2003.14323v1 [cs.CV] 31 Mar 2020

arxiv

How Useful is Self-Supervised Pretraining for Visual Tasks?

Alejandro Newell

Jia Deng

Princeton University

{anewell, jiadeng}@cs.princeton.edu

Abstract

Recent advances have spurred incredible progress in
self-supervised pretraining for vision. We investigate what
factors may play a role in the utility of these pretraining
methods for practitioners. To do this, we evaluate vari-
ous self-supervised algorithms across a comprehensive ar-
ray of synthetic datasets and downstream tasks. We prepare
a suite of synthetic data that enables an endless supply of
annotated images as well as full control over dataset dif-
ficulty. Our experiments offer insights into how the utility
of self-supervision changes as the number of available la-
bels grows as well as how the utility changes as a function
of the downstream task and the properties of the training
data. We also find that linear evaluation does not correlate
with finetuning performance. Code and data is available at
github.com/princeton-vl/selfstudy.

1. Introduction

Self-supervised learning has the potential to revolution-
ize computer vision. It aims to learn good representations
from unlabeled visual data, reducing or even eliminating
the need for costly collection of manual labels. In the
context of deep networks, the most common use of self-
supervision is in pretraining a network with unlabeled data
for later finetuning on a downstream task. The better the
self-supervision, the better the downstream performance.

Progress on self-supervised pretraining has accelerated
in recent years. In particular, self-supervised models now
produce features that are comparable to or outperform those
produced by ImageNet pretraining [1, 39, 20, 17]. While it
is currently not common to leverage such methods, wider
adoption might be seen in the wake of these advances.

In this work we investigate what barriers might exist be-
tween the latest progress in self-supervision and its broader
use in the field, as well as how to approach evaluation in a
way that is informative and useful to practitioners.

We are motivated by the observation that much of the ex-
isting literature evaluates self-supervision in either few-shot
settings or when restricting downstream use of the model.

pretrained w/ self-supervision
@® trained from scratch

a4

labels # labels # labels

(a) (b) (c)
Figure 1. We highlight three possible outcomes when using self-
supervised pretraining, the pretrained model either: a) always pro-
vides an improvement over the the model trained from scratch
even as the amount of labeled data increases, b) reaches higher
accuracy with fewer labels but plateaus to the same accuracy as
the baseline, ¢) converges to baseline performance before accu-
racy plateaus. In our experiments we find option (c) to be the most
common outcome.

accuracy
accuracy
accuracy

For example, a common form of evaluation is to freeze all
weights of the pretrained network and train a linear layer
for the downstream task. However, for many computer vi-
sion tasks, there already exists a large amount of labeled
data, and finetuning of the model is necessary to get as high
accuracy as possible.

Evaluating self-supervision in unrestricted settings is im-
portant because in practice there are many situations where
maximizing accuracy is paramount (think of pedestrian de-
tection for self-driving cars). It is in one’s interest to col-
lect as many labeled examples as possible in such a setting.
How useful is self-supervision in these cases? How do we
measure this utility?

Given a downstream task, several outcomes are possible
when comparing a finetuned self-supervised model against
a baseline trained from scratch (illustrated in Fig. 1). With
more labeled data, the performance of a model will improve
and may eventually plateau. But in practice, one has a
finite labeling budget, and that budget will determine the
accuracy reached when training from scratch. There are
three subsequent outcomes for the finetuned model: (a) self-
supervision achieves a better accuracy than the baseline; (b)
self-supervision achieves the same accuracy but with fewer
labeled examples; (c) self-supervision achieves the same ac-
curacy with the same number of labeled examples.

https://www.github.com/princeton-vl/selfstudy

For each of these outcomes, we can quantify the util-
ity of self-supervision as the saving in labels. That is, to
achieve the same accuracy without self-supervision, how
many more labels would be needed. Specifically, if we de-
fine a(n) as the accuracy of a model trained from scratch
given n labeled examples and af:(n) as the accuracy of
the finetuned model, the utility at n is defined as U(n) =
7i/n — 1 where 71 is the number of labels required such that
a(f) = ayi(n). This is the ratio of additional labels needed
to match the accuracy of the finetuned model. The utility is
zero when self-supervision achieves the same maximum ac-
curacy without lowering labeling cost (7 = n). The utility
is infinite when there does not exist any number of labeled
samples such that the model trained from scratch matches
the finetuned model.

Note that one might not expect self-supervision to help in
the presence of many labeled examples, because in the limit
the entire input space would be densely covered, and a deep
network just needs to fit the labeled data well. However,
this is based on the false assumption that we can fit large
labeled data arbitrarily well. SGD training is not guaranteed
to reach a global optimum, and self-supervised pretraining
may produce better representations that help optimization,
just as residual links improve fitting to the data.

Given the above definition of utility, we systematically
evaluate a number of recent self-supervised algorithms. To
do this, we construct a benchmark of synthetic images. A
synthetic benchmark offers unique advantages. It allows
easy generation of a large number of labeled examples. It
also allows easy exploration of a variety of downstream
tasks from classification to dense prediction and from se-
mantics to geometry. Finally, it allows precise control of the
complexity of the data and the difficulty of the downstream
task through factors such as color, texture, and viewpoint.
Our main contribution is a thorough exploration along all of
these dimensions to provide insights into where and when
one can expect self-supervision to be useful in practice.

We find that leading self-supervised pretraining methods
are useful with a small labeling budget, but utility tends to
decrease with ample labels. In particular, as the number
of labels increases, the most common outcome is Fig. 1
(c), where gains from self-supervised pretraining tend to di-
minish before performance plateaus for the training-from-
scratch baseline. We also find that self-supervision is more
helpful when applied to larger models and to more difficult
versions of the data. Moreover, we find that relative per-
formance of methods is not consistent across downstream
settings, and that the commonly used linear evaluation does
not correlate with utility.

2. Related Work

Pretraining has long been used to improve performance
on visual tasks [12, 15]. The features learned by a convolu-

tional network trained on a large dataset like ImageNet [8]
transfer well to many settings. It has further been shown
that pretraining is effective given exceedingly large, noisy
or weakly-labeled datasets [38, 28, 44, 24]. In this work we
focus specifically on the results that can be achieved with
self-supervised pretraining, so do not consider the use of
weak labels nor do we touch on semi-supervised methods
that pseudolabel data [2, 43, 44].

Recent work has shown that with sufficient training
time, a model trained from scratch can match ImageNet-
pretrained performance on COCO [18]. We do not investi-
gate how to improve training from scratch to match pretrain-
ing, nor do we benchmark ImageNet pretraining. ImageNet
pretraining is subject to concerns around domain shifts, so
self-supervised methods have an advantage in our bench-
mark since pretraining can be performed on the exact image
distribution used for the downstream task.

