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Distributed Load-Side Control: Coping with
Variation of Renewable Generations

Zhaojian Wang, Feng Liu, Steven H. Low, Peng Yang and Shengwei Mei

Abstract—This paper addresses the distributed load frequency
control of multi-area power system, where controllable loads
are utilized to recover nominal frequencies for the advantage
of fast response speed. The imbalanced power causing frequency
deviation is decomposed into three parts: a known constant part,
an unknown low-frequency variation part and a high-frequency
residual. The known steady part is usually the prediction of
power imbalance. The variation may result from the fluctuation
of renewable resources, electric vehicle charging, etc., which
is usually unknown to operators. The high-frequency residual
is usually unknown and treated as an external disturbance.
Correspondingly, in this paper, we resolve the following three
problems in different timescales: 1) allocate the steady part
of power imbalance economically; 2) mitigate the effect of
unknown low-frequency power variation locally; 3) attenuate
unknown high-frequency disturbances. To this end, a distributed
controller combining consensus method with adaptive internal
model control is proposed. We first prove that the closed-loop
system is asymptotically stable and converges to the optimal
solution of an optimization counterpart problem if the external
disturbance is not included. We then prove that the power
variation can be mitigated accurately. Furthermore, we show the
closed-loop system is robust against both parameter uncertainty
and external disturbances. The New England system is used to
verifiy the efficacy of our design.

Index Terms—Load-side control, renewable generation, inter-
nal model control; frequency regulation; distributed control.

I. INTRODUCTION

A. Background

In the modern power system, multiple regional grids are
usually interconnected to constitute a bulk grid [1], [2]. To
maintain a stable power system, the frequency should be
retained at its nominal value, e.g. 50Hz or 60Hz. Convention-
ally, it is realized by synchronized generators in a centralized
fashion, known as a hierarchy control architecture [3], [4].
However, with the increasing penetration of volatile and un-
certain renewable generations, power mismatch in the system
can fluctuate rapidly with a large amount. In such a situation,
the traditional manner of control may not be able to keep
pace due to large inertia of traditional synchronous generators.
Fortunately, load-side participation in frequency control opens
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up new possibility to resolve this problem, benefiting from its
fast response [5], [6]. On the other hand, as controllable loads
usually disperse across the power system, it is desired to fit
load-side control into a distributed architecture rather than the
conventional centralized one. In this regard, distributed optimal
control has been investigated by connecting the controller
design with solving algorithms of optimal dispatch problems
[7]–[9]. It leads to a so-called reverse engineering methodol-
ogy for designing optimal controllers, particularly in optimal
frequency control of power systems [6], [10], [11]. In this
paper, we design a distributed load-side frequency controller
that is capable of adapting to power variation due to high-
penetration volatile renewable generations, such as wind farms
and PV clusters.

B. Related Work
In power system operation, frequency deviation is usually

a consequence of power mismatch due to unexpected distur-
bances, such as sudden load leaping/dropping or generator
tripping. In terms of the forms of imbalanced power, these
state-of-the-art works can be roughly divided into two cat-
egories: constant power imbalance [6], [12]–[17] and time-
varying power imbalance [18]–[20]. In the first category, a
step change of load/generation is considered. Then generators
and/or controllable loads are utilized to eliminate the imbal-
anced power and restore the nominal frequency. In [6], an
optimal load-side control problem is formulated and a primary
frequency controller is derived to balance step power change
using controllable loads. It is extended in [12] to realize
a secondary frequency control, i.e. restoring the nominal
frequency. The design approach is generalized in [14], where
the model requirement is relaxed and a passivity condition
is proposed to guarantee the asymptotic stability. [15], [16]
further consider both steady-state and transient operational
constraints in distributed optimal frequency control. In [13], a
nonlinear network-preserving model is considered and only
limited control coverage is needed to implement the dis-
tributed optimal frequency control. A different disturbance is
considered in [17], where th secondary frequency controller
is injected by constant malicious attacks. To eliminate the
influence of the attacks, a detection method is derived to
combine with the distributed frequency controller.

In the second category, imbalanced power does not keep
constant, creating much greater challenge to controller design
and stability analysis. In [18], power variation is modeled
as output of a known exosystem. Then an internal model
controller is designed to tackle and compensate the time-
varying imbalanced power. The idea of combining distributed
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control awith internal model control is attractive and inspiring.
In [19], a centralized controller is proposed, which can well
track the power imbalance and maintain the global frequency
within a desired range when considering slowly changing
power imbalance. The frequency still varies along with time-
varying loads. In [20], measurement noise is considered in
frequency control, and a leaky integral controller is proposed
that can strike an acceptable trade-off between performance
and robustness.

To sum up, in most of the existing literature, imbalanced
power is modeled as a step change, implying it can be regarded
a constant almost everywhere. The time-varying imbalanced
power is usually regarded as output of a known exosystem.
However, these two kinds of power imbalance are not in
accordance with the practice in power systems, especially
when a large amount of renewable generations and electric
vehicles are integrated. In such a situation, power imbalance is
always time-varying and unknown, which should be carefully
considered in the design of distributed frequency control.

C. Contribution

In this paper, imbalanced power is modeled in a more
realistic fashion. It is decomposed into a known constant
part, an unknown low-frequency time-varying part and a high-
frequency residual. In power systems, the first one can be
obtained by prediction while the latter two are the fluctuation
around the prediction. Offset error in prediction can also be
considered in the unknown time-varying part. Then, we give
a systematic way to deal with the time-varying disturbance.
First, a distributed control is proposed based on consensus
method to balance the known constant part economically,
which resolves a slow timescale operation problem. Second,
a decentralized supplementary controller based on the internal
model control is proposed to mitigate the effect of unknown
power variation, which deals with low-frequency variation in a
faster timescale. Finally, we also investigate that the proposed
controller can attenuate the impact of high-frequency residual,
which is in the fastest timescale.

This work can be regarded as an extension of [6], [12]–[16].
As the imbalanced power is time varying in our case, these
previous distributed controller may not be able to stabilize
and restore the frequency, as we will demonstrate later in case
studies. Here the main challenge is how to fit a time-varying
tracking and compensation control into the structure of the
previous distributed frequency controller. The major difference
between this paper and [18] is that the power variation is
modeled as output of a known exosystem in [18]. Since such
information is difficult to obtain in practice, our model appears
to be more practical albeit more sophisticated. In [21], an
internal model control is leveraged to devise a distributed
unconstrained optimization which can mitigate the effects of
unknown time-varying disturbances. In contrast, we consider
optimal frequency control problem with both power system
dynamics as well as power balance constraints, which are not
included in [21]. Moreover, we also analyze the robustness of
the proposed controller under uncertain parameters and dis-
turbances, which has been seldom discussed in the distributed

frequency control literature. Main contributions of this paper
are as follows:
• A generic model of imbalanced power for power system

frequency control is established, which is composed of
three parts: a known constant part, a unknown low-
frequency power variation part and a high-frequency
residual. The power variation is further modeled by a
superposition of several dominant sinusoidal components.
Then it is formulated as the output of an exosystem with
unknown parameters;

• A distributed controller is derive to restore the nominal
frequency even under unknown disturbance. It is com-
posed of two parts. One is designed based on consensus
control to achieve an economic allocation of the constant
part of power imbalance, while the other is designed
based on adaptive internal model control to mitigate the
effect of unknown power variation;

• Robustness of the controller under parameter uncertainty
and external disturbances is analyzed. It is proved that the
influence of uncertain damping constants have no impact
on the performance of the controller and the impact of
external disturbances is attenuated greatly.

