limiting regimes
it has been proven to be statistically unbiased, satisfying the
maximum entropy principle [31,32].

Given the combination of these attractive properties, one
could naturally expect that the hyperbolic latent space model
must be a powerful tool in link prediction. Yet the previous
studies on this subject reported mixed results [24,33–37].

Here we perform systematic investigation of the efficiency
of link prediction using latent hyperbolic geometry. We orga-
nize the presentation of the results as follows.

In Sec. II we recall the definitions of the hyperbolic la-
tent space network model, which for short we call random
hyperbolic graphs (RHGs), and outline the basic idea behind
link prediction based on this model. We also recall the defini-
tions of the main measures of link prediction accuracy—AUC
(area under receiver-operating characteristic), AUPR (area un-
der precision-recall curve), and Precision—and discuss what
these measures actually measure: while AUPR cares mostly
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about most obvious easy-to-predict missing links, AUC puts
more weight on less obvious and harder-to-predict missing
links between more dissimilar nodes, albeit with the cost of
not caring that much about false positives.

Our main results are then given in Secs. III and IV. In
Sec. III, we calculate analytically the AUC and AUPR on
RHGs with known hyperbolic coordinates of all nodes. That
is, the same coordinates are used both to generate RHGs and
to predict missing links in them, an ideal situation yielding the
upper bound for the link prediction accuracy using hyperbolic
geometry. To understand the robustness of link prediction in
the case where coordinates are inferred (Sec. IV), so that they
are not equal exactly to the true coordinates, we add uniform
noise to the true coordinates, and analyze the AUC, AUPR,
and Precision as functions of the noise amplitude to find that
(1) AUC is not that sensitive to noise, but (2) AUPR and
Precision decrease quickly as noise grows. The latter result
implies that the AUPR and Precision scores of link prediction
using hyperbolic geometry in real networks can be high only if
node coordinates are inferred with sufficiently high accuracy.
This is because the most likely missing links candidates are
those between similar nodes at small hyperbolic distances,
which are most sensitive to coordinate inaccuracies.

To predict missing links in networks with unknown coor-
dinates one first needs to infer these coordinates. Motivated
by the results in Sec. III calling for high-accuracy coordinate
inference, and given that no existing hyperbolic coordinate
inference algorithm is sufficiently accurate, in Sec. IV we
develop an alternative one, which we call the HYPERLINK em-
bedder, the focus of which is on high precision in coordinate
inference. We present its overview in Sec. IV, while all the
details are delegated to Appendix F, where we also compare it
to some existing inference algorithms to show that its accuracy
is indeed higher. A software package implementing the HY-
PERLINK embedder is hosted by the Bitbucket repository [38].

We then apply the HYPERLINK embedder to a collection
of RHGs with “forgotten” coordinates, and to real networks,
calling the overall link prediction procedure the HYPERLINK

method, and comparing it to a representative collection of
other link prediction methods.

Section V contains both high-level (Tables I and II) and
more detailed summaries of all the results. The results are
definitely not that the HYPERLINK or any other method is a
clear winner in all the considered scenarios according to all
the considered link prediction accuracy measures. We discuss
what methods are strong in what scenarios. The HYPERLINK

appears to be the strongest in the most difficult link prediction
tasks. That is, the more challenging a particular link prediction
task/scenario, the better off is the HYPERLINK compared to
other methods. We conclude the paper with an outline of open
problems at the end of Sec. V.

These results emphasize that the HYPERLINK is definitely
not the universally best link prediction method, which sim-
ply cannot exist as was recently shown in [24,39–41]. That
is, there can exist no one size fits all solution for the link
prediction problem. Different methods are good at predict-
ing different types of links. Therefore, as far as a particular
link prediction method is concerned, the best one can do
is to document what particular link prediction scenarios the
method is good at, that is, what types of links the method

is good at predicting, which is exactly the subject of this
paper.

II. METHODS

We begin the exposition by discussing the latent geometric
link prediction framework and the null model that we utilize
to predict missing links.

A. Link prediction with latent geometry

Link prediction with hyperbolic geometry is a two-step
procedure. First, one needs to infer node coordinates in the
hyperbolic space and calculate hyperbolic distances between
node pairs. This coordinate inference procedure is often re-
ferred to as network mapping or embedding. The second
step of the procedure is to identify most likely missing link
candidates. This subsection focuses on the second step of this
procedure. The technical details of the null geometric model
and the network mapping algorithm constituting the first step
are provided in Secs. II B and II C and Appendix F. We refer
to the network mapping algorithm and the entire hyperbolic
link prediction framework as the HYPERLINK embedder and
the HYPERLINK, respectively.

The latent geometric link prediction framework is appli-
cable to all latent geometric models, where connections are
established independently with decreasing connection proba-
bility function p(x). Intuitively, the smaller the latent distance
between two nodes, the higher the probability of a link be-
tween them. Then, if two nodes located close to each other in
the latent space are not connected, it is likely that there is a
missing link between them.

Specifically, consider a latent geometric model where
nodes are assigned positions {xi} in a certain latent space
M, and every node pair {i j} is connected with probabil-
ity pi j = p(xi j ), where xi j = d (xi, x j ) is the latent distance
between the nodes, and p : R+ → [0, 1] is the decreasing
connection probability function specified by the model. After
all connections are established, some links are removed with
probabilities 1 − qi j . These pairs of nodes are referred to as
missing links.

Any unconnected node pair {i j} in the resulting network
is either not connected in the network formation process or
connected in the network formation and later removed with
probability 1 − qi j . Therefore, the probability for an uncon-
nected pair of nodes {i j} separated by xi j to be a missing link
is

p̃(xi j ) = p(xi j )(1 − qi j )

1 − p(xi j ) + p(xi j )(1 − qi j )
. (1)

In the particular case of a decreasing connection proba-
bility function p(x) and the random link removal process,
qi j = q,

p̃(xi j ) = (1 − q)p(xi j )

1 − qp(xi j )
(2)

is the decreasing function of xi j for any q > 0. Thus, the most
probable candidates for missing links are indeed unconnected
node pairs located at small latent distances, as stated, and
the latent geometric link prediction algorithm only needs to
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rank unconnected node pairs in the increasing order of latent
distance between them.

It is important to note, however, that this approach is
only guaranteed to work in the case the links are removed
uniformly at random. In the general case, missing link prob-
abilities in Eq. (1) depend both on latent distances {xi j} and
missing link rates {1 − qi j} and further information on the
nature of {qi j} is needed to rank missing link candidates prop-
erly.

B. Random hyperbolic graphs

While the latent geometric framework described above is
applicable to all latent space models, in our paper we use the
RHG as a null model for link prediction.

RHGs have been extensively studied in the literature
[20,34,35,42–46] and have been shown to reproduce common
properties of many real networks including heterogeneous
distributions of node degrees, strong clustering, as well as
community structure [20,27,47].

The latent space of the RHG model is the two-dimensional
hyperbolic disk of constant negative curvature K = −1 and
radius R. The hyperbolic distance x between any two points in
the hyperbolic disk is given by the hyperbolic law of cosines:

cosh x = cosh r cosh r ′ − sinh r sinh r′ cos �θ, (3)

where (r, θ ) and (r′, θ ′) are the hyperbolic coordinates of the
two points within the disk and �θ = π − |π − |θ − θ ′|| is the
angle between them.

The RHG has three parameters—hyperbolic disk radius
R > 0, temperature T ∈ [0, 1), and node density parameter
α > 1/2—and is defined as follows.

(1) Draw node coordinates {ri, θi}, i = 1, 2, . . . , N, from
probability density functions:

θi ← ρ(θ ) = 1/(2π ), θi ∈ [0, 2π ], (4)

ri ← ρ(r) = sinh(αr)

cosh(αR) − 1
, ri ∈ [0, R]. (5)

(2) Compute distances {xi j} between all node pairs using
Eq. (3).

(3) Connect node pairs with probability:

p(xi j ) = 1

1 + e
xi j −R

2T

. (6)

We summarize basic RHG properties in Appendix C: pa-
rameter α controls the exponent γ = 2α + 1 of the power-law
degree distribution, while clustering is a decreasing function
of temperature T approaching zero in the N → ∞ limit as
T → 1. In this limit, clustering is zero for any T � 1.

C. HYPERLINK embedder in a nutshell

To infer hyperbolic coordinates of nodes in a given net-
work with random links removed, we aim to find the set of
node coordinates {xi} ≡ {(ri, θi )}, i = 1, 2, . . . , N , that maxi-
mize the posterior probability L({xi}|ai j,P, q), which is the
probability density function of coordinates {xi} in an RHG
with adjacency matrix ai j , parameters P = {α, T, R}, and link
removal probability 1 − q. By the Bayes rule this probability

is

L({xi}|ai j,P, q) = L(ai j |{xi},P, q)Prob(xi )

L(ai j |P, q)
, (7)

where L(ai j |{xi},P, q) is the likelihood that network ai j is
generated as an RHG with subsequent random link removal
with probability 1 − q, Prob(xi ) is the prior probability of
node coordinates generated by the RHG, and L(ai j |P, q) is
the probability that the network has been generated as the
RHG with random link removal. Since node pairs are con-
nected independently, this likelihood is

L(ai j |{xi},P, q) =
∏
i< j

[p̃(xi j )]
ai j [1 − p̃(xi j )]

1−ai j , (8)

where p̃(xi j ) is the effective connection probability in the
RHG generation process with subsequent random link re-
moval:

p̃(x) ≡ qp(x), (9)

where p(x) is the RHG connection probability function in
Eq. (6). Finally, in RHGs node coordinates {xi} ≡ {ri, θi}, and
the prior probability is given by

Prob(xi ) = 1

(2π )N

N∏
i=1

ρ(ri ), (10)

where ρ(ri ) is as in Eq. (5).
The HYPERLINK embedder aims to find node coordinates x̂i

that maximize the likelihood L({xi}|ai j,P, q), or equivalently
its logarithm:

lnL({xi}|ai j,P, q) = K +
N∑

i=1

ln ρ(ri ) +
∑
i< j

{ai j ln p̃(xi j )

+ (1 − ai j ) ln[1 − p̃(xi j )]}, (11)

where constant K absorbs all terms independent of {xi}.
Similar to other maximum-likelihood estimation (MLE)

based embedders [34,35,43,48], node coordinates x̂i are com-
puted iteratively: starting with initial random coordinate
configuration, the HYPERLINK embedder updates node coor-
dinates at each iteration step to increase lnL({xi}|ai j ) and
stops when we arrive to a stable configuration. One feature
of the HYPERLINK embedder which is different from other
MLE-based embedders is that at each iteration step � the
embedder adds synthetic noise of variable magnitude a(�) to
angular node coordinates:

θ̂i ← θ̂i + a(�)Xi, (12)

where Xi is a random number drawn from the uniform dis-
tribution on the circle [0, 2π ]. These coordinate perturbations
allow the HYPERLINK embedder to avoid getting trapped for
long time in local maxima of the log-likelihood function and
to find (nearly) optimal solutions much faster, thus increasing
the coordinate inference accuracy given the same amount of
computational resources (see Appendix F for details).
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D. Link prediction accuracy

We evaluate the accuracy of the HYPERLINK as well as other
link prediction methods through random link removal experi-
ments. To this end, we first remove existing links uniformly at
random with probability 1 − q from the network of interest G.
We refer to the remaining network as the pruned network and
denote it by G̃. We refer to removed links as missing links and
denote them by 	R. The set of remaining links in G̃ is referred
to as 	E .

To test the link prediction method of interest we compute
likelihood scores for all unconnected node pairs in G̃, 	E ,
which include both missing links 	R and true nonlinks 	N ,
so that 	E = 	R ∪ 	N . We then rely on these scores to rank
unconnected node pairs in the decreasing order of missing
link likelihood and refer to them as missing link candidates.
We denote the fraction λ ∈ [0, 1] of most likely missing link
candidates as set 	M (λ). In the case λ = 0, 	M (λ) is the
empty set, while in the λ = 1 case 	M (λ) = 	R ∪ 	N = 	E .

In the case the exact number of missing links is known,
the most direct way to assess link prediction accuracy is to
consider the same number of the most likely missing link
candidates and evaluate its intersection with the set of miss-
ing links. This metric is known as Precision and is formally
defined as

Precision = |	R ∩ 	M (λ∗)|
|	R| , (13)

where fraction λ∗ = 1 − q is chosen such that |	M (λ∗)| =
|	R|. The Precision score is bounded by 0 and 1 with the
upper bound corresponding to the ideal link predictor ranking
all missing links in 	R higher than nonlinks in 	N .

In practical circumstances, however, the exact number of
missing links is often unknown. Further, depending on the
application, one might be interested to minimize the number
of false positives in the prediction set, possibly by the expense
of false negatives, or, vice versa, minimize the number of
false negatives by the expense of false positives. One example
of the former case where one is interested to minimize the
number of false positives, i.e., good citizens misclassified as
criminals, is the criminal justice system. This example is in
contrast to cancer screening, where the number of false nega-
tives, or not-identified cancer cases, should be minimized. In
both cases one is interested to explore the performance of the
link predictor for a range of 	M (λ) sizes.

A number of link prediction metrics have been developed
to this end with the receiver operating characteristic (ROC)
and the precision-recall (PR) being the most popular.

To formally introduce ROC and PR curves we first define
the confusion matrix. The latter consists of four values—the
numbers of true positives (TP), false positives (FP), false nega-
tives (FN), and true negatives (TN), Fig. 1—and is extensively
used in statistical classification problems. Link prediction is
not a genuine classification problem since one is only inter-
ested to predict links and not their absence. Nonlink node pairs
are predicted implicitly as unconnected node pairs that are not
part of 	R.

In the context of link prediction, the number of true posi-
tives is the number of correctly identified missing links from
	M (λ), Eq. (14). The number of false negatives is the remain-
ing number of missing links that are not part of the 	M (λ),

FIG. 1. Confusion matrix and a toy example of link prediction.
Top: Confusion matrix for link prediction. Bottom: Toy link pre-
diction example. Existing links are shown with solid black lines.
Missing links, 	R = {13}, are shown with red dotted lines, while pre-
dicted missing links, 	(λ) = {13, 14}, are shown with green dashed
lines. In this example the sizes of the confusion matrix sets are
TP = 1, FP = 1, FN = 0, and TN = 1.

Eq. (15). The number of false positives is the number of miss-
ing link candidates in 	M (λ) that are not correctly identified,
Eq. (16). Finally, the number of true negatives is the number
of unconnected node pairs that are neither true positives nor
false positives nor false negatives [see Eq. (17) and Fig. 1]:

TP(λ) = |	R ∩ 	M (λ)|, (14)

FN(λ) = |	R \ 	M (λ)|, (15)

FP(λ) = |	N ∩ 	M (λ)|, (16)

TN(λ) = |	N \ 	M (λ)|. (17)

Since network sizes vary, it is common to normalize con-
fusion matrix elements, obtaining true positive, false positive,
false negative, and true negative rates, formally defined as

tpr(λ) ≡ TP(λ)

|	R| , (18)

fnr(λ) ≡ FN(λ)

|	R| , (19)
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FIG. 2. Sketches of typical (a) ROC and (b) PR curves.

fpr(λ) ≡ FP(λ)

|	N | , (20)

tnr(λ) ≡ TN(λ)

|	N | . (21)

An ROC statistics or curve is defined as the parametric
plot of the true positive rate tpr(λ) as a function of the false
positive rate fpr(λ) obtained by varying the fraction of consid-
ered link candidates λ ∈ [0, 1]. The ideal predictor is expected
to rank all node pairs corresponding to missing links, 	R,
higher than nonlinks, 	N , resulting in unit true positive rate
and zero false positive rate for λ = 1 − q, tpr(1 − q) = 1,
fpr(1 − q) = 0. The corresponding ROC curve of the ideal
predictor is thus a rectangle going through the upper left
corner (0,1) of the ROC space. A fully random link predictor,
on the other hand, will guess missing links at random from 	E

and is expected to yield equal true positive and false positive
rates, tpr(λ) = fpr(λ) for all λ values, resulting in the diagonal
ROC curve, Fig. 2(a).