The past several years have seen a wide variety of meth-
ods proposed for visual self-supervision [22, 11, 14, 4, 3,

]. These methods can take many forms and also rely on a
variety of cues such as information across frames in video
[49, 41] or across different image modalities [39, 37, 35].
One family of methods are those that center around re-
construction. This often takes the form of an autoencoder
[21, 23, 48] or alternatively requires inferring some miss-
ing part of the data by performing tasks like inpainting [34]
or colorization [47, 40]. Other methods take advantage of
spatial properties of images. This can include judging the
relative spatial position of image patches [10, 30], or pre-
dicting what sorts of transformations have been applied to
an image [14, 13].

Recently, a wave of methods based on contrastive em-
beddings have proven effective for pretraining [32, 20, 39,

, 1, 45]. These methods produce features that maximize
mutual information either across representations at differ-
ent spatial locations of the image [20, 1] or across different
views [39] of the image. The key idea being that different
patches of an image or different versions of the image (e.g.
different image channels or versions augmented with data
transformations) should map to a similar embedding that is
unique across image samples.

There have also been a number of recent undertak-
ings to provide comprehensive evaluation of today’s self-
supervised methods [31, 16, 27, 46, 25, 11, 36]. Each work
focuses on distinct facets such as how the choice of archi-
tecture design affects performance [25] or to what degree
methods produce disentangled representations and how this
affects downstream task performance [27]. Other work
has measured performance by scaling up the number of
unlabeled images and increasing the difficulty of the self-
supervised tasks [16]. A distinguishing feature of our work
is an emphasis on measuring utility both with large num-
bers of labels and when finetuning the full model. More-

Figure 2. Example images from four datasets of increasing complexity (from left to right) controlling for viewpoint and texture.

over, our synthetic setting provides the opportunity to gain
insights into how image complexity affects self-supervision
performance.

3. Self-supervised Pretraining

We follow a fixed strategy for pretraining and finetun-
ing. During pretraining, a self-supervised algorithm is cho-
sen, and the model is presented with unlabeled images to fit
the specified loss. During finetuning, a new output layer is
added to the network for a target downstream task and the
model is trained on labeled images to fit the task as well
as possible. At no point is the network jointly trained on
both the self-supervised task and downstream task, both for
simplicity and to reflect typical use of pretrained models.

The usefulness of self-supervised pretraining depends on
a number of factors. We break down these factors across the
following four categories:

e Data: There is a close connection between the diffi-
culty of a dataset and the number of labeled examples
required to saturate performance on a task. Thus it is
important to run experiments that control for not just
the number of images but their complexity. Here, com-
plexity refers to factors of variation such as those that
arise due to changes in lighting, texture, and viewpoint.

e Model: The highest level of performance possible on
a task depends on the model used to learn that task. We
do our best to control for the backbone model such that
a fair comparison is made between methods.

o Self-supervision algorithm: Self-supervised algo-
rithms rely on different cues for learning, and this
choice may affect downstream performance. For ex-
ample, a particular method may explicitly train a
model to be invariant to features required by a particu-
lar downstream task.

o Downstream task: Similarly, different tasks may lend
themselves better or worse to different types of pre-
training. Moreover, the difficulty of the downstream
task will affect how much data is needed to do well
and the degree to which performance plateaus as the
number of labels increases.

To summarize, in this work we will be assessing the
effectiveness of pretraining with different data, different

backbones, different pretraining, and different downstream
tasks. The interplay of all of these factors is complicated,
so it is important to see how they affect each other under
as many settings as possible. For a particular setting, we
will pretrain a model and then finetune it while varying the
amount of available labels. We compare performance to a
baseline model trained from scratch.

4. Synthetic Benchmark

The need to control for dataset difficulty as well as the
need for many labeled images motivates our use of synthetic
images. We can control all factors of the generation process
and produce an endless supply of images. Moreover, it is
trivial to acquire annotations for a wide variety of tasks -
many of which would be difficult or impossible to collect
for real world images such as ground truth depth.

Our synthetic images consist of objects floating in empty
space. For a given image, we can change the number of ob-
jects, their orientation, their texture, as well as the lighting
conditions of the scene. If the scene only consists of a single
object, we keep the position of the object fixed in the cen-
ter of the image at a fixed distance. We also normalize the
scale so that the size of objects is consistent across classes
and models. If there are multiple objects, their positions are
chosen randomly such that they are evenly dispersed and
remain mostly in the camera frame.

We render images with Blender [7] using object models
from ShapeNet [5]. We choose 10 object classes to use in
all versions of the synthetic data (airplane, bench, cabinet,
car, chair, lamp, sofa, table, watercraft, motorcycle). To
increase image diversity and account for classes with a lim-
ited number of models, we augment the models with occa-
sional random stretching along spatial axes. For all datasets,
a strict split is enforced across our training and evaluation
settings. A random subset of 80% of the models are used for
training, the remaining 20% are used during validation and
testing. For consistency, this same split is enforced across
all versions of our synthetic data.

4.1. Factors of variation

When rendering, we control for four different sources of
image variation. The complexity of the dataset increases as
more sources of variation are used.

Texture: We either apply a flat color material or a tex-
ture to the ShapeNet objects and background (as seen in

Figure 3. Example images in the multi-object setting as well as the ground truth semantic segmentation and depth.

Figure 2). Textures are taken from DTD [6] which provides
a wide variety of images to source from. These can vary
from basic patterns such as colored stripes to photos of in-
tricate textures found in the world.

Color: In the real world, object classes are often associ-
ated with colors, and many self-supervised techniques rely
on this fact to train models [47, 39]. With this in mind, we
define two options for using color in the synthetic data. In
the easier setting, each class is associated with a fixed color
distribution. Concretely, a random hue is assigned to each
class. When rendering an object, a new color is chosen by
sampling from a normal distribution around the correspond-
ing hue for that class. We follow this strategy even when a
texture is applied to the object by mixing the texture image
with the target color.

It is not trivial to predict the object class strictly from the
color of pixels in the image as the distribution of colors will
overlap across classes. But still, the correlation between
color and object class does make classification easier. In
the harder setting, each object is rendered with a random
color so that there is no correlation whatsoever between the
color and object class.

Viewpoint: We render objects at either a fixed or ran-
dom orientation. At the fixed orientation, all objects are
viewed such that there are clearly visible features to dis-
tinguish each class as opposed to an ambiguous overhead
or head-on view. When randomly sampling viewpoints, a
rotation is chosen from a normal distribution with a mean
at the previously described fixed orientation. The deviation
is large enough to include many extreme viewpoints, but
views are more likely to be sampled close to the original
fixed viewpoint.

Lighting: There is a single light source in the scene. We
either render data with the the light in a fixed position or
randomly placed for each sample.

5. Downstream Tasks

To ensure we evaluate on a variety of downstream tasks,
we consider common distinguishing features of computer
vision problems. For example, tasks are often differenti-
ated by whether they pertain more to semantic or geomet-
ric information. An example of the former would be rec-
ognizing object categories, while an example of the latter

would be surface normal estimation. Another major distinc-
tion amongst vision tasks is whether or not a task requires
dense predictions across the space of the image. This is the
difference between object classification and semantic seg-
mentation where classification is done per pixel.