D. Organization

The rest of this paper is organized as follows. In Section II,
the network and imbalanced power models are formulated,
respectively. Section III presents the design of distributed
frequency controller. In Section IV, the equilibrium of the
closed-loop system is characterized with a proof of asymptotic
stability. The robustness of the proposed controller under
uncertainties is analyzed in Section V. We confirm the per-
formance of controllers via simulations on a detailed power
system model in Section VI. Section VII concludes the paper.

II. PROBLEM FORMULATION

A. Model of Power Network

A large power network is usually composed of multiple con-
trol areas, which are interconnected with each other through
tie lines. For simplicity, here we treat each control area as
a node with an aggregate controllable load and an aggregate
uncontrollable power injection.1 Then the power network is
modeled as a graph G := (N,E) where N = {1,2, ...n} is the
set of nodes (control areas) and E ⊆ N×N is the set of edges
(tie lines). If a pair of nodes i and j are connected by a tie
line directly, we denote the tie line by (i, j) ∈ E. G is treated
as directed with an arbitrary orientation and we use (i, j) ∈ E
or i→ j interchangeably to denote a directed edge from i to
j. Without loss of generality, we assume G is connected.

Besides the graph of physical power network, we also need
to consider the communication network, denoted by H . A
edge in H stands for that the two endpoints of the edge can
communicate to eahc other directly. Whereas the nodes in the
two networks are identical, their edges can be different. In this

1In our study, all controllable loads in the same area are aggregated
into one controllable load. The same as the aggregate uncontrollable power
injection. This simplification is practically reasonable when dealing with the
frequency control problem in power systems [10].
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paper, we assume H is also connected. The set of neighbors
of node j in the communication graph is denoted by Nc j. The
Laplacian matrix of H is denoted as L.

A second-order linearized model is adopted to describe the
frequency dynamics of each node. We assume the tie lines
are lossless and adopt the DC power flow model, which is
reasonable for a high-voltage transmission system. Then for
each node j ∈ N, we have

θ̇ j = ω j (1a)

M jω̇ j = Pin
j −Pl

j −D jω j

+ ∑
i:i→ j

Bi j(θi−θ j)− ∑
k: j→k

B jk(θ j−θk) (1b)

where, θ j denotes the rotor angle at node j; ω j the frequency;
Pin

j the uncontrollable power injection; Pl
j the controllable

load. M j > 0, D j > 0 are inertia and damping constants,
respectively. B jk > 0 are line parameters that depend on the
reactance of line ( j,k) ∈ E.

B. Model of Imbalanced Power

Denote Pin
j as the imbalanced power in the system. It can

be decomposed into two parts: a constant part and a variation
part. That is

Pin
j (t) = Pin

j + q̃ j(t) (2)

where Pin
j is the known constant part, which could be the

prediction of renewable generations and/or loads. q̃ j(t) is the
variation part, which is assumed unknown.2

The known constant part is easy to deal with, while the
variation part is non-trivial. The main idea is to further decom-
pose it into the sum of a series of sinusoidal functions, whose
parameters are unknown. Then an internal model control can
be utilized to trace these sinusoidal components, and then
eliminate the effects of the variation part.

In light of [22]–[24], we can approximate variation of
renewable generations and load demands by a superposition
of a few sinusoidal functions. Specifically, we decompose the
imbalanced power injected by volatile renewable generation
and loads q̃ j(t) into

q̃ j(t) := q j0 +∑
s j
k=1 q jk sin(a jk · t +φ jk)+w j(t) (3)

where q j0 is the prediction offset error (which is an unknown
constant). The second term stands for the variation part, which
is a superposition of a few sinusoidal functions. s j is the
number of sinusoidal functions for node j. Their amplitudes
(i.e. q jk), frequencies (i.e. a jk > 0) and initial phases (i.e.
φ jk) are unknown but belong to a known bounded interval.
Note that it is practically impossible to use infinite number of
sinusoidal signals to represent q̃ j(t). Hence here we consider
only several dominant frequencies (usually few low-frequency
power fluctuations). The remained high-frequency residuals,
denoted by w j(t), is usually quite small. So we do not
consider its detailed model in this paper, but simply assume
that it belongs to the L T

2 space, i.e., for any w j(t) ( j ∈ N),

2As Pin
j may not be accurate, the offset error of prediction is included in

q̃ j(t) component. We abuse the term q̃ j(t) “variation part” for simplicity.

∫ T
0 ||w j(t)||2dt < +∞ holds for all 0 < T < +∞. In this way,

w j(t) is treated as an external disturbance.

Remark 1 (Power Variation in power system). In this paper,
we adopt a generic model to depict q̃ j(t) so that it can apply
for various types of power imbalance in practice. In practical
power systems, q̃ j(t) has many interpretations, some of which
are listed below.

1) Variation of renewable generations. Large-scale renew-
able generations may vary rapidly, causing remarkable
power fluctuation. As it is difficult to accurately predict
volatile renewable generations, the fluctuation is always
partly unknown. Such unknown variations may lead to
remarkable frequency fluctuation or even instability.

2) Variation of loads. Load demands in a power system are
always varying, which also bring out power fluctuation
in system. In addition, whereas load demand usually
can be estimated quite accurately in a traditional power
system. However, the integration of electric vehicles,
energy storage and demand response has been making
load demands much more difficult to predict.

C. Equivalent Transformation of Disturbance Model

We further investigate the dominant part in q̃ j(t). Denote

q j(t) := q j0 +∑
s j
k=1 q jk sin(a jk · t +φ jk) (4)

Then we show that q j(t) can be expressed as the output of
an exosystem. To this end, define

λ j1 = q j(t)

λ jk =

(
d
dt

)k−1

q j(t) (2≤ k ≤ s̄ j) (5)

where s̄ j := 2s j + 1. Then q j(t) is just the output of the
following dynamic system [21], [25]:

λ̇ j = A j(α j)λ j (6a)
q j(t) = [1 01×2s j ] ·λ j (6b)

where,

λ j := [λ j1, · · · ,λ j,s̄ j ]
T

A j(α j) :=
[

02s j×1 I2s j

0 α j1,0, · · · ,α js j ,0

]
(7)

with α j1 = −
s j

∏
l=1

a2
jl , α j2 = −

s j

∑
k=1

s j

∏
l=1
l 6=k

a2
jl , · · · , α js j = −

s j

∑
l=1

a2
jl .

