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ABSTRACT

The detrimental effects of Cp,Mg-induced trace transition metal (iron and manganese) contamination on the optical performance of
metalorganic chemical vapor deposition (MOCVD)-grown blue-emitting InGaN/GaN multiple quantum wells (MQWs) are investigated
experimentally. Five samples are grown at various stages of conditioning of a freshly installed MOCVD tool with stainless steel gas lines.
Without conditioning, Cp,Mg flow induced Fe and Mn impurities with concentrations of 3 x 10'® and 3 x 10 cm™>, respectively. These
contaminants introduce nonradiative recombination centers with lifetimes on the order of nanoseconds. These impurities also induce
indium-clustering related phenomena such as low energy shoulder at low temperature and a strong S-curve shift in emission energy with
increasing temperature. Through successive cycles of chamber conditioning, the Fe and Mn concentrations decrease to below their detection
limits, and the nonradiative recombination lifetime (48 ns), internal quantum efficiency (+26%), microphotoluminescence nonuniformity
(—4.7%), and S-curve shift (—26 meV) of the MQWSs improved. The suppression of the transition metal ion contamination in the MOCVD
chamber is shown to be crucial for high performance MQWs and blue light emitting diode growths.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5142505

Group Ill-nitride semiconductors have transformed the solid
state lighting industry through the commercialization of blue-emitting
InGaN/GaN multiple quantum wells (MQWSs) and their phosphor-
coated variant white-emitting light emitting diodes (LEDs) that have
high efficiency, long service life, high brightness, and small footprint.'
These devices are most often commercially grown on AL, O; or SiC
substrates using metal organic chemical vapor deposition (MOCVD)
due to its high throughput. Typically, the main layers in the LED epi
wafer consist of a p-i-n structure with n-type GaN as the bottom layer,
the InGaN/GaN MQW in the intrinsic region, and Mg-doped p-type
GaN as the top layer.

The conventional precursor for Mg-doping in the p-type GaN
layer is bis(cyclopentadienyl)magnesium (Cp,Mg).” Since Mg is the
strongest reductant (Eg/lgz+ = —2.382¢V) of the metal species found

in a stainless steel MOCVD reactor, it is capable of reducing Cr, O3,
which is the self-healing passivation layer that forms on typical 316
stainless steel to prevent oxidation of other transition metal constitu-
ents, such as Fe and Mn.” Therefore, introducing Cp,Mg in a pristine
MOCVD chamber for the first time could induce this transmetalation
to form MgO, which itself limits further reaction once the lining is
covered with it. Cr (E2,,. = —0.74 eV), along with the underlying Fe
(E%,. = —0.04 eV) and Mn (E% ., = —0.74 eV) ions that are now
present on the lining of the gas lines, can be entrained in the gas flow
(TMAL TMGa, and TMIn) of the next epitaxial run and transported
inadvertently to the growth surface.”” These metallic ion impurities
then act as traps with large capture cross sections in GaN (Feg,:
2.1-2.5eV° and Mng,: 1.4eV’ above the valence band) to create effi-
cient nonradiative recombination centers that reduce the devices’
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efficiency.”'” Suppressing the entrainment of these impurities usually
takes numerous epitaxial growths to thoroughly season the MOCVD
chamber since first principles studies have shown that iron concentra-
tions as low as 10'® cm ™ can have a significant negative impact on the
device performance due to the large carrier capture cross section of its
excited states.'” This paper examines this effect experimentally in a
typical conditioning procedure carried out in a commercial MOCVD
chamber using optical and structural characterization techniques.

In this paper, five samples (MQW1-5) each consisting of six
pairs of Ing15GaggsN/GaN quantum well barriers on a 5-um thick
GaN buffer layer on 6-in. Al,O5 substrates are grown during various
stages of the conditioning of a never-used MOCVD chamber. Each
cycle of conditioning (Mg-conditioning) is composed of (i) high flux
Cp,Mg flow to initiate the transmetalation followed by (ii) opening
the chamber for ambient air and humidity exposure to fully oxidize
Mg." MQW1 is grown after the initial cycle high flux Cp,Mg.
MQW?2 is grown after five additional cycles of Mg-conditioning.
MQW3 is grown after one additional cycle. MQW4 is grown after
multiple additional cycles. MQWS5 is grown after yet more additional
cycles.