It is important to consider these distinctions as there
could be differences in whether pretraining is relevant for
geometric as opposed to semantic features. Furthermore,
many pretraining methods are designed around producing a
single feature vector, so it is unclear how well these methods
serve for downstream tasks that require dense prediction.

The tasks that we benchmark on are object classifica-
tion, object pose estimation, semantic segmentation, and
depth estimation. These tasks provide a contrast between
extracting semantic and geometric information (classifi-
cation/segmentation vs. pose/depth), as well as a con-
trast between predicting global or dense features (classifi-
cation/pose vs. segmentation/depth).

Another factor guiding our choice of tasks is simplicity.
We benchmark on tasks that do not require sophisticated
losses, two-stage pipelines, or complicated post-processing.
This is a practical decision to limit the hyperparameters that
would govern training behavior and allow us to focus more
directly on the impact of pretraining.

5.1. Task Details

Object classification: Object classification is one of the
most standard benchmarks for evaluating self-supervised
pretraining. For this task, we train the model to distinguish
between the ten ShapeNet classes used to render our syn-
thetic data. Images are generated such that they only con-
tain a single object, and a uniform distribution exists across
all ten classes. We measure performance by standard clas-
sification accuracy.

Object pose estimation: To evaluate object pose estima-
tion, again we use images that only contain a single, cen-
tered object. Rather than predicting a full rotation matrix
(or some alternative representation) we discretize pose into
five bins and train a classifier.

One reason for framing the problem this way is to ac-
count for the rotational symmetry present in some of the
ShapeNet categories (namely lamps and tables). The five
bins are chosen such that orientation along that rotational

axis is ignored. The model must predict whether the top
face of the object is either oriented upwards, forwards,
backward, to the left, or to the right.

This formulation for pose estimation still requires that
the model extract features relevant for 3D understanding,
but alleviates some of the complications that arise when su-
pervising and evaluating pose. The bins are chosen such
that samples are evenly distributed across all five categories.
We train with a cross entropy loss and report classification
accuracy.

Semantic segmentation: For semantic segmentation, im-
ages are rendered with multiple objects (as seen in Figure
3). We are not concerned with designing a model to output
high resolution or precise segmentation masks, so instead
we supervise at a much coarser resolution relative to the
input image. We apply a per-pixel cross entropy loss and
report average classification accuracy.

Depth estimation: Just as with semantic segmentation,
depth estimation is tested on images with multiple objects
and at a much coarser resolution than the original input im-
age. We supervise depth with an L1 loss, and measure ac-
curacy with a standard metric in the literature (6 < 1.25)
that measures the percentage of predictions that fall within
a given ratio of the ground truth depth.

6. Pretraining Methods

We choose four different self-supervised algorithms for
pretraining:

e Variational autoencoder (VAE) [23]: A standard, es-
tablished baseline for mapping images to a low-
dimensional latent space.

e Rotation [14]: A simple yet effective method for
pretraining. The network is tasked with predicting
whether an image has been rotated either 0, 90, 180,
or 270 degrees.

e Contrastive Multiview Coding (CMC) [39]: A recent
method for self-supervision that works by splitting an
image into multiple channels such as the L and ab
channels of an image in Lab color space. The sep-
arated channels are passed through two halved net-
works and the output embeddings are compared and
contrasted to embeddings from other images.

o Augmented Multiscale Deep InfoMax (AMDIM) [1]:
Similar to CMC, this method also trains a model
through contrastive coding. Instead of comparing
across image channels, AMDIM compares represen-
tations from two augmented versions of the same im-
age as well as representations produced at intermediate
layers of the network.

These methods were chosen to strike a balance between
styles of self-supervision as well as complexity of the self-
supervised task. Rotation, CMC, and AMDIM are three
high performing self-supervision methods as measured by
pretraining and evaluation on ImageNet.

7. Experiment Details

Datasets: We render 15 dataset variations for our exper-
iments. The key distinguishing feature of the datasets is
whether they belong to the lower-resolution single-object
setting or higher-resolution multi-object setting. We use
single-object images to evaluate object classification and
pose estimation, and multi-object images for semantic seg-
mentation and depth. The dataset resolutions are 64x64 and
128x128 respectively.

For most datasets we render 240,000 images. The
only exception are the single-object datasets with viewpoint
changes where we render 480,000 images total. A subset of
15% of the images is held out for validation and testing.

In the figures presented in this paper we use a shorthand

to summarize the factors of variation of a particular dataset.
Each letter corresponds to a particular factor, and a dash (-)
signals that the easier version of that factor is used. To sum-
marize, T: Texture (flat colors vs DTD textures); C: Color
(fixed distribution vs random colors); V: Viewpoint (fixed
viewpoint vs random viewpoint); L: Lighting (fixed lighting
vs random lighting). An example dataset would be ‘TC--’
where DTD textures are applied along with random colors
but viewpoint and lighting are fixed.
Models: We use ResNet9 [33] and ResNet50 [19] for all
experiments. The ResNet9 model suits our experiments
well since it is much faster to train and converge, while
ResNet50 is more commonly used and can illustrate how
results change with additional network capacity.

We reduce the amount of pooling performed by the mod-
els to account for the fact that we are benchmarking on
lower resolutions than typical for ResNet models. For the
dense prediction tasks, we predict outputs from the features
just before global pooling. Thus we supervise at a resolu-
tion of 16x16. While this is low, it allows us to assess the
model’s ability to produce features for dense tasks with zero
modifications to the network backbone.

Training: For a given dataset, we pretrain all self-
supervised algorithms on all available training images. The
self-supervised algorithms are trained for between 100-200
epochs depending on the algorithm. For finetuning, we load
a pretrained model and train for between 75 to 200 addi-
tional epochs. This is determined by the amount of images
used, and whether we are performing dense prediction.

Evaluation: On all tasks we report standard performance
metrics as described in Section 5.1. We measure how per-
formance changes as more labeled examples are provided
during finetuning. Furthermore, we report the utility mea-

Dataset: ---- Dataset: -C--

100 V._’.-—.——w—-—-—! 100

9
o
~ 80 —— scratch 80
> AMDIM
O 60 —#- CMC 60
8 —4— Rotate
g 40 —— VAE 40
102 103 104 10° 102 103 104 10°
labeled samples # labeled samples
Dataset: ---- Dataset: -C--
6 » 6 i
AMDIM \
—#- cMC \
_4?4 —4— Rotate 4 \
=] —— VAE
o2

labeled samples # labeled samples

N

S 2 \

e \
~ ~
O%N\ 0 I se

10? 10° 104 10° 102 103 104 10°

Dataset: TC--
100 100

Dataset: TCVL

F 80 80

60 / 60

40 © 40
102 103 104 10° 102 103 104 10°
labeled samples # labeled samples
Dataset: TC-- Dataset: TCVL

e

102 103 104 10° 102 103 104 10°
labeled samples # labeled samples

Figure 4. Object classification accuracy and utility of pretrained ResNet9 models when finetuning on increasing numbers of labeled sam-
ples. As more labeled data is included, the utility (ratio of labels saved) tends toward zero eventually converging with performance when
trained from scratch. This occurs before model performance has saturated.

sure as described in the introduction, which measures the
proportion of additional labels that would be necessary to
reach the same accuracy without pretraining. For example,
if a self-supervised algorithm reaches a certain accuracy
at 100 samples, and it requires 500 samples to reach that
performance when training from scratch, then U(100) =
(500/100) — 1 = 4. We report the change in utility as a
function of labeled samples for each self-supervised algo-
rithm.