Here, a jl are defined in (4).
To facilitate the controller design, a transformation is con-

structed. Let R j := [ri1, · · · ,ri,s̄ j−1,1], such that all the roots of
polynomial τ s̄ j−1 + ri,s̄ j−1τ s̄ j−2 + · · ·+ ri2τ + ri1 have negative
real parts. Then define a vector Ã j(α j) := R j(Is̄ j +A j(α j)) and
construct the following matrix

O j(α j) :=
[

ÃT
j (α j), · · · ,

(
Ã j(α j)A

s̄ j−1
j (α j)

)T
]T

In [26] , it is proven that O j(α j) is nonsingular, and

O−1
j (α j)A j(α j)O j(α j) = A j(α j)
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Let ϕ j = O−1
j (α j)λ j, then we have

ϕ̇ j = A j(α j)ϕ j (8a)
q j(t) = Ã j(α j)ϕ j (8b)

So far, q j(t) is written as the output of a new exosystem
(8a). However, Elements in A j(α j) and Ã j(α j) are still un-
known. According to the definition of q j(t) and boundedness
of q jk,a jk, λ j is bounded. Hence ϕ j is also bounded due to
the nonsingular transformation.

From (2), (3) and (4), Pin
j (t) is composed of three parts, i.e.,

Pin
j , q j(t) and w j(t), we will address them in different ways,

giving rise to the following three problems.
P1: Balancing Pin

j economically and globally;
P2: Coping with the variation of q j(t) locally;
P3: Attenuating the impact of external disturbance w j(t).

Remark 2 (Timescales). The above three problems can be in-
terpreted from the perspective of intrinsic multiple timescales
in power systems. P1 is the long-term operation problem, i.e.,
the system should operate economically in a steady state. P2
is the short-term control problem, where the low-frequency
variation should be eliminated by designing proper controller.
The timescale of P3 is even faster than that of P2, where
the controller cannot track the high-frequency disturbance
accurately. In this situation, we hope to attenuate its negative
impact. Thus, we resolve the distributed frequency control
problem under time-varying power imbalance systematically
from three different timescales, which coincides with P1-P3.

III. CONTROLLER DESIGN

In this section, the known steady-state part Pin
j is optimally

balanced across all areas using a consensus-based distributed
control, which resolves P1. Then the effect of variation part
q j(t) is eliminated locally by using a supplementary internal
model controller, resolving P2. In terms of P3, here we do
not design a specific controller to deal with w j(t). Instead we
show that the proposed controller can effective attenuate w j(t),
which will be discussed in later on Section V.

A. Controller for the Known Steady-state P̄in
j

First we formulate a counterpart optimization model for the
optimal load control problem:

OLC: min
Pl

j
∑
j∈N

1
2

β j ·
(

Pl
j

)2
(9a)

s. t. ∑ j∈N Pin
j = ∑ j∈N Pl

j (9b)

where β j > 0 are constants. The control goal of each area is to
minimize the regulation cost of the controllable load, which is
in a quadratic form [18]. (9b) is the power balance constraint.
Let q̃ j(t) = 0, we design a consensus-based controller [18]

Pl
j = µ j/β j (10a)

µ̇ j = −∑k∈Nc j
(µ j−µk)+ω j/β j (10b)

This simple controller can restore the frequency and minimize
the regulation cost of the controllable loads when q̃ j(t) = 0.
However, a time-varying q̃ j(t) may destroy the controller. Next
we use a supplementary controller to deal with q̃ j(t).

B. Controller Considering Varying Power Imbalance

In this subsection, an adaptive internal model control is
supplemented to mitigate q j(t), which is given by

Pl
j = µ j/β j +[d jω j + Ã j(α̂ j)ζ j] (11a)

µ̇ j = −∑k∈Nc j
(µ j−µk)+ω j/β j (11b)

η̇ j = −η j +Pin
j −Pl

j −D jω j

+ ∑
i:i→ j

Bi j(θi−θ j)− ∑
k: j→k

B jk(θ j−θk) (11c)

ζ̇ j = A j(α̂ j)ζ j−G j(η j +R jζ j) (11d)
˙̂α j = −kα Λ j(ζ j)(η j +R jζ j) (11e)

where kα > 0,γ > 0 are constant coefficients, and

G j = [ 01×(s̄ j−2), 1, γ ]T ,

Λ j(ζ j) = [ ζ j2, ζ j4, · · · , ζ j,s̄ j−1 ]T .

Here, (11b) is the same as (10b), which is used to synchronize
µ j and restore frequency. Dynamics of η j,ζ j, α̂ j are derived
from the adaptive internal model. Dynamics of η j come from
(1b) for estimating unknown q j(t). ζ j reproduces the dynamics
of ϕ j in (8a). α̂ j is the estimation of α j.

In the controller (11a), µ j/β j allocates Pin
j economically;

Ã j(α̂ j)ζ j is the output of the internal model, which is used
to eliminate q j(t) asymptotically; and d jω j is used to guar-
antee stability and enhance robustness of the controller. It is
illustrated in Section VI that a low-order internal model control
suffices to trace and compensate the power variation very well.

C. Closed-loop Dynamics

Combining (1) with (11) and omit w j(t), we obtain a closed-
loop system. Since we are only interested in angle difference
between two areas, use θ̃i j := θi−θ j as the new state variable.
Then perform the following transformation

η̃ j := R jϕ j +η j

ζ̃ j := ζ j−ϕ j (12)
α̃ j := α̂ j−α j

Their derivatives are

˙̃η j = R jϕ̇ j + η̇ j

= R jA j(α j)ϕ j−η j +Pin
j + ∑

i:i→ j
Bi jθ̃i j

− ∑
k: j→k

B jkθ̃ jk−D jω j−
(
µ j/β j +d jω j + Ã j(α̂ j)ζ j

)
= R jA j(α j)ϕ j−η j− Ã j(α j)ϕ j + Ã j(α j)ϕ j

+Pin
j + ∑

i:i→ j
Bi jθ̃i j− ∑

k: j→k
B jkθ̃ jk

−D jω j−µ j/β j−d jω j− Ã j(α̂ j)ζ j

= −η̃ j + Ã j(α j)ϕ j− Ã j(α̂ j)ζ j +Pin
j + ∑

i:i→ j
Bi jθ̃i j

− ∑
k: j→k

B jkθ̃ jk−D jω j−µ j/β j−d jω j (13a)

˙̃
ζ j = ζ̇ j− ϕ̇ j

= A j(α̂ j)ζ j−G j(η j +R jζ j)−A j(α j)ϕ j
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= (A j(α̂ j)−A j(α j))ζ j +A j(α j)(ζ j−ϕ j)

−G j(η j +R jζ j−R jϕ j +R jϕ j)

= (A j(α̂ j)−A j(α j))ζ j +(A j(α j)−G jR j)ζ̃ j−G jη̃ j

(13b)
˙̃α j = ˙̂α j− α̇ j

= −kα Λ j(ζ j)(η j +R jζ j)