The standard way to quantify ROC-based prediction accu-
racy is through the AUC:

AUC =
∫ 1

0
tpr(λ)fpr′(λ)dλ. (22)

AUC values vary in between 0 and 1 with AUC = 0.5
corresponding to a fully random predictor and AUC = 1.0
corresponding to the perfect predictor.

The AUC score can be interpreted as the probability that
a randomly chosen missing link is assigned a higher link
prediction score than a randomly chosen unconnected node
pair. ROC curves are easy to read and interpret, which is
arguably the basic reason behind their popularity.

At the same time, there is a growing consensus that ROC
curves and corresponding AUC scores are insensitive in class
imbalance problems, where the size of the positives is dis-
proportional to that of the negatives [49]. Link prediction
in sparse networks is one example of class imbalance. Here
the number of missing links is of the order of N and is
significantly smaller than the number of nonlinks, which is
of the order of N2. Intuitively, in this situation the tpr(λ) rate
grows much faster than the false positive rate since the latter
is normalized by |	N | and, as a result, most ROC curves tend
to be substantially above the random baseline, yielding AUC
scores close to 1.0, regardless of the link prediction method.

An alternative to the ROC curve is the PR characteristic,
defined as the parametric plot of the precision rate pr(λ) as a
function of the recall rate rc(λ) obtained by varying λ ∈ [0, 1],

where the two rates are defined by

pr(λ) ≡ TP(λ)

|	M (λ)| , (23)

rc(λ) ≡ TP(λ)

|	R| = tpr(λ). (24)

That is, the recall rate is identical to the true positive rate,
while the precision rate differs from the latter by a different
normalization—to the number of predicted links versus the
number of removed links.

In the case of an ideal predictor, the precision rate is maxi-
mized, pr(λ) = 1.0 for λ � 1 − q, while the recall is growing
from rc(0) = 0 to rc(1 − q) = 1, resulting in the rectangular
PR curve going through the upper right corner (1,1) of the PR
space. A fully random predictor, on the other hand, maintains
constant precision rate equal to the ratio of the number of
true missing links to the total number of unconnected node
pairs, prrand(λ) = |	R|

|	R|+|	N | for all λ values, Fig. 2(b). The
standard metric quantifying PR-based prediction accuracy is
the AUPR:

AUPR =
∫ 1

0
pr(λ)rc′(λ)dλ. (25)

AUPR values vary between |	R|
|	R|+|	N | and 1 with the unit score

corresponding to the ideal predictor. In the case of sparse
networks 	R � 	N , leading to AUPR � 1 in the case of a
random predictor. Unlike ROC curves, PR characteristics do
not directly depend on the number of true negatives and, as a
result, do not suffer from the class imbalance problem in case
of sparse networks.

E. AUC versus AUPR

While both AUC and AUPR quantify link prediction accu-
racy, they tend to weigh missing link candidates differently.
AUPR scores tends to emphasize highly ranked missing links
candidates, i.e., those corresponding to small λ values. AUC
scores, on the other hand, put more weight on missing links
candidates corresponding to larger λ values.

Indeed, AUPR averages precision rate pr(λ) over the recall
rate rc(λ). Since the recall rate is given by rc(λ) = |	R∩	M (λ)|

|	R| ,
Eq. (24), good link predictors tend to reach rc(λ) = 1 values
when the size of missing link candidates set 	M (λ) becomes
comparable to that of 	R: |	M (λ)| ≈ |	R| � |	N |. The latter
inequality holds in the case of sparse networks, where the
number of links is much smaller than the number of nonlinks.
Thus, |	M (λ)| � |	N |, which corresponds to λ � 1 values.
Thus, AUPR link prediction scores are dominated by small λ

fractions, i.e., by the most likely and, typically, most obvious
missing link candidates in 	M .

AUC scores, on the other hand, average true positive rate
tpr(λ) over false positive rate fpr(λ). The latter takes large
values when |	M (λ)| becomes comparable to |	N |, i.e., for
λ values close to 1. AUC scores, thus, are emphasizing not
only easy-to-predict links at small λ values but also harder to
predict links in 	M at intermediate and large λ values.

In summary, AUC and AUPR scores complement each
other by weighing missing link candidates in 	M differently.
Thus, in our paper we compute both metrics to obtain a
comprehensive view on the utility of hyperbolic geometry in
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link prediction. In addition to AUPR and AUC scores, we
also compute Precision scores, which are the scores to use if
the number of missing links is known exactly, although such
knowledge is rarely the case in practice.

III. LINK PREDICTION WITH KNOWN COORDINATES

Before investigating link prediction accuracy in real net-
works, we conduct link prediction experiments with RHGs
with known coordinates. In doing so we pursue several goals.
The RHGs provide the upper bound for link prediction accu-
racy of the HYPERLINK if the same node coordinates are used
both for the graph construction and for link prediction [24], so
that we want to quantify this upper bound. Second, we want
to measure link prediction accuracies of other methods, listed
in Appendix B, and compare them to that of the HYPERLINK.
Establishing these results provides a baseline for interpreting
link prediction results on real networks. To achieve these
goals, we first calculate analytically the AUC and AUPR in
RHGs with known coordinates and with coordinates disturbed
by noise of varying magnitude. The latter result allows us to
quantify in a controlled environment the level of coordinate
inaccuracy beyond which the HYPERLINK becomes essentially
impuissant.

We start with the analysis of HYPERLINK accuracy in the
case of randomly missing links in RHGs. After the generation
of an RHG we visit each of its links and remove it with
probability 1 − q, arriving at a pruned network. We then rank
missing link candidates using distances between all uncon-
nected node pairs calculated with coordinates from which the
network was originally generated.

As seen in Fig. 3, the predictive power of the HYPERLINK is
maximized as T → 0 and decreases as T increases. This result
is expected. In the T → 0 limit the RHG is deterministic since
the connection probability in Eq. (6) becomes the Heaviside
step function, p(x) → �(R − x). As a result, all node pairs
with x < R are connected and other node pairs are not. Then,
an unconnected pair of nodes at distance x < R is guaranteed
to be a true positive and all unconnected pairs at x � R are
true negatives. As T increases, connections are allowed at
distances x > R with increasing probability and, as a result,
underlying geometry plays a smaller role in the formation of
links, explaining the decreasing link prediction accuracy as a
function of T , as quantified by all scores in Fig. 3.

Even though all scores, AUC, AUPR, and Precision, are de-
creasing functions of T , they behave differently. AUC scores
remain constant in the T ∈ (0, 1

2 ) interval and then exhibit a
slow decay to AUC = 0.95 at T = 0.9. AUPR and Precision
scores, on the other hand, decrease rapidly in the entire testing
interval of T ∈ [0, 0.9] from AUPR = 1 (Precision = 1) at
T = 0 to AUPR = 0.34 (AUPR = 0.29) at T = 0.9.

We can predict these results analytically as we explain
next.

A. AUC

The AUC score in RHGs is

AUC =
∫ 2R

0
tpr(x)fpr′(x)dx, (26)

FIG. 3. Link prediction on RHGs with known coordinates. In all
experiments we remove links uniformly at random with probability
1 − q = 0.5. Then missing links are predicted using hyperbolic dis-
tances between unconnected node pairs. Link prediction accuracy is
quantified using (a) AUC, (b) AUPR, and (c) Precision scores plotted
as a function of RHG temperature T . All results correspond to RHGs
with N = 104 nodes, γ = 2.5, and k = 10. The HYPERLINK link
prediction scores are compared to those of AA, CN, CRA, Jaccard,
RA, SBM(d,n), and SPM methods (see Appendix B).

where tpr(x) and fpr(x) are, respectively, distance-dependent
true positive and false positive rates among node pairs sep-
arated by distances up to x. As seen from Fig. 4(a), the
true positive rate grows exponentially for x < R and sat-
urates to tpr(x) = 1 as x approaches 2R. This observation
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FIG. 4. Link prediction with known coordinates: (a) true positive rate tpr(x), (b) false positive rate fpr(x), (c) Precision pr(x), and (d) link
density n(x)p(x) as a function of hyperbolic distance x. In all experiments we remove links uniformly at random with probability 1 − q = 0.5.
Then missing links are predicted using hyperbolic distances between unconnected node pairs. All results correspond to RHGs with N = 104

nodes, γ = 2.5, and k = 10. The insets display the same plots as the main panels but in log-linear format. Solid lines correspond to analytical
estimates.

is easy to predict analytically. Let n(x) be the distribu-
tion of hyperbolic distances x between node pairs in the
RHG. It follows from the results in [50] that n(x) can be
approximated as

n(x) = 4α2

π (2α − 1)2 ex/2−R (27)

for α > 1
2 . To be more specific, we note that R in the RHG is a

function of network size N , given by Eq. (C3), and the approx-
imation in Eq. (27) holds in the large N limit for any x = cR,
where constant c ∈ (0, 2), limN→∞ n(x)

ntrue (x) = 1. Henceforth,

we say f (x) ≈ g(x) if limN→∞ f (x)
g(x) = 1, and, more generally,

f (x) ∼ g(x) if limN→∞
f (x)
g(x) = K �= 1.

The connection probability p(x) is close to unity for x < R,
so that the number of true positives for x < R grows propor-
tional to the number of node pairs N (x) ≡ ∫ x

0 n(y)dy in the
hyperbolic disk, tpr(x) ∼ N (x) ∼ e

x
2 for x < R. In the x > R

regime connection probability p(x) decays exponentially as
p(x) ∼ e− x

2T faster than the exponential growth of n(x), lead-
ing to the saturation of tpr(x) = 1, Sec. III D.

The false positive rate remains negligible for x < R and
grows exponentially for x ∈ (R, 2R), Fig. 4(b). We explain
this observation using similar arguments. Since p(x) is close
to unity for x < R, and all unconnected node pairs with x < R
are almost guaranteed to be true positives, the false positive
rate is negligible for x < R. In the x > R regime, p(x) ∼ e− x

2T ,

and the number of unconnected node pairs is proportional to
N (x), resulting in fpr(x) ∼ e

x
2 for x > R, Sec. III D.

Taken together, tpr(x) and fpr(x) rates provide a qualita-
tive explanation for nearly perfect AUC scores observed in
Fig. 3(a). The false positive rate fpr(x) takes large values only
when x approaches 2R. At the same time, as x approaches 2R
the tpr(x) approaches 1.

Supporting this rough estimation, our more detailed ana-
lytical calculations in Sec. III D show that the AUC scores for
RHGs with known coordinates converge to 1 in the large N
limit as

1 − AUC

⎧⎪⎨⎪⎩
∼N−1 if T ∈ [

0, 1
2

)
,

=O
(

ln N
N

)
if T = 1

2 ,

=O
(
N1− 1

T

)
if T ∈ (

1
2 , 1

)
.

(28)

B. AUPR

To calculate the AUPR score we need to calculate the
distance-dependent precision and recall rates pr(x) and rc(x)
because

AUPR =
∫ 2R

0
pr(x)rc′(x)dx. (29)

Since p(x) is close to 1 for x < R, all unconnected node
pairs at x < R are true positives, resulting in pr(x) = 1
[see Fig. 4(c) and Sec. III D]. The precision rate decays
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exponentially for x > R since the true positive rate tpr(x) ap-
proaches 1 for x > R, while the number of unconnected node
pairs Nd (x) grows exponentially,

(N
2

) ∫ x
0 n(y)[1 − qp(y)]dy ∼

e
x
2 [see Fig. 4(c) and Sec. III D].

The dependence of AUPR on T arises from the recall
function or its derivative, rc′(x), quantifying the expected
distance-dependent link density and, consequently, the den-
sity of missing links. As T increases, the missing links are
more likely to be located at larger distances, Fig. 4(d), where
precision pr(x) is smaller, resulting in lower AUPR scores,
consistent with our observations in Fig. 3.

We also note that the AUPR score depends weakly on the
node density parameter α and consequently on the degree
distribution exponent γ = 2α + 1. Indeed, the precision and
recall rates depend on α only via the node pair distribution
n(x), Sec. III D, which depends on α only in subleading terms,
as shown in [50].

C. Coordinate uncertainty and link prediction accuracy

While the HYPERLINK provides the upper bound for link
prediction on RHGs, it is important to note that its accuracy
is comparable to that of other link prediction methods, in
particular, resource allocation (RA), adamic adar (AA), and
stochastic block models SBM(d,n), Fig. 3. This observation
motivates the question: How accurately does one need to infer
node coordinates to ensure the superior performance of the
HYPERLINK?

To answer this question we analyze the impact of node co-
ordinate uncertainty on the HYPERLINK accuracy. To this end,
we add synthetic noise to original angular node coordinates,
while keeping radial node coordinates unchanged:

θ̂i ← θi + aXi, (30)

Xi ← U
(− 1

2 , 1
2

)
, (31)

where a > 0 is the noise amplitude. The effects of synthetic
noise on the HYPERLINK accuracy are depicted in Fig. 5. Our
results indicate that AUPR and Precision scores, Figs. 5(b)
and 5(c), decrease rapidly as a function of noise amplitude,
while AUC scores remain largely unchanged even at a > 1 rad
values.

To better understand the effects of noise on link prediction
accuracy we juxtapose HYPERLINK prediction results to those
of the RA method, which is one of its leading competitors
according to Fig. 3. We show RA accuracy with dashed lines
of matching color in Fig. 5. Consistent with our earlier ob-
servations we find that HYPERLINK AUC scores are robust to
noise, preserving its leading ranking among other link predic-
tion methods, Fig. 5(a).

In contrast, as quantified by AUPR and Precision scores,
the HYPERLINK is superior to the RA method only if coordi-
nate uncertainty is sufficiently small. The maximum tolerable
noise amplitude value ac increases as T increases [see the
inset of Figs. 5(b) and 5(c)]. While noise amplitude a does not
exceed 10−2 rad in the case of T = 0.1, the noise tolerance in
the case of T = 0.9 is significantly higher, ac ≈ 0.5 rad, sug-
gesting, somewhat surprisingly, that the HYPERLINK is better
off on networks characterized by larger T values or, equiva-
lently, smaller clustering coefficient.

(a)

(b)

(c)

FIG. 5. Effects of synthetic noise on link prediction accuracy.
HYPERLINK accuracy quantified using (a) AUC, (b) AUPR, and
(c) Precision scores as a function of noise amplitude a for RHGs with
different T values. All results correspond to RHGs with N = 104

nodes, γ = 2.5, and k = 10. The HYPERLINK accuracy is compared
to that of RA, i.e., its top competitor according to Fig. 3. Correspond-
ing scores of the RA index are shown with dashed lines of matching
color. The insets of panels (b) and (c) display the maximum tolerable
coordinate noise amplitude as a function of T , i.e., the values of a
corresponding to equal HYPERLINK and RA accuracy.