Note that utility cannot be calculated if a model reaches
accuracies higher than the maximum reached by the base-
line trained from scratch. This does not mean that there
does not exist a corresponding value since it is possible the
baseline may reach higher accuracy given a larger budget,
but does mean that we cannot compute a utility value ap-
propriately. To visualize this we gray out areas in which
utility cannot be calculated. Concretely, if the maximum
accuracy of training from scratch is reached at 100k sam-
ples, then when calculating U (50k) no value above 1 could
be computed and thus this area would be grayed out.

8. Results

Utility vs Number of Labeled Samples: We first study
how utility changes as the number of downstream training
examples increases. For simplicity, we start with results on
object classification shown in Figure 4.

We see that self-supervision has significant utility when
the number of labeled samples is small, but utility ap-
proaches zero as labeled data grows. This observation
holds for all pretraining methods across downstream set-
tings. Performance of the pretrained models converges
with performance of the baseline before accuracy of the
model plateaus on the task. This suggests that the utility of

self-supervised pretraining comes mainly from better reg-
ularization that reduces overfitting, not better optimization
that reduces underfitting—otherwise we should expect self-
supervision to have non-negligible utility even with large
numbers of labeled samples.

Utility vs Downstream Task: Next, we investigate whether
pretraining algorithms are more or less useful across differ-
ent downstream tasks. In Figure 5 we report performance
on pose estimation, depth, and semantic segmentation. For
the sake of space we only report performance on one dataset
variation (TCVL), but more results can be found in the Ap-
pendix.

The relative rank of different pretraining methods
changes with the choice of downstream task. Where CMC
performs best in object classification and object pose esti-
mation, we observe that rotation and AMDIM perform bet-
ter on segmentation and depth estimation respectively.

Because utility depends on the downstream setting, an

important implication is that object classification perfor-
mance may not be predictive of performance on other tasks.
It is thus important to consider diverse downstream settings
when evaluating self-supervised methods, and the best pre-
training method for a practitioner will depend on the spe-
cific context in which they wish to use their model.
Utility vs Data Complexity: Our experiments also allow us
to measure how factors of image variation impact the util-
ity of different pretraining methods. In Figure 6, we report
the change in utility for each method across dataset pairs
controlling for individual factors.

We observe relatively consistent changes to the utility of
a particular algorithm when adjusting a given factor of im-
age variation. For example, upon introducing random col-
ors or textures, the utility of CMC consistently goes up, but

Pose - Accuracy

Seq. - Accuracy

Depth - Accuracy

100 80 100
£ 80 - ¥ 7 2
> + scratch > >
E 60 #— AMDIM E 60 §
8 40 1 EN::Ct 8 50 3
Otate
2 - VAE £ £
20 40 60
102 103 104 10° 102 103 104 10° 102 103 10 10°
labeled samples # labeled samples # labeled samples
Pose - Utility Seg. - Utility Depth - Utility
4 4 4
3 3 3
=
2 2 =2
e
5
1
102 103 104 10° 102 103 104 10° 102 103 10 10°

labeled samples

labeled samples

labeled samples

Figure 5. Performance on additional downstream tasks with ResNet9 on the hardest dataset setting (TCVL). The best performing method
differs depending on the downstream task suggesting that diverse settings should be considered when comparing self-supervised models.

----, -C-- (+0) e
---L, -C-L (+C) ¢ anm
--V-, -CV- (+C) ¢ oh—u—
ceem, T--- (4T) $r—m—
-C--, TC-- (+T) -
-CVL, TCVL (+T) -
----, ==V- (#V) #
-C-L, -CVL (+V) [T3
TC--, TCV- (+V) = i

AMDIM
R A = =
-C--5 -C-L (+L) - 4 Rotate
TCV-, TCVL (+L) * 4 2 vac
-—--, TCVL (+..) ¢-o-m—

—4 -2 0 2 4
A Utility

Figure 6. Change in utility across datasets when controlling for
factors of image variation (all models trained with ResNet9). The
factors are: color (C), texture (T), viewpoint (V), and lighting (L).

the addition of viewpoint changes results in a drop in utility.
These effects occur across multiple dataset pairs.

Changes to utility for each factor differ across pretrain-
ing algorithms. That is, where utility goes up with texture
and down with viewpoint changes for CMC, the opposite
is true for AMDIM. One possible source of this discrep-
ancy is that as opposed to CMC that applies a loss to global
features, AMDIM encourages intermediate local features
across the image to map to similar embeddings. This may

— (- -CL -CVL T— TVL TC- TCVL
normal training 985 962 938 921 974 918 953 91.5

AMDIM 969 949 898 774 925 73.0 804 745
CMC 88.7 889 875 725 913 699 908 69.0
Rotate 314 300 397 306 322 376 254 329
VAE 71.7 638 510 357 728 269 368 315

Table 1. Results of linear evaluation for object classification.

increase sensitivity to evidence in local windows, which
would explain the adverse effect of random textures and ro-
bustness to viewpoint changes where local object evidence
changes less than the global arrangement of object parts.

For VAE, additional factors of variation lower utility. A

possible explanation is that as a reconstruction-based ap-
proach, the latent space must encode all information neces-
sary to reproduce the image. As data complexity increases,
more spurious details must be captured that do not pertain to
the downstream task. Contrastive approaches on the other
hand, teach a network to map to the same embedding after
applying different image transformations. Thus the network
learns to ignore changes in pixel space that do not corre-
spond to changes in semantic object class that a VAE would
otherwise encode.
Linear evaluation: In Table 1 we report performance of
each self-supervised method using the linear evaluation
common in other work. We freeze each pretrained model
and train a single linear layer for object classification. Note,
the linear layer is trained with all available samples for that
dataset. We report performance across eight datasets for ob-
ject classification with a ResNet9 model.