= −kα Λ j(ζ j)(η̃ j +R jζ̃ j) (13c)

Define ρq j := Ã j(α j)ϕ j − Ã j(α̂ j)ζ j. Then the closed-loop
system is converted into

˙̃
θi j = ωi−ω j (14a)

ω̇ j =
1

M j

(
Pin

j +ρq + ∑
i:i→ j

Bi jθ̃i j− ∑
k: j→k

B jkθ̃ jk

−µ j/β j−d jω j−D jω j
)

(14b)

µ̇ j = −∑k∈Nc j
(µ j−µk)+ω j/β j (14c)

˙̃η j = −η̃ j +Pin
j +ρq + ∑

i:i→ j
Bi jθ̃i j− ∑

k: j→k
B jkθ̃ jk

−D jω j−µ j/β j−d jω j (14d)
˙̃
ζ j = (A j(α̂ j)−A j(α j))ζ j +(A j(α j)−G jR j)ζ̃ j−G jη̃ j

(14e)
˙̃α j = −kα Λ j(ζ j)(η̃ j +R jζ̃ j) (14f)

IV. EQUILIBRIUM POINT AND STABILITY

In this section, we analyze the equilibrium and stability of
the closed-loop system (14). Note that w j(t) is not considered.

A. Equilibrium Point

First we define the equilibrium point of the closed-loop
system (14).

Definition 1. A point (θ̃ ∗,ω∗,µ∗, η̃∗, ζ̃ ∗, α̃∗) 3 is an equilib-
rium point of the closed-loop system (14) if the right-hand
side of (14) vanishes at (θ̃ ∗,ω∗,µ∗, η̃∗, ζ̃ ∗, α̃∗).

The next theorem shows that two problems P1 and P2 are
solved simultaneously at the equilibrium point.

Theorem 1. At the equilibrium point of (14), following
assertions are true.

1) η̃∗j = ζ̃ ∗j = α̃∗j = 0, which implies that q j(t) is accurately
estimated.

2) System frequency recovers to the nominal value, i.e.
ω∗j = 0 for all j ∈ N.

3) The marginal controllable load costs satisfy µ∗j = µ∗k for
all j,k ∈ N.

Proof of Theorem 1. In an equilibrium point, we have

0 = ω
∗
i −ω

∗
j (15a)

0 = Pin
j +ρ

∗
q + ∑

i:i→ j
Bi jθ̃

∗
i j− ∑

k: j→k
B jkθ̃

∗
jk−

µ∗j
β j
− (d j +D j)ω

∗
j

(15b)

3Given a collection of yi for i in a certain set Y , y denotes the column
vector y := (yi, i ∈ Y ) of a proper dimension with yi as its components.

0 =−∑k∈Nc j
(µ∗j −µ

∗
k )+ω

∗
j /β j (15c)

0 =−η̃
∗
j +Pin

j +ρ
∗
q + ∑

i:i→ j
Bi jθ̃

∗
i j− ∑

k: j→k
B jkθ̃

∗
jk

−µ
∗
j /β j− (d j +D j)ω

∗
j (15d)

0 = (A j(α̂
∗
j )−A j(α j))ζ

∗
j +(A j(α j)−G jR j)ζ̃

∗
j −G jη̃

∗
j

(15e)

0 =−kα Λ j(ζ
∗
j )(η̃

∗
j +R jζ̃

∗
j ) (15f)

We have η̃∗j = 0 due to (15d) and (15b). Then (7) yields

A j(α̂
∗
j )−A j(α j) =

[
02s j×1 02s j

0 α̃ j1,0, · · · , α̃ js j ,0

]
(16)

and

A j(α j)−G jR j =

[
02s j×1 I2s j

0 α j1,0, · · · ,α js j ,0

]

−

 0
1
γ

 [r j1, · · · ,r j,s̄ j−1,1]

=

 0s̄ j−2,1 Is̄ j−2 0s̄ j−2,1
−r j1 −r j2, · · · ,−r j,s̄ j−1 0
−γri1 α j1− γr j2,−γr j3, · · · ,−γr j,s̄ j−1 −γ


(17)

Then the first s̄ j−1 dimension of (15e) is rewritten as

[
0s̄ j−2,1 Is̄ j−2
−r j1 −r j2, · · · ,−r j,s̄ j−1

]
︸ ︷︷ ︸

Ψ


ζ̃ ∗j1
...

ζ̃ ∗j,s̄ j−1

= 0 (18)

The first matrix in (18), denoted by Ψ, is nonsingular. Hence

we have
[
ζ̃ ∗j1, · · · , ζ̃ ∗j,s̄ j−1

]T
= 0. Denote α̃ j := [α̃ j1, · · · , α̃ j,s j ]

T .
Then the s̄ j-th dimension of (15e) together with (15f) yield

Λ
T
j (ζ j)α̃

∗
j − γζ̃

∗
j,s̄ j

≡ 0

Λ j(ζ j)ζ̃
∗
j,s̄ j

≡ 0

This implies ζ̃ ∗j,s̄ j
= 0 and α̃∗j = 0. The first assertion is proved.

From the first assertion, we have

ρ
∗
q j =−Ã j(α̂

∗
j )ζ
∗
j + Ã j(α j)ϕ j = 0 (19)

From (15a), we have ω∗i = ω∗j = ω0, with a constant ω0.
Considering the compact form of (15c), we have

−Lµ
∗+ω0 ·β−1 = 0 (20)

where,

L :=

 L1
...

Ln

 , Ln :=−(L1 +L2 + · · ·+Ln−1)

and Li is the i-th row of L. Then (20) is equivalent to
−L1µ∗

...
−Ln−1µ∗

(L1 +L2 + · · ·+Ln−1)µ
∗

=


−ω0/β1
−ω0/β2

...
−ω0/βn

 (21)
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Thus we have ω0 = 0, which is the second assertion.
From (20), we have Lµ∗ = 0. Equivalently, µ∗ = µ0 ·1 with

a constant µ0, implying the third assertion.

From the first assertion and invoking (12), we have ζ ∗j =
ϕ j, α̂

∗
j = α j, implying the variation q j(t) is accurately elim-

inated. Then P2 is solved. From the third assertion, P1 is
solved. Therefore, P1 and P2 are solved simultaneously.

B. Asymptotic stability

In this subsection, we prove the asymptotic stability of the
closed-loop system (14). We start by transforming it to an
equivalent form.

Denote η̂ j := η̃ j−M jω j and ν j := [η̂ j, ζ̃ j, α̃ j]
T . Then (14)

can be rewritten as
˙̃
θi j = ωi−ω j (22a)

ω̇ j =
1

M j

(
Pin

j +ρq j + ∑
i:i→ j

Bi jθ̃i j− ∑
k: j→k

B jkθ̃ jk

−µ j/β j−d jω j−D jω j
)

(22b)

µ̇ j = −∑k∈Nc j
(µ j−µk)+ω j/β j (22c)

ν̇ j = φ j(ν j,ω j) (22d)

where

φ j(ν j,ω j) =


−η̂ j−M jω j(

(A j(α̂ j)−A j(α j))ζ j−G j(η̂ j +M jω j)

+(A j(α j)−G jR j)ζ̃ j

)
−kα Λ j(ζ j)(η̂ j +M jω j +R jζ̃ j)


It is obvious that if (14) is stable, (22) is also stable. Thus,
we turn to prove the stability of (22).