Structural characterization techniques, such as atomic force
microscopy, x-ray diffraction, and reciprocal space mapping, are con-
ducted on the samples, and no observable differences are found among
the samples (see the supplementary material, Figs. S1-S4). Secondary
ion mass spectroscopy is conducted on a Cameca IMS with O, plasma
to measure the trace concentration of Fe and Mn impurities. MQW1 is
found to contain approximately 3 x 10 cm™ of Mn and 3
x10% cm~2 of Fe. No other samples were found to contain more than
1x 10% cm=3 of Mn and 1 x 10 cm ™3 of Fe, which are the detection
limits of the instrument (Figs. S5 and S6). A similar level (10® cm ™) of
unintentional Fe contamination has been reported in hydride vapor
phase epitaxy (HVPE) growth of GaN when a Mg dopant is used."’
Using electron paramagnetic resonance (EPR), signals from Fe impuri-
ties are observed; this corroborates the observation from the SIMS data.

The optical properties of the MQW samples are measured using
room temperature photoluminescence (PL) with a 1 = 266 nm laser
and spectrometer fitted with a CCD camera (Fig. 1). All five samples
show their peak emission energy at roughly 2.77 eV (448 nm). Overall,
the PL intensity increases with successive cycles of Mg-conditioning
with MQWI1 (no conditioning) showing the lowest intensity and
MQWS5 (most extensive conditioning and air exposure) showing the
highest. The samples show a maximum integrated PL intensity
increase of 41% and peak intensity by 52% (MQWS5). No defect-
related luminescence (e.g., the yellow luminescence band) is observed.
The effectiveness of chamber conditioning at increasing the PL inten-
sity is significant; growing MQW structures in an unconditioned
stainless steel chamber after initial Cp, Mg exposure introduces Fe and
Mn impurities that reduce the PL intensity. With multiple cycles of
Mg-conditioning and MQW growth, the contamination mechanism is
suppressed, and the PL intensity gradually recovers to the same inten-
sity as the sample grown before Cp,Mg was introduced in the cham-
ber (Fig. S7).

Additional to the overall PL intensity, spatial and spectral emis-
sion uniformity is examined using a micro-PL (uPL) setup with a
A = 325nm continuous wave laser. Figure 2 shows the integrated PL
intensity mapping of the samples relative to their respective averages
in a 200 x 200 m? area. The intensity distribution in MQW1, which
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FIG. 1. PL spectra of the MQW samples, which show PL peaks at 2.77 eV
(4 = 448nm). The sample with the most Fe and Mn impurities (MQW1) shows the
weakest integrated PL intensity. Multiple cycles of chamber conditioning increase
the PL intensity.
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FIG. 2. Micro-PL mapping of the intensities of the samples over a 200 x 200 um?
area. Each figure is scaled relative to its own average. The standard deviations are
also shown.
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has the most of Fe and Mn impurities and lowest PL intensity, shows
the highest level of nonuniformity (¢) of 8.3% (Fig. 2). This sample
shows numerous dark spots as dim as 17% weaker than its average.
With the five and six cycles of Mg-conditioning, MQW2 and MQW3
show reduced ¢ values of 5.5 and 5.1%, respectively. The trend contin-
ues with MQW4 and MQW5, which show ¢ values of 3.6% and 3.9%,
respectively. These data suggest that the Fe and Mn impurities maybe
the culprit in creating localized nonradiative recombination centers,
which reduces the overall PL intensity.

To study the optical properties of the samples in the temporal
space, time-resolved PL (TRPL) is conducted (Fig. 3) using a
frequency-doubled, femtosecond Ti:sapphire laser (4 = 385nm, 1 nJ
pulses) and an avalanche photodiode with bandpass filters for data col-
lection. MQW1 shows biexponential decay PL lifetimes (tp;) of 0.8
and 2.78ns at a time interval between 0 ~ 2 ns and 2 ~ 6 ns after
laser pulse incidence, respectively, while MQW2 and MQW3 show a
similar monoexponential tp; of ~3.79ns, and MQW4 and MQW5
show an additional increase in p; to ~4.43 ns. This suggests that the
initial cycles of the Mg-condition (MQW?2) reduced a vast majority of
the nonradiative recombination centers, likely caused by the Fe and
Mn impurities, which are responsible for the difference in tp;. A few
additional cycles (MQW3 and MQW4) and further cycles of Mg/air
exposures (MQWS5) yielded only small increases in over MQW?2. This
demonstrates the importance of eliminating these transition metal
contaminants even at very low concentrations.