The linear evaluation results do not reflect finetuned per-
formance shown in Figures 4. Despite AMDIM having the
best linear performance, its utility is consistently lower than
both CMC and Rotation. While linear evaluation is infor-

100 20

—#- CMC (r50)
~i- CMC (r9

;; 80 15 L (r9)

; 60 >

g =10

5 40 —— scratch (r50) 5

8 —% - scratch (r9) 5

< 20 —#- CMC (r50)

- CMC (r9) Ll -
0 0 .
102 103 104 10° 102 103 104 10°

labeled samples # labeled samples

Accuracy (%)

100 20
—&— Rotate (r50)
80 15 —A - Rotate (r9)
60 >
=10
40 —— scratch (r50) 5
—¥ - scratch (r9) 5
20 —— Rotate (r50) “1\‘\\
—k - Rotate (r9)
—A———p—
0 o~ N

10° 104 10°
labeled samples

103 104 10° 102

labeled samples

102

Figure 7. Comparison between ResNet9 and ResNet50 backbones for object classification on TCVL. With few labeled samples the perfor-
mance of the ResNet50 model is worse when trained from scratch, but when pretrained is better than the pretrained ResNet9 suggesting
the importance of pretraining large models when working with less data.

100-250 labels: 5 AMDIM

frozen (1) - k.

frozen (2) —A— > 0 F-:'-‘-TI._;_: R

frozen (3) —h—— o =S
c _5 e
=

1k-4k labels: Is] —~10 finetune all

frozen (1) —A AMDIM < —| - frozen (1)

frozen (2) —aom- ® CMC < _15 -F frozen (2)

frozen (3) —A—mo— -+ Rotate -+|- frozen (3)

—20
-2 -1 0 1 2 100 250 1000

A Utility

labeled samples

4000

CMC Rotate
5 5
EEEeIE e | e
0 Fisfm—— L 0 5= =
_r, | S LY | -5
RN
~10 —— finetune all ~10 —— finetune all
—| - frozen (1) —| - frozen (1) |
—15 ~-F frozen (2) —15 -k frozen(2) 294
-4+ frozen (3) -<|- frozen (3)
-20 -20
100 250 1000 4000 100 250 1000 4000

labeled samples # labeled samples

Figure 8. Finetuning performance when freezing different amounts of the network. Change in utility and accuracy is reported relative to a
baseline where all weights are finetuned. The numbers (/-3) indicate the number of blocks of the ResNet model that have been frozen.

mative for leveraging a frozen model, it may not correspond
to which models perform best when finetuned.

Utility vs Model Size: Next, to measure the effect of model
capacity, we provide a comparison between ResNet9 and
ResNet50 performance on object classification in Figure 7.

Utility is always higher with a ResNet50 backbone. This
is due to both a performance drop of the baseline and per-
formance improvement of the finetuned model when tran-
sitioning to the larger model. The baseline drop occurs
at small dataset sizes and ResNet50 does outperform the
ResNet9 given sufficient labels.

CMC achieves higher performance with the larger back-

bone even when finetuning with less labels. This suggests
that for best downstream performance, it is helpful to pre-
train on as large a backbone as possible. Similar findings
are shown when pretraining with noisy labels [24].
Utility vs Amount of Finetuning: To further expand on
the comparison between finetuning and the linear evalua-
tion, we measure performance after finetuning a network
frozen up to different intermediate layers. The ResNet9
model is made up of three main blocks of layers, so we
test how finetuning performance changes if we freeze the
model up to each block. Note that after the third block,
there are two fully-connected layers so this is slightly more
expressive than the linear evaluation baseline. In Figure 8
we show both the change in utility and change in accuracy
after freezing increasing amounts of the network. Results
are averaged across multiple dataset variations.

Performance suffers as more of the model is frozen.
As expected, when most of the network is frozen (‘frozen
(3)’) the pretraining techniques that have the highest lin-
ear performance see less of a drop in performance. And
though some freezing is helpful when the number of labels
is low (100-250 samples), the best accuracy is consistently
reached by models that are fully finetuned.

9. Conclusion

In this work we investigate a number of factors that affect
the utility of self-supervised pretraining. We provide a thor-
ough set of experiments across different downstream tasks
and synthetic datasets to measure the utility of pretrain-
ing with state-of-the-art self-supervised algorithms. Our
study shows that the greatest benefits of pretraining are cur-
rently in low data regimes, and utility approaches zero be-
fore performance plateaus on the task from additional la-
bels. Further, performance of a self-supervised algorithm
in one setting may not necessarily reflect its performance in
others, underscoring the importance of studying and evalu-
ating pretraining methods across diverse scenarios.

Acknowledgements The authors would like to thank
Jonathan Stroud for his feedback on paper drafts and for
many helpful discussions. This work was partially sup-
ported by the National Science Foundation under Grants
No. 1734266 and No. 1617767.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

(12]

[13]

Philip Bachman, R Devon Hjelm, and William Buchwalter.
Learning representations by maximizing mutual information
across views. arXiv preprint arXiv:1906.00910, 2019. 1, 2,
5,11, 12

David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin Raffel. Mixmatch: A
holistic approach to semi-supervised learning. arXiv preprint
arXiv:1905.02249, 2019. 2

Piotr Bojanowski and Armand Joulin. Unsupervised learn-
ing by predicting noise. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pages
517-526. JMLR. org, 2017. 2

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 132-149, 2018. 2

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012 [cs.GR],
Stanford University — Princeton University — Toyota Tech-
nological Institute at Chicago, 2015. 3

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A.
Vedaldi. Describing textures in the wild. In Proceedings of
the IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2014. 4

Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 3

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009. 2

Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552,2017. 11

Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsuper-
vised visual representation learning by context prediction. In
Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1422-1430, 2015. 2

Carl Doersch and Andrew Zisserman. Multi-task self-
supervised visual learning. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2051-2060,
2017. 2

J Donahue, Y Jia, O Vinyals, J Hoffman, N Zhang, E Tzeng,
and T Darrell. Decaf: a deep convolutional activation feature
for generic visual recognition. corr (2013). arXiv preprint
arXiv:1310.1531,2013. 2

Alexey Dosovitskiy, Jost Tobias Springenberg, Martin Ried-
miller, and Thomas Brox. Discriminative unsupervised fea-
ture learning with convolutional neural networks. In Ad-
vances in neural information processing systems, pages 766—
774,2014. 2

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Un-
supervised representation learning by predicting image rota-
tions. arXiv preprint arXiv:1803.07728, 2018. 2, 5

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580-587,2014. 2

Priya Goyal, Dhruv Mahajan, Abhinav Gupta, and Ishan
Misra. Scaling and benchmarking self-supervised visual
representation learning. arXiv preprint arXiv:1905.01235,
2019. 2

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. arXiv preprint arXiv:1911.05722, 2019.
1

Kaiming He, Ross Girshick, and Piotr Dolldr. Rethinking
imagenet pre-training. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 4918-4927,
2019. 2

K He, X Zhang, S Ren, and J Sun. Deep residual learning for
image recognition. computer vision and pattern recognition
(cvpr). In 2016 IEEE Conference on, volume 5, page 6, 2015.
5

Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami,
and Aaron van den Oord. Data-efficient image recog-
nition with contrastive predictive coding. arXiv preprint
arXiv:1905.09272,2019. 1, 2