Consider the subsystem ν j , we have the following Lemma.

Lemma 2. Consider the subsystem (22d) and let ω j ≡ 0. Then
for each j ∈ N, there exists a C1 function U j(t,ν j) such that

U j(ν j)≤U j(t,ν j)≤U j(ν j)

∂U j(t,ν j)

∂ t
+

∂U j(t,ν j)

∂ν j
φ j(ν j,0)≤−

∥∥ν j
∥∥2∥∥∥∥∂U j(t,ν j)

∂ν j

∥∥∥∥≤ b j0(
∥∥ν j
∥∥+∥∥ν j

∥∥3
) (23)

with a constant b j0 > 0 and positive definite and radially
unbounded functions U j(ν j),U j(ν j).

The proof of Lemma 2 is given in [21, Lemma 3], which
is omitted here.

Before giving the stability result, we first study the Eu-
clidean norm of

∥∥ρq j
∥∥ and

∥∥∥ ∂U j(t,ν j)

∂ν j
(φ j(ν j,ω j)−φ j(ν j,0))

∥∥∥.
For ρq j,∥∥ρq j

∥∥= ∥∥∥Ã j(α j)ϕ j− Ã j(α̂ j)(ζ̃ j +ϕ j)
∥∥∥

=
∥∥∥(Ã j(α j)− Ã j(α̂ j))ϕ j− Ã j(α̂ j)ζ̃ j

∥∥∥
=
∥∥∥R jÂ j(α̃ j)ϕ j− Ã j(α̃ j +α j)ζ̃ j

∥∥∥
≤
∥∥R jÂ j(α̃ j)ϕ j

∥∥+∥∥∥Ã j(α̃ j +α j)ζ̃ j

∥∥∥
≤
∥∥R j
∥∥∥∥Â j(α̃ j)

∥∥∥∥ϕ j
∥∥+∥∥∥R jζ̃ j +R jA j(α̃ j +α j)ζ̃ j

∥∥∥

=
∥∥R j
∥∥∥∥Â j(α̃ j)

∥∥∥∥ϕ j
∥∥

+
∥∥∥R jζ̃ j +R jA j(α j)ζ̃ j +R jĀ j(α̃ j)ζ̃ j

∥∥∥
≤
∥∥R j
∥∥∥∥Â j(α̃ j)

∥∥∥∥ϕ j
∥∥

+
∥∥∥R jζ̃ j

∥∥∥+∥∥∥R jA j(α j)ζ̃ j

∥∥∥+∥∥∥R jĀ j(α̃ j)ζ̃ j

∥∥∥
≤ c2(

∥∥ν j
∥∥+∥∥ν j

∥∥2
) (24)

where

Â j(α̃ j) =
[

α̃ j1 0 α̃ j2 0 · · · α̃ js j 0
]

Ā j(α̃ j) =

[
0(s̄ j−1)×1 0s̄ j−1,s̄ j−1

α̃ j1 0, α̃ j2,0, · · · , α̃ js j ,0

]
c2 ≥

∥∥R j
∥∥∥∥Â j(α̃ j)

∥∥+∥∥R j
∥∥+∥∥R jA j(α j)

∥∥ ,∀ j ∈ N

The last “≤” is due to the boundedness of φ j. Define a
set Ων :=

{
ν | ∑ j∈N U j(t,ν j)≤ c̃

}
. Since U j(t,ν j) is radially

unbounded, there exists a constant c such that
∥∥v j(t)

∥∥≤ c for
any ν ∈Ων . In Ων , we have∥∥ρq j

∥∥= ∥∥Ã j(α j)φ j− Ã j(α̂ j)ζ j
∥∥≤ c3

∥∥ν j
∥∥ (25)

for a suitable c3 > 0 (defined in (29)).
Similarly,

∥∥φ j(ν j,ω j)−φ j(ν j,0)
∥∥=

∥∥∥∥∥∥
 −M jω j

−G jM jω j
−kα Λ j(ζ j)M jω j

∥∥∥∥∥∥
≤
(∥∥M j

∥∥+∥∥G j
∥∥∥∥M j

∥∥+ kα

∥∥M j
∥∥∥∥ν j

∥∥)∥∥ω j
∥∥

≤ c3
∥∥ω j

∥∥ (26)

From Lemma 2, we have∥∥∥∥∂U j(t,ν j)

∂ν j

∥∥∥∥≤ c3
∥∥ν j
∥∥ (27)

Combining (26) and (27), we have∥∥∥∥∂U j(t,ν j)

∂ν j
(φ j(ν j,ω j)−φ j(ν j,0))

∥∥∥∥
≤ 1

2

∥∥ν j
∥∥2

+
1
2

c4
3
∥∥ω j

∥∥2 (28)

where

c3 ≥max
{

1, c2(1+ c), b j0(1+ c2),∥∥M j
∥∥+∥∥G j

∥∥∥∥M j
∥∥+ kα

∥∥M j
∥∥c
}
, ∀ j ∈ N (29)

We give an assumption.
A1: The control parameter d j satisfies

d j > max
{

1+2c6
3

2
−D j,

2c2
3 +1
4c2

3
+

2c6
3− c4

3

2c2
3−2

+2c2
3−D j

}
(30)

A1 is easy to satisfy by letting d j large enough. Denote
the state variables of (22) as x =

[
θ̃ T ,ωT ,µT ,νT

]T and x1 =[
θ̃ T ,ωT , µT

]T . Similar to Definition 1, we have

Definition 2. A point x∗ is an equilibrium point of the closed-
loop system (22) if the right-hand side of (22) vanishes at x∗.

Define a Lyapunov candidate function as

V (t,x1,ν) =
1

2c2
3
V1 +V2 (31)
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where

V1 =
1
2
(x1− x∗1)

T
Γ(x1− x∗1) (32)

with Γ := diag(B,M, In),

V2 = ∑ j∈N U j(t,ν j) (33)

From Lemma 2 and (32), there are positive definite
and radially unbounded functions V (x1,ν),V (x1,ν) such
that V (x1,ν) ≤ V (t,x1,ν) ≤ V (x1,ν). Define a set ΩV ={
(x1,ν)| V (x1,ν)≤ c̃

}
. We have ∀(x1,ν) ∈ ΩV , then ν ∈ Ων

and
∥∥v j(t)

∥∥≤ c.
Finally, the stability result is given.

Theorem 3. Assume A1 holds. Then every trajectory of (22)
x(t) starting from ΩV converges to x∗ asymptotically.