To study the effect of these nonradiative recombination centers
in MQW1 and their reduction in the other samples, temperature-
dependent (6-300 K) PL is conducted using a A = 266 nm laser and a
liquid helium bath cryostat with a proportional integral differential
(PID) temperature controller (Fig. 4). The temperature-dependent
internal quantum efficiency (IQE) is calculated using

I(T)
where I(T) is the integrated intensity of the PL emission at tempera-
ture T, assuming that at 6 K, the recombination mechanism is purely
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FIG. 3. Time-resolved PL using a 385nm laser shows that MQW1 exhibits a biex-
ponential decay, whereas the remaining samples have monoexponential decays
with much longer lifetimes.
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FIG. 4. Temperature-dependent PL spectra of the samples from 6K to 300K.
MQW1 has the lowest IQE (39% at room temperature) of all devices. Mg-
conditioning improves the IQE from 39% to a maximum of 65%.

radiative.”” MQW1 exhibits the lowest IQE of 39% at 300 K, whereas
MQW?2 and MQW3 exhibit similar IQEs at 53 and 51%, respectively.
This suggests that the chamber conditioning eliminates a significant
number of the nonradiative recombination centers and increases the
IQE. Multiple additional cycles of Mg-conditioning have a diminish-
ing return (MQW4 and MQWS5) with IQEs that show an additional
10% increase (IQE > 60%). The observation made on the trend of IQE
across the samples roughly mirrors that of the integrated PL intensities
(Fig. 1) and TRPL (Fig. 3); chamber conditioning decreases the rate of
nonradiative recombination. Similarities in the trend between these
three characterization techniques suggest that the differences in
observed optical properties originate from the same nonradiative
recombination centers introduced by the Fe and Mn impurities that
reduce PL intensity, shorten PL lifetime, and reduce IQE.

Closer inspection of the temperature-dependent PL spectra
revealed that all samples exhibit a low energy PL peak at 2.7 eV at tem-
peratures below 100 K. This emission center has been associated with
potential minima caused by local indium clustering'® and is especially
prominent in MQW1 and becomes less prominent with successive
Mg-conditioning. Studies have shown that some impurities (e.g., Si) in
the InGaN/GaN MQW on Al,O; can result in the formation of nano-
scale high indium content clusters.'”'® The data here suggest that this
phenomenon may also occur with Fe or Mn impurities.

The extracted PL peak emission energy and peak emission energy
shift from their 6 K values as a function of temperature, which are
plotted in Fig. 5. All five samples show a distinct blueshift in the peak
emission energy as the temperature decreases from 300 K; the trend
then reverses to red-shifting at temperatures below 170 K, and finally,
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FIG. 5. (Top) Temperature dependent peak PL emission energies. (Bottom) Peak
emission energy shift from its 6 K value.

the trend reverses again to blue-shifting at temperatures below 20 K.
This s-shaped redshift-blueshift-redshift behavior is attributed to the
carrier localization in the inhomogeneity in the InGaN MQWs."”
Comparing the magnitudes of the blueshift at 170 K, MQW1 shows
an exceptionally strong shift at 36 meV. While MQW2 and MQW3
only blue shift by ~10 meV, MQW4 and MQWS5 blue shift by an even
smaller amount at ~5meV. At temperatures higher than 170K, all
samples red shift at a similar rate. This progressive reduction in the
magnitude of the S-curve in the samples with increasing cycles of con-
ditioning shows a correlation between Fe and Mn impurities and the
carrier dynamics in the quantum wells; these atoms induce inhomoge-
neity in the InGaN layer. This phenomenon does not appear to be sig-
nificant when the impurity concentrations fall below the detection
limit.

This relationship is consistent with the observations made in the
UPL uniformity measurements showing a decrease in integrated PL
nonuniformity from MQW1 to MQWS5 and mirrors the decrease in
the intensity of the 2.7 eV low energy shoulder in low temperature PL
results from MQW1 to MQWS5, in which the strongest effect is found
in the sample with Fe and Mn impurity concentrations above
10" cm~3 and 10 cm ™3, respectively.