Qualitatively, the observed fast degradation of the AUPR
and Precision scores is due to the sensitivity of the hyperbolic
distance to the angular distance between the nodes �θ . It
follows from Eq. (3) that even a small change in �θ may
significantly change the corresponding hyperbolic distance,
adversely affecting the ranking of missing link candidates at
small distances x, Appendix E. Since AUPR and Precision
emphasize link prediction accuracy of most likely candidates,
proper ranking of unconnected node pairs at small x values
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is crucial. AUC scores, on the other hand, place more em-
phasis on less obvious link candidates and are less affected
by coordinate uncertainty. We find that the uniform synthetic
noise adversely affects distance dependent true positive rate
TP(x|a), which scales as

TP(x|a) ∼
{

a1−2γ if x � R,

a1−2γ
(
R + 2 ln a

2

)
ifx > R

(32)

(see Appendix E), leading to

AUPR(a) ∼ a2−4γ
(

R + 2 ln
a

2

)2
. (33)

The robustness of the AUC scores to synthetic noise in
RHGs can be qualitatively explained by the fact that AUC
scores emphasize the prediction of missing links at large x
distances. Large hyperbolic distances are affected by synthetic
noise to a lesser extent than small hyperbolic distances. This
effect follows directly from Eq. (3) and can be observed in

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 6. Link prediction accuracy for RHGs with inferred coordinates: AUPR. (a)–(i) Random missing links. (j)–(l) Nonlocal missing links.
Each panel is a heatmap displaying AUPR values as functions of T and γ = 2α + 1 parameters of the RHG. We compare link prediction
accuracy of the HYPERLINK to that of the RA and SPM methods, which are its leading competitors in cases of randomly missing links
and nonlocal missing links, respectively. In each random missing link experiment links are removed uniformly at random with prescribed
probabilities: (a)–(c) 1 − q = 0.1, (d)–(f) 1 − q = 0.3, and (g)–(i) 1 − q = 0.5. (a), (d), (g) AUPR values for HYPERLINK. (b), (e), (h) AUPR
values for RA. (j)–(l) AUPR values of HYPERLINK and SPM, as well as their difference, for nonlocal links, i.e., links connecting nodes with
no common neighbors, which comprise a subset of randomly removed links with 1 − q = 0.5. The dashed curves in panels (c), (f), (i), and (l)
denote the regions in the γ -T parameter space where the HYPERLINK accuracy is higher than that of the competitive method.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 7. Link prediction accuracy for RHGs with inferred coordinates: Precision. The legend is identical to that of Fig. 6.

Fig. 14(a), displaying the saturation of TP(x|a) → 1 as x
approaches 2R, regardless of noise amplitude a.

Our conclusions in this section are different for AUC and
AUPR/Precision metrics.

The AUPR and Precision metrics emphasize prediction of
the most likely missing link candidates and are highly sensi-
tive to the accuracy of node coordinate inference. Synthetic
noise added to original node coordinates smears hyperbolic
distances among missing link candidates, adversely affecting
the HYPERLINK accuracy. Our results suggest that one needs
to maximize the accuracy of the network mapping in order to
efficiently predict missing links. We also find that, as temper-
ature T increases, the performance of other link prediction
methods, as measured by AUPR and Precision, decreases
faster than that of the HYPERLINK, suggesting that the latter has
a competitive advantage on networks characterized by large T
values.

AUC scores, on the other hand, emphasize less obvious
link candidates that correspond to node pairs at larger hyper-
bolic distances. Since larger hyperbolic distances are affected
by coordinate uncertainty to a lesser extent, the AUC scores
of the HYPERLINK are robust to synthetic noise, suggesting that
HYPERLINK is capable of predicting less obvious missing links
even under less accurate mapping conditions.

IV. LINK PREDICTION WITH INFERRED COORDINATES

In this section we build upon our results obtained in
the previous section to analyze the HYPERLINK accuracy on
networks with unknown node coordinates. We first conduct
systematic analysis of HYPERLINK accuracy on RHGs with un-
known node coordinates and then apply HYPERLINK to several
real networks. In both cases network coordinates are unknown
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 8. Link prediction accuracy for RHGs with inferred coordinates: AUC. The legend is identical to that of Fig. 6.

and in order to predict missing links we first infer node coordi-
nates by mapping networks of interest to the two-dimensional
hyperbolic disk. To this end, we developed a mapping algo-
rithm, which is tailored to the link prediction problem. This
algorithm is referred to as the HYPERLINK embedder and is
fully described in Appendix F.

A. Tests on RHGs with inferred coordinates

To evaluate the HYPERLINK accuracy on RHGs with
unknown node coordinates we perform the following exper-
iments. After generating an RHG we remove a fraction of
existing missing links. As before, each existing link is re-
moved with probability 1 − q. Occasionally, after links are

removed, the remaining network splits into several compo-
nents. If this is the case, we limit our consideration to the
largest connected component of the pruned network. We refer
to the resulting connected component of the pruned network
as the training network. To predict missing links we erase our
knowledge of the true node coordinates and then infer node
coordinates by mapping the training network to the hyper-
bolic disk using the HYPERLINK embedder (see Appendix F
for details on the mapping procedure). After the mapping is
complete, we use the inferred node coordinates to calculate
distances between all unconnected node pairs in the training
network and rank these pairs in the increasing order of dis-
tance.

Figures 6, 7, and 8 show the results for the AUPR, Pre-
cision, and AUC scores, respectively. Each panel in these
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 9. Link prediction accuracy for the Metabolic network with (a)–(c) 10% (q = 0.9) randomly missing links, (d)–(f) 50% (q = 0.5)
randomly missing links, and (g)–(i) nonlocal missing links, i.e., links connecting node pairs that have no common neighbors. Nonlocal links
constitute 20% of the q = 0.5 missing links set. (a), (d), (g), (j) Precision, AUPR, and AUC link prediction scores. (b), (e), (h), (k) ROC curves.
(c), (f), (i), (l) PR curves.

figures is a heatmap, aggregating the link prediction accu-
racy scores for RHGs with different γ ∈ [2.1, 2.9] and T ∈
[0.1, 0.9] values, which we change with an increment of 0.1
each. We compare the HYPERLINK to the RA method, which
is its leading competitor in these experiments [cf. Figs. 3(a)
and 3(b)].

The results for the AUPR and Precision scores are similar.
Quantified by these scores, the HYPERLINK accuracy is nearly
independent of the degree distribution exponent γ , and at the
same time decreases rapidly as temperature T increases [see
panels (a), (d), and (g) in Figs. 6 and 7]. This observation is
consistent with our theoretical analysis in Sec. III, where we
establish that AUPR scores decrease as T increases and do not
strongly depend on γ .

Even though RA performs similar to HYPERLINK [panels
(b), (e), and (h) in Figs. 6 and 7], we note that RA is more
accurate at lower T values and less accurate than HYPERLINK

for higher T values. To obtain the direct comparison of the

two methods we plot the difference between their AUPR
(Precision) scores in panels (c), (f), and (i) in Figs. 6 and 7.
In agreement with our theoretical considerations in Fig. 5,
we find that the HYPERLINK is superior to RA in the region
of γ -T phase space corresponding to higher T values; these
regions are denoted with dashed lines in panels (c), (f), and (i)
in Figs. 6 and 7.

Compared to RA, the HYPERLINK yields better link pre-
diction accuracy for larger fractions of missing links. In the
case 1 − q = 0.1, for instance, HYPERLINK is better than RA
in a small upper right corner region of the γ -T phase space,
Figs. 6(c) and 7(c). On the other hand, in the case 50% of links
are missing, 1 − q = 0.5, the HYPERLINK outperforms RA for
the majority of γ -T values with the exception of smallest,
T = 0.1, and largest, T = 0.9, temperature values, Figs. 6(i)
and 7(i).

The better, compared to RA, performance of the HYPER-
LINK in Figs. 6(i) and 7(i) is the result of two effects. On
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 10. Link prediction accuracy for the Internet. Nonlocal links constitute 32% of the q = 0.5 missing links set.

one hand, the HYPERLINK accuracy appears to increase as
1 − q increases. This effect is consistent with a recent obser-
vation in [24] that the upper bound of link predictability in
edge-independent graphs increases with 1 − q. On the other
hand, as 1 − q increases, the accuracy of RA decreases. RA,
as well as other similarity-based methods, e.g., RA, Can-
nistraci resource allocation (CRA), AA, common neighbors
(CN), and Jaccard’s index (JC), predict missing links based
on the similarity of node neighborhoods, e.g, the number of
common neighbors; the higher the similarity the higher the
probability of a missing link, Appendix B. Neighborhood
similarities are local measures, reflecting network structure in
the network-based vicinity of the node pair of interest, and
ignoring the structure of the remaining network. The larger
the fraction of missing links, the smaller the fraction of links
in the training network and, as a result, the poorer the link
prediction results. While this is true for all link prediction
methods, the similarity-based methods are the ones that suffer
most. Since links are established independently in RHGs, and
each link is removed with probability p = 1 − q, the number

of common neighbors between any node pairs on average
decreases proportionally to p2. All extensive RHG properties,
on the other hand, depend on p linearly. HYPERLINK as a global
method uses the structure of the entire network to map it, so
that it is less sensitive to network incompleteness.

An attractive feature of a global method is that it is capable
of predicting nonlocal missing links, i.e., links between node
pairs with no common neighbors. To quantify HYPERLINK

accuracy for nonlocal links we consider the subset of non-
local links within the set of links removed with probability
1 − q = 0.5, Figs. 6(j) and 7(j), which comprise from 20%
(for γ = 2.1, T = 0.9) to 86% (for γ = 2.9, T = 0.1) of all
removed links.

Similarity-based methods, RA, AA, CN, and JC, cannot
predict nonlocal missing links since corresponding node pairs
have no common neighbors at all and, consequently, have zero
similarity. Therefore, in nonlocal link prediction experiments
we compare HYPERLINK to the structural perturbation method
(SPM) index, which is a global method and the leading com-
petitor to HYPERLINK for nonlocal links. As seen in panels (k)
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(a)
(b)

(c)

(d)
(e)

(f)

(g)
(h)

(i)

FIG. 11. Link prediction accuracy for the PGP network. Panels are identical to those of Fig. 9. Nonlocal links constitute 10% of the q = 0.5
missing links set.

and (l) in Figs. 6 and 7, the SPM index yields substantially
lower link prediction accuracy than HYPERLINK for all the
considered values of γ and T .

Overall, we observe that according to the AUPR and Pre-
cision scores HYPERLINK’s competitive advantage is higher
the more incomplete the network is, and the HYPERLINK is
particularly strong in prediction of nonlocal links.

According to AUC scores, the HYPERLINK offers supe-
rior link prediction accuracy across the entire γ -T parameter
space, surpassing its leading competitors—RA for all links,
and SPM for nonlocal links, Fig. 8. This result is again
consistent with our calculations in Sec. III showing that
RHG-based AUC scores are robust with respect to coordinate
uncertainty.

B. Tests on real networks

Finally, we apply the HYPERLINK to real networks: the
network of human metabolism [51], the Internet at the au-
tonomous system level [52], and the pretty-good-privacy

(PGP) web of trust [53]. Basic properties of these net-
works as well as the data curation steps are documented in
Appendix A.

Our link prediction experiments on real networks are
performed identically to those on RHGs with inferred coor-
dinates, and the results are shown in Figs. 9–11.

According to AUPR and Precision metrics, the HYPERLINK

offers competitive performance in random link removal ex-
periments, panels (a)–(f) in Figs. 9–11, but, at the same time,
is not the most accurate. We do note that the relative perfor-
mance of the HYPERLINK is better in cases of higher missing
link rate, 1 − q = 0.5, which is consistent with our results in
Sec. III.

We also note that the HYPERLINK offers superior perfor-
mance in prediction of nonlocal links where it is either the
winner or runner-up, with the SBM methods being its leading
competitors, panels (g)–(i) in Figs. 9–11. This observation
comes in sharp contrast with nearly random performance of
similarity based methods, RA, AA, CN, JC, and CRA, in
nonlocal link prediction.
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TABLE I. The summary of the results in Sec. III: HYPERLINK’s
measures of accuracy of link prediction in RHGs with known node
coordinates as functions of the parameters in Sec. III.

Parameter AUC AUPR, Precision

Exponent γ ∈ (2, 3) ≈const ≈const
Temperature T ∈ (0, 1) ≈const Decreasing
Fraction of missing links 1 − q Increasing Increasing
Noise amplitude a ≈const Decreasing

In contrast to AUPR-based rankings where the HYPER-
LINK is rarely the most accurate method, it is either the
winner or runner-up in all the experiments according to
the AUC metric, in agreement with all the AUC-related
results above. In particular, it is the winner in predicting
nonlocal links in the most challenging human metabolic
network. This network is the most challenging because it
is the sparsest and has the lowest clustering, Appendix A,
thus providing the least amount of local information for link
prediction.

V. SUMMARY, DISCUSSION, AND CONCLUSION

Tables I and II summarize the results in Secs. III and IV,
respectively. We see that when it comes to predicting obvious
missing links that are easy to predict employing hyperbolic
geometry may be an overkill. In fact, one should consider
using much simpler local methods instead of any global ones,
according to the AUPR or Precision results presented here.
This is because according to these results the local methods
appear to be nearly as good as the global ones at predicting
easy links. In particular, the HYPERLINK method cannot be
the best at predicting the most obvious missing links because
such links are the links between closest nodes in the latent
hyperbolic space, and to rank them exactly at the top of the
disconnected node pair list one has to infer the coordinates
nearly exactly, Sec. III.

However, if the task is to identify missing links that are
really hard to predict, then this is the situation where one
should consider using global methods in general and hyper-
bolic geometry in particular. The most striking example is

TABLE II. The summary of the results in Sec. IV: HYPERLINK’s
measures of accuracy of link prediction in RHGs with inferred co-
ordinates and in real networks, as well as those for nonlocal links,
compared to other methods. The parameters are the same as in
Table I.

Scenario AUC AUPR, Precision

RHGs with inferred Winner Winner if T , γ , or
coordinates 1 − q is large
Real networks Winner/runner-up The more

competitive, the
larger the 1 − q

Nonlocal links in Winner/runner-up Winner/runner-up
RHGs and real
networks

the prediction of missing links between the nodes that do not
share any common neighbors. Here the HYPERLINK is either
the winner or runner-up to the SBM methods, according to all
the AUC, AUPR, and Precision measures, in all the considered
real and synthetic networks. It is not surprising that local
methods do a poor job in predicting such links—they are sim-
ply not designed to do so. In contrast, the HYPERLINK, SBM,
and SPM are global methods that base their decisions on
the global structure of the whole network, which helps enor-
mously to predict nonlocal and other hard-to-predict links.
The SBM and SPM methods were reported to outperform a
vast collection of other methods [4,6,54]. Here we see that
the HYPERLINK outperforms even these powerful methods in
many cases. In particular, the HYPERLINK is the winner ac-
cording to all the scores in the most challenging considered
case, which is nonlocal links in the sparsest lowest-clustering
network of human metabolic reactions.

We also see that according to the AUC measure the
HYPERLINK is either the winner or runner-up in all the con-
sidered situations. This is because the AUC does not care that
much about false positives, and HYPERLINK achieves (nearly)
the best balance between the true and false positive rates by
finding missing links between highly dissimilar nodes located
at large distances in the latent hyperbolic space.

We have also shown that the HYPERLINK is better off
the weaker the clustering (the higher the T ), and the larger
the fraction of missing links 1 − q in RHGs with inferred
coordinates. This does not mean that HYPERLINK’s link predic-
tion accuracy scores are getting better in these more difficult
conditions; its scores do degrade. But the speeds of the degra-
dation of these that the other methods experience are higher
than HYPERLINK’s.

Our results also resolve the controversy among earlier re-
ports on link prediction using hyperbolic geometry [24,33–
37]. These reports approached link prediction using different
measures of link prediction accuracy. To reiterate, if applied
to sparse networks, the AUPR emphasizes the prediction of a
small fraction of the most likely missing links and, as a result,
is extremely sensitive to inaccuracies in the node coordinate
inference. On the other hand, the AUC is more robust to
coordinate uncertainties as it emphasizes the prediction of less
likely missing links between dissimilar nodes at large latent
distances.