Proof of Theorem 3. Define the following function

h(x1) =

 BCT ω

Pin−β−1µ− (D+d)ω−CBθ̃

−Lµ +β−1ω

 (34)

The derivative of V1 is

V̇1 = (x1− x∗1)
T

Γ · ẋ1

= (x1− x∗1)
T h(x1)+ ∑

j∈N
ω j
(
Ã j(α j)ϕ j− Ã j(α̂ j)ζ j

)
(35)

The first part of V̇1 is

(x1− x∗1)
T h(x1)

=
∫ 1

0
(x1− x∗1)

T ∂

∂y
h(y(s))(x1− x∗1)ds+(x1− x∗1)

T h(x∗1)

≤ 1
2

∫ 1

0
(x1− x∗1)

T
[

∂ T

∂y
h(y(s))+

∂

∂y
h(y(s))

]
(x1− x∗1)ds

=
∫ 1

0
(x1− x∗1)

T [H(y(s))] (x1− x∗1)ds (36)

where y(s) = x∗1 + s(x1 − x∗1). The second equation is from
the fact that h(x1) − h(x∗1) =

∫ 1
0

∂

∂y h(y(s))(x1 − x∗1)ds. The
inequality is due to either h(x∗1) = 0 or h(x∗1)< 0,x1 ≥ 0, i.e.
(x1− x∗1)

T h(x∗1)≤ 0.

∂h(x1)

∂x1
=

 0 BCT 0
−CB −(D+d) −β−1

0 β−1 −L

 (37)

where D = diag(Di), d = diag(di), C is the incidence matrix
of the communication graph.

Finally, H in (36) is

H =
1
2

[
∂ T

∂x1
h(x1)+

∂

∂x1
h(x1)

]

=

 0 0 0
0 −(D+d) 0
0 0 −L


The second part of V̇1 is

∑ j∈N ω j
(
Ã j(α j)φ j− Ã j(α̂ j)ζ j

)
≤ 1

2
‖ω‖2 +

1
2 ∑ j∈N(Ã j(α j)ϕ j− Ã j(α̂ j)ζ j)

2

≤ 1
2
‖ω‖2 +

1
2

c2
3 ‖ν‖ (38)

where the last inequality is due to (25).
Thus,

V̇1 ≤
∫ 1

0
(x1− x∗1)

T [H(y(s))] (x1− x∗1)ds

+
1
2
‖ω‖2 +

1
2

c2
3 ‖ν‖ (39)

The derivative of V2 is

V̇2 = ∑
j∈N

(
∂U j(t,ν j)

∂ t
+

∂U j(t,ν j)

∂ν j
φ j(ν j,ω j)

)
= ∑

j∈N

(
∂U j(t,ν j)

∂ t
+

∂U j(t,ν j)

∂ν j
φ j(ν j,ω j)

)
+ ∑

j∈N

(
∂U j(t,ν j)

∂ν j
(−φ j(ν j,0)+φ j(ν j,0))

)
= ∑

j∈N

(
∂U j(t,ν j)

∂ t
+

∂U j(t,ν j)

∂ν j
φ j(ν j,0)

)
+ ∑

j∈N

(
∂U j(t,ν j)

∂ν j
(φ j(ν j,ω j)−φ j(ν j,0))

)
≤−‖ν‖2 +

1
2
‖ν‖2 +

1
2

c4
3 ‖ω‖

2

=−1
2
‖ν‖2 +

1
2

c4
3 ‖ω‖

2 (40)

where the inequality is due to Lemma 2 and (28).
In ΩV , the derivative of V is

V̇ =
1

2c2
3
V̇1 +V̇2

≤ 1
2c2

3

∫ 1

0
(x1− x∗1)

T [H(y(s))] (x1− x∗1)ds

+
1

4c2
3
‖ω‖2 +

1
4c2

3
∑ j∈N(Ã j(α j)φ j− Ã j(α̂ j)ζ j)

2

−1
2
‖ν‖2 +

1
2

c4
3 ‖ω‖

2

≤ −1
4
‖ν‖2 +

1
2c2

3

∫ 1

0
(x1− x∗1)

T [H(y(s))] (x1− x∗1)ds

+
1+2c6

3

4c2
3
‖ω‖2 (41)

Define H̃ as

H̃ :=

 0 0 0

0 −(D+d)+ 1+2c6
3

2 In 0
0 0 −L


Then we have

V̇ ≤ −1
4
‖ν‖2 +

1
2c2

3

∫ 1

0
(x1− x∗1)

T H̃ (x1− x∗1)ds (42)

It is obvious that H̃ ≤ 0 holds if

−(D+d)+
1+2c6

3
2

In < 0 (43)

where In is an n-dimensional identity matrix. Indeed, Assump-
tion A1 guarantees that (43) holds.
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By LaSalle’s invariance principle, we can prove that the
trajectory x(t) converges to the largest invariant subset of

W1 = {x|ν∗ = 0,ω = ω
∗ = 0,µ = µ

∗} .

Next we will prove that the convergence is to an equilib-
rium point. Since ω = ω∗ are constants, θ̃ = CT ω∗ are also
constants. Then by [27, Corollary 4.1], x(t) will converge to
its equilibrium point x∗ asymptotically.

V. ROBUSTNESS ANALYSIS

A. Robustness Against Uncertain Parameter D j

In the controller (11), the exact value of D j is difficult to
know, or even changes at times. However, we claim that the
inaccuracy of D j does not influence both equilibrium point of
the closed-loop system (14) and its stability, as we explain.

We first consider the equilibrium point. Suppose the estima-
tion of D j is D̂ j and the estimation error is ∆D j := D̂ j−D j.
Usually there is D̂ j ≥ 0. Then (14d) can be rewritten as

˙̃η j = −η̃ j +Pin
j +ρq j + ∑

i:i→ j
Bi jθ̃i j− ∑

k: j→k
B jkθ̃ jk

−D jω j−∆D jω j−µ j/β j−d jω j (44)

Since ω j vanishes at equilibrium, ∆D j does not influence the
equilibrium point of the closed-loop system (14a)-(14c), (44),
(14e)-(14f).

Next, we discuss the stability. When ∆D j is considered,
(22d) is rewritten as

ν̇ j =


−η̂ j− (M j +∆D j)ω j(

(A j(α̂ j)−A j(α j))ζ j−G j(η̂ j +M jω j)

+(A j(α j)−G jR j)ζ̃ j

)
−kα Λ j(ζ j)(η̂ j +M jω j +R jζ̃ j)

(45)

Suppose x̃(t) are state variables of (22a)− (22c), (45), and x̃∗

is an equilibrium point of x̃(t).
A2: The parameter d j satisfies (30), where c3 is given by

c3 ≥ max
{

1, c2(1+ c), b j0(1+ c2),∥∥M j +∆D j
∥∥+∥∥G j

∥∥∥∥M j
∥∥+ kα

∥∥M j
∥∥c
}
.

We have the following result.

Corollary 4. Assume A2 holds, every trajectory x̃(t) of (14a)-
(14c), (44), (14e)-(14f) starting from ΩV converges to the
equilibrium point x̃∗ asymptotically.