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing
the dimensionality of data with neural networks. science,
313(5786):504-507, 2006. 2

Longlong Jing and Yingli Tian. Self-supervised visual fea-
ture learning with deep neural networks: A survey. arXiv
preprint arXiv:1902.06162, 2019. 2

Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114,2013. 2,5
Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan
Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby.
Large scale learning of general visual representations for
transfer. arXiv preprint arXiv:1912.11370,2019. 2, 8
Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. Re-
visiting self-supervised visual representation learning. arXiv
preprint arXiv:1901.09005, 2019. 2

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz,
Joseph E Gonzalez, and Ion Stoica. Tune: A research plat-
form for distributed model selection and training. arXiv
preprint arXiv:1807.05118, 2018. 11

Francesco Locatello, Stefan Bauer, Mario Lucic, Syl-
vain Gelly, Bernhard Scholkopf, and Olivier Bachem.
Challenging common assumptions in the unsupervised
learning of disentangled representations. arXiv preprint
arXiv:1811.12359, 2018. 2

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan,
Kaiming He, Manohar Paluri, Yixuan Li, Ashwin Bharambe,
and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 181-196, 2018.
2

[29]

(30]

(31]

(32]

(33]
[34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

[43]

[44]

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey
Tumanov, Richard Liaw, Eric Liang, Melih Elibol, Zongheng
Yang, William Paul, Michael I Jordan, et al. Ray: A dis-
tributed framework for emerging {Al} applications. In /3th
{USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 18), pages 561-577, 2018. 11
Mehdi Noroozi and Paolo Favaro. Unsupervised learning
of visual representations by solving jigsaw puzzles. In
European Conference on Computer Vision, pages 69-84.
Springer, 2016. 2

Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus
Cubuk, and Ian Goodfellow. Realistic evaluation of deep
semi-supervised learning algorithms. In Advances in Neural
Information Processing Systems, pages 3235-3246, 2018. 2
Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 2

David Page. How to train your resnet, 2018. 5

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor
Darrell, and Alexei A Efros. Context encoders: Feature
learning by inpainting. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2536-2544, 2016. 2

Zhongzheng Ren and Yong Jae Lee. Cross-domain self-
supervised multi-task feature learning using synthetic im-
agery. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 762-771, 2018. 2
Cinjon Resnick, Zeping Zhan, and Joan Bruna. Probing the
state of the art: A critical look at visual representation eval-
uation. arXiv preprint arXiv:1912.00215, 2019. 2

Nawid Sayed, Biagio Brattoli, and Bjorn Ommer. Cross and
learn: Cross-modal self-supervision. In German Conference
on Pattern Recognition, pages 228-243. Springer, 2018. 2
Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhi-
nav Gupta. Revisiting unreasonable effectiveness of data in
deep learning era. In Proceedings of the IEEE international
conference on computer vision, pages 843-852, 2017. 2
Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-
trastive multiview coding. arXiv preprint arXiv:1906.05849,
2019. 1,2,4,5, 11

Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio
Guadarrama, and Kevin Murphy. Tracking emerges by col-
orizing videos. In The European Conference on Computer
Vision (ECCV), September 2018. 2

Xiaolong Wang and Abhinav Gupta. Unsupervised learning
of visual representations using videos. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2794-2802, 2015. 2

Zhirong Wu, Yuanjun Xiong, Stella Yu, and Dahua Lin. Un-
supervised feature learning via non-parametric instance-level
discrimination. arXiv preprint arXiv:1805.01978, 2018. 2
Qizhe Xie, Eduard Hovy, Minh-Thang Luong, and Quoc V
Le. Self-training with noisy student improves imagenet clas-
sification. arXiv preprint arXiv:1911.04252, 2019. 2

I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri,
and Dhruv Mahajan. Billion-scale semi-supervised learning
for image classification. arXiv preprint arXiv:1905.00546,
2019. 2

[45]

[46]

[47]

(48]

(49]

(50]

Mang Ye, Xu Zhang, Pong C Yuen, and Shih-Fu Chang. Un-
supervised embedding learning via invariant and spreading
instance feature. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 6210—
6219, 2019. 2

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,
Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djo-
longa, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. The visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019. 2

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In European conference on computer
vision, pages 649-666. Springer, 2016. 2, 4

Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain
autoencoders: Unsupervised learning by cross-channel pre-
diction. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1058-1067, 2017. 2
Tinghui Zhou, Matthew Brown, Noah Snavely, and David G
Lowe. Unsupervised learning of depth and ego-motion from
video. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1851-1858, 2017. 2
Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Lo-
cal aggregation for unsupervised learning of visual embed-
dings. In Proceedings of the IEEE International Conference
on Computer Vision, pages 6002-6012, 2019. 2

Appendix
A. Additional training details

We use the Ray Tune library [29, 26] for selecting hyper-
parameters. We tune the learning rate schedule and weight
decay terms as well as task-specific parameters in the self-
supervised settings. The pretrained models are given as
much training time during finetuning as the model trained
from scratch. Precise details and experiment configuration
settings can all be found in the released code.

We apply standard data augmentation (cropping, flip-
ping, brightness/color perturbations, Cutout [9]) in all set-
tings with a few exceptions for specific tasks. For example,
to avoid issues that would arise with padding and resizing
for depth estimation we do not do random cropping.

One additional note, since Contrastive Multiview Coding
(CMC) [39] uses Lab color space as input, we present all
images across all methods and datasets in Lab color space
for consistency. In ablations, we do not find this affects
performance when training a supervised model from scratch
with a large amount of labeled data, but want to control for
as many differences as possible between methods.

B. Additional experiments
B.1. Cross-dataset transfer

A common concern with self-supervised pretraining is
robustness to domain shifts. To get a sense of how shifts in
dataset properties affect performance, we compare models
pretrained and finetuned on different datasets. We evalu-
ate downstream object classification performance in the low
data regime. Results are shown in Figure 9.

Exposure to viewpoint changes appears to affect fine-
tuning performance most. Accounting for all other im-
age factors, models that are pretrained on datasets without
viewpoint changes and finetuned on datasets with viewpoint
changes suffer the most consistent drop in performance (up-
per right of Figure 9).

B.2. Tuning the pretraining process

Without a quick proxy for downstream performance, it
is difficult to tune and improve the pretraining process. As
seen in Figure 10, the downstream effect of more unlabeled
images and more training time may be limited. We observe
either no effect or a modest adverse effect when training
for half the time or with an eighth of the unlabeled images.
In practice, hyperparameter tuning is challenging as it is ex-
pensive to evaluate the impact, if any, of further adjustments
to the pretraining process, and exponential increases in pre-
training time and data might result in little to no change on
the final task.

-5.0

o TC-- -25

g & -

o -C-L

5 CV-

© -CVL --25

& TVL l

TCVL — 5o

LTRSS
IFEQ:QQQFE

Figure 9. Change in performance when pretraining and finetuning
on different dataset variations. Report average change in accuracy
when finetuning on 250-4000 samples for models pretrained with
AMDIM.