To maximize HYPERLINK’s link prediction accuracy, we
have developed a hyperbolic network mapping method, the
HYPERLINK embedder, that maximizes the accuracy of co-
ordinate inference. Its accuracy comes at the computational
complexity cost of O(n2). While faster methods for hyperbolic
mapping have been developed recently [55–59], an optimal
balance between the accuracy and speed of hyperbolic map-
ping is still to be found. Ideally, it would be highly desirable
to have a method that would be as accurate as at least the
HYPERLINK embedder, and that would run in O(n) time.

We emphasize that link prediction using latent hyperbolic
geometry is expected to yield good results only if this ge-
ometry is there in a given network. That is, the network
structure must be consistent with the existence of this geome-
try. It is well known that RHGs are characterized by sparsity,
self-similarity, scale-free degree distributions, and strong clus-
tering, meaning that these properties are necessary conditions
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FIG. 12. The comparison of main structural properties of the three pruned real networks and corresponding 100 pruned RHGs generated
using the hyperbolic coordinates learned by the HYPERLINK embedder. In both real and synthetic networks the pruning is the random link
removal with rate 1 − q = 0.9. To generate an RHG for a real network of interest we use its parameters R and T and node coordinates that
are learned by the HL embedder. For each real network we generate 100 i.i.d. instances of RHGs by connecting node pairs with probabilities
given by Eq. (F4), where 1 = q = 0.9 and p(x) is given by Eq. (6). (a), (d), (g) Degree distribution P(k). (b), (e), (h) Degree-dependent average
nearest-neighbor degree k̄NN(k). (c), (f), (i) Degree-dependent average local clustering coefficient c̄(k). Since RHG parameters R and T are
inferred using the assumption of uniform angular coordinate distribution, ρ(θ ) = 1/2π , which is not the case in real networks, we had to adjust
the hyperbolic disk radius R in RHGs to match the average degrees in the pruned real and synthetic networks.

for hyperbolic geometry presence. It is also well known that
many real networks do possess these properties as well. The
results in [32] suggest that clustering is also a sufficient con-
dition for network geometricity, but these results apply only
to homogeneous large-world networks, and ignore coordinate

entropy. That is, in theory, the detailed sufficient conditions
for the presence of latent hyperbolic geometry are currently
unknown, remaining a subject of ongoing research. Experi-
mentally it is known, however, that random hyperbolic graphs
are good descriptors of the structure of many real networks. In
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(a) (b) (c)

FIG. 13. Schematic illustration of the connection probabilities as
functions of latent variables/coordinates of pairs of nodes in (a) the
stochastic block model (SBM), (b) random geometric graphs (RGG),
and (c) real networks.

particular, we are not aware of any other model capable of re-
producing self-similarity of real networks, a highly nontrivial
property [25]. As far as the more standard structural properties
of real networks are concerned, the adequacy of hyperbolic
geometry to model them has been documented many times,
as early as in [26]. Here we report similar results in Fig. 12.

Overall, it appears that the harder a specific link predic-
tion task the better the HYPERLINK is at this task. Yet the
HYPERLINK is not always the winner even at such hard tasks.
In particular, in application to real networks it is often a
close runner-up to the stochastic block model methods. These
results are consistent with the findings in [60], where the RHG
and SBM were compared across a variety of properties. In the
SBM the connection probability has a block structure, while
in RHGs it is a function of the latent distance, Figs. 13(a)
and 13(b). Clearly neither model can pretend to describe the
connection probability in real networks exactly—at least be-
cause the RHGs have no communities, while the SBM has no
clustering in the large-network limit. In view of the results in
[60,61], the connection probability in real networks is likely
to be some nontrivial mixture of the two pictures, Fig. 13(c),
with geometry appearing as a mesoscopic structure gluing
community blocks together. In short, the RHGs and SBM
are complementary models capturing different aspects of the
structure of real networks, and the link prediction accuracy
of a model-based method depends on how prominent and
prevalent the model’s features are in a given real network.
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APPENDIX A: REAL NETWORKS

1. Metabolic network

The metabolic network is based on the dataset of metabolic
interactions of 107 organisms constructed by Ma and Zeng
[51]. The original network is bipartite and consists of metabo-
lites (top domain) connected to chemical reactions (bottom
domain). We consider the unipartite projection of the network

TABLE III. Basic properties of the considered real networks. N
is the number of top nodes; E is the number of edges; k is the average
degree; γ is the degree distribution exponent, which we estimated us-
ing methods from [64]; c is the average degree-dependent clustering
coefficient; and T is the corresponding RHG temperature.

Network name N E k γ c T

Internet 6474 13 234 4.09 2.1 0.51 0.7
Metabolic network 2732 4040 2.96 2.9 0.29 0.6
PGP web of trust 14 138 160 080 22.65 2.1 0.66 0.8

on the top domain. Basic properties of the metabolic network
are summarized in Table III.

2. Internet

The Internet network is a snapshot of the autonomous
system level Internet taken from the University of Oregon
Route Views Project [52]. The full dataset contains 733 daily
instances which span an interval of 785 days from 8 Novem-
ber 1997 to 2 January 2000. Here we use a network instance
as of 2 January 2000 [62].

3. PGP web of trust

PGP is a data encryption and decryption computer program
that provides cryptographic privacy and authentication for
data communication [53]. The data are collected and main-
tained by Cederlöf [63]. In the paper we use the PGP snapshot
taken in April of 2003. The PGP web of trust is a directed
network where nodes are certificates consisting of public PGP
keys and owner information. A directed link in the web of trust
pointing from certificate A to certificate B represents a digital
signature by the owner of A endorsing the owner/public key
association of B. We construct the undirected PGP graph by
taking into account only bidirectional trust links between the
certificates. Further, we only consider the giant connected
component of the resulting undirected PGP web of trust net-
work. Basic properties of the PGP network are summarized in
Table III.

APPENDIX B: LINK PREDICTION—ALTERNATIVE
METHODS AND SCORING TECHNIQUES

We compare the accuracy of the HYPERLINK link prediction
method against the following set of link prediction methods:
CN [65], AA [8], RA [66], CRA [67], JC [68], SPM [54], and
SBM [4,6] methods.

All these methods, as well as the HYPERLINK, assign scores
to (a subset of) all not directly connected pairs of nodes (non-
links), and all such pairs are then ranked according to these
scores from the most to least likely interaction prediction. To
briefly describe these methods, it is thus sufficient to tell how
these scores are calculated, for which we use the following
notations: ki is the degree of node i; �(i) is the set of i’s
neighbors (directly connected nodes); γi j (s) is the subset of
all �(s) that are neighbors of both i and j; e j

i is i’s j-external
degree, the number of i’s neighbors that are not j’s neighbors;
A is the network adjacency matrix.
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1. Common neighbors

The score for a pair of nodes i and j is defined as the
cardinality of the intersection of their sets of neighbors:

sCN
i j = |�(i) ∩ �( j)|. (B1)

2. Jaccard’s index

The score is a normalized measure of the overlap of i’s and
j’s sets of neighbors:

sJC
i j = |�(i) ∩ �( j)|

|�(i) ∪ �( j)| . (B2)

3. Adamic-Adar index

The score assigns more weight to the less-connected neigh-
bors:

sAA
i j =

∑
s∈�(i)∩�( j)

1

log ks
. (B3)

4. Resource allocation index

The score is similar to the AA score, but punishes high-
degree nodes more strongly:

sRA
i j =

∑
s∈�(i)∩�( j)

1

ks
. (B4)

5. Cannistraci resource allocation index

The score is similar to the RA score, but takes into account
the subset of nodes shared between nodes i, j and their com-
mon neighbors s:

sRA
i j =

∑
s∈�(i)∩�( j)

γi j (s)

ks
. (B5)

6. Structural perturbation method

This method is based on repetitive perturbations of the
adjacency matrix A by removals of small fractions of links
that we denote by �E . The original adjacency matrix can
then be written as A = A′ + �A, where A′ is the adjacency
matrix of the network after removal of links �E , and �A is
the adjacency matrix constructed on the set of removed links
�E . Denoting eigenvectors and eigenvalues of A′ by xk and
λk , the perturbations of the original eigenvalues λk using the
perturbation matrix �A are

�λk ≈ xT
k �Axk

xT
k xk

, (B6)

so that the perturbed adjacency matrix is

Ã =
N∑

k=1

(λk + �λk )xkxT
k . (B7)

All nonlinks i, j are then ranked by Ãi j . In our experiments
we repeat this perturbation procedure ten times, and then
average perturbed matrices over these trials, thus obtaining an
averaged perturbed matrix 〈Ã〉, so that the SPM score is

sSPM
i j = 〈Ãi j〉. (B8)

7. Stochastic block model

The stochastic block model is a generative network model
designed to model community structure. Nodes are partitioned
into groups (blocks) forming a node partition b. The number
of links between blocks is given by a matrix e the elements
ers of which are the numbers of links between blocks r
and s. If the observed degree sequence of a network k is
used as an additional model parameter, the model is called
degree-corrected SBM [69]. Moreover, if node blocks are
themselves clustered into groups, and these groups are orga-
nized into higher-level groups, and so on recursively up to
some nestedness level l , the model is called nested SBM. It
can capture hierarchical and fine-grained structural properties
of a given network [70]. In our experiments, we use both
degree-corrected and nested SBMs denoted as SBM(d) and
SBM(n) in the figures. We rely on the GRAPH-TOOL library [71]
in the procedures below. Given the observed data (network
adjacency matrix) D, and the prior probability density P(A, b)
given by the network block structure b that produces a network
with adjacency matrix A in the model, we reconstruct the full
network using the posterior distribution:

P(A, b|D) = P(D|A)P(A, b)

P(D)
, (B9)

where P(D|A) describes the measurement process of a net-
work. We avoid computing the normalization factor P(D) by
Markov Chain Monte Carlo (MCMC) sampling from the joint
posterior distribution P(A, b|D) as described in [4]. In our
experiments, we assume that each network link is observed
and measured once. A possible link (i, j) then has marginal
probability

πi j =
∑
A,b

ai jP(A, b|D). (B10)

To sample over (A, b) configurations, the MCMC algorithm is
initialized with the block structure obtained by the procedure
from [72]. The MCMC is equilibrated using 10|E | equilibra-
tion steps, where E is the set of links in a given network.
For the PGP network, due to its large size, we use only 2|E |
MCMC equilibration steps. Then T = 10 epochs of MCMC
iterations, 1000 swaps each, are performed to sample differ-
ent block-network configurations. After each epoch, marginal
link probabilities from Eq. (B10) are collected. These prob-
abilities are then averaged over the epochs to obtain a single
score used for link prediction:

sSBM
i j = 1

T

T∑
t=1

π
(t )
i j . (B11)

APPENDIX C: BASIC PROPERTIES OF THE RHG

The hyperbolic geometry inference algorithm relies on sev-
eral properties of the RHG, which we review in this section.

1. Degree distribution

RHGs are characterized by scale-free degree distributions,
P(k) ∼ k−γ , where γ = 2α + 1. Indeed, the expected degree
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of a node located at (r, θ ) is independent of its angular coor-
dinate θ , k(r, θ ) = k(r, 0) = k(r), and is given by

k(r) = (N − 1)
∫

dr′ρ(r′)
∫

dθ ′ρ(θ ′)p[x(r, 0, r′, θ ′)]

≈ 4Nα

2α − 1

T

sin πT
e−r/2 (C1)

(see [20]). The average degree of the model is given by

k =
∫

drρ(r)k(r) = 8Nα2

(2α − 1)2

T

sin πT
e−R/2. (C2)

As seen from Eq. (C2), k in the most general case depends on
the network size N .

To achieve sparse models with k independent of N one sets
the radius of the hyperbolic disk to

R(N ) = 2 ln(N/ν), (C3)

where ν > 0 is the tuning parameter, directly related to k.
Indeed, with R(N ) given by (C3),

k = 8να2

(2α − 1)2

T

sin πT
, (C4)

prescribing the value of ν for the target values of k, α, and T .
It has been shown in [73] that in the sparse limit the prob-

ability of a node located at (r, θ ) to have k connections can be
approximated with the Poisson distribution with the mean of
k(r):

P(k|r) = e−k(r) [k(r)]k

k!
. (C5)

Then the degree distribution of the RHG is

P(k) =
∫

drρ(r)P(k|r) ∼ k−γ , (C6)

γ = 2α + 1. (C7)

It follows from Eqs. (C1) and (C4) that model parameters α

and R can be used to control degree distribution exponent γ

and the average degree of the model, respectively.

a. Clustering coefficient

As seen from Eq. (6), connection probability p(x) de-
creases exponentially for distances x > R with the rate of 1

2 T .
Thus, the temperature parameter T tunes the role of large
distances in the formation of links: the higher the T the more
likely are long-distance connections. As a result, T controls
the clustering coefficient of the RHG. In the T → 0 limit
connections are only possible at hyperbolic distances x < R
and the clustering coefficient is maximized. Conversely, the
clustering coefficient decreases as T increases and vanishes
asymptotically in the T � 1 case [20].

APPENDIX D: HYPERLINK ACCURACY

In this section we calculate analytically the HYPERLINK

accuracy, in terms of AUC and AUPR, on RHGs with known
coordinates. Our results in this section are confirmed by the
numerical experiments in Sec. III and build our intuition for
Sec. IV, where we analyze HYPERLINK on RHGs and real
networks with inferred coordinates.

1. AUC

To understand the behavior of AUC scores as a function of
RHG parameters we define distance-dependent true positive
tpr(x) and false positive fpr(x) rates as the fractions of true and
false positives, respectively, contained among unconnected
node pairs separated by distances up to x:

tpr(x) = TP(x)

(1 − q)E
= 1

E

(
N

2

)∫ x

0
n(y)p(y)dy, (D1)

fpr(x) =
(N

2

) ∫ x
0 n(y)[1 − p(y)]dy(N

2

) − E
, (D2)

where E is the true number of links in the network, E = |	E ∪
	R|, p(y) is the connection probability in the RHG given by
Eq. (6), and n(y) is the distance distribution for node pairs in
the RHG, given by Eq. (27).

It is seen from Eqs. (D1) and (D2) that in the T →
0 limit p(y) = �(R − y), resulting in fpr(x) = 0 for x � R
and tpr(x) = 1 for x � R, resulting in the ideal ROC curve,
Fig. 2(a), and AUC = 1.

Using the expression for n(y) from Eq. (27), we can eval-
uate true and false positive rates, up to the proportionality
coefficient, as

tpr(x) ≈ 4α2

π (2α − 1)2

N2

E
e− R

2 I (e
x−R

2 ; T ), (D3)

fpr(x) ≈ 8α2

π (2α − 1)2
e−R[e

x
2 − e

R
2 I (e

x−R
2 ; T )], (D4)

where

I (z; T ) ≡
∫ z

0

dx

1 + x1/T
= z 2F1(1, T, 1 + T,−z1/T ), (D5)

and 2F1 is the Gaussian hypergeometric function. In the z � 1
regime I (z; T ) ≈ z and, thus, tpr(x) ∼ e

x−R
2 and fpr(x) ≈ 0 for

x < R, Figs. 4(a) and 4(b).
In the z � 1 regime I (z; T ) ≈ I (T ), where I (T ) =
π

T sin (π/T ) , explaining the saturation of the true positive rate,
tpr(x) → 1 as x approaches 2R, and the exponential growth
of the false positive rate, fpr(x) ∼ e

x
2 for x > R, Figs. 4(a) and

4(b).
To obtain the analytical estimate of the AUC as a function

of RHG parameters we represent it as

AUC =
∫ 2R

0
tpr(x)fpr′(x)dx. (D6)

By making use of Eqs. (D1) and (D2) we arrive at

AUC = 1 − �1 − �2, (D7)

�1 = E(N
2

) , (D8)

�2 = − 1

E

(
N

2

)∫ 2R

0
[nc(x)]2 p′(x)dx, (D9)

where nc(x) ≡ ∫ x
0 n(y)dy.