Note that one can always choose large enough d j. Hence
Corollary 4 can be easily proved following the same line of
proving Theorem 3, which is omitted here due to page limit.

In summary, the unknown parameter D j does not influence
both the equilibrium point and its stability,indicating that our
controller is robust against parameter uncertainty.

B. Robustness Against Unknown Disturbances w j(t)

To attenuate the effect of w j(t), one needs to guarantee
that, for a given constant γ > 0, the robust performance index∥∥ω j(t)

∥∥2 ≤ γ
∥∥w j(t)

∥∥2 holds. [28, Chapter 16], [29], [30].
It means that, for a bounded external disturbance w j(t), the
frequency deviation is always bounded by the given γ . A

smaller γ results in a better attenuation performance. The lower
bound of γ (if it exists) is referred to as L2 gain of the system.

When considering w j(t), the closed-loop system is

˙̃
θi j = ωi−ω j (46a)

ω̇ j =
1

M j

(
Pin

j +w j(t)+ρq j + ∑
i:i→ j

Bi jθ̃i j− ∑
k: j→k

B jkθ̃ jk

−µ j/β j−d jω j−D jω j
)

(46b)

µ̇ j = −∑k∈Nc j
(µ j−µk)+ω j/β j (46c)

ν̇ j = φ̃ j(ν j,ω j,w j) (46d)

where

φ̃ j =


−η̂ j−M jω j−w j(t)(

(A j(α̂ j)−A j(α j))ζ j−G j(η̂ j +M jω j)

+(A j(α j)−G jR j)ζ̃ j

)
−kα Λ j(ζ j)(η̂ j +M jω j +R jζ̃ j)

 .
By the similar analysis to (26), we have∥∥φ j(ν j,ω j,w j)−φ j(ν j,0,0)

∥∥ ≤ c3
∥∥ω j

∥∥+∥∥w j
∥∥ (47)

where c3 is same as that in (29). Then∥∥∥∥∂U j(t,ν j)

∂ν j
(φ j(ν j,ω j,w j)−φ j(ν j,0,0))

∥∥∥∥
≤ 1

2

∥∥ν j
∥∥2

+
2c6

3− c4
3

2c2
3−2

∥∥ω j
∥∥2

+
1
2

∥∥w j
∥∥2 (48)

Using V1, V2 defined in (32) and (33) again, we have

V̇1 ≤
∫ 1

0
(x1− x∗1)

T [H(y(s))] (x1− x∗1)ds+
1
2

c2
3 ‖ν‖

2

+
1
2
‖ω‖2 +

1
4c2

3
‖ω‖2 + c2

3 ‖w‖
2 (49)

and

V̇2 ≤ −‖ν‖2 +
1
2

∥∥ν j
∥∥2

+
2c6

3− c4
3

2c2
3−2

‖ω‖2 +
1
2
‖w‖2

= −1
2
‖ν‖2 +

2c6
3− c4

3

2c2
3−2

‖ω‖2 +
1
2
‖w‖2 (50)

Using the same Lyapunov function as in (31) gives

V̇ ≤ −1
4
‖ν‖2− 1

2c2
3
(µ−µ

∗)T L(µ−µ
∗)+‖w‖2

− 1
2c2

3
ω

T
(

D+d−
2c2

3 +1
4c2

3
In−

2c6
3− c4

3

2c2
3−2

In

)
ω (51)

Thus, we have ∥∥ω j
∥∥2 ≤ γ

∥∥w j
∥∥2 (52)

where

1
γ
= min

{
1

2c2
3

(
D j +d j−

2c2
3 +1
4c2

3
−

2c6
3− c4

3

2c2
3−2

)}
, ∀ j ∈ N

(53)

We have 1
γ
> 1 due to Assumption A1.

Inequalities (52) and (53) indicate that the controller is
robust to w j(t) with the L2-gain γ < 1. In practice, the
amplitudes of w j(t) are usually quite small. As a consequence,
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Fig. 1: The New England 39-bus system
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Fig. 2: Power variation of renewable resources in each area

the deviation of ω j is also small. According to (53), a larger
d j is helpful to enhance the attenuation performance.

The analysis above shows that the controller is robust in
terms of uncertain parameter D j and unknown disturbance
w j(t). Hence P3 is resolved.

VI. CASE STUDIES

A. System Configuration

To verify the performance of the proposed controller, the
New England 39-bus system with 10 generators as shown in
Fig.1 is used for test. All simulations are implemented in the
commercial power system simulation software PSCAD [31].

We add four (aggregate) controllable loads to the system
by connecting them at buses 32, 36, 38 and 39, respectively.
Their initial values are set as (74.1, 52.7, 52.7, 105.4) MW.
Then the system is divided into four control areas, as shown
in Fig.1. Each area contains a controllable load. Parameters β

in each area are (1, 0.8, 0.8, 0.4). The communication graph
is undirected and set as L32 ↔ L36 ↔ L38 ↔ L39 ↔ L32.
The varying power in each area is shown in Fig.2. Note that
the functions of the four curves in Fig.2 are unknown to the
controllers. In the controller design, we choose s j = 3 in (3).
Note that this does not mean the actual power variation (curves
in Fig.2) are superposition of only three sinusoidal functions.

In our tests, two scenarios are studied: 1) only unknown
time-varying part is considered, i.e., Pin

j = 0, q̃ j(t) 6= 0; 2)
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Fig. 4: Dynamics of µ under two controls

both known steady-state and unknown time-varying parts are
considered, i.e., Pin

j 6= 0, q̃ j(t) 6= 0.

B. Scenario 1: Pin
j = 0, q̃ j(t) 6= 0

In this scenario, the system operates initially in a steady
state and the frequency controller (10) is adopted. At t = 20s,
unknown power variation q̃ j(t) is enforced. At t = 100s,
the controller is switched to our controller (11). The system
frequency dynamics are shown in Fig.3.

In Fig.3, the dotted green line stands for the frequency
dynamics using controller (10). It is observed the frequency
experiences fierce oscillation in this situation. The maximal
amplitude is up to 0.05Hz. However, when controller (11) is
applied at t = 100s, the frequency is stabilized rapidly (the
black solid line). This validates the efficacy of our controller.

The dynamics of µ j are shown in Fig.4. µ j varies greatly
before using (11), while is stabilized when (11) is activated.

The control input generated by the internal models, i.e.,
Ã j(α̂ j)ζ j, and the actual power variations q̃ j(t) in each area
are compared in Fig.5. It is observed that Ã j(α̂ j)ζ j tracks q̃ j(t)
with high accuracy.

Moreover, we also illustrate the error between variation and
internal model output, which is shown in Fig.6. It is shown
that the error is very small. The error in area 4 is bigger than
others, as the disturbance in area 4 is much larger than that in
other areas (see Fig.2).

To demonstrate it more clearly, we define an error index
Err j as below.