B.3. Network backbones

CMC: As noted in the paper, the backbone is different when
pretraining with CMC. This is because the authors split the
network in half, where each half is responsible for either
processing the L channel or the ab channels of the image.
This results in a restricted network with approximately half
the original number of parameters. In all other ways, the
network is identical.

This leads to a modest change in performance in single
object settings (Figures 11). When evaluating utility in the
paper we measure relative to the original baseline of the
full model trained from scratch. This does not affect the
main conclusions of the paper that utility approaches zero
as the number of labeled samples increases and that relative
performance depends on the downstream setting.
AMDIM: In the paper proposing AMDIM [1], a different
backbone is used and recommended. We compare perfor-
mance between this backbone and a ResNet50 model while
trying to control for overall model size as much as pos-
sible (similar feature activation sizes and total parameter
count). The linear performance of the proposed model is
much better than that of the ResNet50, but when finetuned,
the ResNet50 achieves higher accuracy. This is especially
true at larger dataset sizes. For the purposes of the compar-
isons made in the main paper, we continued with use of the
ResNet models for a fair comparison to other methods.

B.4. Results on additional datasets

In the following pages we include figures with results
across more datasets for all tasks. Results are in line with
those in the main paper. One observation is that different
methods show stronger performance on the dense prediction
tasks depending on the amount of data and model.

Dataset: -CVL Dataset: TCVL 20 Dataset: -CVL Dataset: TCVL

100 100 \ 20 v
\ \
g 90 90 15 \\ 15 \
\ 1
z 80 80 z i \
S 70 70 s 10 \
o —+— CMC (200, 400Kk) > X
< 60 —e— CMC (100, 400k) 60 5 5 ‘o
—m— CMC (800, 50k) <
50 50 0 0 -
102 10° 104 10° 102 10° 104 10° 102 103 104 10° 102 10° 104 10°
labeled samples # labeled samples # labeled samples # labeled samples

Figure 10. Change in utility with different pretraining settings for CMC. We label each pretrained model with (number of pretraining
epochs, number of unlabeled images) and report downstream object classification performance. Because 50k unlabeled images is 1/8th the
base 400k, the model is trained for more epochs to match total number of training iterations.

Obj. Cls., Dataset: -CVL Obj. Cls., Dataset: TCVL Pose, Dataset: -CVL Pose, Dataset: TCVL
80 80 80 80
9
< 60 60 60 -/ 60
>
1%
£ 40 40 40 / .
1 —— scratch —— scratch
< 20 —$— scratch (CMC backbone) 20 20 —$— scratch (CMC backbone) 20
- CMC —#- CMC
0 0 0 0
102 103 102 103 102 103 102 103
labeled samples # labeled samples # labeled samples # labeled samples

Figure 11. Training from scratch with CMC backbone (ResNet9 base) on object classification and object pose estimation.

Dataset: -CVL Dataset: -CVL Dataset: -CVL
100 100 10
—i— AMDIM (r50)
. 80 — 8 —i- AMDIM [1]
X X
> 60 > > 6
) O s
g © s
S 40 —4— scratch (r50) S D 4
8 =¥+ scratch [1] 8 ,}~\
< 20 —#— AMDIM (r50) < 2 —
~i- AMDIM [1] - n
0 80 0 N -4.:,
102 103 104 10° 20k 50k 100k 200k 102 103 104 10°
Dataset: TCVL Dataset: TCVL Dataset: TCVL
100 100 10
—~ 80 — 8
X X
> 60 > > 6
: g =
5 40 = 54
@] = 4 \\
(@) (@) r ~
< 20 < 2 _
SH. 1
\\ Y4
0 80 0 =
102 103 104 10° 20k 50k 100k 200k 102 103 104 10°
labeled samples # labeled samples # labeled samples

Figure 12. Comparison between ResNet50 backbone and backbone proposed in AMDIM paper [1]. Number of layers and number of
channels are chosen to control for total parameters so that the two models are matched in size.

Dataset: ---- Dataset: T--- Dataset: -C-- Dataset: --V- Dataset: ---L

100 /._.__._.-.-. 100 100 100 100
)
£ g0 80 80 ? 80 80 7
> —— scratch
e ~¢— AVDIM
5 60 = @e 60 60 60 60
8 —4— Rotate
< 40 —— VAE 40 40 40 40
103 10° 103 10° 103 10° 103 10° 103 10°
Dataset: TC-- Dataset: -C-L Dataset: -CVL Dataset: T-VL Dataset: TCVL
100 100 100 100 100
3
S . W . . .
>
[}
S 60 60 60 60 60
o
o
< 40 40 40 40 40
103 10° 103 10° 103 10° 103 10° 103 10°
labeled samples # labeled samples # labeled samples # labeled samples # labeled samples
Figure 13. Object classification accuracy (ResNet9).
Dataset: ---- Dataset: T--- Dataset: -C-- Dataset: --V- Dataset: ---L
. v 1] L)
6 —$— AMDIM 6 \ 6 \ 6 6 \
—#- cmMC \‘ |\ \
s I K N :
5 \ \
2 N 2 2 b 2 2
===\ R e —
r\
0 0 0 0 0
102 103 104 102 103 104 102 103 104 102 103 104 102 103 104
Dataset: TC-- Dataset: -C-L Dataset: -CVL Dataset: T-VL Dataset: TCVL
\
6 \ 6 6 6
\
\
4 \ 4 4 4
0 0) 0 .
107 103 104 107 103 104 107 103 104 10? 103 104
labeled samples # labeled samples # labeled samples # labeled samples # labeled samples
Figure 14. Object classification utility (ResNet9).
100 20 100 20
—#- CMC (r50) —&— Rotate (r50)
- CMC (19, —k- Rotate (r9
;\3 80 15 - (r9) ;; 80 15 A+ Rotate (r9)
g z g z
© = 10 © = 10
5 40 —— scratch (r50)] S 40 —— scratch (r50) 35
S —%- scratch (r9) 5 S —% - scratch (r9) 5
< 20 —#- CMC (50) < 20 —&— Rotate (r50) \
~i- CMC (r9) -k - Rotate (r9)
—A———g
0 0 - 0 o* Ao
102 103 104 10° 102 103 104 10° 102 103 104 10° 102 103 104 10°
labeled samples # labeled samples # labeled samples # labeled samples

Figure 15. Object classification accuracy and utility (ResNet50).