In the case of sparse networks the first correction term
�1 ∼ N−1 and can be ignored in the large N limit. The second
correction term requires further analysis. It is straightforward
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to verify that in the T → 0 limit �2 ∼ N−1 and can also be
ignored. Indeed, in this case p′(x) = −δ(x − R), and

�2(T = 0) = 1

E

(
N

2

)
[nc(R)]2. (D10)

Since
(N

2

)
[nc(R)] equals the number of node pairs in the hy-

perbolic disk with distances up to R and all these node pairs
are connected in the T → 0 case,

(N
2

)
[nc(R)] = E , resulting

in �2(T = 0) = E
(N

2 ) ∼ N−1.

To estimate the behavior of �2 in the case of T > 0 we
need to understand the behavior of its integrand in Eq. (D9).
Since nc(x) ∼ e

x
2 and −p′(x) = 1

2T exp ( x−R
2T )[p(x)]2, the inte-

grand is sharply peaked at x = R + 2T ln ( 1+T
1−T ) in the case of

T ∈ (0, 1
2 ), resulting in �2 ∼ N−1, similar to the T → 0 case.

Conversely, the integrand in Eq. (D9) grows monotonously
as a function of x in the case of T ∈ ( 1

2 , 1). The evaluation
of �2 in this regime is quite involved and is not informative.
Instead, we elect to compute the upper bound for �2, which
also provides the lower bound for AUC scores. In doing so we
note that the leading term behavior of n(x) given by Eq. (27)
is also its upper bound [50]. Then

�2 � 2α2e−R
(N

2

)
πT (2α − 1)2E

∫ 2R

0

e(x−R)(1+ 1
2T )dx[

1 + e
x−R
2T

]2 ∼ N1− 1
T , (D11)

since e
R
2 ∼ N in the case of sparse RHGs, Eq. (C3). In the

case of T = 1
2 Eq. (D11) simplifies to

�2 � 4α2e−R
(N

2

)
π (2α − 1)2E

∫ 2R

0

e2(x−R)dx

[1 + ex−R]2
∼ ln N

N
. (D12)

Taken together, the results above show that the AUC scores
for RHGs with known coordinates converge to 1 in the large
N limit as

1 − AUC

⎧⎪⎨⎪⎩
∼N−1 if T ∈ [

0, 1
2

)
,

=O
(

ln N
N

)
ifT = 1

2 ,

=O
(
N1− 1

T

)
ifT ∈ (

1
2 , 1

)
.

(D13)

2. AUPR

AUPR scores can be evaluated in a similar fashion:

AUPR =
∫ 2R

0
pr(x)rc′(x)dx, (D14)

where pr(x) and rc(x) are, respectively, distance-dependent
precision and recall functions for hyperbolic distances up
to x:

pr(x) ≡ TP(x)

Nd (x)
, (D15)

rc(x) ≡ tpr(x) = TP(x)

(1 − q)E
, (D16)

where Nd (x) is the number of disconnected node pairs with
distances up to x:

Nd (x) =
(

N

2

) ∫ x

0
n(y)[1 − qp(y)]dy. (D17)

Using Eqs. (D1) and (D17) we obtain

pr(x) = (1 − q)

∫ x
0 n(y)p(y)dy∫ x

0 n(y)[1 − qp(y)]dy
, (D18)

rc(x) = 1

E

(
N

2

)∫ x

0
n(y)p(y)dy. (D19)

In the T → 0 limit pr(x) = 1 for all x < R, while rc(x) =
E (x)/E , resulting, as expected, in AUPR = 1. Here E (x) is
the cumulative number of links between the node pairs with
distances up to x.

In the T > 0 case we rely on Eqs. (D1), (27), and (D17) to
obtain

TP(x) ≈ 4α2(1 − q)

π (2α − 1)2

(
N

2

)
e− R

2 I (e
x−R

2 ; T ), (D20)

pr(x) ≈ (1 − q)I (e
x−R

2 ; T )

e
x−R

2 − qI (e
x−R

2 ; T )
, (D21)

where I (z; T ) is given by Eq. (D5).
In the x � R regime I (e

x−R
2 ; T ) ∼ e

x−R
2 and pr(x) → 1. In

the x � R case I (e
x−R

2 ; T ) ∼ π
T sin (π/T ) , and, as a result, pre-

cision decays exponentially, pr(x) ∼ e−x/2, independent of T ,
Fig. 4(c).

The dependence of AUPR on T arises from the recall
function or its derivative, rc′(x), quantifying the expected
distance-dependent link density and, consequently, the density
of missing links:

rc′(x) = 1

E

(
N

2

)
n(x)p(x). (D22)

Ec(x) grows exponentially as ex/2 for x � R values and decays
as ex(1− 1

T ) for x � R, reaching the maximum at x∗ = R −
2T ln ( 1

T − 1), Fig. 4(d). Thus, as T increases, the missing
links are more likely to be located at larger distances where
precision pr(x) is smaller, resulting in lower AUPR scores,
consistent with the observations in Fig. 3.

APPENDIX E: EFFECTS OF COORDINATE
UNCERTAINTY ON HYPERLINK ACCURACY

To understand the effects of coordinate uncertainties on HY-
PERLINK accuracy we model coordinate inference uncertainty
as synthetic noise that we add to true angular coordinates
of the RHG. In the following we first generate RHG as de-
scribed in Sec. II B and then simulate uncertainties of angular
coordinates by adding synthetic noise to original angular co-
ordinates:

θ̂i = θi + aXi, (E1)

Xi ← U
(
−π

2
,
π

2

)
, (E2)

where a > 0 is the noise amplitude. Further, we conduct link
prediction experiments by calculating latent distances with
uncertain coordinates:

x̂i j = x(ri, θ̂i, r j, θ̂ j ), (E3)

where x is calculated according to the hyperbolic law of
cosines, Eq. (3).
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1. Link prediction with noise

In the case of synthetic noise, the AUPR scores are still
given by Eq. (29) with effective precision and recall rates
pr(y|a) and rc(y|a) evaluated in the presence of noise. To
calculate these rates we start with the effective true positive
rate TP(y|a).

To this end, we first define the subgraph Gy obtained from
the RHG G by keeping only links between node pairs sepa-
rated by distances at most y. Then, it is easy to realize that the
true positive rate TP(y) is proportional to the expected degree
ky of the Gy:

TP(y) = (1 − q)
N

2
ky. (E4)

ky can be calculated using the hidden variable formalism:

ky = (N − 1)
∫

· · ·
∫

x(r1,θ1,r2,θ2 )�y
dr1dr2dθ1dθ2ρ(r1)ρ(r2)

× ρ(θ1)ρ(θ2)p[x(r1, θ1, r2, θ2)]. (E5)

To account for noise we next define noisy subgraph Gy(a)
as follows. First, noise is added to node coordinates of the
original RHG as prescribed by Eq. (30) and hyperbolic dis-
tances between nodes are recalculated using the updated
coordinates. Second, Gy(a) is formed from RHG by keeping
connections at recalculated distances up to y. It is then easy
to see that the thought true positive rate is given by

TP(y|a) = (1 − q)
N

2
ky(a), (E6)

where ky(a) is the average degree of noisy subgraph Gy(a).
After a series of tedious calculations, which we detail in

Appendix E 2, we obtain the leading-order behavior of ky(a):

ky(a) ∼
{

Ng(y)a1−2α if R
2 � y � R,

Ng(y)a1−2α
[
R + 2 ln a

2

]
ify > R,

(E7)

where α ∈ ( 1
2 , 1) is the radial node density parameter in

Eq. (5) corresponding to degree distribution exponent γ =
2α + 1. Similar to the noiseless case, g(y) grows as exp ( y

2 )
for y � R and saturates to a constant value, corresponding to
ky(a) = k as y → 2R, Fig. 14(a).

Using Eq. (D18) one can rewrite the distance-dependent
precision function as

pr(y|a) = TP(y|a)(N
2

) ∫ y
0 n(y′|a)dy′ − q

1−q TP(y|a)
, (E8)

where n(y|a) is the node pair distribution in the hyperbolic
disk with coordinate noise.

Due to the uniform initial angular distribution ρ(θ ), the
node pair distribution is independent of noise, n(y|a) = n(y),
Fig. 14(b). Further, in the case of sufficiently large noise
amplitude a, TP(y|a) � (N

2

) ∫ y
0 n(y′|a)dy′ and

pr(y|a) ≈ TP(y|a)(N
2

) ∫ y
0 n(y′)dy′ . (E9)

As a result, in the case y � R, pr(y|a) ∼ a1−2α , Fig. 14(c).

FIG. 14. HYPERLINK accuracy in case of coordinate uncertainty.
All plots correspond to RHGs of N = 105 nodes, γ = 2.5 (α =
0.75), T = 0.1, and k = 10. (a) Distance-dependent true positive
rate TP(x|a) evaluated for different noise amplitude values. For
x < R, TP(x|a) grows as ex/2 (see the dashed line for the refer-
ence). The inset tests the scaling of TP(x|a) ∼ a1−2α for x < R.
(b) The cumulative number of node pairs in the hyperbolic disk as
a function of hyperbolic distance between the nodes. Note that the
cumulative number of node pairs is independent of noise amplitude.
(c) Distance-dependent precision rate pr(x|a) for different a values.
pr(x|a) is nearly constant for x < R since both TP(x|a) and n(x|a)
grow as ex/2. pr(x|a) decays as e−x/2 for x > R. The inset tests
the scaling of pr(x|a) ∼ a1−2α for x < R. (d) The scaling test for
AUPR(a) of the RHG with N = 5000, γ = 2.5, and k = 10. Note
that a4α−2AUPR(a) grows linearly as a function of (R + 2 ln a

2 )2,
confirming Eq. (E11).

Since the distance-dependent recall function is propor-
tional to the true positive rate,

rc(y|a) = TP(y|a)

(1 − q)E
. (E10)

The resulting AUPR score scales as

AUPR(a) ∼ a2−4α

[
A + B

(
R + 2 ln

a

2

)2
]
, (E11)

where

A = 1 − q

E

(
N

2

) ∫ R

R
2

dyg(y)g′(y)

nc(y)
, (E12)

B = 1 − q

E

(
N

2

) ∫ 2R

R

dyg(y)g′(y)

nc(y)
(E13)

[see Fig. 14(d)].
This result suggests that the impact of coordinate uncer-

tainty on link prediction is higher in RHG with larger γ =
2α + 1 values. Intuitively, this is the case since networks with
larger γ values have larger fractions of small degree nodes.
Small degree nodes in the RHG are characterized by large
radial coordinates, and the hyperbolic distance between the
point with large radial coordinates is most affected by angular
coordinate uncertainties.
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2. The average degree of the noisy subgraph

Here we derive the leading term behavior of the average
degree of the noisy subgraph Gy(a) as a function of noise
amplitude a.

As shown in the subsection above, the number of true
positives TP(y|a) is related to the average degree of noisy
subgraph Gy(a). To define Gy(a) we add uniform noise of
amplitude a to original angular coordinates of the RHG and
calculate noisy hyperbolic distances x̂i j between all node pairs
using noisy coordinates. Gy(a) is the RHG subgraph formed
by node pairs with noisy hyperbolic distances x̂i j < y. The
average degree of Gy(a) is given by

ky(a) = (N − 1)
∫

· · ·
∫

x(r1,θ̂1,r2,θ̂2 )�y
dr1dr2d θ̂1dθ1d θ̂2dθ2

× ρ(r1)ρ(r2)ρ(θ̂1)ρ(θ1|θ̂1)ρ(θ̂2)ρ(θ1|θ̂2)

× p[x(r1, θ1, r2, θ2)]. (E14)

Here ρ(r) is given by Eq. (5), and ρ(θ |θ̂ ) is the conditional
probability of the true angle θ , given inferred angle θ̂ . In case
of the uniform noise, ρ(θ |θ̂ ) is also a uniform distribution
centered at θ̂ :

ρ(θ |θ̂ ) = U (θ̂ − a/2, θ̂ + a/2), (E15)

while

ρ(θ̂ ) = ρ(θ ) = 1

2π
. (E16)

Throughout the calculation of ky(a) we will rely on the
number of assumptions. We are primarily interested in RHGs
with 2 < γ < 3, which correspond to 1

2 < α < 1. To identify
leading terms we will also recall the scaling of R with the
system size, N ∼ e

R
2 .

Since hyperbolic distance x in Eq. (3) depends on θ1 and θ2

only through their difference,

x(r1, θ1, r2, θ2) = x(r1, r2,�θ12), (E17)

�θ12 ≡ π − |π − |θ1 − θ2||, (E18)

and angles distributed uniformly on [−π, π ], ρ(θ̂1,2) = 1
2π

,
we can simplify Eq. (E14) as

ky(a) = N

(2π )2

∫
· · ·

∫
x(r1,r2,�θ̂12 )�y

dr1dr2ρ(r1)ρ(r2)d θ̂1d θ̂2

× d�θ12ρ̃(�θ12|�θ̂12)p[x(r1, r2,�θ12)], (E19)

where

ρ̃(�θ12|�θ̂12) = 1

a2
�(a − |�θ12 − �θ̂12|), (E20)

and �[x] is the Heaviside theta function. Similar to the cal-
culation of k in the RHGs [20], we can rewrite Eq. (E19) as

ky(a) =
∫ R

0
dr1ρ(r1)ky(r1|a), (E21)

where ky(r|a) is the average degree of node with radial coor-
dinate r in noisy subgraph Gy(a):

ky(r1|a) = N

(2π )

∫
· · ·

∫
x(r1,r2,φ̂)�y

dr2ρ(r2)dφ̂dφρ̃(φ|φ̂)

× p[x(r1, r2, φ)], (E22)

and angles φ ≡ �θ12 and φ̂ ≡ �θ̂12 are introduced to ease the
notation.

To evaluate ky(r1|a) we note that the integration region in
Eq. (E22) is given by intersection of two hyperbolic disks. The
first one is of radius R and is centered at the coordinate system
origin, (0,0). The second disk is of radius y and is centered at
(r1, 0).

We perform the integration for the two regimes of y ∈
[ R

2 , R] and [R, 2R] separately. We do not perform the inte-
gration for the y ∈ [0, R

2 ] regime since the number of true
positives here is much smaller than that in the other two
regimes. This is the case since n(y) grows exponentially with
y, n(y) ∼ e

y
2 . Consequently, the number of possible true posi-

tives in the y ∈ [0, R
2 ] regime is much smaller than that in the

y ∈ [ R
2 , R] regime.

a. y ∈ [ R
2 , R]

To evaluate ky(r1|a) we perform the integration over r1

and r2 values over the domain shown in Fig. 15(d). Based
on this domain, it is convenient to split the integration over
r1 into three regions, 0 � r1 � R − y, R − y � r1 � y, and
y � r1 � R. However, due to specifics of the approximation
techniques, it is more convenient to split the integration not
into three but into five regions—(i) 0 � r1 � R−y

2 − ln a
2 , (ii)

R−y
2 − ln a

2 � r1 � R − y, (iii) R − y � r1 � y, (iv) y � r1 �
R+y

2 − ln a
2 , and (v) R+y

2 − ln a
2 � R—which we depict for

convenience in Fig. 15(d) with vertical dashed lines. We
evaluate the contributions to ky(r1|a) from each of these five
regions below.