The IQE values can be used in conjunction with the carrier life-
time obtained from TRPL to calculate the radiative and nonradiative
recombination lifetimes using'’

-1
Trad

m (2)

IQE =

TpL

where 1,,,5 and 1p; are the radiative and PL lifetimes, which allows the
extraction of nonradiative recombination lifetimes (z,,,) via

T = T+ T 3)

The extracted lifetimes of the samples are shown in Fig. 6.
The radiative lifetimes of the samples are calculated to be in the
neighborhood of 7ns. This is expected as the physical structures
[quantum well (QW) layer thicknesses], strain, defectivity, and
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FIG. 6. Radiative and nonradiative lifetimes calculated using the TRPL and IQE
measurements.

composition are statistically the same, and the values fall within the
reported range for InGaN-based blue emitting MQWs.”’ The variation
in 7,,, shows the detrimental effect of Fe and Mn impurities; MQW1
exhibits a very fast 7,, (4.54ns). Reducing their concentrations in
MQW?2 increases 1, by a significant 3.54 ns. At the low injection level
presented here, nonradiative recombination can be assumed to be
dominated by Shockley—Reed-Hall recombination (SRH), the A coef-
ficient, which can be expressed as”!

A=L. (4)

TVH‘
The increase in 7,, between MQW1 and MQW?2 corresponds to a
decrease in the SRH coefficient from 2.2 x 108s7! to 1.2 x 1085~ 1.
The 1 x 10%s™! reduction in the SRH recombination rate, coinciding
with the reduction in the Fe impurity concentration from 3
%105 cm™ to below the detection limit, is in good agreement with
the rate reported in the literature.'

One additional cycle of Mg-conditioning increases 7, by another
~1ns in MQW3. This suggests that the chamber conditioning is not
yet complete even with the impurity concentrations below the detec-
tion limit. Additional extensive Mg-conditioning before MQW4 was
grown increased its 7,, by another ~3 ns, but further cycles did not
yield a significant improvement in MQWS5. These suggest that the
benefit of chamber conditioning has a diminishing return with the
majority of the contaminants suppressed within the first five cycles of
Mg-conditioning.

Conditioning of the MOCVD chamber appears to be complete
somewhere between MQW3 and MQW4 using characterization tech-
niques such as PL, IQE, and TRPL, which show no significant differ-
ence between MQW4 and MQW?5. As far as these techniques show,
the origin of the loss in optical performance seems to be fully sup-
pressed after ~10+ cycles of Mg-conditioning. The largest perfor-
mance gained was during the first five cycles that also coincide with
the reduction in Fe and Mn impurity concentrations. The data suggest
that these transition metal impurities affect the optical performance of
blue-emitting InGaN/GaN MQWs at a concentration slightly below
the SIMS detection limit of 10'* cm 2.
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In conclusion, through temperature-dependent, time-resolved,
and uPL, the detrimental effects of Fe and Mn impurities in blue-
emitting InGaN/GaN MQWs are quantified. Even at very low concen-
trations (3 x 10'° and 3 x 10" cm 3, respectively), these impurities
are capable of forming efficient nonradiative recombination centers
with recombination rates in the 10%s~! range. Through successive
conditioning of the chamber, the impurities were reduced to below the
detection limit, and IQE increased by 26%, uPL intensity variation
decreased by 4.7%, nonradiative recombination lifetime increased by
8ns, and the magnitude of the S-curve shift decreased by 86%.
Unintentional trace transition metal ion impurity contamination has
been shown experimentally to play a significant role in the condition-
ing of MOCVD chambers.

See the supplementary material for the complete structural char-
acterization using the atomic force microscopy defectivity study, x-ray
diffraction, reciprocal space mapping, and secondary ion mass spec-
troscopy of the samples.
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Figure S 1 Atomic force microscopy surface defectivity of the samples. The data is shown in color, and the average (standard
deviation) is shown in black squares (black lines)
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Figure S 2 Symmetric X-ray Diffraction (XRD) scans of the samples. No difference in the strain or the multiple quantum well
composition and dimensions are observed.
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Figure S 3 Reciprocal space mapping (RSM) of sample MQW 1. The vertical dashed line shows that the InGaN MQWs are fully
strained
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Figure S 4 RSM of samples MQW2 to MQWS. All samples show full strained InGaN MQWs.
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Figure S 5 SIMS data for >*Mn
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Figure S 6 SIMS data for *°Fe
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Figure S 7 (left) PL spectra of the MQW samples with MQWO (sample grown before any Mg was introduced to the chamber)
included which all show PL peaks at 2.77 eV (A = 448 nm). (right) the extracted PL intensities showing a 50% reduction
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