Dataset: -CVL Dataset: TCVL Dataset: -CVL Dataset: TCVL

100 100 5 v 5 \
—e— AMDIM | \
= 4 - cMmc ! 4 1
X 80 / 80 —A— Rotate
§ 60 —#— scratch 60 E 3 —&— VAE 3
5 —&— AMDIM 5 2 2
9] —=- CMC
g 40 —— Rotate 40 1 1
—o— VAE
——a——a ™ -
20 20 0 0
102 103 104 10° 102 103 104 10° 102 103 104 10° 102 103 104 10°
labeled samples # labeled samples # labeled samples # labeled samples
Figure 16. Object pose estimation results (ResNet9).
Dataset: -CVL Dataset: TCVL Dataset: -CVL Dataset: TCVL
100 100 . 20 '
—e— AMDIM \
X 80 / 80 15 - 15 '
- —A— Rotate \
§ 60 —#— scratch 60 E 10 —&— VAE 10 \
o —o— AMDIM =
3 —=- CMC
& 40 —— Rotate 40 5 5
—— VAE
20 20 0 0
102 103 104 10° 103 104 10° 102 103 104 10° 102 103 104 10°
labeled samples # labeled samples # labeled samples # labeled samples
Figure 17. Object pose estimation results (ResNet50).
80 80 80
9 9 9
< 60 2 60 2 60
> > >
(@] (@] (@)
S a0 S 40 S a0
a - —4— scratch (r50) 3 —4— scratch (r50) 8 —4— scratch (r50)
g —+% - scratch (r9) i —% - scratch (r9) % —¥ - scratch (r9)
20 —- CMC (r50) 20 —— Rotate (r50) 20 —4— AMDIM (r50)
=it- CMC (r9) =4 - Rotate (r9) =@ - AMDIM (r9)
0 0 0
102 103 104 10° 102 103 104 103 102 103 104 10°
labeled samples # labeled samples # labeled samples
20 20 20
—#— CMC (r50) —&— Rotate (r50) ~&— AMDIM (r50)
=i - CMC (r9) -k - Rotate (r9) ~& - AMDIM (r9)
15 15 15
> > >
=10 =10 =10
L P ot
-] -]]
5 5 5 A\‘\L‘
- ---—-E 3 o
0 T 0 - A ——-A-_T3 0 -0 = -——P===
107 103 104 1072 103 104 102 103 104

labeled samples

labeled samples

labeled samples

Figure 18. Direct comparison between ResNet9 and ResNet50 for object pose estimation.

Dataset: T-VL

Dataset: TCVL

Dataset: T-VL

Dataset: TCVL

90 90 ' \
—$— AMDIM \
3 80 80 4 —#- cMC 4 \
e —k— Rotate “
g 70 —— scratch 70 E‘ 3 —— VAE \ 3 \‘
o —4— AMDIM = \ \
5 60 & oMC 60 52 2
< 50 —4— Rotate 50 1 E 1
—— VAE
40 40 0o - - 0 "~ : ,
102 103 104 10° 102 103 104 10° 102 103 104 10° 102 103 104 10°
labeled samples # labeled samples # labeled samples # labeled samples
Figure 19. Semantic segmentation results (ResNet9).
Dataset: -CVL Dataset: TCVL Dataset: -CVL Dataset: TCVL
90 90 5 ' 5 v
—$— AMDIM \
3 80 80 4 —#- CMC 4 \‘
< M —4— Rotate \
§ 70 —— scratch 70 E' 3 - VAE \ 3 \‘
° —4— AMDIM = \ \
§ 60 I 60 52 2
< 50 —4— Rotate 50 1 1
—— VAE /
40 40 0 - - 0
102 103 104 10° 102 103 104 10° 102 103 10 10° 102 103 104 10°
labeled samples # labeled samples # labeled samples # labeled samples
Figure 20. Semantic segmentation results (ResNet50).
80 80 80
§ 70 § 70 § 70
o o) o
© 60 2 @ 60 - & 60 7
a '.-—*— scratch (r50) 3 —— scratch (r50) 8 . —f— scratch (r50)
& 50 =¥ - scratch (r9) & 50 =¥ - scratch (r9) & 50 =% scratch (r9)
—i—- CMC (r50) —A— Rotate (r50) —&— AMDIM (r50)
—t- CMC (r9) —k - Rotate (r9) ~& - AMDIM (r9)
40 40 40
102 103 10* 10° 102 103 104 103 102 103 104 10°
labeled samples # labeled samples # labeled samples
10 10 10
——- CMC (r50) —— Rotate (r50) —&— AMDIM (r50)
8 —i- CMC (r9) 8 —k- Rotate (r9) 8 ~&- AMDIM (r9)
> 6 > 6 > 6
5 4 5 4 5 a
2 2 2 N
e
S~ b - Sao — —
0 - 0 Ao 0 R
102 103 104 102 103 104 102 103 104

labeled samples

labeled samples

labeled samples

Figure 21. Direct comparison between ResNet9 and ResNet50 for semantic segmentation.

Accuracy (%)

Y
o

0]
0]

80

~
6]

~
o

102

©o
v

Accuracy (%)

o 0 O
o u o

~
]

~
o

Accuracy (%)

Utility

Dataset: T-VL

g

CcMC

b4t

VAE

103 104

scratch
AMDIM

Rotate

10°

labeled samples

102

95

90

85

80

75

70

Dataset: -CVL

- VAE

103 104

—4— scratch
—$— AMDIM
—#- CMC

—&— Rotate

10°

labeled samples

95 95
—~ 90 — 90

R X
> 85 > 85

0 O

o o
/ —4— scratch (r50) 3 80 —4— scratch (r50) 8 80

e —%- scratch (r9) & & —%- scratch (r9) &
—— CMC (r50) 75 —k— Rotate (r50) 75

- - CMC (r9) —4k - Rotate (r9)
70 70
103 104 10° 102 103 104 10° 102
labeled samples # labeled samples
10 10
== CMC (r50) —4— Rotate (r50)

=i - CMC (r9) 8 —A- Rotate (r9) 8
> 6 > 6

= =
5 4 5 4
2 2

0
103 104 102 103 104 102

labeled samples

95 Dataset: TCVL Dataset: T-VL
6 - AMDIM
90 —— CcMC
—&— Rotate
85 Z4 —— VAE
= \
80 5 \
2 \
" &?\-—ﬁ
70 0
102 103 104 10° 102 103 104
labeled samples # labeled samples
Figure 22. Depth estimation results (ResNet9).
o5 Dataset: TCVL Dataset: -CVL
6 - AMDIM
90 —— CMC
—&— Rotate l‘
85 24 —— VAE
80 5
2
75
70 0 -
102 103 104 105 102 103 104

labeled samples # labeled samples

Figure 23. Depth estimation results (ResNet50).

labeled samples

Dataset: TCVL

1
|
6 1
\
\
4 \
\
\
2 \
S
102 103 104

labeled samples

Dataset: TCVL

)
\
\
\
\

102 103 10
labeled samples

e
:,'—1'— scratch (r50)
& —%- scratch (r9)
—0— AMDIM (r50)

~& - AMDIM (r9)

103 104 10°
labeled samples

—$— AMDIM (r50)
~&- AMDIM (r9)

1 A i 0

103 104
labeled samples

Figure 24. Direct comparison between ResNet9 and ResNet50 for depth estimation.