Region I: 0 � r1 � R−y
2 − ln a

2 . In this region the disk y is
fully contained within the disk R. Further, since y > R/2, disk
y is guaranteed to include the coordinate system origin for all
r1 ∈ [0, R − y] values, Fig. 15(a). In this case the integral in
ky(r1|a) can be evaluated as

ky(r1|a) = I1 + I2, (E23)

I1 = N

2π

∫ y−r1

0
dr2ρ(r2)

∫ 2π

0
dφ̂

∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)], (E24)

I2 = N

π

∫ y+r1

y−r1

dr2ρ(r2)
∫ φy

0
dφ̂

∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)], (E25)
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FIG. 15. Integration domain for ky(a) in the case y < R. The integration is performed at the intersection of two hyperbolic disks. The first
disk (yellow) corresponds to the latent space of the RHG, has radius R, and is centered at the origin. The second disk (blue) has radius y and
is centered at (r1, 0). The third disk depicts the integration radius r2 that sweeps the integration domain. Angle φy ≈ 2ey−r1−r2 corresponds
to the intersection of disks y and r2. Based on R, y, and r1 values we distinguish three configurations. (a) Disk y contains the origin and is
fully contained within R, regions I and II. (b) Disk y contains the origin and is partially contained within R, region III. (c) Disk y does not
contain the origin and is partially contained within R, regions IV and V. (d) The shaded region corresponds to the integration domain for ky(a).
Vertical dashed lines separate the five integration regions. Phase space below the blue dashed line corresponds to the case of the disk r2 fully
contained within the disk y. Phase space above the blue line corresponds to the case of disk r2 intersecting disk y. The red dashed line is given
by r2 + r1 = R − 2 ln ( a

2 ) and corresponds to the loci of the integrand maxima in regions II, III, and IV.

where φy is the angle given by the intersection of the disk
with radius r2 centered at r = 0 and that of radius y, centered
at r = r1. To estimate φy we consider the triangle formed by
the origin (0,0), disk y centered at (r1, 0), and the intersection
of r2 with y. The triangle has sides equal to r1, r2, and y with
φy being the angle between r1 and r2. Thus, φy is given by the
hyperbolic law of cosines:

cosh y = cosh r1 cosh r2 − sinh r1 sinh r2 cos φy. (E26)

In the case of sufficiently large r1, r2, and y values we can
approximate cos φy as

cos φy ≈ 1 − 2ey−r1−r2 . (E27)

Since φ̂ in the first integral sweeps the entire 2π angle, I1

is given by

I1 = N

2π

∫ y−r1

0
dr2ρ(r2)

∫ 2π

0
dφ̂p[x(r1, r2, φ̂)]. (E28)

Then, since x(r1, r2, φ̂) � r1 + r2 � R, p[x(r1, r2, φ̂)] ≈ 1,
leading to

I1 = Neα(y−r1−R). (E29)

The evaluation of I2 is more involved and requires further ap-
proximations. We notice that φy � 1 since r2 ∈ [y − r1, y +
r1], which can be further approximated as

φy ≈ 2e
y−r1−r2

2 . (E30)

Then, for sufficiently large noise amplitudes a � φy, we can

approximate the integral
∫ φ̂+a
φ̂−a

dφ as 2
∫ a

0 dφ, resulting in

I2 = 2N

πa2

∫ y+r1

y−r1

dr2ρ(r2)φy

∫ a

0

dφ(a − φ)

1 + exp
( x(r1,r2,φ)−R

2T

) .

(E31)

043113-23



KITSAK, VOITALOV, AND KRIOUKOV PHYSICAL REVIEW RESEARCH 2, 043113 (2020)

Since r1 <
R−y

2 − ln a
2 , r2 < y + r1, and y < R, it follows

that x(r1, r2, φ) < r1 + r2 + 2 ln a
2 < R, and, as a result,

exp( x(r1,r2,φ)−R
2T ) � 1, resulting in

I2 = 4αN

π (2α − 1)
e−αReαye(α−1)r1 . (E32)

Since γ > 2 case (α > 1
2 ), I2 � I1, and

ky(r1|a) ≈ I2 = 4αN

π (2α − 1)
e−αReαye(α−1)r1 . (E33)

Region II: R−y
2 − ln a

2 � r1 � R − y. Similar to region I,
the hyperbolic disk y fully lies within disk R, Fig. 15(a). Thus,
ky(r1|a) is given by the same expression:

ky(r1|a) = I3 + I4, (E34)

I3 = N

2π

∫ y−r1

0
dr2ρ(r2)

∫ 2π

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)], (E35)

I4 = N

π

∫ y+r1

y−r1

dr2ρ(r2)
∫ φy

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)]. (E36)

The calculation of I3 is identical to that of I1, resulting in

I3 = I1 = Neα(y−r1−R). (E37)

Different from region I is the calculation of I4. Indeed,
in the case r1 � R−y

2 + ln a
2 , and r2 ∈ [y − r1, y + r1], hy-

perbolic distance x(r1, r2, φ) is no longer guaranteed to be
smaller than R, and p[x(r1, r2, φ)] can no longer be approx-
imated by unity. We first split I4 into two parts and calculate
them separately:

I4 = I4,1 − I4,2, (E38)

where

I4,1 = N

πa

∫ y+r1

y−r1

dr2ρ(r2)φy

×
∫ a

0

dφ

1 + exp
( x(r1,r2,φ)−R

2T

) , (E39)

I4,2 = N

πa2

∫ y+r1

y−r1

dr2ρ(r2)φy

×
∫ a

0

φdφ

1 + exp
( x(r1,r2,φ)−R

2T

) . (E40)

By approximating the hyperbolic law of cosines in Eq. (3) as
x(r1, r2, φ) ≈ r1 + r2 + 2 ln φ

2 and making use of Eq. (E30)
we obtain for I41

I4,1 = 4αN

πa
e( 1

2 −α)Re
y
2 e−r1

×
∫ y+r1

y−r1

dr2e(α−1)r2 I
(a

2
e

r1+r2−R
2 ; T

)
, (E41)

where I (z; T ) ≡ ∫ z
0

dx

1+x
1
T

is the same function as

in Eq. (D5).
Recall that for small z � 1 function I (z; T ) ≈ z, while, for

z � 1, I (z; T ) ≈ I (T ) = π
T sin ( π

T ) . With these approximations
in mind we split the integration in I41 into two subregions:∫ y+r1

y−r1

dr2 =
∫ R−r1−2 ln a

2

y−r1

dr2 +
∫ y+r1

R−r1−2 ln a
2

dr2. (E42)

In the first subregion, r2 ∈ [y − r1, R − r1 − 2 ln a
2 ],

and a
2 e

r1+r2−R
2 � 1, which allows us to approximate

I ( a
2 e

r1+r2−R
2 ; T ) ≈ a

2 e
r1+r2−R

2 . In the second subregion, r2 ∈
[R − r1 − 2 ln a

2 , y + r1], a
2 e

r1+r2−R
2 � 1, and I ( a

2 e
r1+r2−R

2 ; T ) ≈
I (T ). Using these approximations we obtain, to the leading
order,

I4,1 = 2Nα

π

[
2

2α − 1
+ I (T )

1 − α

]
e

y−R
2 e−αr1

(a

2

)1−2α

. (E43)

Following the same approximation steps,

I4,2 = 2Nα

π

[
1

2α − 1
+ 2Ĩ (T )

3 − 2α

]
e

y−R
2 e−αr1

(a

2

)1−2α

(E44)

where

Ĩ (T ) ≡
∫ ∞

0

xdx

1 + x
1
T

= πT

sin(2πT )
(E45)

in the case T < 1/2.
Taken together, I4,1 and I4,2 result in

I4 = 2Nα

π

[
1

2α − 1
+ 2I (T )

1 − α
− 8Ĩ (T )

3 − 2α

]
× e

y−R
2 e−αr1

(a

2

)1−2α

. (E46)

Finally, since y < R, we conclude that I3 � I4, resulting in

ky(r1|a) ≈ 2Nα

π

[
1

2α − 1
+ I (T )

1 − α
− 2Ĩ (T )

3 − 2α

]
× e

y−R
2 e−αr1

(a

2

)1−2α

(E47)

for R−y
2 − ln a

2 � r1 � R − y.
Region III: R − y � r1 � y. In this region disk y is partially

contained within the disk R. Since r1 � y, disk y still contains
the coordinate system origin, Fig. 15(b). Similar to regions I
and II, we split the calculation of ky(r1|a) into two parts:

ky(r1|a) = I5 + I6, (E48)

I5 = N

2π

∫ y−r1

0
dr2ρ(r2)

∫ 2π

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)], (E49)

I6 = N

π

∫ R

y−r1

dr2ρ(r2)
∫ φy

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)], (E50)
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where φy � 1 is the intersection angle of disk r2 with that of
y, Fig. 15(b), and is given by Eq. (E30).

We first note that the integral in I5 is identical to those in
I3 and I1:

I5 = I1 = Neα(y−r1−R). (E51)

The integration in I6 is very similar to that in I4 with the
only difference in the upper integration bound of r2 � R. The
evaluation of I6 is, therefore, straightforward and requires the
same approximation steps as in I4. A quicker estimate can
be obtained by noting that the upper bound for r2 in I4 does
not contribute to the leading term. The reason is that I42 is
dominated by r2 in the vicinity of the r2 = R − r1 − 2 ln a

2
point.

Since R > R − r1 − 2 ln a
2 > y − r1

I6 =
∫ R−r1−2 ln a

2

y−r1

dr2 +
∫ R

R−r1−2 ln a
2

dr2 (E52)

with integrands identical to those of I41 and I42. Since the in-
tegrand in I42 is dominated by smaller r2 values we conclude
that

I6 = I4. (E53)

Finally, I6 dominates I5 for α > 1
2 , resulting in

ky(r1|a) ≈ 2Nα

π

[
1

2α − 1
+ I (T )

1 − α
− 2Ĩ (T )

3 − 2α

]
× e

y−R
2 e−αr1

(a

2

)1−2α

(E54)

for R − y � r1 � y.
Region IV: y � r1 � R+y

2 − ln a
2 . In this region, hyperbolic

disk y is partially contained within R and does not include the
origin, Fig. 15(c). Therefore, in this region

ky(r1|a) = N

π

∫ R

r1−y
dr2ρ(r2)

∫ φy

0

dφ̂

∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)]. (E55)

Using the arguments similar to that of region III, we obtain

ky(r1|a) ≈ 2Nα

π

[
1

2α − 1
+ I (T )

1 − α
− 2Ĩ (T )

3 − 2α

]
× e

y−R
2 e−αr1

(a

2

)1−2α

(E56)

for y � r1 � R+y
2 − ln a

2 .
Region V: R+y

2 − ln a
2 � r1 � R. Similar to the situation in

region IV, hyperbolic disk y intersects disk R and does not
include the coordinate system origin. Different from region
IV is the r2 = R − r1 − 2 ln a

2 point that lies outside the r2

integration region and we can no longer relate ky(r1|a) to
those in other regions.

To evaluate

ky(r1|a) = N

π

∫ R

r1−y
dr2ρ(r2)

∫ φy

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)] (E57)

we recall that φy � 1, and for sufficiently large a � φy we
obtain

ky(r1|a) = I7 − I8, (E58)

I7 = N

πa

∫ R

r1−y
dr2ρ(r2)φy

∫ a

0

dφ

1 + exp
( x(r1,r2,φ)−R

2T

) ,

(E59)

I8 = N

πa2

∫ R

r1−y
dr2ρ(r2)φy

∫ a

0

φdφ

1 + exp
( x(r1,r2,φ)−R

2T

) .

(E60)

After straightforward approximations we obtain

ky(r1|a) = 4αN

πa
e( 1

2 −α)Re( 3
2 −α)ye(α−2)r1

[
I (T )

1 − α
− 4Ĩ (T )

a(3 − 2α)
e

R+y
2 −r1

]
(E61)

for R+y
2 − ln a

2 � r1 � R
Merged together, Eqs. (E33), (E47), (E54), (E56), and (E61) provide the solution for ky(r1|a):

ky(r1|a) ≈

⎧⎪⎪⎨⎪⎪⎩
4αN

π (2α−1) e
−αReαye(α−1)r1 if 0 � r1 � R−y

2 − ln a
2 ,

2Nα
π

[
1

2α−1 + I (T )
1−α

− 2 ˜I (T )
3−2α

]
e

y−R
2 e−αr1

(
a
2

)1−2α
if R−y

2 − ln a
2 � r1 � R+y

2 − ln a
2 ,

4αN
πa e

(
1
2 −α

)
Re

(
3
2 −α

)
ye(α−2)r1

[ I (T )
1−α

− 4Ĩ (T )
a(3−2α) e

R+y
2 −r1

]
if R+y

2 − ln a
2 � r1 � R.

(E62)

Using Eq. (E62) together with Eq. (E21) we finally obtain

ky(a) ∼ Ne−(α+ 1
2 )Re

y
2 a1−2α. (E63)

b. y ∈ [R, 2R]

In the regime y � R hyperbolic disk y always contains the origin, Fig. 16. To evaluate ky(r1|a) in this regime we need to
distinguish two cases, (VI) 0 � r1 � y − R and (VII) y − R � r1 � R.
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Region VI: 0 � r1 � y − R. In this regime hyperbolic disk
R is fully contained within hyperbolic disk y, Fig. 16(a),
and ky(r1|a) = k(r1), where k(r1) is the average degree of
a node at r1 in the RHG. Indeed, radial coordinates of all
points are within disk R, and all distances from point (r1, 0)
to any point within disk R are guaranteed to be smaller than
y, x(r1, 0, r2, θ ) < y for any θ ∈ [0, 2π ]. Therefore in this
regime

ky(r1|a) = N

2π

∫ R

0
dr2ρ(r2)

∫ 2π

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)]. (E64)

Since the integral over φ̂ sweeps the entire circle, θ̂ ∈ [0, 2π ],
synthetic noise does not affect the integration:

ky(r1|a) = N

2π

∫ R

0
dr2ρ(r2)

∫ 2π

0
dφp[x(r1, r2, φ)] = k(r1),

(E65)

resulting in

ky(r1|a) = 4αNI (T )

(2α − 1)π
e− r1

2 (E66)

in the case 0 � r1 � y − R.
Region VII: R − y � r1 � R. In this regime hyperbolic disk

R is partially contained within y and the calculation of ky(r1|a)
splits into two integrals:

ky(r1|a) = I9 + I10, (E67)

I9 = N

2π

∫ y−r1

0
dr2ρ(r2)

∫ 2π

0
dφp[x(r1, r2, φ)] = k(r1),

(E68)

I10 = N

π

∫ R

y−r1

dr2ρ(r2)
∫ φy

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)], (E69)

where φy is the angle of intersection of disks R and y,
Fig. 16(b).