Err j :=

∫ t1
t0

√(
Ã j(α̂ j)ζ j− q̃ j(t)

)2dt∫ t1
t0

√
(q̃ j(t))

2dt
(54)
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In this scenario, t0 = 100, t1 = 180. Err j in each area are
(0.00042, 0.00075, 0.00091, 0.00040), all of which are very
small. This result indicates that the effect of unknown power
variations is almost completely mitigated.

C. Scenario 2: Pin
j 6= 0, q j(t) 6= 0

In this subsection, Pin
j in each area are (15, 15, 15, 15)

MW, which are the prediction of aggregated load. It should
be pointed out that the prediction is not accurate. The offset
errors are (1, 1, 1, 5) MW, which are relatively small but
unknown. We compare the performances using controller (10)
and (11). Both the two controllers are applied at t = 20s. The
system frequencies are compared in Fig.7.

The green line stands for the frequency dynamics using
(10). The frequency oscillation is fierce and nadir is quite low.
The black line stands for frequency dynamics using (11). In
this situation, the nominal frequency is recovered fast without
oscillation. The frequency nadir is much higher than that using
(10). This result confirms that our controller can still work well
when Pin

j 6= 0.
The dynamics of µ j are given in the left part of Fig.8. The

green line stands for µ j using (10), while the black line stands
for that using (11). µ j of each area converges to a same value,
which implies the optimality is achieved, i.e., Pin

j is balanced
economically.

In this scenario, the controllable load in each area is also
composed of two parts: a steady part to balance Pin

j and a
variation part to mitigate the effects of q̃ j(t). The steady part
of controllable load is given in the right part of Fig.8. The con-
trollable loads in the steady state are (63.8, 39.8, 39.8, 79.6)
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Fig. 8: Dynamics of µ and steady parts of controllable loads

MW. The result is the same as that obtained using CVX to
solve the optimization counterpart (i.e., OLC problem (9)).

The performance of controllable load tracking power vari-
ation in each area is given in Fig.9. We can find that the
controllable loads coincide to the power variations with high
accuracy. Again, the error index Err j with t0 = 20 and t1 = 120
in this situation are (0.0084, 0.0026, 0.0057, 0.0019), which
are also very small.

D. Performance under Unknown Disturbances

To test the performance of our controller under high-
frequency unknown disturbances, we add random noise w̃(t)
on q̃(t) into the testing system, which takes the form of

w̃(t) =


10× rand(t)
10× rand(t)
10× rand(t)
100× rand(t)

MW

where rand(t) is a function generating a random number
between [0, 1] at time t. The load control command and the
power variations are given Fig.10. As the frequency of external
disturbance is quite high, the internal model control is not able
to follow it accurately. As a consequence, there exist obvious
tracking errors, as shown in Fig.11. The system frequency
is shown in Fig.12. The inset zooms into the frequency
dynamics between 140s-160s, when the system converges to
the steady state. The maximal frequency deviation is smaller
than 0.001Hz, demonstrating that the unknown disturbance is
well attenuated by the proposed controller.

VII. CONCLUSION

In this paper, we address the frequency control problem
in power systems with high-penetration renewable generation
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integrated. We have decomposed power imbalance into three
parts: the known steady part, the unknown low-frequency vari-
ation part and the unknown high-frequency residual. Then the
distributed frequency control problem for the three different
time scales are fitted into a same control framework, resolving
the following problems:

1) Slow timescale: designing the consensus-based dis-
tributed control to allocate the steady part of power
imbalance economically;

2) Medium timescale: devising an internal model control
to accurately track and compensate time-varying un-
known power imbalance locally;

3) Fast timescale: using the L2 gain inequality to show
the robustness of the controller against uncertain distur-
bances and parameters.

Empirical results of tests carried on the New England
system confirm the efficacy of our controller.
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[7] A. Jokić, M. Lazar, and P. P. van den Bosch, “Real-time control of power
systems using nodal prices,” Int. J. Elect. Power Energy Syst., vol. 31,
no. 9, pp. 522–530, 2009.

[8] X. Zhang and A. Papachristodoulou, “A real-time control framework for
smart power networks: Design methodology and stability,” Automatica,
vol. 58, pp. 43–50, 2015.

[9] T. Stegink, C. De Persis, and A. van der Schaft, “A unifying energy-
based approach to stability of power grids with market dynamics,” IEEE
Trans. Autom. Control, vol. 62, no. 6, pp. 2612–2622, 2017.

[10] N. Li, C. Zhao, and L. Chen, “Connecting automatic generation control
and economic dispatch from an optimization view,” IEEE Trans. Control
Network Syst., vol. 3, no. 3, pp. 254–264, 2016.

[11] D. Cai, E. Mallada, and A. Wierman, “Distributed optimization decom-
position for joint economic dispatch and frequency regulation,” IEEE
Trans. Power Syst., early access, 2017.

[12] E. Mallada, C. Zhao, and S. H. Low, “Optimal load-side control for
frequency regulation in smart grids,” IEEE Trans. Autom. Control, to
appear, 2017.

[13] Z. Wang, F. Liu, J. Z. Pang, S. Low, and S. Mei, “Distributed optimal
frequency control considering a nonlinear network-preserving model,”
arXiv preprint arXiv:1709.01543, 2017.

[14] A. Kasis, E. Devane, C. Spanias, and I. Lestas, “Primary frequency
regulation with load-side participation part i: stability and optimality,”
IEEE Trans. Power Syst. early access, 2016.

[15] Z. Wang, F. Liu, S. H. Low, C. Zhao, and S. Mei, “Distributed frequency
control with operational constraints, part i: Per-node power balance,”
IEEE Trans. Smart Grid, in press, 2017.

[16] ——, “Distributed frequency control with operational constraints, part
ii: Network power balance,” IEEE Trans. Smart Grid, in press, 2017.

[17] L. Y. Lu, H. J. Liu, and H. Zhu, “Distributed secondary control for
isolated microgrids under malicious attacks,” in 2016 North American
Power Symposium (NAPS), Sept 2016, pp. 1–6.

[18] S. Trip, M. Bürger, and C. De Persis, “An internal model approach



12

to (optimal) frequency regulation in power grids with time-varying
voltages,” Automatica, vol. 64, pp. 240–253, 2016.

[19] K. Xi, H. X. Lin, and J. H. van Schuppen, “Power-imbalance allocation
control of power systems – a frequency bound for time-varying loads,”
in 2017 36th Chinese Control Conference (CCC), July 2017, pp. 10 528–
10 533.

[20] E. Weitenberg, Y. Jiang, C. Zhao, E. Mallada, C. De Persis, and
F. Dörfler, “Robust decentralized secondary frequency control in power
systems: Merits and trade-offs,” arXiv preprint arXiv:1711.07332, 2017.

[21] X. Wang, Y. Hong, P. Yi, H. Ji, and Y. Kang, “Distributed optimization
design of continuous-time multiagent systems with unknown-frequency
disturbances,” IEEE Trans. Cybern., vol. 47, no. 8, pp. 2058–2066, Aug
2017.
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