We note that the integration region for I9 is identical to
that of I1. Different from the case of I1 is the condition that
y > R. In this case x(r1, r2, φ) is no longer guaranteed to be
less than R, and p[x(r1, r2, φ)] cannot be approximated by 1.
We start evaluating I9 by performing the integration over φ,
which leads to

I9 = 2αN

π
e−(α− 1

2 )Re− r1
2

∫ y−r1

0
dr2e(α− 1

2 )r2 I
(π

2
e

r1+r2−R
2 ; T

)
,

(E70)

where I (z; T ) is given by Eq. (D5). Recall that I (z; T ) ≈ z
if z � 1 and I (z; T ) ≈ I (T ) in case x � 1. Thus, to evaluate
I9 we split the integration over r2 into two integrals,

∫ y−r1

0 =∫ R−r1−2 ln π
2

0 + ∫ y−r1

R−r1−2 ln π
2
. In the first integral π

2 e
r1+r2−R

2 < 1

and we approximate I ( π
2 e

r1+r2−R
2 ; T ) ≈ π

2 e
r1+r2−R

2 , while in the

second integral π
2 e

r1+r2−R
2 > 1 and I ( π

2 e
r1+r2−R

2 ; T ) ≈ I (T ). The

FIG. 16. Integration domain for ky(a) at y > R. The integration is
performed at the intersection of two hyperbolic disks. The first disk
(yellow) corresponds to the latent space of the RHG, has radius R,
and is centered at the origin. The second disk (blue) has radius y and
is centered at (r1, 0). The third disk (green) depicts the integration
radius r2 that sweeps the integration domain. Angle φy corresponds
to the intersection of disks y and r2. Based on R, y, and r1 values, we
distinguish two configurations. (a) Disk y fully contains disk R, re-
gions VI. (b) Disk y overlaps within R, region VII. (c) The integration
domain ky(a) is shown by the shaded region. Vertical dashed lines
separate the domain into two integration regions, VI and VII. Region
VII further splits into subregions VIIA and VIIB. Phase space below
the blue dashed line corresponds to the case of disk r2 fully contained
within disks y and R. Phase space above the blue line corresponds to
the case of disk r2 intersecting disk y. The red dashed line is given
by r2 + r1 = R − 2 ln a

2 and corresponds to the loci of the integrand
maxima in region VII. The green dashed line corresponds to the R̃(r1)
line. By construction, φy � 1 for r2 � R̃(r1).
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remaining integration steps in I9 are straightforward, resulting
in

I9 ≈ 2αN

π
e−(α− 1

2 )Re−αr1

[
1

α

(π

2

)1−2α

eR(α− 1
2 )

+ 2I (T )

2α − 1
ey(α− 1

2 )
]
. (E71)

Finally, since y > R and α > 1
2 , we get

I9 ≈ 4αI (T )N

(2α − 1)π
e(α− 1

2 )(y−R)e−αr1 . (E72)

In order to calculate I10 we first need to estimate the cutoff
angle φy, which is given by the intersection of disks R and y,

and is given by Eq. (E27). φy takes values from φy ≈ 2e
y−2R

2 at
r1 = r2 = R to φy = π at r2 = y − r1. Thus, we can no longer
use the φy � a approximation, as in I2.

To proceed further we note that the integration domain in
I10 is given by the area above the r2 = y − r1 line, Fig. 16(c).
We recall that the integration in the case y < R is domi-
nated by points in the vicinity of the r1 + r2 = R − 2 ln a

2
line [see red dashed line in Fig. 15(c)]. Let us assume that
this is also the case in the y � R regime [see red dashed
line in Fig. 16(c)]. We next note that in the vicinity of the
r1 + r2 = R − 2 ln a

2 line cos φy ≈ 1 − 2ey−R−2 ln a
2 . For suffi-

ciently small noise amplitude, such that y < R − 2 ln a
2 , the

cutoff angle φy � 1 and can be approximated by Eq. (E30),
and we can employ the same approximation techniques as
in I2.

Our strategy now is to split the integration domain of I10

into two parts by the curve r2 = R̃(r1) such that (i) this curve is
below the r1 + r2 = R − 2 ln a

2 line and (ii) above this curve,
r2 > R̃(r1), the cutoff angle φy � 1. One possibility for such
a curve is the R̃(r1) = A − r1 line, where A = y+R

2 − ln a
2 [see

green dashed curve in Fig. 16(c)].
Then region VII splits into two subregions, VIIA and VIIB,

corresponding to r1 ∈ [y − R, 2 ln 2
a ] and r1 ∈ [2 ln 2

a , R], re-
spectively, Fig. 16(c). We expect the contribution to ky(a)
from VIIA to be much smaller than that from VIIB since the
latter contains the r1 + r2 = R − 2 ln a

2 line and the former
does not. Therefore, we will estimate the upper bound for
ky(r1|a) in VIIA by replacing φy with π . In subregion VIIB we
split the integration over r2 into two intervals, r2 ∈ [0, R̃(r1)]
and r2 ∈ [R̃(r1), R].

Subregion VIIA: y − R � r1 � 2 ln 2
a . Here the integral

splits into

ky(r1|a) = I11 + I12, (E73)

I11 = N

2π

∫ y−r1

0
dr2ρ(r2)

∫ 2π

0
dφp[x(r1, r2, φ)] = k(r1),

(E74)

I12 = N

π

∫ R

y−r1

dr2ρ(r2)
∫ φy

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)]. (E75)

Following our strategy, we evaluate the upper bound
for I12 by replacing the integration limit of φy

with π :

I12 � N

π

∫ R

y−r1

dr2ρ(r2)
∫ π

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)]. (E76)

Then,

ky(r1|a) � k(r1) = 4αNI (T )

(2α − 1)π
e− r1

2 (E77)

for y − R � r1 � 2 ln 2
a .

Subregion VIIB: 2 ln 2
a � r1 � R. Here we distinguish

three intervals:

ky(r1|a) = I13 + I14 + I15, (E78)

I13 = N

2π

∫ y−r1

0
dr2ρ(r2)

∫ 2π

0
dφp[x(r1, r2, φ)],

(E79)

I14 = N

π

∫ R̃(r1 )

y−r1

dr2ρ(r2)
∫ φy

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)], (E80)

I15 = N

π

∫ R

R̃(r1 )
dr2ρ(r2)

∫ φy

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)], (E81)

where R̃(r1) = y+R
2 − ln a

2 − r1.
We evaluate the upper bound for I14 by replacing the φy

cutoff with π :

I14 � N

2π

∫ R̃(r1 )

y−r1

dr2ρ(r2)
∫ 2π

0
dφ̂

×
∫ φ̂+a

φ̂−a
dφρ̃(φ|φ̂)p[x(r1, r2, φ)], (E82)

leading to

I13 + I14 � N

2π

∫ R̃(r1 )

0
dr2ρ(r2)

∫ 2π

0
dφp[x(r1, r2, φ)].

(E83)
After the same calculation steps as in I9 we obtain

I13 + I14 � 4αI (T )N

(2α − 1)π
e(α− 1

2 )(R̃(r1 )−R)e−αr1 . (E84)

To evaluate I15 we use the φy � 1 assumption, which
enables us to use Eq. (E30). This approximation holds since
r2 > R̃(r1). Then, by following the same simplification steps
as in I4 we obtain

I15 = I151 − I152, (E85)

I151 = N

πa

∫ R

R̃(r1 )
dr2ρ(r2)φy

∫ a

0

dφ

1 + exp
( x(r1,r2,φ)−R

2T

) ,

(E86)

043113-27



KITSAK, VOITALOV, AND KRIOUKOV PHYSICAL REVIEW RESEARCH 2, 043113 (2020)

I152 = N

πa2

∫ R

R̃(r1 )
dr2ρ(r2)φy

∫ a

0

φdφ

1 + exp
( x(r1,r2,φ)−R

2T

) .

(E87)

Following the same evaluation steps as in I4 we confirm that
both I151 and I152 are dominated by points in the vicinity of
r1 + r2 = R − 2 ln a

2 , resulting in

I15 = I4 = 2Nα

π

[
1

2α − 1
+ I (T )

1 − α
− 2Ĩ (T )

3 − 2α

]

× e
y−R

2 e−αr1

(a

2

)1−2α

. (E88)

By comparing Eqs. (E88) and (E84) we establish that I15 �
I13 + I14 since ˜R(r1) < R and y > R, confirming our hypoth-
esis and resulting in

ky(r1|a) ≈ I4 = 2Nα

π

[
1

2α − 1
+ 2I (T )

1 − α
− 8Ĩ (T )

3 − 2α

]
× e

y−R
2 e−αr1

(a

2

)1−2α

(E89)

in case 2 ln 2
a � r1 � R.

Taken together, our results for regions VI and VII read

ky(r1|a)

⎧⎪⎪⎨⎪⎪⎩
≈ 4αNI (T ))

π (2α−1) e− r1
2 if 0 � r1 � y − R,

� 4αNI (T )
(2α−1)π e− r1

2 if y − R � r1 � 2 ln 2
a ,

≈ 2Nα
π

[
1

2α−1 + I (T )
1−α

− 2Ĩ (T )
3−2α

]
e

y−R
2 e−αr1

(
a
2

)1−2α
if 2 ln 2

a � r1 � R.

(E90)

Using Eq. (E90) together with Eq. (E21) we finally obtain

ky(a) = k1
y (a) + k2

y (a), (E91)

k1
y (a) � 8α2NI (T )

π (2α − 1)2 e−αR
(a

2

)1−2α

, (E92)

k2
y (a) ≈ 2Nα2

π

[
1

2α − 1
+ 2I (T )

1 − α
− 8Ĩ (T )

3 − 2α

]
e

y−R
2 e−αR

(a

2

)1−2α[
R + 2 ln

a

2

]
. (E93)

Finally, we conclude that k2
y (a) � k1

y (a) since y > R,
which allows us to establish

ky(a) ∼ Ne−(α+ 1
2 )Re

y
2

(a

2

)1−2α[
R + 2 ln

a

2

]
(E94)

for y > R. Equation (E63) together with Eq. (E94) establish
the baseline for calculation of AUPR(a) in Appendix E1.

APPENDIX F: HYPERLINK EMBEDDER

The original hyperbolic geometry inference algorithm was
developed in [43] and is based on MLE. While the algorithm
is rather slow with the overall computational complexity of
O(N3), it has been shown to accurately infer node coordinates
in H2 leading to a number of promising applications ranging
from interdomain Internet routing [43] to understanding the
growth of large-scale networks [26].

In recent years hyperbolic geometry inference has become
an active area of research and a collection of alternative infer-
ence methods has been developed by different research teams
based on the MLE [55,56], Laplacian eigenmaps [57–59],
and ISOMAP [59]. Even though most of these methods are
characterized by relatively small computational complexity,
O(N ) − O(N2), their inference accuracy has not been well
explored.

At the same time, our initial experiments indicate that
even small node coordinate uncertainties drastically reduce
link prediction accuracy (Fig. 5). Therefore, to optimize link
prediction results one needs to maximize the accuracy of node
coordinate inference. To this end, we developed an enhanced

MLE-based geometry inference algorithm, which we outline
below.

1. General MLE formulation of hyperbolic geometry inference

Given the real network of interest with randomly removed
links, we aim to find the set of node coordinates {xi} ≡
{(ri, θi )}, i = 1, 2, . . . , N , in the hyperbolic disk H2 maximiz-
ing the probability L({xi}|ai j,P, q) that node coordinates take
particular values in the case the network is generated as the
RHG with a subsequent random link removal process. Here
ai j is the network’s observed adjacency matrix, and P is the
set of parameters of the RHG, P = {α, T, R}.

By the Bayes rule the thought probability is given by

L({xi}|ai j,P, q) = L(ai j |{xi},P, q)Prob(xi )

L(ai j |P, q)
, (F1)

where L(ai j |{xi},P, q) is the likelihood that network ai j is
generated as RHG with subsequent random link removal,
Prob(xi ) is the prior probability of node coordinates gener-
ated by the RHG, and L(ai j |P, q) is the probability that the
network has been generated as the RHG with random link
removal.

In the following we assume the uniform prior probability

Prob(xi ) = 1

(2π )N

N∏
i=1

ρ(ri ), (F2)
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where ρ(ri ) are given by Eq. (5). Since node pairs are con-
nected independently, the likelihood is given by

L(ai j |{xi},P, q) =
∏
i< j

[p̃(xi j )]
ai j [1 − p̃(xi j )]

1−ai j , (F3)

where p̃(xi j ) is the effective connection probability in the
RHG generation process with subsequent random link re-
moval:

p̃(x) ≡ qp(x), (F4)

where p(x) is the RHG connection probability function pre-
scribed by Eq. (6).

The MLE inference aims to find node coordinates x̂i max-
imizing the likelihood L({xi}|ai j,P, q) or, equivalently, its
logarithm:

lnL({xi}|ai j,P, q) = K +
N∑

i=1

ln ρ(ri ) +
∑
i< j

{ai j ln p̃(xi j )

+ (1 − ai j ) ln[1 − p̃(xi j )]}, (F5)

where constant K absorbs all terms independent of {xi}.
Our hyperbolic geometry inference procedure consists

of three components: (1) finite-size effects and model pa-
rameter inference, (2) MLE-based inference of radial node
coordinates, and (3) MLE-based inference of angular node
coordinates.

2. Finite-size effects and model parameter inference

The RHG has four parameters: the number of nodes N ,
hyperbolic disk radius R, node density parameter α, and tem-
perature T . To infer α we first estimate the degree distribution
exponent γ through the inspection of the network degree
distribution P(k). Node density α is related to γ through
Eq. (C7):

α = 1
2 (γ − 1). (F6)

The estimation of N and in R is less straightforward due to
finite-size effects. First, in a real network one normally can
only observe nodes with nonzero degrees. In contrast, the
RHG may generate nodes of zero degree, which are accounted
for in the calculation of the network’s average degree, k,
Eq. (C2).

Second, due to finite-size effects, there is a cutoff value for
the smallest node radius, R0, affecting 〈e−r/2〉 and, as a result,
the observable k(r) and k, Eqs. (C2) and (C1). Specifically,
with the radius cutoff R0

〈e−r/2〉(R0) =
∫ R

R0

e−r/2ρ(r)dr = 〈e−r/2〉λ(α, R − R0),

(F7)
where λ(α, x) is the finite-size correction coefficient:

λ(α, x) ≡ 1 − e−(α−1/2)x. (F8)

In the thermodynamic limit λ(α, (R − R0)) → 1 as

1 − λ(α, (R − R0)) ∼ N
1−2α

2α = N
2−γ

γ−1 . (F9)

However, in networks with α close to 1/2 (γ close 2) the rate
of λ convergence is slow and one needs to account for nonzero
R0.

Third, one needs to account for missing links that affect all
observable properties of the RHG. In the particular case links
are missing uniformly with probability 1 − q, the connection
probability function p(x) gets attenuated by the factor of q,
Eq. (F4), affecting all observable network properties.

Taken together, zero degree nodes, minimum radius cutoff,
and missing links affect observable network properties as
follows:

Ñ = N[1 − P(0)], (F10)

k̃ = q[λ(α, R − R0)]2

1 − P(0)
k, (F11)

k̃max ≈ qλ(α, R − R0)k
e−R0/2

〈e−r/2〉 , (F12)

where k̃max is the maximum degree observed in the network
and P(0) is the fraction of zero degree nodes in the net-
work. The latter can be estimated by averaging the conditional
degree distribution P(k = 0|r) in Eq. (C5) over possible r
values:

P(0) = 2ατ 2α�[−2α, τ ], (F13)

τ ≡ q[λ(α, R − R0)]k
e−R/2

〈e−r/2〉 , (F14)

where �[s, x] is the upper incomplete gamma function.
Equations (F10), (F11), (F12), (F13), and (F14) allow one

to infer the RHG parameters R0, R, N , as well as resulting k,
and P(0) by measuring observables Ñ , k̃, and k̃max. The caveat
here is that parameter estimation presumes the knowledge of
the missing link probability 1 − q. While this information is
available in our synthetic experiments, it may not be available
in real networks. In case the fraction of missing links is small,
one can assume that q = 1. The most general case of substan-
tially incomplete networks where q � 1 is beyond the scope
of this paper and will be studied elsewhere.

Finally, the temperature parameter T needs to be estimated
numerically by finding the solution of

c(T ) = c0, (F15)

where c0 is the average clustering coefficient of the network
of interest and c(T ) is the average clustering coefficient of the
RHG generated with temperature T . We utilize this approach
to infer T of real networks in Sec. IV B, while in experiments
with RHGs we use actual T values.

3. MLE-based inference of radial node coordinates

To infer radial node coordinates we extremize the loga-
rithm of the likelihood function,

∂

∂r�

lnL({xi}|ai j,P, q) = 0, (F16)

obtaining

2αT coth(αr�) +
∑

j

[
1 − p(x� j )

1 − qp(x� j )
[a�, j − qp(x�, j )]

]
∂x� j

∂r�

= 0. (F17)
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In the case of sufficiently large r values coth(αr�) ≈ 1. Fur-
ther, one can approximate x� j as

x� j = r� + r j + ln sin θ� j/2, (F18)

resulting in ∂x� j

∂r�
≈ 1. Taken together, these approximations

allow us to simplify Eq. (F17) as

2αT +
∑

j

a�, j − q
∑

j

p
(
x�, j

) = 0 (F19)

for 1 − q � 1. Note that the first summation in Eq. (F19) is
the degree of node �,

∑
j a� j = k�, while the second sum-

mation is the expected degree of the node with r�, k̃(r�) =
q

∑
j p(x�, j ). As a result, the value of r̂� extremizing the

likelihood is given by

k̃(r̂�) = k� + 2αT, (F20)

where k̃(r) is the observable expected degree of the node with
radial coordinate r. Since the latter is given by

k̃(r) = qλ(α, R − R0)k
e−r/2

〈e−r/2〉 , (F21)

one can estimate r̂� as

r̂� = 2 ln

[
qλ(α, R − R0)k

(k� + 2αT )〈e−r/2〉

]
. (F22)

4. MLE inference of angular node coordinates

To infer angular node coordinates one needs to maximize
the likelihood lnL({xi}|ai j,P, q) in Eq. (F5) with respect to
angular coordinates {θi}, given the MLE values for radial co-
ordinates {r̂i}. Since the maximization of lnL({xi}|ai j,P, q)
with respect to {θi} cannot be performed analytically, we
have to rely on numerical approximations. To this end, we
developed an MLE-based algorithm optimized for the linked
prediction problem.

Conceptually, our algorithm is similar to the one devel-
oped in [43] but has several important differences. Following
the exposition of [43], we make two observations based on
the link independence in RHG. First, angular coordinates
of any node subset S can be inferred independently (albeit,
with lower accuracy) based only on the partial information
contained in the graph GS formed by these nodes. In other
words, the inference of angular coordinates in S is possible
by maximizing the S-specific log likelihood:

lnL[GS] = 1

2

∑
{i, j}∈GS

{ai j ln p̃(xi j ) + (1 − ai j ) ln[1 − p̃(xi j )]}.

(F23)

Second, any log likelihood L[GS] can be represented as a sum
of local contributions L[GS]i:

lnL[GS] = 1

2

∑
i

lnL[GS]i, (F24)

where

lnL[GS]i =
∑

j �=i∈GS

{ai j ln p̃(xi j ) + (1 − ai j ) ln[1 − p̃(xi j )]}.

(F25)

FIG. 17. Layered network structure for MLE inference. Nodes
are sorted in the decreasing order of their degree and placed into
logarithmically sized layers. The outer layer contains only k = 1
nodes.

Since the log-likelihood profile lnL({xi}|ai j,P, q) is non-
convex with abundant local maxima, we do not intend to find
its global maximum by optimizing all angles at once. Instead,
we proceed in a nested fashion by organizing network nodes
into logarithmically sized layers with nodes of larger degree
belonging to inner layers. To this end, we define the set C
of all nodes with degrees k > 1. We then rank all nodes in
C in the decreasing order of their degree value, and split the
resulting node list into m layers with logarithmically growing
sizes si, i = 0, . . . , m − 1:

si+1 = �w × si�, (F26)

w = [N (k > 1)]1/m, (F27)

where N (k > 1) is the number of nodes with degree k > 1,
and s0 � N . Unless otherwise noted, we set s0 = 20. Finally,
all k = 1 nodes are assigned to the outer layer sm.

Complementary to layers {si}, we also define self-enclosed
cores {cri}, i = 0, . . . , m, such that core cri contains all layer
with indices j � i, cri = ∏i

j=0

⋃
s j , as well as the sequence

of nested subgraphs {Gi}, i = 0, . . . , m, spanned by the nodes
in corresponding cores, Fig. 17.

We start by inferring node angular coordinates i ∈ cr0 by
maximizing G0-specific likelihood lnL[G0]. We then utilize
the inferred angles {θi} ∈ cr0 as initial approximation to max-
imize lnL[G1]. We continue the angular coordinate inference
procedure in the nested fashion to find angular values maxi-
mizing lnL[Gm]:

lnL[G0] → lnL[G1] → . . . → lnL[Gm]. (F28)

We maximize each log likelihood lnL[G�] iteratively by
visiting G� nodes in rounds. At each round every node i in
G� is visited once and placed at θ̂i maximizing its local log
likelihood L[GS]i with respect to the current angular values of
other nodes in G�. The procedure is continued until we arrive
at the stable angular configuration:

maxi∈G�
�θ̂i < ε, (F29)

where 0 < ε � 1 is the precision parameter and �θ̂i is the
angular difference between angular positions of node i in two
consecutive rounds. In our experiments we set ε = 10−4 rad.
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Algorithm 1 Angular MLE Inference

organize network nodes into layers {si} and cores {cri}, i = 0, 1, ..., m.
define the sequence of subgraphs {Gi} spanned by nodes in {cri}.
for iter = 0 to max_iter do

for � = 0 to �m/2� (first half) do
assign random angle values, θi ← U [0, 2π ], to nodes in s�.
Other nodes in G� retain their previous angular positions.
a(�) ← π

4 (1 − �

m ) + a0.
for all nodes i in G� do

Xi ← U (− π

2 , π

2 ).
θ̂i ← θ̂i + a(�)Xi.

end for
repeat

for all nodes i in G� do
θ̂i ← argmax lnL[G�]i, see Algorithm 2.

end for
until (maxi∈G�

�θ̂i < ε) or (# rounds > max_rounds)
end for
compute resulting log-likelihood lnL[G�m/2�] value and save corresponding {θi} values.

end for
continue with {θi} values corresponding to the largest lnL[G�m/2�].
for � = �m/2� + 1 to m (second half) do

assign random {θi} values to nodes in s�. Other nodes in G� retain their previous angular positions.
repeat

for all nodes i in G� do
θ̂i ← argmax lnL[G�]i, see Algorithm 2.

end for
until (maxi∈G�

�θ̂i < ε) or (# rounds > max_rounds)
a(�) ← π

4 (1 − �

m ) + a0.
for all nodes i in G� do

Xi ← U (− π

2 , π

2 ).
θ̂i ← θ̂i + a(�)Xi.

end for
end for
for 20 iterations do

for all nodes i in G
Xi ← U (− π

2 , π

2 ).
θ̂i ← θ̂i + a0Xi.

end for
for all nodes i in G do

θ̂i ← argmax lnL[G]i, see Algorithm 2.
end for

end for

The required total number of all-node visit rounds is typ-
ically small, of the order of the network average degree. In
certain circumstances, e.g., in the case of the global lnL[G�]
maximum close to the second largest maximum, the procedure
may require a large number of rounds to converge. To avoid
these scenarios we limit the maximum number of rounds to
10 per G�.

Our experiments indicate that the resulting HYPERLINK

link prediction accuracy is highly sensitive to the correct
placement of highest degree nodes. Thus, to further improve
angular inference of the most connected nodes, we split the
procedure into two parts, � = 0, 1, . . . , �m/2� and �m/2� +
1, . . . , m, respectively. The first part is repeated independently
for max_iter = 20 times, starting from different initial angle
values. For each repetition the resulting lnL[G�m/2�] value

is computed. The second part is carried out only once us-
ing {θi} values corresponding to the iteration with largest
lnL[G�m/2�] value. Since � = 0, 1, . . . , �m/2� cores are sig-
nificantly smaller than � = �m/2� + 1, . . . , m/2 cores, the
first part is carried out much faster than the second, despite
the large number of repetitions.

After each round � we perturb the angular coordinates θ̂i,
i ∈ cr�, by adding random noise:

θ̂i ← θ̂i + a(�)Xi, (F30)

Xi ← U
(
−π

2
,
π

2

)
, (F31)

with amplitude a(�), which we decrease linearly as a(�) =
π
4 (1 − �

m ) + a0. These coordinate perturbations allow us to
avoid getting trapped in local maxima of the log-likelihood
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function and to arrive to the optimal angles {θi} faster. We
also stress the importance of the nonzero residual noise am-
plitude of a0. In the final � = m stage residual noise allows
us to effectively “repel” k = 1 nodes connected to the same
node. Without residual noise at the � = m step, all k = 1
nodes connected to the same node are likely to be placed
very close to each other and their common neighbor. As a
result, pairs of these k = 1 nodes will be ranked as the most
likely candidates for link prediction, and will adversely affect
the HYPERLINK accuracy. Our experiments indicate that the
HYPERLINK accuracy is not sensitive to specific a0 values,
as long as a0 ∈ [10−6, 10−3]. In all our experiments we set
a0 = 10−4 rad.

The final part of the embedder algorithm is the series of
20 coordinate perturbations, following local coordinate in-
ferences in the entire network G. This last step often helps
to further improve coordinate inference accuracy and, conse-
quently, the accuracy of link prediction. The angular inference
procedure is summarized in Algorithm 1.

Having sketched the angular inference procedure, we now
focus on the individual node placement subroutine. We de-
termine θ̂i for each node by maximizing the corresponding
local log likelihood lnL[G�]i. To this end, we split the an-
gular space [−π, π ] evenly into O(N�) regions, where N�

is the number of nodes in G�. By placing node i into each
of these regions we then identify θ̂i maximizing its local
likelihood. Since lnL[G�]i calculation takes O(N�) steps for
each θi value, it takes O(N3

� ) steps to execute each round �.
As a result, the overall running-time complexity for m layers,
O(mN3), is prohibitive for large networks.

To reduce the running time complexity to O(m〈k〉N2),
where 〈k〉 is the average degree of the entire network, we
utilize the following approximation, first offered in [43]. If
the number of nodes in G� is larger than or equal to 500, for
each node we first obtain the rough estimate of θ̂i by taking
into account only its neighboring nodes in G�. To this end we
find the nearly optimal placement θ̃i by maximizing

ln L̃[GS]i =
∑

j �=i∈GS

ai j ln p̃(xi j ). (F32)

Since the summation in Eq. (F32) goes only through node i
neighbors, it now takes O(kiN ) steps to find θ̃i. Having ob-
tained the initial approximation, we then look for the optimal
angle θ̂i in the neighborhood of θ̃i maximizing the full local
likelihood lnL[GS]i, which takes O(LN ) steps, where L is
the neighborhood centered at θ̃i. Specifically, we search for
θ̂i within L = 300 N�

N regions on both sides of θ̃i, which takes

O( N2
�

N ) steps, leading to the overall running time complexity of
O(m〈k〉N2) steps. The individual node placement subroutine
is summarized in Algorithm 2.

The outline of the HyperLink embedder above is its sim-
plified description omitting a number of important details and
presenting some of them slightly differently. The full detailed
description of the algorithm exactly as used in this paper is
included in its Bitbucket repository [38].

To validate the hyperbolic geometry inference algorithm
we compare inferred coordinates in the RHG to its true coordi-
nates. Parameters of the RHG are taken to be N = 5000, 〈k〉 =
10, T = 0.5, and γ = 2.5. As seen from Figs. 18(a)–18(c), the

Algorithm 2 Individual node placement subroutine

if N� < 500 then
split the angular space [−π, π ] evenly into O(N�) regions.
for each region r in [−π, π ] do

assign θi(r) values to lower boundaries of each region r.
compute lnL[G�]i for θi(r), as defined in Eq. (F23).

end for
θ̂i ← argmaxr∈[−π,π ] lnL[G�]i

else
split the angular space [−π, π ] evenly into O(N�) regions.
for each region r in [−π, π ] do

sample θi(r) uniformly at random from region r.
compute ln L̃[G�]i for θi(r), as defined in Eq. (F32).

end for
θ̃i ← argmaxr∈[−π,π ] ln L̃[G�]i

for each region r in [‖θ̃i − L‖, ‖θ̃i + L‖] do
assign θi(r) values to lower boundaries of each region r.
compute lnL[G�]i for θi(r).

end for
Identify r̂ maximizing lnL[G�]i. θ̂i ← θi(r̂)
θ̂i ← argmaxr∈[‖θ̃i−L‖,‖θ̃i+L‖] lnL[G�]i

end if

accuracy of the angular coordinate inference does not decline
significantly for small degree nodes. This is the case, mainly,
due to the nested inference with inference cores cri covering
all network nodes, in contrast to the original algorithm of [43],
where cores only cover the most connected nodes.

As seen from Fig. 18(d), Eq. (F22) allows for accurate
inference of small radial coordinates. At the same time, ra-
dial coordinates inference is less accurate for large radial

FIG. 18. Testing the hyperbolic geometry inference algorithm.
Here we plot inferred vs original node coordinates for the RHG that
we map to the hyperbolic space. All plots correspond to the same
RHG of N = 5000, 〈k〉 = 10, T = 0.5, and γ = 2.5. (a), (b) Angu-
lar coordinates for nodes with degrees k > 25 and 2, respectively.
(c) Angular coordinates of all nodes. (d) Radial coordinates of all
nodes in the graph.
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FIG. 19. HYPERLINK embedder accuracy compared to other embedding algorithms. RHGs are embedded to the hyperbolic disk by (red)
HYPERLINK embedder, (blue) the algorithm by Bläsius et al. [55] (BFKL), and (green) the HYPERMAP [35] algorithm. All comparisons
correspond to RHGs consisting of N = 5000 nodes, k = 10, 1 − q = 0.5 missing links, and various T and γ parameters. Panels are arranged
according to T and γ parameters. (a), (c), (e), (g), (i), (k), (m), (o), (q) Scatter plots displaying inferred angular coordinates as a function of true
angular coordinates. (b), (d), (f), (h), (j), (l), (n), (p), (r) To quantify the embedding accuracy, we plot the distributions of embedding errors,
P(�θ ), where �θ ≡ π − |π − |θinferred − θoriginal||. To quantify the association between the inferred and the original angular coordinates for
each embedding we employ the U-statistic τ ∈ [−1, 1] [74]. The U-statistic τ quantifies the correlation between the ordering of the inferred
and original and angular coordinates and ranges from τ = 1, in the case the two orderings are the same, to τ = −1 in the case the two orderings
are inverted with respect to one another. The U-statistic τ is invariant under global shifts of the inferred coordinates. Our results indicate that
the HYPERLINK accuracy is higher than that of the considered two algorithms in all cases, with the only exception of the T = 0.5, γ = 2.5 case,
where BFKL is slightly better.

coordinates. To explain this observation we recall that the
key assumption in Eq. (F22) is that the node degree in the
RHG is fully determined by its radial coordinate. In other
words, we assume that possible node degree values are nar-
rowly distributed around its expected value, which is given by
Eq. (F22). This is indeed the case since node degrees are dis-
tributed according to the Poisson distribution, Eq. (C5). The
coefficient of variation of the Poisson distribution, however, is
large for small mean values. This leads to significant variation
in node degree values in the case of nodes with large radial
coordinates, making Eq. (F22) inaccurate.

The HYPERLINK embedder allows for accurate node coor-
dinate inference even in substantially incomplete networks
in contrast to other mapping methods, e.g., HYPERMAP [34]
and the algorithm by Bläsius et al. [55], which become less
accurate in the case of large T values, Fig. 19.

As evidenced by Fig. 18 and, indirectly, by our link pre-
diction results in Secs. III and IV, our hyperbolic inference
algorithm is sufficiently accurate for the prediction of missing
links on both synthetic and real networks. At the same time,
the algorithm does have limitations. First, it is designed to map
networks with links removed uniformly at random. The link
presence rate q is the required parameter of the algorithm. In
cases when the fraction of missing links is unknown, q needs
to be estimated and this may lead to less accurate mapping.
The second limitation is the algorithm’s running time com-
plexity of O(N2) restricting its utility to networks of smaller
size. Finally, the third limitation is the analytic estimation
of radial coordinates, which is not accurate for small degree
nodes. Addressing these limitations is the subject of future
work that is expected to further improve the accuracy and the
utility of link prediction with hyperbolic geometry.
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